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Abstract 

Brain-inspired hardware emulates the structure and working principles of a biological brain and 

may address the hardware bottleneck for fast-growing artificial intelligence (AI). Current brain-20 

inspired silicon chips are promising but still limit their power to fully mimic brain function for AI 

computing. Here, we develop Brainoware, living AI hardware that harnesses the computation 

power of 3D biological neural networks in a brain organoid. Brain-like 3D in vitro cultures compute 

by receiving and sending information via a multielectrode array. Applying spatiotemporal electrical 

stimulation, this approach not only exhibits nonlinear dynamics and fading memory properties but 25 

also learns from training data. Further experiments demonstrate real-world applications in solving 

non-linear equations. This approach may provide new insights into AI hardware.  
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Introduction 

Artificial intelligence (AI) is reshaping the future of human life across various real-world fields such 

as industry, medicine, society, and education1. The remarkable success of AI has been largely 

driven by the rise of artificial neural networks (ANNs), which process vast numbers of real-world 

datasets (big data) using silicon computing chips 2, 3. However, current AI hardware keeps AI from 5 

reaching its full potential since training ANNs on current computing hardware produces massive 

heat and is heavily time-consuming and energy-consuming 4-6, significantly limiting the scale, 

speed, and efficiency of ANNs. Moreover, current AI hardware is approaching its theoretical limit 

and dramatically decreasing its development no longer following ‘Moore’s law’7, 8, and facing 

challenges stemming from the physical separation of data from data-processing units known as 10 

the 'von Neumann bottleneck'9, 10. Thus, AI needs a hardware revolution8, 11. 

 

A breakthrough in AI hardware may be inspired by the structure and function of a human brain, 

which has a remarkably efficient ability, known as natural intelligence (NI), to process and learn 

from spatiotemporal information. For example, a human brain forms a 3D living complex biological 15 

network of about 200 billion cells linked to one another via hundreds of trillions of nanometer-

sized synapses12, 13. Their high efficiency renders a human brain to be ideal hardware for AI. 

Indeed, a typical human brain expands a power of about 20 watts, while current AI hardware 

consumes about 8 million watts to drive a comparative ANN6. Moreover, the human brain could 

effectively process and learn information from noisy data with minimal training cost by neuronal 20 

plasticity and neurogenesis,14, 15 avoiding the huge energy consumption in doing the same job by 

current high precision computing approaches12, 13. The human brain fuses data storage and 

processes within biological neural networks (BNNs),16-18 naturally avoiding any ‘von Neumann 

bottleneck’ issues. Learning from BNNs, pioneering attempts have been made to develop high-

efficiency and low-cost neuromorphic chips (e.g., memristor)11, 19, 20 that store previously 25 

experienced current or/and voltage in internal states and enable short-term memory 21-23. So far, 

neuromorphic chips have been used for various applications in computer vision,24-26 speech 

recognition,27, 28 and others 29, 30. However, current neuromorphic chips can only mimic partial 

features of brain functions, and there are tremendous needs to improve their processing capability 

for real-life uncertainty and energy efficiency.  30 

 

Brain organoids are in vitro 3D aggregates derived through the self-organization and 

differentiation of human pluripotent stem cells that become brain-like tissues with a remarkable 

ability to recapitulate aspects of a developing brain’s structure and function31-34. Herein, we 

develop Brainoware, living AI hardware that harnesses the computation and on-chip learning of 35 

3D biological neural networks in a brain organoid (Fig. 1a). Brainoware processes and learns 

from spatiotemporal information through the neuroplasticity of the brain organoid. Compared to 

current 2D in vitro neuronal cultures and neuromorphic chips, Brainoware may provide new 

insights for AI computing, because brain organoids can provide 3D BNNs with remarkable 

advances in complexity, connectivity, neuroplasticity, and neurogenesis, all accomplished with 40 

low energy consumption and fast learning. 

 

Results  

Brainoware with on-chip learning for AI computing. We constructed Brainoware by mounting 

a functional brain organoid onto a multielectrode array (MEA) (Fig. 1b). The mature human brain 45 
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organoid for Brainoware was characterized by various brain cell identities (e.g., early-stage and 

mature neurons, astrocytes, neuron progenitor cells), and early development brain-like structures 

(e.g., including ventricular zones and subventricular zones) for the formation, function, and 

maintenance of complex 3D neuronal networks (Fig. 1c), as well as network electrical activity. 

