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Abstract 12 

 13 

Biofilm production plays a clinically significant role in the pathogenicity of many bacteria, 14 

limiting our ability to apply antimicrobial agents and contributing in particular to the 15 

pathogenesis of chronic infections. Bacteriophage depolymerases, leveraged by these 16 

viruses to circumvent biofilm mediated resistance, represent a potentially powerful weapon 17 

in the fight against antibiotic resistant bacteria. Such enzymes are able to degrade the 18 

extracellular matrix that is integral to the formation of all biofilms and as such would allow 19 

complementary therapies or disinfection procedures to be successfully applied. In this 20 

manuscript, we describe the development and application of a machine learning based 21 

approach towards the identification of phage depolymerases. We demonstrate that on the 22 

basis of a relatively limited number of experimentally proven enzymes and using an amino 23 

acid derived feature vector that the development of a powerful model with an accuracy on 24 

the order of 90% is possible, showing the value of such approaches in the discovery of novel 25 

therapeutic agents. 26 
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Background 34 

 35 

Biofilms are the most common form of bacterial lifestyle in nature (1). Biofilm formation by 36 

pathogenic bacteria allows for the establishment of a multicellular consortium of clinical 37 

significance due to the role such communities play in the persistence of bacterial infection 38 

and their resistance to various modes of treatment and disinfection. Indeed, such 39 

assemblages confer antimicrobial resistance on multiple levels including limiting the 40 

penetrability of antimicrobial compounds, the presence of metabolically inactive persister 41 

cells exhibiting intrinsic resistance, and the internal structure of such communities providing 42 

an optimal environment facilitating horizontal gene transfer (HGT) of resistance 43 

determinants (2). A critical component for the establishment of biofilms and a significant 44 

contributor to the resistant phenotype they exhibit is the production of a matrix embedding 45 

the biofilm cells consisting of various polymeric compounds, including proteins, extracellular 46 

DNA, and polysaccharides. The latter can be broadly categorised as lipopolysaccharides 47 

(LPS), which are integral components of cell walls of Gram-negative bacteria, capsular 48 

polysaccharides (CPS), loosely associated with bacterial surface, and exopolysaccharides 49 

(EPS), released by bacteria into the surrounding environment (3). The ability to remove such 50 

polymeric barriers in order to expose the underlying community of cells is a desirable one 51 

from the practical point of view, be it for the purposes of surface disinfection, de-fouling, or 52 

to improve the biocidal effects of antibiotic treatment.  53 

Barrier properties of bacterial biofilms also pose a problem for bacterial viruses 54 

(bacteriophages) whose diffusion and ability to infect host cells is reduced within biofilms 55 

(4). Targeted degradation of biofilm polysaccharides is a feature of many bacteriophages 56 

(phages) which increases the probability of successful infection; this is the result of 57 

enzymatic activity of a class of phage-encoded enzymes called depolymerases (DP). The 58 

majority of DPs are phage-associated enzymes and belong to lyase and hydrolase classes, 59 

with the former constituting a large majority of the well characterised and experimentally 60 

validated DPs (5 - 7). Given the global antibiotic crisis we now face, there is a resurgence of 61 

interest in both phage and phage-derived therapeutic agents as alternatives. Several 62 

recently published reviews describe the structural and functional characteristics of phage 63 

DPs and outline their potential applications as biotechnological tools and therapeutic agents 64 

(8 - 11).  65 

The therapeutic potential of phage DPs was recognised more than 60 years ago (12). Phage 66 

DPs are of particular interest due to their potential use in combinatorial therapies with 67 

antibiotics or other antimicrobial agents and in the removal of biofilms from medical devices 68 

most notably catheters (13; 14). Moreover, as the depolymerases do not kill bacteria, it is 69 

posited that they could be employed on their own as anti-virulence agents, decreasing 70 

bacterial fitness and facilitiating the clearance of the bacteria by the human immune system 71 

(10).  Therefore, any approach that enhances our ability to identify novel DPs is of great 72 

value, especially since it is not always trivial to attribute depolymerase activity to a specific 73 

gene. As the polysaccharides produced by even closely related bacterial species may have 74 

subtle but significant structural differences, phage DPs acting on them also demonstrate 75 
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high variability, to the point that the depolymerase domains will sometimes be among the 76 

only genomic DNA fragments showing no conservation between phages of the same species 77 

