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Abstract
The ultrasensitivity of a dose response function can be quantifiably defined using

the generalized Hill coefficient of the function. Our group examined an upper bound
for the Hill coefficient of the composition of two functions, namely the product of their
individual Hill coefficients. We proved that this upper bound holds for compositions
of Hill functions, and that there are instances of counterexamples that exist for more
general sigmoidal functions. Additionally, we tested computationally other types of
sigmoidal functions, such as the logistic and inverse trigonometric functions, and we
provided evidence that in these cases the inequality also holds. We show that in large
generality there is a limit to how ultrasensitive the composition of two functions can be,
which has applications to understanding signaling cascades in biochemical reactions.

1 Introduction
The human body is a complex system with a large number of cell types working together

to carry out different tasks. In some situations, cells need to be decisive in the sense of
ignoring a low level of stimulus, while leading to a significant response when given a larger
stimulus. For example consider the case of a wound, in which the skin breaks and bleeds. The
surrounding cells immediately send signals to other cells in the skin, essentially telling them
to divide quickly. This signal is sent in the form of a molecule called epidermal growth factor
(EGF) which floats in the neighborhood of the wound, and which binds to a membrane bound
receptor called epidermal growth factor receptor (EGFR) [2]. Cells that receive sufficient
EGF binding to their receptors will begin to quickly divide. On the other hand, this is a
very sensitive system since unwanted replication can lead to cancer in contexts other than
wound healing. In order to prevent such unwanted cell division, the EGFR dose response is
such that a small amount of EGF leads to no response, while a slightly larger input EGF
concentration leads to a robust response. This behavior is called ultrasensitivity.

A highly ultrasensitive switch is similar to a bell: when you press the button sufficiently
it rings, but it shows no response for a light press [4]. In the context of EGFR signaling,
the molecules downstream of this receptor are modified by phosphorylation [4], the transfer
of phosphate molecules mediated by an enzyme. Phosphorylation takes place sequentially
over a series of molecules, each molecule phosphorylating (and thereby activating) the next.
This particular cascade is known as the Mitogen-Activated Protein Kinase cascade (MAPK),
and it is model signaling pathway in the study of cellular communication [10]. It is believed
that the combination of these multiple steps is in large measure what allows the larger
ultrasensitivity of the overall response.

In this paper, we study how connecting a cascade of multiple small reactions with mod-
erate ultrasensitivity can result in a single cascade with significantly larger ultrasensitivity.
Specifically, we work to establish an upper bound to the extent of ultrasensitivity in a cas-
cade, in terms of the ultrasensitivity of the individual cascade steps. In the context of the
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MAPK cascade example, each of the three steps constitutes a smaller set of reactions with its
own input-output response, and the overall dose response of the system can be broadly un-
derstood as the composition of each of these functions. We therefore ask how ultrasensitive
can be the composition of moderately ultrasensitive functions.

In first instance we use Hill functions to describe the input-output behavior of each
cascade step. This function can also be used to quantitatively measure the ultrasensitivity
of a response through the so-called Hill coefficient, a component of the function referred to
as n in the formula below and Figure 1a): [16]

f(x) =
cxn

K + xn
(1)

In this case x is the input concentration of ligand [14], and c describes the saturation
value of the function for large x. The constant K modulates the function horizontally, such
that when xn = K the response is 50% of the maximal output.

Given a positive, increasing, saturating function f(x), we can also define the values

EC10 = f−1(0.1fmax), EC90 = f−1(0.9fmax),

where fmax is the saturation value of the function [1,7]. They are the effective concentrations
of input that lead to 10% and 90% of the response, respectively. These values can also be
used to find the Hill coefficient for non-Hill functions through the use of the formula derived
by Goldbeter and Koshland in 1981 [5]:

H =
ln 81

ln EC90
EC10

(2)

While the value of H can be calculated for any such so-called sigmoidal function, it also
satisfies that H = n in the case of Hill functions. This generalized Hill coefficient is therefore
helpful to quantify the ultrasensitivity of dose responses in larger generality.