The mature organoid neural networks (ONNs) could receive inputs via external electrical 5 

stimulation and send outputs via evoked neural activity, offering a functional basis for AI 

computing. As a proof-of-concept application, we implemented Brainoware as an AI hardware to 

solve real-world problems. In a conventional AI computing hardware, input signals can be mapped 

into higher dimensional computational spaces through the dynamics of a hardware. Given input 

signals, the output of hardware is used as features for a simple “readout function” to perform a 10 

computational task, e.g., time-series analysis. While the conventional computing chips are fixed, 

the readout function is trained to map the feature values generated by the hardware to the desired 

labels of the data. Different from conventional AI computing hardware with fixed physical 

reservoirs, Brainoware uses mature human brain organoids as dynamic, living network to conduct 

“unsupervised learning” to adapt to the signals and perform “feature engineering”. Via these living 15 

reservoirs, the time-dependent inputs can be converted to spatiotemporal sequences of electric 

stimulation and then projected into computational spaces as ONNs. The output signals, as neural 

activities, can be effectively utilized via the pre-trained readout function for various tasks (Fig. 1a). 

Moreover, through training using spatiotemporal sequences of electrical stimulation, Brainoware 

can improve its computing performance and demonstrate on-chip learning ability by synaptic 20 

plasticity. This is possible because Brainoware responds to the electric stimulations with changes 

in neuronal connections, and neuroplasticity of the organoids, enabling dynamic reshaping of 

ONNs. If synaptic plasticity is blocked, computing performance is maintained by Brainoware (but 

on-chip learning halts) (Fig. 1d, Fig. 3d). In the next experiments, Brainoware was demonstrated 

to exhibit unique properties of a physical reservoir and successfully conduct some real-world tasks 25 

with limited training data at low energy and computing cost. 

 

Characterization of hardware property.  Before applying Brainoware to AI computing tasks, we 

characterized and demonstrated its basic implementation as a AI hardware. We tested the 

physical reservoir properties of Brainoware such as nonlinear dynamics, fading memory (or short-30 

term memory), and spatial information processing by checking the response of ONNs to bipolar 

voltage pulse stimulations with different pulse time (tp) and voltage (vp). For example, while 

applying electrical stimulation pulses to Brainoware, the evoked neuronal activity (raster plot) was 

recorded, and the post-stimulation histogram was calculated and plotted (Fig. 2b). We 

demonstrated that Brainoware exhibited a representative nonlinear response to the pulse voltage 35 

(Fig. 2b). After applying a single voltage pulse stimulation (tp  >= 200 μs), the evoked mean 

normalized firing rate of Brainoware  (over 200 ms post-stimulation) to the pulse voltage can be 

fitted with a sigmoid function, in accordance with the nonlinear activation function of ANNs. While 

applying a single voltage pulse stimulation with short pulse times (tp  < 200 μs), the evoked 

normalized firing of Brainoware with the same organoid was only around the baseline of its 40 

spontaneous activity. Next, we tested the fading memory of Brainoware by applying pulses with 

different pulse times and voltages. The evoked normalized firing of Brainoware before and after 

100 ms or 300 ms from the end of single pulse stimulation was obtained (Fig. 2c). Pulses with 

longer duration and higher voltage were responsible for stronger evoked response and slower 

relaxation dynamics. Importantly, the nonlinear response and fading dynamics of ONNs can be 45 
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well controlled by precisely adjusting the stimulation parameters. Moreover, we also 

demonstrated the combination of these two properties within Brainoware. After the application of 

four individual trains of pulses (vp = 200mV, tp = 300 μs), Brainoware showed both the 

accumulation and decay dynamic responses (Fig. 2d). Multiple pulses at short intervals (50 ms) 

within a pulse train were responsible for the gradual increase of evoked responses and the delay 5 

of relaxation dynamics, in accordance with the dynamic response of a memristor, a typical 

reservoir computing hardware. Furthermore, we demonstrated the capability of Brainoware to 

process spatial information. The spatial information was converted into spatial patterns of 

simulation pulses (vp = 500mV, tp = 500 μs) such as two 4 x 4 spatial patterns (P1 and P2). The 

distinct raster plots of Brainoware with the same organoid were evoked by these two 10 

complementary patterns and showed the active storage and gradual loss of different spatial 

information over time (Fig. 2e), indicating spatial information processing rather than stimulation 

artifacts. 

