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Abstract 15 

Microbially-derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host 16 

metabolism, immune regulation, and integrity of the intestinal epithelium. However, the 17 

production of SCFAs can vary widely between individuals consuming the same diet, with lower 18 

levels often associated with disease. A mechanistic understanding of this heterogeneity is 19 

lacking. We present a microbial community-scale metabolic modeling (MCMM) approach to 20 

predict individual-specific SCFA production profiles. We assess the quantitative accuracy of our 21 

MCMMs using in vitro, ex vivo, and in vivo data. Next, we identify associations between MCMM 22 

SCFA predictions and a panel of blood-based clinical chemistries in a large human cohort. 23 

Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, 24 

prebiotic, and probiotic interventions that optimize SCFA production in the gut. Our results 25 

represent an important advance in engineering gut microbiome functional outputs for precision 26 

health and nutrition.  27 
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Introduction 42 

The human gut microbiota maintains intestinal barrier function, regulates peripheral and 43 

systemic inflammation, and breaks down indigestible dietary components and host substrates 44 

into a wide range of bioactive compounds 1,2. One of the primary mechanisms by which the gut 45 

microbiota impacts human health is through the production of small molecules that enter the 46 

circulation and are absorbed and transformed by host tissues 3–5. Approximately half of the 47 

metabolites detected in human blood are known to be significantly associated with cross-48 

sectional variation in gut microbiome composition 6.  49 

Short-chain-fatty-acids (SCFAs) are among the most abundant metabolic byproducts 50 

produced by the gut microbiota, largely through the fermentation of indigestible dietary fibers 51 

and resistant starches, with acetate, propionate and butyrate being the most abundant SCFAs 7–
52 

9. Deficits in SCFA production have been repeatedly associated with disease 10,11. Therefore, 53 

SCFA production is a crucial ecosystem service that the gut microbiota provides to its host, with 54 

far-reaching impacts on health 1,11–13. However, different human gut microbiota provided with the 55 

same exact dietary substrate can show variable SCFA production profiles 14,15, and predicting 56 

this heterogeneity remains a fundamental challenge to the microbiome field. Measuring SCFA 57 

abundances in blood or feces is rarely informative of in situ production rates, due to the volatility 58 

of SCFAs, cross-feeding among microbes, and the rapid consumption and transformation of 59 

these metabolites by the colonic epithelium 10,16,17 . Furthermore, SCFA production fluxes (i.e., 60 

the amount of a metabolite produced over a given period of time) within an individual can vary 61 

longitudinally, depending upon dietary inputs and the availability of host substrates 18. In order to 62 

account for this inter- and intra-individual heterogeneity, we propose the use of microbial 63 

community-scale metabolic models (MCMMs), which mechanistically account for metabolic 64 

interactions between gut microbes, host substrates, and dietary inputs, to estimate 65 

personalized, context-specific SCFA production profiles.  66 
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Statistical modeling and machine-learning approaches for predicting metabolic output 67 

from the microbiome have shown promising results in recent years. For example, postprandial 68 

blood glucose responses can be predicted by machine-learning algorithms trained on large 69 

human cohorts 19,20. However, machine-learning methods are limited by the measurements and 70 

interventions represented within the training data 21. Mechanistic models like MCMMs, on the 71 

other hand, do not rely on training data and provide causal insights 17. MCMMs are constructed 72 

using existing knowledge bases, including curated genome-scale metabolic models (GEMs) of 73 

individual taxa 22. MCMMs can be limited by the inability to find well-curated GEMs for abundant 74 

taxa present in certain samples, and this underrepresentation in GEMs tends to be worse in 75 

human populations that are generally underrepresented in microbiome research 23.  Despite 76 

this, MCMMs can be powerful, transparent, knowledge-driven tools for predicting community-77 

specific responses to a wide array of interventions or perturbations.  78 

Here, we demonstrate the utility of MCMMs for the prediction of personalized SCFA 79 

production profiles in the context of different dietary, prebiotic, and probiotic inputs. We first 80 

validate our modeling platform using synthetic in vitro gut microbial communities (N=1,387) and 81 

ex vivo stool incubation assays (N=21). Next, we investigate the relevance of this modeling 82 

strategy in vivo using data from a 10-week high-fiber dietary intervention cohort (N=18), where 83 

individuals showed a variety of immune responses. We assess the clinical significance of these 84 

precision SCFA predictions by looking at associations between predicted SCFA production on 85 

an average European diet and a panel of blood-based clinical lab tests in a large human cohort 86 

(N=2,687). Finally, we demonstrate the power of MCMMs in designing personalized prebiotic, 87 

probiotic, and dietary interventions that optimize individual-specific butyrate production rates.  88 

 89 

Results 90 

MCMMs capture SCFA production rates in vitro 91 
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We sought to investigate whether MCMMs can predict production rates of the major SCFAs 92 

(i.e., acetate, propionate, and butyrate) under controlled experimental conditions (Fig. 1). We 93 

assembled microbial community models for in vitro data sets spanning 4 independent studies 94 

with varying levels of complexity. Models were constructed by combining manually-curated 95 