The main conjecture we explore in this paper is inspired by work proposed by James
Ferrell and colleagues. We propose and prove that the Hill coefficient of the composition of
two Hill functions f(x), g(x) satisfies the formula

Hf(g(x)) ≤ Hf(x)Hg(x) (3)

The value of this hypothesis, which we call the Ferrell inequality, is that it provides an
upper limit for how ultrasensitive a cascade can be, as a function of the individual steps. We
establish here the inequality for two arbitrary Hill functions. We explore computationally
the generalization of the inequality to three-step Hill function cascades, as well as for two
other families of sigmoidal functions, namely inverse trigonometric functions and logistic
functions. Finally, we show that the inequality is not true for any two arbitrary sigmoidal
functions, by producing a simple counterexample.

In the work [8], Huang and Ferrell show a similar inequality in terms of the sensitivity of
a dose response, rather than the Hill coefficient. The sensitivity of a function f(x) is defined
as S(x) = f ′(x)x/f(x). One can consider sensitivity as the percent change in the output
based on a percent change in the input x. For example, a sensitivity of 3 means that an
increase in the parameter x of 1% will result in an increase of the output by 3%. Huang and
Ferrell pointed out a result for compositions of multiple functions, namely that

R = r1r2r3, (4)

where R is the sensitivity of the cascade, and r1, r2, and r3 are the sensitivities of each level
of the cascade. The proof of this result follows immediately from using the chain rule in the
definition of the composition.

The sensitivity of a function is also used as a measure of ultrasensitivity, but it has
some caveats. For instance, the sensitivity of a Hill function has the somewhat unintuitive
property that it is highest at x = 0. The Hill coefficient, especially for Hill functions, is
a widely followed measure of ultrasensitivity, and it is a natural question to explore this
inequality in that context.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.28.529800doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.529800
http://creativecommons.org/licenses/by/4.0/


2 Results

2.1 Logarithmic Sampling

In order to ensure that the trials produced by our algorithm are properly randomized, we
utilized logarithmic sampling. Suppose a lower bound and an upper bound are given for the
sample, 0 < a < b. Since b might be orders of magnitude larger than a, we want to ensure
that the samples are selected from each order of magnitude with similar likelihood. To do
this we choose a number x between log10 a and log10 b, selected using a uniform distribution.
The output of the logarithmic sampling algorithm is 10x, which must lie between a and b.

For instance, suppose that a = 1 and b = 1000 describe a plausible range for the pa-
rameter value of a given biochemical constant. If a number is sampled uniformly from 1 to
1000, most of the numbers sampled will be larger than 100. Using logarithmic sampling, one
would choose a number x from 0 to 3, and the sampled number would be 10x. In this way,
the sample has the same likelihood of being on the intervals [1,10], [10,100], and [100,1000].

2.2 Hill Function Database

We chose to computationally analyze Ferrell’s hypothesis using Hill functions in order to
gain confidence that an analytical proof can be pursued. Two Hill functions f(x) and g(x)
are considered, by randomizing each of their parameters using logarithmic sampling.

The Hill coefficient of f(x) and g(x) is simply given by the parameter n in each function.
For the composition, the generalized Hill coefficient is calculated by inverting each function
to calculate EC10 and EC90. Should EC10 be negative, the full set of parameters is
randomized again to ensure that the generalized Hill coefficient H is well defined.

The ultrasensitivity of the composition function, f(g(x)), was then compared with the
product of the ultrasensitivity of f(x) and g(x). The algorithm would then output a "yes"
or "no" in order to signify if the values were consistent with our hypothesis. There were
over 5000 trials performed. A portion of the database created by the algorithm can be seen
below for illustrative purposes. Figure 1a) shows three Hill functions and demonstrates how
changes in the Hill coefficient can modify its characteristics.

(5)

(a) f(x) = cxn

K+xn
(b) f(x) = c arctan(rx−k)+

cπ

2 (c) f(x) = c
1+eKx−KL

Figure 1: a) Hill function graphs, each with a different value of n to illustrate how the Hill
coefficient affects the properties of each function. All functions on the graph were evaluated
at c = 6 and K = 7. b) The graph of an inverse tangent function evaluated at c = 3,
r = 2,and K = 9. c) The graph of a logistic function evaluated at c = 4, K = 3, and L = 2.
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Every case that arose from the 5000 randomized trails in our database was consistent
with the hypothesis, providing significant evidence that an analytical proof can be pursued
in the case of two Hill functions.

2.3 Inverse Tangent Function Database

While constructing and analyzing the Hill function database, we recognized that we could
computationally test our hypothesis with additional sigmoidal functions. We discuss our
results using the inverse tangent function,

f(x) = c arctan(rx−K) +
cπ

2
.