 

Solving a non-linear chaotic equation.  We further applied Brainoware to predict a Hénon map, 15 

which is a typical non-linear dynamic system with chaotic behavior. This time-series task was 

implemented into Brainoware using a brief workflow as shown in Fig.3a. A 2D Hénon map was 

first converted into a 1D decomposition, converted into the spatiotemporal sequences of bipolar 

voltage pulses, and then sent to the MEA electrodes for stimulating Brainoware. Using a read-out 

algorithm for decoding the ONN activity, Brainoware harnessed its reservoir computation and on-20 

chip learning to learn from the input spatiotemporal pulses and predict the Hénon map. 

Experiments were conducted to predict the Hénon map (Xn+1 value) by feeding Brainoware with 

spatiotemporal pulses encoded with Xn value. 1D decomposition (Fig.3b) and 2D displacement 

(Fig.3c) of predicted Hénon maps were experimentally obtained from Brainoware with the same 

organoid before and after four training epochs (one epoch per day, and each epoch encoded with 25 

a Hénon map dataset of 200 data points). Compared with the theoretical output (ground truth, 

black), the after-training condition (red) showed better-predicted results than the before-training 

condition (blue). Next, the learning curves of Brainoware to solve this non-linear chaotic equation 

were measured over epochs (Fig.3d). The regression score of Brainoware in predicting Xn+1 value 

was used to evaluate its learning ability to solve the Hénon map. Interestingly, Brainoware 30 

increased the regression score (detailed calculation in SI) from 0.356  0.071 (with the naïve 

organoids on Day 1) to 0.812  0.043 (the same organoids after four training epochs). While 

treated with a calcium/calmodulin-dependent protein kinase II (CaMKII) blocker, K252a, to block 

activity-dependent synaptic plasticity,35 the negative control group only slightly improved their 

regression score from 0.31  0.072 to 0.385  0.063 over the same training procedures. The 35 

results indicated that the learning activity of Brainoware was dependent on neural plasticity. 

Furthermore, experiments were performed to measure the on-chip learning activities of 

Brainoware under different conditions (Fig. 3e). Only an MEA chip and culture medium (blank) 

was tested to have a regression score of 0, emphasizing that Brainoware cannot compute without 

the living organoids. We further compared Brainoware with representative machine learning 40 

algorithms such as ANN on solving the Hénon map of the same data size (Fig. 3f). Linear 

regression (decoding algorithm of Brainoware) could barely solve this problem, showing a 

regression score close to 0. Brainoware significantly outperformed ANN without a long short-term 

memory (LSTM) unit. Brainoware (with 4 training epochs) showed slightly lower accuracy than 

ANN with LSTM (each with 50 training epochs), decreasing training times by >90%.  45 
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Discussion 

We have demonstrated a new class of living hardware for AI computing that harnesses the 

computational power of living neural networks of human brain organoids. Human brain organoids 

have unique characteristics and the ability to self-organize and form functional BNNs for 5 

developing brain-inspired AI hardware. Moreover, ONNs may have the necessary complexity and 

diversity to mimic a human brain, inspiring more sophisticated and human-like AI systems. 

Furthermore, due to the high plasticity and adaptability of organoids, Brainoware has the flexibility 

to change and reorganize in response to electrical stimulation, highlighting its ability to learn and 

adapt over training, necessary for developing AI systems. As living brain-like AI hardware, this 10 

approach may naturally address the time-consuming, energy-consuming, and heat production 

challenges of current AI hardware. We further demonstrated that this approach exhibits physical 

reservoir properties such as nonlinear dynamics, fading memory, and spatial information 

processing.  We also implemented it in real-world applications such as solving non-linear 

equations. We found that this approach learns from training data by reshaping the neuronal 15 

connections of ONNs. 