GEMs from the AGORA database 24, constraining taxon abundances using 16S amplicon 96 

sequencing relative abundance estimates, and applying an appropriate growth medium. 97 

Sample-specific metabolic models were then solved using cooperative tradeoff flux balance 98 

analysis (ctFBA), a previously-reported two-step quadratic optimization strategy that yields 99 

empirically-validated estimates of the steady state growth rates and metabolic uptake and 100 

secretion fluxes for each taxon in the model 17 (see Materials and Methods). Models were 101 

summarized at the genus level, which was the finest level of phylogenetic resolution that the 102 

16S data allowed for. 103 

First, we looked at data from synthetically constructed in vitro cultures of human gut 104 

microbial communities obtained from a recent publication 25. This data set included 105 

measurements of relative microbial abundances, butyrate production levels, and the overall 106 

optical density for each of 1,387 independent co-cultures (Fig. 2A). Cultures varied in richness 107 

from 1-25 strains. MCMMs were constructed for each co-culture as described above, simulating 108 

growth of each of the models using a defined, componentized medium, matching the 109 

composition of the medium used in the in vitro experiments (see Material and Methods). Model-110 

predicted fluxes of butyrate were compared with measured butyrate production rates normalized 111 

to the OD600, stratifying results into low richness (1-5 genera) and high richness (10-25 genera) 112 

communities. Model predictions for butyrate production fluxes were significantly associated with 113 

measured butyrate production fluxes (Pearson’s correlation; Low Richness: R²=0.028, p= 5e-4; 114 

High Richness: R²=0.277, p= 6e-51), but predictions were more accurate in the higher richness 115 

communities (Fig. 2B-C).  116 
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Next, we compared MCMM predictions to anaerobic ex vivo incubations of human stool 117 

samples from a small number of individuals (N=21) cultured after supplementation with sterile 118 

PBS buffer or with different dietary fibers across three independent studies. Study A contained 119 

samples from two donors cultured for 7 hours, Study B 14 contained samples from 10 donors 120 

cultured for 24 hours, and Study C contained samples from 9 donors cultured for 4 hours. Fecal 121 

ex vivo assays allow for the direct measurement of bacterial SCFA production fluxes without 122 

interference from the host. For all three studies, ex vivo incubations were performed by 123 

homogenizing fecal material in sterile buffer under anaerobic conditions, adding control or fiber 124 

interventions to replicate fecal slurries, and measuring the resulting SCFA production rates in 125 

vitro at 37°C (see Materials and Methods). Metagenomic or 16S amplicon sequencing data from 126 

these ex vivo cultures were used to construct MCMMs, using relative abundances obtained from 127 

sequencing data as a proxy for relative biomass for each bacterial genus (see Materials and 128 

Methods). MCMMs were simulated using a diluted standardized European diet (i.e., to 129 

approximate residual dietary substrates still present in the stool slurry), with or without specific 130 

fiber amendments, matching the experimental treatments (see Material and Methods). The 131 

resulting SCFA flux predictions were then compared to the measured fluxes. We observed an 132 

agreement between MCMM-predicted and measured SCFA production fluxes across all three 133 

ex vivo data sets (Fig. 3). Models predicted significantly higher SCFA production fluxes for fiber-134 

treated samples across all studies (Independent Student’s t-test, p <0.05; Study A was omitted 135 

from this analysis due to low sample size, although the separation between controls and fiber-136 

treated samples is visually apparent). The same held true for measured SCFA fluxes, with the 137 

exception of acetate in Study C (i.e., the study with the shortest incubation time), where there 138 

was not always significant separation in measured SCFA production between control and fiber 139 

treatments (Fig. 3G-I). With one exception (Fig. 3J), a significant positive correlation was 140 

observed between predicted and measured SCFA fluxes across treatment groups for all three 141 
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studies (R²=0.22-0.99, Pearson test, p<0.05). In summary, we observed agreement between 142 

MCMM-predicted and measured in vitro SCFA production rates in the presence or absence of 143 

fiber supplementation, with better agreement in more diverse communities and over longer 144 

experimental incubation times (Fig. 2-3).  145 

 146 

MCMM predictions correspond with variable immunological responses to a 10-week high-fiber 147 

dietary intervention 148 

We next investigated whether MCMM-predicted SCFA production rates could be leveraged to 149 

help explain inter-individual differences in phenotypic response following a dietary intervention. 150 

Specifically, we looked at data from 18 individuals who were placed on a high-fiber diet for ten 151 

weeks 26. These individuals fell into three distinct immunological response groups: one in which 152 

high inflammation was observed over the course of the intervention (high-inflammation group), 153 

and two other distinct response groups that both exhibited lower levels of inflammation (low-154 

inflammation groups I and II; Fig. 4A). We hypothesized that these immune response groups 155 

could be explained, in part, by differences in MCMM-predicted SCFA production profiles. Using 156 