An example of the inverse tangent function can be found in Figure 1b. The parameters c,
r, and K were randomized within biological parameters for the various trial cases using the
logarithmic sampling method described in Section 2.1. We analyzed over 5000 trial cases for
our hypothesis using inverse tangent functions. A portion of the database created by our
algorithm can be seen below for illustrative purposes.

(6)

Over 98% of the cases that arose from the 5000 randomized trails in our database were
consistent with our hypothesis. These results indicated that our hypothesis could be proven
true not just in the case Hill functions, but other sigmoidal functions used to describe
ultrasensitive responses as well. The remaining 2% of cases could be due to a failure of the
inequality itself, or it could be due to numerical issues when calculating the Hill coefficients.

2.4 Logistic Function Database

The logistic function is another type of sigmoidal function that we chose to test our hypothesis
computationally. We defined the logistic function as

f(x) =
c

1 + eKx−KL
.

An example of the logistic function can be found in Figure 1c. The parameters c, L,
and K were randomized within biological parameters for the various trial cases using the
logarithmic sampling method described in Section 2.1. We analyzed over 5000 trial cases for
our hypothesis using logistic functions. A portion of the database created by our algorithm
can be seen below for illustrative purposes.

(7)
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Every case that arose from the 5000 randomized trials in our database was consistent
with our hypothesis. These results highlighted yet another instance in which our hypothesis
could be proven true by other sigmoidal functions used to describe ultrasensitive responses.

2.5 Proving the Ferrell Inequality for Hill Functions

In this section we provide a rigorous mathematical proof for the Ferrell inequality in the case
of two Hill functions. We start this proof by establishing the notation for the three functions
f(x), g(x), and h(x) = f(g(x)),

f(x) =
c1x

n

K1 + xn
(8)

g(x) =
c2x

m

K2 + xm
(9)

h(x) = f(g(x)) =
c1(

c2xm

K2+xm )n

K1 + ( c2xm

K2+xm )n
. (10)

Recall that we want to prove

Hf(g(x)) ≤ HfHg. (11)

First, we assume without loss of generality that c1 = 1 and c2 = 1. Suppose that the
result is true in that special case. In the general problem, c1 only re-scales f(x) and h(x)
vertically. It does not affect the Hill coefficients involved.

Similarly for c2,

h(x) = f(g(x)) =
c1g(x)

n

K1 + g(x)n
=

c1(
c2xm

K2+xm )n

K1 + ( c2xm

K2+xm )n
(12)

=
c1(

xm

K2+xm )n

K1

cn2
+ ( xm

K2+xm )n
. (13)

Notice that the composition function h(x) is identical to that of the case c2 = 1, in which
the coefficient K1 has been replaced by K1/c

n
2 . In this way, one can assume that c1 = 1 as

well as c2 = 1 without loss of generality, and we do this in the rest of the proof.
In order to prove the inequality, we first have to determine the ultrasensitivity, H, by

calculating the Hill coefficient for each function. Since f(x) and g(x) are Hill functions, we
already know that Hf(x) = n and Hg(x) = m. However, determining the Hill coefficient for
the composition function f(g(x)) will prove to be more challenging since it does not follow
a form which allows us to directly determine its ultrasensitivity using the Hill coefficient as
we did with f(x) and g(x). Instead, we will have to use equation (2), H = ln 81/ ln EC90

EC10
.

We will first find the maximum y value of the composition function, then use the inverse of
the composition function to solve for the EC10 and EC90 values. We find the ratio of the
EC90 to EC10 values, and then insert that ratio into equation (2).

For the composition of two Hill functions, the exterior function evaluated at the saturation
point of the interior function will produce the maximum y value, or ymax = f(c2). Recall we
assumed c2 = 1 without loss of generality. Evaluating f(c2) results in

ymax = f(c2) = f(1) =
1

K1 + 1
. (14)

Now that we have the maximum y value of the composition, we can solve for the EC10
and EC90 values. Starting with the EC90, we need to solve for x in the equation

f(g(x)) = 0.9ymax. (15)
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Evaluating the inverse functions on both sides we get

g(x) = f−1(0.9ymax)

EC90 = x = g−1(f−1(0.9ymax)).