 

There are several limitations and challenges for the current Brainoware approach. One technical 

challenge is the generation and maintenance of organoids. Despite the successful establishment 

of various protocols, current organoids are still suffering from high heterogeneity, low generation 20 

throughput, and various viabilities. Moreover, it is critical to properly maintain and support 

organoids for harvesting their computational power. Recent engineering efforts on optimizing 

organoid differentiation and growth conditions and manipulating their microenvironments may 

provide approaches for the high-throughput generation and maintenance of standardized 

organoids36. Brainoware uses flat and rigid MEA electrodes for interfacing with organoids, which 25 

are only able to stimulate/record a small number of neurons on the organoid surface. There is a 

tremendous need to develop methods such as brain-machine interfaces, soft electrodes, and 

other neural implants for interfacing the whole organoid with AI hardware and software 37, 38, 

allowing for the exchange of information and the manipulation of their activity from a greater 

number of neurons. Another technical challenge is the management and analysis of data. The 30 

encoding and decoding of temporospatial information to and from Brainoware still need 

optimization by improving data interpretation, extraction, and processing from multiple sources 

and modalities. Moreover, large amounts of data may be generated by this new AI hardware, 

requiring the development of new algorithms and methods for analyzing and visualizing the data.   

 35 

In sum, we developed a prototype of brain-inspired living AI hardware with on-chip learning ability. 

We also demonstrated their real-world applications to speech recognition and solving non-linear 

equations. This approach may provide new insights into AI hardware. 

 

Methods 40 

Generation and characterization of organoids. Cortical organoids were generated from human 

pluripotent stem cells following a protocol that we adapted from the reported protocols39. All the 

handling and culture of stem cells and organoids followed the guidelines of the WiCell Institute 

and Indiana University Biosafety Committee. Detailed protocols for the development and 

characterization of organoids are included in the supplementary materials. 45 
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Figures and legends 
 

 
 

 5 
Fig. 1. Brainoware with on-chip learning for AI computing. a, Schematics of reservoir 
computation with on-chip learning using Brainoware. b, A schematic paradigm of Brainoware 
setup that mounts a brain organoid onto a multielectrode array for receiving inputs and sending 
outputs. c, Whole-mount immunostaining of cortical organoids showing complex 3D neuronal 
networks with various brain cell identities (e.g., mature neuron, MAP2; astrocyte GFAP; neurons 10 
of early differentiation stage, TuJ1; and neural progenitor cells, SOX2). d, Schematic diagram 
demonstrating on-chip learning of Brainoware via reshaping of the biological neural network 
during training, and the inhibition of on-chip learning after synaptic plasticity is blocked. (Scale bar 
= 100 μm) 
  15 
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Fig. 2. Characterization of hardware property. a, Evoked response (raster plot and post-
stimulation histogram) upon single bipolar voltage pulse stimulation.  b, Evoked normalized firing 
upon pulses with different pulse times (tp) and pulse voltage (vp) (mean ± s.e.m., n = 6, 5 
independent experiments).  The red fitting curve (a sigmoid function) indicates the nonlinear 
activity, while the black dashed line marks the spontaneous activity. c, Evoked normalized firing 
before and after, 100 ms or 300 ms, from the end of single pulse stimulation (mean ± s.e.m., n 
= 4, independent experiments). d, Representative memristor-liked responses to a stream of 
pulses (vp = 200mV, tp = 300 μs). e, Distinct raster plots evoked by two complementary spatial 10 
patterns (P1 and P2) of stimulation pulses (vp = 500 mV, tp = 500 μs).  
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Fig. 3. Solving a non-linear chaotic equation.  a, Workflow of predicting an Hénon map. b, 
Predicted X values using Brainoware before (blue) and after training (red) vs ground true X value. 
c, Predicted 2D maps using Brainoware before (blue) and after (red) training vs ground true 2D 
map. d, Learning curves of Brainoware over training epochs, where the red or blue curves show 5 
Brainoware with naïve organoids or organoids treated with a CaMKII blocker K252a (to block 
synaptic plasticity) before training (mean ± s.e.m., n = 4, independent experiments). e, Learning 
activity of Brainoware under different conditions with the naïve organoids  (before training), the 
organoids after training (after training), the organoids treated with K252a during training (K252a 
+ training), and without organoids (Blank) (mean ± s.e.m., n = 5 for each group, independent 10 
experiments). f, Performance comparison of Brainoware with linear regression, artificial neural 
network (ANN) with or without long short-term memory (LSTM) unit. The number denotes the 
training epochs of each group (mean ± s.e.m., n = 5 for each group, independent experiments). 
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