16S amplicon sequencing data from seven time points collected from each of these 18 157 

individuals over the 10-week intervention, we built MCMMs for each study participant at each 158 

time point in the study. Growth was then simulated for each model using a standardized high-159 

fiber diet, rich in resistant starch (see Material and Methods). Throughout the study, individuals 160 

in the high-inflammation group showed significantly lower predicted butyrate plus propionate 161 

production on average (i.e., the two SCFAs with the strongest anti-inflammatory effects), 162 

compared to the individuals in each of the low-inflammation groups (High vs. Low I: 284.6 ± 7.7 163 

vs 327.5 ± 3.8 mmol/(gDW h) on average, Mann-Whitney p = 1.9e-5. High vs. Low II: 284.6 ± 164 

7.7  vs 337.8 ± 6.4 mmol/(gDW h), Mann-Whitney p = 7.2e-6) (Fig. 4B). Predicted levels of 165 

butyrate plus propionate production in the high-inflammation group decreased throughout the 166 
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duration of the high-fiber intervention (Pearson r = -0.47, Pearson test, p= 4.7e-3) (Fig. 4C), 167 

while predicted levels of butyrate and propionate production in the low-inflammation groups 168 

were constant over time (Low I: Pearson r = -0.020, Pearson test p= 0.90, Low II: Pearson r = 169 

0.093, Pearson test, p = 0.57) (Fig. 4C). Acetate production did not appear to differ across 170 

groups  (High vs. Low I: 652.7 ± 52.4 vs 639.8 ± 79.3 mmol/(gDW h) on average, Mann-Whitney 171 

p = .99. High vs. Low II: 652.7 ± 52.4  vs 653.8 ± 50.0 mmol/(gDW h), Mann-Whitney p = .97. 172 

Low I vs. Low II: 652.7 ± 52.4  vs  639.8 ± 79.3 mmol/(gDW h), Mann-Whitney p = .80 )(Fig. 173 

4D), although there was a slight trend towards increasing acetate production over time in the 174 

high inflammation group (Pearson r = 0.18, p = 0.31) (Fig. 4E).  175 

 176 

MCMM-predicted SCFA profiles are associated with a wide range of blood-based clinical 177 

markers 178 

To further evaluate the clinical relevance of personalized MCMMs, we generated SCFA 179 

production rate predictions from stool 16S amplicon sequencing data for 2,687 individuals in a 180 

deeply phenotyped, generally-healthy cohort from the West Coast of the United States (i.e., the 181 

Arivale cohort) 27. Baseline MCMMs were built for each individual assuming the same dietary 182 

input (i.e., an average European diet) in order to compare SCFA production rate differences, 183 

independent of background dietary variation. MCMM-predicted SCFA fluxes were then 184 

regressed against a panel of 128 clinical chemistries and health metrics collected from each 185 

individual, adjusting for a standard set of common covariates (i.e., age, sex, and microbiome 186 

sequencing vendor) (Fig. 5A). After FDR correction, 37 markers were significantly associated 187 

with the predicted production rate of at least one SCFA (Fig. 5B). Predicted butyrate production 188 

showed significant positive association with the health-associated hormone adiponectin, and 189 

significant inverse association with 11 metabolites associated with poorer health, including C-190 

reactive protein (CRP), HOMA-IR, and low-density lipoprotein (LDL; P < 0.05, FDR-corrected 191 
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Wald test). Acetate showed significant positive associations with 23 blood metabolites and 192 

inverse associations with 11 metabolites (Fig. 5B), which tended to be in the opposite direction 193 

as the butyrate associations. Propionate showed no significant associations, while overall SCFA 194 

production showed 2 positive and 3 negative associations (Fig. 5B). Butyrate and propionate 195 

production tended to be positively correlated within an individual, while higher acetate 196 

production was inversely associated with both butyrate and propionate production (Fig. 5C-D). 197 

This inverse association may be responsible, in part, for the flipped associations with clinical 198 

chemistries between butyrate and acetate. 199 

 200 

 201 

Leveraging MCMMs to design precision dietary, prebiotic, and probiotic interventions 202 

 203 

As a proof-of-concept for in silico engineering of the metabolic outputs of the human gut 204 

microbiome, we screened a set of potential interventions designed to increase SCFA production 205 

for individuals from the Arivale cohort (Fig. 6A). MCMMs were built using two different dietary 206 

contexts: an average European diet, and a vegan, high-fiber diet (see Material and Methods). 207 

Predicted butyrate production rates were then compared across the two diets. As expected, 208 

models grown on a high-fiber diet showed higher average predicted butyrate production: 27.35 209 

± 6.77 mmol/(gDW h) vs 16.17 ± 6.22 mmol/(gDW h), paired t-test, t = 92.74, p < .001 (Fig. 6B). 210 