(14). Although the majority of known DPs are parts of phage receptor-binding proteins 78 

(RBPs) such as tail spikes and thus have conserved N-terminal domains responsible for virion 79 

attachment, some depolymerases can be encoded as truncated RBPs (presumably acting as 80 

diffusible DPs), further complicating their reliable prediction (15). 81 

Machine learning based approaches are proving to be an extremely valuable avenue in all 82 

realms of science and this is no less true of phage biology whereby success has been 83 

demonstrated through the application of such techniques towards the identification of 84 

phage structural proteins (16), host-phage pairs (17), RBPs (18) and lifecycle (19) amongst 85 

others (20). Recently published papers expand this list to include endolysins (21) and 86 

depolymerases (22). Nevertheless, the ultimate success or failure of machine learning 87 

algorithms depends on many factors, including but not limited to the size and composition 88 

of training sets, the algorithm used for the problem at hand, and the careful construction of 89 

a vector capturing adequately discriminant features (23).  Therefore, more ML solutions are 90 

needed to expand the computational phage characterisation toolkit and allow for a series of 91 

complementary approaches to be available.  92 

In this manuscript we describe the development and application of a machine learning 93 

approach towards the identification of phage DPs, highlighting that such models should 94 

form an integral part of our toolkit enabling the discovery of novel therapeutics. We 95 

demonstrate that even a relatively small training set is sufficient to produce a highly 96 

generalizable machine learning model capable of accurately predicting DPs in a multitude of 97 

phages infecting vastly different bacteria. Indeed, an accuracy of 90% was attained on the 98 

test data set and a similar result for genome context predictions that detected the DP within 99 

the top 10 predictions.  100 

 101 
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Methods 113 

 114 

Data Set Preparation 115 

 116 

In order to establish a database of DP sequences that would ultimately fuel our model, we 117 

focussed our attention on publications within which depolymerase activity had been 118 

experimentally demonstrated. A comprehensive literature search was conducted and a 119 

database established consisting of 50 depolymerase sequences. Table S1 presents an 120 

overview of this sequence database including the phages and references from which they 121 

were found. 28 of the sequences exclusively state CPS as an enzymatic target, 20 target EPS, 122 

and the remaining two target LPS and a combination of targets. The vast majority of 123 

sequences were Podoviridae derived and the database concerned phages infecting Gram 124 

negative bacteria. The size range of sequences varied from 150 amino acids to 1267 amino 125 

acids in length.  126 

To complete this dataset, we required 50 sequences that would serve as the negative non-127 

depolymerase set and thus provide a 1:1 positive to negative sequence set. To do this, we 128 

randomly extracted 50 sequences from a soil metagenome (SRR15048733) that were 129 

sampled across the size distribution of sequences so as to avoid the introduction of 130 

sequence size biases. BLAST searches were conducted with these sequences against the 131 

positive depolymerases to ensure the absence of homology followed by HHPred analysis to 132 

confirm the absence of domains known to be associated with depolymerase activity.  133 

To highlight the dissimilarity in the dataset, we calculated pairwise similarity scores across 134 

the entire dataset and represented this as a heatmap (figure 1.).  135 

 136 

Feature Extraction and Selection 137 

 138 

A diverse range of features were generated which were derived solely from the amino acid 139 

sequences. Eleven of these features were directly calculated using the ProteinAnalysis 140 

feature from the BioPython (version 1.73) ProtParam module (24). These were the MW, 141 

aromaticity, predicted instability and isoelectric point, GRAVY score, predicted secondary 142 

structure (sequence proportion engaged in helices, strands, and turns), extinction 143 

coefficients (ox/red), and a combined flexibility score. Beyond this the relative abundance of 144 

each amino acid and the total sequence length were also taken into account. As a final set of 145 

features, we considered dipeptides and tripeptides as a function of conserved 146 

physicochemical properties. Seven groups were established consisting of amino acids with a 147 

hydrocarbon R group, those with an uncharged aromatic side chain, sulphur containing, 148 

positively charged, negatively charged, polar uncharged, and proline. According to this 149 

schema, the dipeptides AE and LD were considered as both belonging to group 15. Whilst 150 

allowing us to incorporate dipeptide and tripeptide properties into the model, this also 151 
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reduced the overall feature set compared to using all possible combinations of amino acids. 152 