We can take the following steps to derive the formula for the inverse of a Hill function:

y =
c1x

n

K1 + xn
(16)

(K1 + xn)y = c1x
n (17)

K1y + xny = c1x
n (18)

K1y = xn(c1 − y) (19)

K1y

(c1 − y)
= xn (20)

x =

(
K1y

c1 − y

) 1
n

. (21)

The inverse formula for g(x) is analogous. Now that we have the formula for the inverse
of a Hill function, we can apply it to the formula EC90 = g−1(f−1(0.9ymax)) as we described
previously. This yields

EC90 =

(
K2(f

−1(0.9ymax))

1− f−1(0.9ymax)

) 1
m

. (22)

We can follow the same process as above to solve for the EC10 value derived from the
equation EC10 = g−1(f−1(0.1ymax)), which results in

EC10 =

(
K2(f

−1(0.1ymax))

1− f−1(0.1ymax)

) 1
m

. (23)

In order to further simplify the EC90 and EC10 expressions, we can write f−1(0.1ymax)
and f−1(0.9ymax) in terms of K1 and n, and relabel them as α and β, respectively, for clarity
when being referenced

f−1(0.1ymax) = α =

(
0.1K1

K1+1

1− 0.1
K1+1

) 1
n

(24)

f−1(0.9ymax) = β =

(
0.9K1

K1+1

1− 0.9
K1+1

) 1
n

. (25)

Let us take the time to further simplify α and β. For α, we can start the simplification
process by getting a common denominator for the expression in the denominator of α,
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α =

(
0.1K1

K1+1

1− 0.1
K1+1

) 1
n

=

(
0.1K1

K1+1
K1+1
K1+1

− 0.1
K1+1

) 1
n

=

(
0.1K1

K1+1
K1+0.9
K1+1

) 1
n

. (26)

Cancelling fractions and further simplifying we get

α =

(
0.1K1

K1 + 0.9

) 1
n

=

(
K1

10K1 + 9

) 1
n

. (27)

Following the same process we did for α will allow us to reduce β to

β =

(
9K1

10K1 + 1

) 1
n

. (28)

Notice that 0 < α < β < 1, which will be important below.
Now that we have solved for both the EC10 and EC90 values and simplified them in

terms of α and β, we can form the EC90 to EC10 ratio,

EC90

EC10
=

((
K2β

K2α

)(
1− α

1− β

)) 1
m

=

((
β

α

)(
1− α

1− β

)) 1
m

. (29)

We can then take this expression and insert it into equation (2) in order to determine
the ultrasensitivity of the composition function,

Hf(g(x)) =
ln 81

ln
((

β
α

) (
1−α
1−β

)) 1
m

. (30)

Now that we have determined the ultrasensitivity for all three functions, f(x), g(x), and
f(g(x)), we can insert them into our hypothesis, the Ferrell inequality:

ln 81

ln
((

β
α

) (
1−α
1−β

)) 1
m

≤ mn. (31)

In order to simplify this inequality, we can multiply both sides by the natural logarithm
expression and apply the properties of logarithms to cancel out m,

n ln

((
β

α

)(
1− α

1− β

))
≥ ln 81 (32)

((
β

α

)(
1− α

1− β

))n

≥ 81 (33)

(
β

α

)n(
1− α

1− β

)n

≥ 81. (34)

In the inequalities above we used the fact that β/α > 1 and (1 − α)/(1 − β) > 1 so
that the logarithm in the numerator is positive. Notice also that this expression, which is
equivalent to the Hill inequality, only depends at this point on the parameters n and K1.
Since α > 0 and 1− β > 0, this expression is equivalent to

β(1− α) ≥ 81
1
nα(1− β) (35)

β − βα ≥ 81
1
nα− 81

1
nαβ (36)
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β − 81
1
nα ≥ (1− 81

1
n )αβ (37)

1

α
− 81

1
n

β
≥ 1− 81

1
n . (38)

In order to prove this expression, let us first consider the case for n = 2:

√
10K1 + 9

K1
−
√
81

√
10K1 + 1

9K1
≥ (1− 9) (39)

√
10 +

9

K1
−
√

90 +
9

K1
≥ (1− 9) (40)

We multiply by the conjugate

(√
10 +

9

K1
+

√
90 +

9

K1

)(√
10 +

9

K1
−
√
90 +

9

K1

)
≥

(√
10 +

9

K1
+

√
90 +

9

K1

)
(1− 9)

(41)

10− 90 ≥

((√
10 +

9

K1

)
+

(√
90 +

9

K1

))
(−8) (42)