However, this increase in butyrate production between the European and high-fiber diets was 211 

not uniform across individuals. On the high-fiber diet, some individual gut microbiota 212 

compositions showed very large increases in butyrate production, some showed little-to-no 213 

change, and a small subset of samples actually showed a decrease in butyrate production, 214 

relative to the European diet. We identified a set of ‘non-responders’ (n = 29) who produced less 215 

than 10 
����

�����
 of butyrate on the European diet and showed an increase in butyrate production 216 
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of less than 20% on the high-fiber diet (Fig. 6C). We also identified a set of ‘regressors’ (n = 45) 217 

who produced more than 20 
����

�����
 of butyrate on the European diet and showed lower butyrate 218 

production on the high-fiber diet (Fig. 6D). We then simulated a handful of simple prebiotic and 219 

probiotic interventions across these individuals, to identify optimal intervention combinations for 220 

each individual (Fig. 6C-E). MCMMs for each subset of individuals were simulated with prebiotic 221 

and probiotic interventions in the context of either the European or the high-fiber diet. 222 

Specifically, diets were supplemented with the dietary fiber inulin, with the dietary fiber pectin, or 223 

with a simulated probiotic intervention that consisted of introducing 10% relative abundance of 224 

the butyrate-producing genus Faecalibacterium to the MCMM. In general, optimal combination 225 

interventions significantly increased the population-level butyrate production above either 226 

dietary intervention alone (Fig. 6C-D). 227 

For 70/74 individuals, supplementation of the background diet with a specific pre- or 228 

probiotic increased the butyrate production rate (Fig. 6C-E). Neither response group had an 229 

intervention that was optimal for all individuals. In general, the most successful intervention for 230 

non-responders was the addition of inulin to the European diet (156.6% ± 183.3% increase vs 231 

standard European diet), and for regressors it was the addition of inulin to the high-fiber diet 232 

(88.2% ± 75.7% increase). However, the exact intervention that yielded the highest butyrate 233 

production for any given individual across both populations varied widely (Fig. 6E). For 234 

example, the probiotic intervention was more successful in raising predictions for butyrate 235 

production in non-responders than it was in regressors (Fig. 6E). The optimal intervention 236 

combination in the non-responder subpopulation was more heterogeneous than in the regressor 237 

subpopulation. Overall, no single intervention combination was optimal for every individual in the 238 

population. 239 

 240 

Discussion 241 
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Here we present an approach to the rational engineering of SCFA production rates from the 242 

human gut microbiome through prebiotic, probiotic, and dietary interventions, validated using in 243 

vitro and in vivo experimental data.  We demonstrated the MCMMs can be used to formulate 244 

personalized interventions designed to optimize SCFA production profiles.  245 

Model predictions of butyrate production in synthetically constructed in vitro co-cultures 246 

showed significant agreement between measured and predicted butyrate fluxes (Fig. 2). Due to 247 

the phylogenetic resolution of 16S data and the lack of strain-level GEMs that match the 248 

organisms present in some samples, we built genus-level MCMMs for all analyses. The 249 

decreasing accuracy of butyrate predictions as community richness declined may reflect a 250 

limitation of building models at the genus-level, as reconstructions contain a summarized 251 

aggregation of the metabolic capability of the genus as a whole, without species- or strain-level 252 

resolution. Consequently, pathways included in the metabolic model may be absent in a low-253 

richness experimental system, reflecting a mismatch between the modeling framework and 254 

reality. In high richness models, predictions became more accurate, indicating this mismatch is 255 

less impactful as more taxa are included in the system. Real-world microbiomes are often more 256 

species-rich than synthetic in vitro communities. Fortunately, we are likely not operating in a 257 

community regime where missingness in individual models has a large influence on genus-level 258 

MCMM SCFA predictions in the human gut. However, future work should focus on increasing 259 

the availability of diverse strain-level GEMs. The recent release of AGORA228, containing GEMs 260 

for 7,302 microorganisms, may help to overcome this limitation and aid in the construction of 261 

MCMMs at finer levels of taxonomic resolution.  262 

Data from ex vivo anaerobic fecal incubations showed agreement between SCFA flux 263 

predictions and measurements. Fiber-treated samples showed significant increases in both 264 

predicted and measured SCFA production, compared to the controls (Fig. 3). Additionally, 265 

measured and predicted production rates of butyrate and propionate showed quantitative 266 
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agreement across three independent studies. Acetate production rates were accurately 267 

predicted in all but one study. Acetate is known to act as an overflow metabolite 29,30, with a 268 

wide range of possible fluxes for a given biomass optimum, so it is perhaps not surprising that 269 

the predictions for this metabolite tended to be less accurate. Finally, predictions were generally 270 

the weakest in Study C (Fig. 3G-I). One possible reason for poorer predictions in this study is 271 

that the incubation time was shorter than for the other two studies (4 hours in Study C, vs 7 272 

hours and 24 hours in Studies A and B, respectively) , resulting in less divergence in 273 

accumulated SCFA concentrations between controls and treated samples. Thus, it is likely that 274 

SCFA levels did not build up to high enough levels in this study to accurately reflect in situ 275 

production. Overall, the observed correspondence between our SCFA production profile 276 

predictions and in vitro data provided us with some confidence in our MCMM modeling strategy 277 

and prompted us to explore how these predictions might be applied to an in vivo setting.  278 