This was carried out using in-house scripts. 153 

 154 

Model Selection, Training, and Evaluation 155 

 156 

With respect to the appropriate choice of machine learning algorithm, we decided to test 157 

both support vector machine (SVM) and random forest (RF) approaches (25; 26). This was 158 

due to the fact that our data set constituted a small number of samples exhibiting a high 159 

feature space. In both cases, we leveraged a grid search in order to assess the 160 

hyperparameter space and find the best model configuration for both algorithms. This was 161 

conducted using the scikit-learn library (version 0.23.2) (27). We opted for a 5-fold cross 162 

validation using and 80/20 split of the dataset. 163 

To evaluate model performance, we particularly focussed on the overall accuracy and recall 164 

on the cross-validations defined as follows: 165 

 166 

�������� �  
�����

�����������
      (1) 167 

 168 

	
���� �  
��

�����
            (2) 169 

      170 

 171 

Where TP FP, TN, and FN correspond to true positive, false positive, true negative, and false 172 

negative respectively regarding the classification performed on the test data. All scores 173 

reported are the average obtained following the cross-validation. 174 

With respect to the hyperparameters tuned, for SVM both linear and RBF kernels were 175 

evaluated along with cost and gamma functions when applicable. For RF, differing numbers 176 

of estimators were evaluated using a step size of 100 along with total tree depth, and the 177 

minimum samples supporting a branch and split of the tree. In addition to this, we also 178 

integrated a two-degree polynomial feature transformation, min/max scaling, and applied 179 

entropy-based impunity.  180 

Once optimal parameters were determined for the model following evaluation, the final 181 

version was created incorporating the entirety of the training set. 182 

 183 

 184 

 185 
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Software Package Depolymerase Predict 186 

 187 

Both the source code and a standalone ready to use version of the application are available 188 

as detailed in the “Availability of data and materials” section. A simple user-friendly GUI has 189 

been developed through which users can step-by-step upload their sequences, generate the 190 

feature vector, and carry out predictions and view the output. 191 

 192 

Results and Discussion 193 

 194 

Feature Generation 195 

 196 

The application of the feature generation script was carried out on the 100 amino acid 197 

sequence input data set. This resulted in the construction of a feature vector with 424 198 

descriptors for each of the sequences. An additional column was added to distinguish the 199 

depolymerases from the negative cases. This entire training set is presented in Table S2. and 200 

can be used directly in the reproduction of our analysis with the parameters outlined below. 201 

 202 

Model Evaluation and Final Selection 203 

 204 

The SVM approach was initially applied to the dataset with no hyperparameter tuning, with 205 

the application of a linear kernel. This resulted in a model exhibiting an overall accuracy 206 

score of 0.70 across all folds. As presented in the normalised confusion matrix in figure 2. 207 

this model performed extremely poorly with respect to true and false positives but handled 208 

negative cases well. Indeed, hyperparameter tuning did nothing to resolve this problem. The 209 

overall accuracy remained unchanged, but the model improved in its ability to correctly 210 

identify non-depolymerase sequences with 100% success rate. This was at the cost of 211 

decreased performance on positive cases with only 45% of true depolymerases being 212 

correctly identified as such. 213 

Subsequent application of an RF approach yielded more promising results. This is an 214 

ensemble machine learning method that leverages multiple decision trees in order to 215 

reduce variance and provide better model generalization. It performs especially well with 216 

small sample sets and large feature spaces and so it was expected it may be the best 217 

approach to this problem. Application of a tuned RF model indeed showed a much higher 218 

level of performance (figure 2). An overall accuracy score of 0.90 was obtained across all 219 

folds with similar performance observed with respect to the correct classification of positive 220 

and negative cases. It was found that for this case, the following parameters provided 221 

optimal performance of the model: use of 1500 estimators with automatic definition of 222 
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maximum features to be used by each tree. A maximum depth of 30 was applied with a 223 

minimum sample support of 3 required for each leaf. Each tree split was evaluated using the 224 

entropy-based criterion. The pipeline also integrated a two-degree polynomial feature 225 

transformation along with application of min/max scaling.  226 

 227 

Application of Model Towards Depolymerase Identification 228 

 229 

In order to further assess the performance of our model, we decided to apply it within the 230 

context of whole phage genomes to see whether it could correctly identify depolymerases 231 

amongst the other genes. Due to the fact that our model leverages experimentally active 232 

depolymerases and we have thus exhausted this option, we were limited to performing this 233 

test on computationally predicted enzymes. The first such case was Pseudomonas phage 234 

pf16; a phage previously characterised by our group (28). Depolymerase activity was 235 

previously observed in this phage and extensive computational analysis identified gp215 as 236 

the likely candidate with probable pectate lyase activity. We proceeded to analyse pf16 237 

gene products using our model and ranked the probabilities accordingly. These results are 238 

presented in figure 3. We immediately observed that the predicted depolymerase was 239 

ranked 4
th

 by our model in the context of the whole genome. This in itself is a reasonable 240 

result however, further analysis of the higher ranked candidates revealed that they possess 241 

domains not unrelated to what is observed in depolymerases including endosialidase and 242 