80 ≤ 8

((√
10 +

9

K1

)
+

(√
90 +

9

K1

))
. (43)

Since the right hand side is decreasing as a function of K1, it is sufficient to evaluate this
inequality as K1 approaches ∞,

10 ≤
√
10 +

√
90 (44)

10 ≤ 12.6. (45)

Now let us consider the case where n is arbitrary. We start by applying the following
algebraic identity:

(An−1 + An−2B + ...+ ABn−2 +Bn−1)(A−B) = An −Bn. (46)

We define Λ as the generalized conjugate expression from the case n = 2,

Λ =
n−1∑
i=0

(
1

α

)n−1−i
(
81

1
n

β

)i

(47)

By multiplying the inequality on both sides with Λ we get

(
1

α

)n

−

(
81

1
n

β

)n

≥ Λ(1− 81
1
n ) (48)

10K1 + 9

K1

− 81
10K1 + 1

9K1

≥ Λ(1− 81
1
n ) (49)
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10 +
9

K1

− 90− 9

K1

≥ Λ(1− 81
1
n ) (50)

We can now cancel out 9
K1

from the left hand side and multiply the equation by −1, to
get

80 ≤ Λ(81
1
n − 1) (51)

Recalling the expression Λ, we calculate

Λ =
n−1∑
i=0

(
10 +

9

K1

)n−1−i
n
(
10K1 + 1

9K1

) i
n

81
i
n =

n−1∑
i=0

(
10 +

9

K1

)n−1−i
n
(
90 +

9

K1

) i
n

(52)

Since Λ is a decreasing function of K1, to prove equation 23 true, it is sufficient to prove
it in the case where K1 approaches ∞:

80 ≤ (81
1
n − 1)

n−1∑
i=0

10
n−1−i

n 90
i
n (53)

80 ≤ (81
1
n − 1)

n−1∑
i=0

10
n−1
n 90

i
n . (54)

In order to evaluate the series recall that

A+ AB + AB2 + ...+ ABn−1 = A
Bn − 1

B − 1
. (55)

If we evaluate the last inequality by applying the above identity, where A = 10
n−1
n and

B = 9
1
n , we get

80 ≤ (81
1
n − 1)10

n−1
n

9
n
n − 1

9
1
n − 1

(56)

10 ≤ (9
2
n − 1)10

n−1
n

1

9
1
n − 1

(57)

10 ≤ 10
n−1
n (9

1
n + 1) (58)

10
1
n ≤ 9

1
n + 1. (59)

This expression is equivalent to

n
√
10 ≤ n

√
9 +

n
√
1, (60)

1 =
n
√
10

n
√
10

≤ n

√
9

10
+

n

√
1

10
. (61)

Now, notice that

9

10
≤ n

√
9

10

1

10
≤ n

√
1

10
. (62)

The result follows by adding both of these inequalities,

9

10
+

1

10
≤ n

√
9

10
+

n

√
1

10
. (63)

In this way, we have proven the Ferrell inequality for all Hill functions.
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2.6 Counterexample to the Ferrell Inequality

As seen through our results thus far, we have analytically proven that the Ferrell inequality
holds for all Hill functions. There is also significant evidence through our computational work
that the inequality holds for other sigmoidal functions. However, there are counterexamples
for certain sigmoidal functions. Recall our hypothesis,

Hf(g(x)) ≤ Hf(x)Hg(x). (64)

Define the following functions:

f(x) =

{
ax if x ≤ b

ab if x > b

g(x) =

0 if x < c
e(x− c)

d+ x− c
if x ≥ c

where a, b, c, d, and e are all parameters. The function f(x) is a diagonal function that
saturates, while the function g(x) is a Hill function with n = 1 that has been shifted to the
right.