MCMMs built using data from a 10-week high-fiber dietary intervention allowed us to 279 

assess our predictions in vivo in the context of immunological responses to diet. Predictions of 280 

combined butyrate and propionate (i.e., SCFAs with the strongest anti-inflammatory effects on 281 

the host 31) production rates over the course of the high-fiber intervention showed distinct 282 

differences between pre-defined immune response groups (Fig. 4). The low-inflammation 283 

groups showed stable butyrate and propionate production fluxes over time, while the high 284 

inflammation group showed lower average butyrate and propionate production and a decreasing 285 

production rate over time following the initiation of the high-fiber diet (Fig. 4B-C). Given the 286 

strong anti-inflammatory effects of butyrate and propionate, we expected to see lower 287 

production of these molecules in the context of higher inflammation. Prior work has shown that 288 

higher doses of inulin can actually induce an inflammatory response, which may explain, in part, 289 

the inflammatory immune response in these individuals 32. Overall, our results indicate that 290 
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different immunological responses to a high fiber diet may be explained, in part, by the observed 291 

heterogeneity in MCMM-predicted butyrate and propionate production rates (Fig. 4).  292 

Several biomarkers of metabolic health, inflammation, liver function, and cardiovascular 293 

health were associated with MCMM-predicted SCFA production profiles in a large, generally-294 

healthy cohort, assuming an average European diet (Fig. 5). CRP, a marker of systemic 295 

inflammation 33, showed a significant negative association with butyrate production predictions. 296 

Markers of cardiovascular health, such as LDL and triglyceride levels, were also negatively 297 

associated with butyrate production rates, supporting the role of butyrate as protective against 298 

cardiovascular disease 34. Many significant associations were inverted when looking across 299 

butyrate and acetate flux predictions (Fig. 5). For instance, CRP, HOMA-IR, glucose, insulin, 300 

LDL cholesterol and uric acid all showed significant negative associations with butyrate 301 

production and significant positive associations with acetate production. This result may be 302 

related to the apparent tradeoff between acetate production and the production of both butyrate 303 

and propionate (Fig. 5C-E). While the overall production of SCFAs has been implicated in 304 

lowering inflammation35, the potency of butyrate in driving down inflammation and improving 305 

overall metabolic health is greater than that of acetate 36, which, given this apparent tradeoff in 306 

the production of these different SCFAs, could help to explain these inverted associations.  307 

Given this set of promising associations between SCFA predictions and host phenotypic 308 

variation, we next wanted to demonstrate the potential of MCMMs for designing precision 309 

prebiotic, probiotic, and dietary interventions that optimize SCFA production profiles. Using the 310 

Arivale cohort, we identified two classes of individuals that responded differently to an in silico 311 

high-fiber dietary intervention: non-responders and regressors (Fig. 6). We found significant 312 

heterogeneity in the optimal intervention across individuals from each of these response groups, 313 

but most notably in the non-responders (Fig. 6E). Given that the non-responders had low 314 

baseline levels of butyrate production and did not respond to a high-fiber diet, this underscores 315 
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the importance of personalized predictions for those who tend not to respond well to population-316 

scale interventions.  317 

Personalized prediction of SCFA production profiles from human gut MCMMs represents 318 

an important technological step forward in leveraging artificial intelligence for precision nutrition. 319 

Mechanistic modeling allowed us to translate the ecological composition of the gut microbiome 320 

into concrete, individual-specific metabolic outputs, in response to specific interventions 37. 321 

MCMMs are transparent models that do not require training data, with clear causal and 322 

mechanistic explanations behind each prediction. Microbially-produced metabolites have an 323 

substantial impact on host physiology and health 38,39, and a rational framework for engineering 324 

the production or consumption rates of these metabolites has broad potential applications in 325 

precision nutrition and personalized healthcare. 326 

 327 

 328 

Materials and Methods 329 

In vitro culturing 330 

Culturing of the synthetically assembled gut microbial communities is described in Clark et al., 331 

2021 25. Culturing of ex vivo samples in Study A was done using the methodology described 332 

below. Culturing of ex vivo samples in Study B is described in Cantu-Jungles et al., 202114. 333 

Culturing of ex vivo samples in Study C was conducted by co-author Dr. Thomas Gurry, using 334 

the methodology described below.  335 

 336 

In vitro culturing of fecal-derived microbial communities (Study A) 337 

Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the 338 

Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number 339 

5722) and transferred into an large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen, 340 
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20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 20 341 

minutes of defecation. All further processing and sampling was then run inside the anaerobic 342 

chamber. 50 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks (Nasco, USA) 343 

with sterile PBS + 0.1% L-cysteine at a 1:2.5 w/v ratio and homogenized with a Stomacher 344 