VrlC-like domains, the latter speculated to have sialidase activity (29).  243 

We further tested the performance of our model in the context of whole genomes by 244 

directing our attention towards computationally predicted depolymerases described by 245 

Pires et al. (11). This provided a good opportunity to test the generalizability of our model as 246 

the sequences described in this paper exhibit significant diversity in terms of the domains 247 

present and nature of the hosts infected by the phages. We downloaded the genomes of 248 

the associated phages, removing some for which the records no longer exist. This resulted in 249 

155 genomes on which we applied our model. Predictions were performed, the probabilities 250 

ranked, and the position of the putative depolymerase identified. Table S3 presents all of 251 

the genomes, the depolymerases and the associated ranking provided by our model. Across 252 

all sequences the depolymerase featured as the first prediction 40.6% of the time. This 253 

increased to 69.7% and 78.1% for top 3 and top 5 predictions respectively. When 254 

considering top 10 and top 20 this grows to a large majority with 87.1% and 94.8%. Most 255 

poorly predicted sequences were those containing domains that did not feature in our 256 

model, especially DUF867. When we look closer at the distribution of these results we 257 

observe a good level of model generalizability in a number of aspects (Figure 4). Despite 258 

being fuelled by depolymerases in phages infecting Gram-negative bacteria, the model 259 

performs equally well for phages infecting both types. This fact also holds when considering 260 

the family of phage and the genus of the host. This implies that the model is leveraging 261 

features that are common to a large majority of known depolymerase enzymes.  262 

 263 
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Conclusion 264 

Bacteriophage depolymerases offer a host of promising clinical and biotechnological 265 

applications, including the synergistic treatment of infections via biofilm removal. There is 266 

however, a need for rapid and accurate identification of such enzymes. In this work we have 267 

described the development and application of a machine learning approach that allows for 268 

depolymerase prediction with an overall accuracy of 90% using a sequence-derived feature 269 

vector. We demonstrated that this model was generalizable to depolymerases from a 270 

variety of phages, robustly predicting them in the context of the genomes across several 271 

hosts and enzyme classes. This highlights the power that such approaches can offer in the 272 

identification of industrially and/or clinically useful enzymes. 273 
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Figure Legends 328 

 329 

Figure 1. Heatmap of pairwise similarity scores calculated for the training dataset 330 

Grayscale colours correspond to percentage identity as provided in the associated legend. The 331 

negative and positive components of the dataset are highlighted with braces and associated labels. 332 

As highlighted by the scale of the legend, the global identities of the matrix are rather low, showing a 333 

high level of dissimilarity between the sequences. 334 

 335 

Figure 2. Normalised confusion matrices summarising model performance on test data 336 

Matrices give the proportion of depolymerase (DP) and non-depolymerase (Not DP) that are 337 

correctly identified by the model, corresponding thus to the true/false positive and true/false 338 

negative proportions. Matrices are shown for non-optimised SVM (a), optimised SVM (b), and 339 

optimised RF (c) models. 340 

 341 

Figure 3. Top Predictions of Pseudomonas phage pf16 depolymerases 342 

The graph highlights that probability reported by the model of the gene product being a 343 

depolymerase. Gene products are labelled accordingly. The putative depolymerase previously 344 

reported is highlighted on the graph and the modelling of this protein shown with respect to a 345 

known EPS depolymerase and endopolygalacturonase as reported in Magill et al. (2017). 346 

 347 

Figure 4. Graphs showing ranking of depolymerases predicted by the model  348 

Rankings performed on depolymerase predictions from genomes described by Pires et al. (2016). 349 

Rankings are coloured by depolymerase domains (a), family of the phage described (b), whether the 350 

host is Gram-positive or negative (c), and by the host genus (d).  351 

 352 

 353 

 354 
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