We can calculate the EC90
EC10

ratio and use it to solve for the Hill coefficient of all three
functions. In the case of f(x) we know that the maximum y-value is b. We can use the
properties of piecewise functions to calculate the the ratio. By the definition of f(x), we
know that y is equal to x, so we can determine the EC10 and EC90 values by calculating
10% and 90% of the maximum,

f(EC90) = ab(
90

100
) = 0.9ab

and:

f(EC10) = ab(
10

100
) = 0.1ab

With this information, we use the f(EC90) and f(EC10) values to find the corresponding
EC90 and EC10 values of the function, which are 0.9a2b and 0.1a2b. Then, by utilizing
equation (2),

n =
ln 81

ln EC90
EC10

(65)

n =
ln 81

ln 0.9a2b
0.1a2b

=
ln 81

ln 9
= 2 (66)

We know that the Hill coefficient of f(x) is 2 no matter what the values for a and b are.
Similarly, we can determine the Hill coefficient of g(x). The maximum value for g(x) is e
since as x becomes an infinitely large number, c and d in (x − c) and (x + d − c) become
negligible. The value e the becomes the maximum value since x

x
reduces to 1. We know that

g(EC90) and g(EC10) are
We calculate the EC90 value as follows,

0.9e =
e(x− c)

x+ d− c

0.9e(x+ d− c) = e(x− c)

0.9ex+ 0.9ed− 0.9ec = ex− ec
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Simplifying the terms on each side yields

EC90g = 9d+ c

Similarly, we can calculate the EC10 value, 9x-9c = d

EC10g =
d+ 9c

9

We can plug both of these values, the EC90 and EC10, into the Goldbeter and Koshland
formula below:

n =
ln 81

ln EC90
EC10

(67)

so:

ng(x) =
ln 81

ln 9d+c
d+9c

9

=
ln 81

ln 81d+9c
d+9c

(68)

In order to calculate the Hill coefficient of the composition, notice that by construction
the composition consists of truncating the function g(x) at the value ab. The composition
has this maximum value and we have

f(g(EC90h)) = 0.9ab

f(g(EC10h)) = 0.1ab

We can do a similar calculation as for the function g(x),

0.9ab =
e(x− c)

x+ d− c

0.9ab(x+ d− c) = e(x− c)

0.9abx+ 0.9abd− 0.9abc = ex− ec

9abx+ 9abd− 9abc = 10ex− 10ec

We can find the value for the EC90 of f(g(x)) by simplifying this equation and substituting
EC90f(g(x)) for x:

9abx− 10ex = 9abc− 9abd− 10ec

so:

EC90f(g(x)) =
9abc− 9abd− 10ec

9ab− 10e

We can apply a similar method to find the EC10,

EC10f(g(x)) =
abc− abd− 10ec

ab− 10e

For example, let us use the parameters a = 1, b = 2, c = 3, d = 4 and e = 25. Then, by
plugging in values to the EC10 and EC90 formulas we can go back to g(x),

EC90g(x) = 9(4) + 3 = 39 (69)

and the EC10 for g(x) is:

EC10g(x) =
d+ 9c

9
=

4 + 9(3)

9
=

31

9
≈ 3.44 (70)
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H =
ln 81

ln EC90
EC10

(71)

so:

Hg(x) =
ln 81

ln 39
3.44

≈ 1.8 (72)

The product of f(x) and g(x) for this specific parameters is 3.62. We plug in the same values
to find the EC90f(g(x)) and the EC10f(g(x)).

EC90f(g(x)) =
0.9(1 ∗ 2 ∗ 3)− 0.9(1 ∗ 2 ∗ 4)− (25 ∗ 3)

0.9(1 ∗ 2)− 25
(73)

EC90f(g(x)) =
−76.8

−23.2
≈ 3.31 (74)

EC10f(g(x)) =
(1 ∗ 2 ∗ 3)− (1 ∗ 2 ∗ 4)− 10(25 ∗ 3)

(1 ∗ 2)− (10 ∗ 25)
(75)

EC10f(g(x)) =
−752

−248
≈ 3.03 (76)

We calculate

Hf(g(x)) =
ln 81

ln 3.31
3.03

≈ 50.08 (77)

Notice how neither f(x) nor g(x) are particularly ultrasensitive. To reiterate, the Hill co-
efficients are 3.31 and 1.80, respectively. However, the Hill coefficient of the composition is
50.08, which is highly ultrasensitive. Figure 2a presents the graph of f(x) in red, Figure 2b
presents the graph of g(x), Figure 2c presents the graph of f(g(x)),

(a) (b) (c)

Figure 2: Counterexample to Ferrell’s Inequality. a) Graph of the function f(x), b)
Graph of the function g(x), c) Graph of the function fg((x)) as defined in this section on
the domain of 0 to 10.

Figure 2 shows how neither f(x) nor g(x) are particularly ultrasensitive. However, the
graph for f(g(x)) increases rapidly and then flattens at a relatively close y-value, resulting
in a large amount of change in the y-axis from a small amount of change in the x-axis.