Biomaster (Seward, USA) for 15 minutes. After homogenization, each sample was transferred 345 

into three sterile 250 mL serum bottles and another 2.5 parts of PBS + 0.1% L-cysteine was 346 

added to bring the final dilution to 1:5 in PBS. 87 ug/mL inulin or an equal volume of sterile PBS 347 

buffer were added to treatment or control bottles, respectively. Samples were immediately 348 

pipetted onto sterile round-bottom 2 mL 96-well plates in triplicates. Baseline samples were 349 

aliquoted into sterile 1.5 mL Eppendorf tubes and the plates were covered with Breathe-Easy 350 

films (USA Scientific Inc., USA). Plates were incubated for 7 h at 37°C and gently vortexed 351 

every hour within the chamber. Final samples were aliquoted into 1.5 mL Eppendorf tubes at the 352 

end of incubation. Baseline and 7 h samples were kept on ice and immediately processed after 353 

sampling. 500 uL of each sample were aliquoted for metagenomics and kept frozen at -80°C 354 

before and during transfer to the commercial sequencing service (Diversigen, Inc). The 355 

remaining sample was transferred to a table-top centrifuge (Fisher Scientific accuSpin, USA) 356 

and spun at 1,500 rpm for 10 minutes. The supernatant was then transferred to collection tubes 357 

kept on dry ice and transferred to the commercial metabolomics provider Metabolon, USA, for 358 

targeted SCFA quantification.         359 

 360 

In vitro culturing of fecal-derived microbial communities (Study C) 361 

Homogenized fecal samples in this study again underwent anaerobic culturing at 37°C, as 362 

described above, but with a shorter culturing time of 4 hours. The slurry was diluted 2.5x in 363 

0.1% L-cysteine PBS buffer solution. Cultures were supplemented with the dietary fibers pectin 364 

or inulin to a final concentration of 10g/L, or a sterile PBS buffer control treatment. Aliquots were 365 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.28.530516doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530516
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

taken at 0h and 4h and further processed for measurement of SCFA concentrations, which were 366 

used to estimate experimental production flux (concentration[4h] - concentration[0h]/4h). SCFA 367 

concentrations were measured using GC-FID. Briefly, the pH of the aliquots was adjusted to 2-3 368 

with 1% aqueous sulfuric acid solution, after which they were vortexed for 10 minutes and 369 

centrifuged for 10 minutes at 10,000 rpm. 200 uL aliquots of clear supernatant were transferred 370 

to vials containing 200 uL of MeCN and 100 uL of a 0.1% v/v 2-methyl pentanoic acid solution. 371 

The resulting solutions were analyzed by GC-FID on a Perkin Elmer Clarus 500 equipped with a 372 

DB-FFAP column (30m, 0.250mm diameter, 0.25um film) and a flame ionization detector.  373 

 374 

Metagenomic sequencing and analysis 375 

For Study A, shallow metagenomic sequencing was performed by the sequencing vendor 376 

Diversigen, USA (i.e., their BoosterShot service). In brief, DNA was extracted from the fecal 377 

slurries with the DNeasy PowerSoil Pro Kit on a QiaCube HT (Qiagen, Germany) and quantified 378 

using the Qiant-iT Picogreen dsDNA Assay (Invitrogen, USA). Library preparation was 379 

performed with a proprietary protocol based on the Nextera Library Prep kit (Illumina, USA) and 380 

the generated libraries were sequenced on a NovaSeq (Illumina, USA) with a single-end 100bp 381 

protocol. Demultiplexing was performed using Illumina BaseSpace to generate the final FASTQ 382 

files used during analysis. 383 

Preprocessing of raw sequencing reads was performed using FASTP 40. The first 5bp on 384 

the 5’ end of each read were trimmed, and the 3’ end was trimmed using a sliding window 385 

quality filter that would trim the read as soon as the average window quality fell below 20. Reads 386 

containing ambiguous base calls or with a length of less than 15bp after trimming were removed 387 

from the analysis. 388 

Bacterial species abundances were quantified using Kraken2 v2.0.8 and Bracken v2.2 389 

using the Kraken2 default database which was based on Refseq release 94, retaining only 390 
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those species with at least 10 assigned reads 41,42. The analysis pipeline can be found at 391 

https://github.com/Gibbons-Lab/pipelines/tree/master/shallow_shotgun.  392 

 393 

Metabolomics 394 

Targeted metabolomics were performed using Metabolon’s high-performance liquid 395 

chromatography (HPLC)–mass spectrometry (MS) platform, as described before 43. In brief, 396 

fecal supernatants were thawed on ice, proteins were removed using aqueous methanol 397 

extraction, and organic solvents were removed with a TurboVap (Zymark, USA). Mass 398 

spectroscopy was performed using a Waters ACQUITY ultra-performance liquid 399 

chromatography (UPLC) and Thermo Scientific Q-Exactive high resolution/accuracy mass 400 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and an Orbitrap 401 

mass analyzer operated at 35,000 mass resolution. For targeted metabolomics ultra-pure 402 

standards of the desired short-chain fatty acids were used for absolute quantification. Fluxes for 403 

individual metabolites were estimated as the rate of change of individual metabolites during the 404 

incubation period (concentration[7h] - concentration[0h]/7h). 405 

 406 

Model Construction 407 

Taxonomic abundance data summarized to the genus level, inferred from 16S amplicon 408 

sequencing or shotgun metagenomic sequencing, were used to construct all MCMMs in this 409 

analysis using the community-scale metabolic modeling platform MICOM v0.32.3 17. Models 410 

were built using the MICOM build() function with a relative abundance threshold of 0.001, 411 

omitting taxa that made up less than 0.1% relative abundance. The AGORA database (v1.03) of 412 

taxonomic reconstructions summarized to the genus level was used to collect genome-scale 413 

metabolic models for taxa present in each model. In silico media were applied to the grow() 414 

function, defining the bounds for metabolic imports by the MCMM. Medium composition varied 415 
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between analyses (see Media Construction). Steady state growth rates and fluxes for all 416 

samples were then inferred using cooperative tradeoff flux balance analysis (ctFBA). In brief, 417 

this is a two-step optimization scheme, where the first step finds the largest possible biomass 418 

production rate for the full microbial community and the second step infers taxon-specific growth 419 

rates and fluxes, while maintaining community growth within a fraction of the theoretical 420 

maximum (i.e., the tradeoff parameter), thus balancing individual growth rates and the 421 

community-wide growth rate 17. For all models in the manuscript we used a tradeoff parameter 422 

of 0.7. This parameter value was chosen through cooperative tradeoff analysis in MICOM. 423 

Multiple parameters were tested, and the highest parameter value (i.e., the value closest to the 424 

maximal community growth rate at 1.0) that allowed most (>90%) of taxa to grow was chosen 425 

(i.e., 0.7). Predicted growth rates from the simulation were analyzed to validate correct behavior 426 

of the models. All models were found to grow with minimum community growth rate of 0.3 h-1. 427 

Predicted values for export fluxes of SCFAs were collected from each MCMM using the 428 

production_rates() function, which calculates the overall production from the community that 429 

would be accessible to the colonic epithelium.  430 

 431 

Media Construction 432 

Individual media were constructed based on the context of each individual analysis. For the 433 

synthetic in vitro cultures conducted by Clark et al. (2021), a defined medium (DM38) was used 434 

that supported growth of all taxa used in the experiments, excluding Faecalibacterium 435 

prausnitzii. Manually mapping each component to the Virtual Metabolic Human database, we 436 

constructed an in silico medium with flux bounds scaled to component concentration. All 437 

metabolites were found in the database. Using the MICOM fix_medium() function, a minimal set 438 

of metabolites necessary for all models to grow to a minimum community growth rate of 0.3 h-1 439 
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was added to the medium - here, only iron(III) was added (in silico medium available here: 440 

https://github.com/Gibbons-Lab/scfa_predictions/tree/main/media). 441 

To mimic the medium used in ex vivo cultures of fecally-derived microbial communities, 442 

a diluted, carbon-stripped version of a standard European diet was used. First, a standard 443 

European diet was collected from the Virtual Metabolic Human database 444 

(www.vmh.life/#nutrition) 44. Components in the medium which could be imported by the host, 445 

as defined by an existing uptake reaction in the Recon3D model 45, were diluted to 20% of their 446 

original flux, to adjust for absorption in the small intestine45. Additionally, host-supplied 447 

metabolites such as mucins and bile acids were added to the medium. As most carbon sources 448 

are consumed in the body and are likely not present in high concentrations in stool, this diet was 449 

then algorithmically stripped of carbon sources by removing metabolites with greater than six 450 

carbons and no nitrogen, to avoid removing nitrogen sources. Additionally, the remaining 451 

metabolites in the medium were diluted to 10% of their original flux, mimicking the nutrient-452 

depleted fecal homogenate. This medium was also augmented using the fix_medium() function 453 

in MICOM. To simulate fiber supplementation, single fiber additions were made to the medium, 454 

either pectin (0.75 mmol/gDW*h) or inulin (10.5 mmol/gDW*h). Bounds for fiber 455 

supplementation were chosen to balance the carbon content of each, as represented in the 456 

model (pectin: 2535 carbons, inulin: 180 carbons).  457 

For in vivo modeling, two diets were used: a high-fiber diet containing high levels of 458 

resistant starch, and a standard European diet 44,46. Again, both diets were collected from the 459 

Virtual Metabolic Human database (www.vmh.life/#nutrition). Each medium was subsequently 460 

adjusted to account for absorption in the small intestine by diluting metabolite flux as described 461 

previously. Additionally, host-supplied metabolites such as mucins and bile acids were added to 462 

the medium, to match the composition of the medium in vivo. Finally, the complete_medium() 463 

function was again used to augment the medium, as described above. 464 
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Prebiotic interventions were designed by supplementing the high-fiber or average 465 

European diet with single fiber additions, either pectin or inulin. As before, bounds for fiber 466 

addition were set as 0.75 mmol/gDW*h for pectin and 10.5 mmol/gDW*h for inulin. 467 