2.7 Three Hill Function Analysis

In order to expand the horizons of our research, our team has analyzed the composition
of three Hill functions. The reason for this is to see if our hypothesis will still hold true
for more than just two Hill functions. Additionally, our research focuses on improving the
ultrasensitive response of a cascade. If we are able to make those cascades more switch like
by composing more functions together, it would be more effective. In order to establish this
change, we had to slightly modify our hypothesis for this case to be as follows.

Hf(g(j(x))) ≤ Hf ∗Hg ∗Hj (78)
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We have the third cascade to be denoted as j(x). Thus, our team generated a database of
5000 rows that found that in all 5000 cases the values were consistent with the hypothesis.

(79)

The high probability that our modified hypothesis is applicable to more than just one com-
position expands the range of our research where we can significantly improve the ultrasen-
sitivity of a cascade by composing it with more than one other cascade.

3 Discussion

3.1 Ferrell Inequality

An analysis of the Ferrell inequality has shown us that it holds true for all Hill functions,
but not all sigmoidal functions. We have shown that in large generality there is a limit to
how ultrasensitive the composition of two functions can be. From these results, it is evident
that when using Hill functions to model the ultrasensitivity of a biochemical system, that a
function with low ultrasensitivity and high sensitivity cannot be combined in a clever way to
produce a composition function with high ultrasensitivity. There must already be two func-
tions with high ultrasensitivity to produce a composition function with high ultrasensitivity.
It is also important to note, however, that sigmoidal functions other than the Hill function
can be used to analyze and represent biological systems. Since Ferrell’s hypothesis does not
hold true in all cases, we cannot predict with absolute certainty the characteristics of ultra-
sensitivity in these biological systems in the same way we can for just Hill function-based
systems.

3.2 Databases

While Hill functions are useful as the "standard" sigmoidal function for our purposes, we
also wanted to check to see if our hypothesis worked with other cases as well. Each row
of data translates to a possible situation that could happen in a cell and by having lots of
data we are able to confirm if our hypothesis works in a real environment. The database
also poses future implications of our project because we could use it to find the appropriate
dosage required for a certain treatment. For this part of our project we decided to expand
our horizons into other functions such as the inverse tangent and logistic since they are also
sigmoidal. We wanted to make sure that our hypothesis wasn’t limited to just Hill functions
and that it worked for other sigmoidal functions. Part of our reasoning for the hypothesis is
that in order to get a certain output, we must put in enough input so that even in non-ideal
conditions, having enough input can allow for the chance for some output to occur. This
also relates to another implication of our project in the long term as by expanding our range
of functions in which our hypothesis works for, we can guarantee a higher reliability in its
actual biological implications. Our goal in this paper is to analyze ways to make certain
functions as ”switch-like" as possible so by analyzing different functions and testing varying
parameters, we can see which combination of functions will give us the most switch like
response. Thus, by also incorporating different cases of function, out team hopes to see if
our hypothesis can go beyond the current state of our project and if it is applicable in many
other cases. Moreover, as we created a Hill function table, and were able to numerically
prove the case for the composition of two Hill functions, we wanted to expand our project
and were able to create a table for three Hill functions. For 5000 rows, the three Hill function
database showed that the results were consistent with our hypothesis and that there was a
very high chance that it could be proven mathematically.
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3.3 Proof of Goldbeter-Koshland Result

In this short section we include a proof of the result by Goldbeter and Koshland, generalizing
the definition of the Hill coefficient n to sigmoidal functions that may not be Hill functions.
The only aspect left to show is that in the case of Hill functions, H = n. Suppose

un

K + un
= 0.1 (80)

vn

K + vn
= 0.9 (81)

We can invert these two equations to produce the following

9 =
K

un
(82)

1

9
=

K

vn
(83)

Then the first equation can be divided by the second, resulting in

Ku−n

Kv−n
=

9
1
9

= 81 (84)

This equation can then be further reduced by taking the natural logarithm of both sides
and solving for n, which produces the final result of

n =
ln 81

ln v
n

= H (85)

Once again, n is the value of the Hill coefficient, which we can use to quantify ultrasen-
sitivity. The reason that EC10 and EC90 are used to calculate the Hill coefficient in the
equation above instead of other possible values is because they provide information about
the beginning and the end of the response curve.
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