 468 

Probiotic Intervention 469 

To model a probiotic intervention, 10% relative abundance of the genus Faecalibacterium, a 470 

known butyrate-producing taxon 47, was added to the MCMMs by adding a pan-genus model of 471 

the taxon derived from the AGORA database version 1.03. Measured taxonomic abundances 472 

were scaled to 90% of their initial values, after which Faecalibacterium was artificially added to 473 

the model.  474 

 475 

External Data Collection 476 

Data containing taxonomic abundance, optical density, and endpoint butyrate concentration for 477 

synthetically-constructed in vitro microbial cultures were collected from Clark et al. (2021) 25. 478 

Endpoint taxonomic abundance data, calculated from fractional read counts collected via 16S 479 

amplicon sequencing, was used to construct individual MCMMs for each co-culture (see Model 480 

Construction). Resulting models ranged in taxonomic richness from 1 to 25 taxa. 481 

From a second study by Cantu-Jungles et al. (2021) 14 (ex vivo Study B), preprocessed 482 

taxonomic abundance and SCFA metabolomics data was collected. Homogenized fecal 483 

samples in this study underwent a similar culturing process, with a culturing time of 24 hours. 484 

Cultures were supplemented with the dietary fiber pectin, or a PBS control. Initial and endpoint 485 

metabolomic SCFA measurements were used to estimate experimental production flux 486 

(concentration[24h] - concentration[0h]/24h). Taxonomic abundance data was used to construct 487 

MCMMs for each individual (see Model Construction).  488 
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Data from a third (Study C) was collected from the Pharmaceutical Biochemistry Group 489 

at the University of Geneva, Switzerland, under study protocol 2019-00632, containing 490 

sequencing data in FASTQ format and targeted metabolomics SCFA measurements.  491 

Data was collected from Wastyk, et al 2021 26, which provided 16S amplicon sequencing 492 

data at 9 timepoints spanning 14 weeks, along with immunological phenotyping, for 18 493 

participants undergoing a high-fiber dietary intervention. Only 7 timepoints spanning 10 weeks 494 

were included in subsequent analysis, as the last 2 timepoints were taken after the conclusion 495 

of the dietary intervention. MCMMs were constructed for each participant at each timepoint at 496 

the genus level (see Model Construction). Mean total butyrate and propionate production, as 497 

well as acetate production, were compared between immune response groups. 498 

De-identified data was obtained from a former scientific wellness program run by Arivale, 499 

Inc. (Seattle, WA) 27. Arivale closed its operations in 2019. Taxonomic abundances, inferred 500 

from 16S amplicon sequencing data, for 2,687 research-consenting individuals were collected 501 

and used to construct MCMMs. 128 paired blood-based clinical chemistries taken within 30 502 

days of fecal sampling were also collected and used to find associations between MCMM SCFA 503 

predictions on a standard European diet and clinical markers.  504 

 505 

Statistical analysis 506 

Statistical analysis was performed using SciPy (v1.9.1) and statsmodels (v0.14.0) in Python 507 

(v3.8.13). Pearson correlation coefficients and p-values were calculated between measured and 508 

predicted SCFA production fluxes in in vitro cultures, as well as for predicted SCFA production 509 

fluxes across timepoints for an in vivo high-fiber intervention. Significance in overall SCFA 510 

production between immune response groups in the high-fiber intervention was determined by 511 

pairwise Mann-Whitney U test for butyrate+propionate production and for acetate production. 512 

Association of MCMM-predicted SCFA production flux with paired blood-based clinical labs was 513 
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tested using OLS regression, adjusting for age, sex, microbiome sequencing vendor, and 514 

clinical lab vendor, and tested for significance by two-sided Wald test. BMI was not included as 515 

a confounder in the analysis because it was itself negatively correlated with butyrate production 516 

48. Multiple comparison correction for p-values was done using the Benjamini–Hochberg method 517 

for adjusting the False Discovery Rate (FDR) 49. Comparison of butyrate production between 518 

dietary interventions was tested using paired Student’s t-tests. In all analyses, significance was 519 

considered at the p<0.05 threshold.  520 

 521 

Data, Software, and Code Availability 522 

Code used to run analysis and create figures for this manuscript can be found at 523 

https://github.com/Gibbons-Lab/scfa_predictions.  524 

 525 

Processed data for synthetically constructed cultures can be found at 526 

https://github.com/RyanLincolnClark/DesignSyntheticGutMicrobiomeAssemblyFunction. Raw 527 

sequencing data can be found at https://doi.org/10.5281/zenodo.4642238.  528 

 529 

Raw sequencing data for Study A can be found in the NCBI SRA under accession number 530 

PRJNA937304. 531 

 532 

Processed data for ex vivo Study B can be found at 533 

https://github.com/ThaisaJungles/fiber_specificity. Raw sequencing data can be found in the 534 

NCBI SRA under accession number PRJNA640404. 535 

 536 

Raw sequencing data for ex vivo Study C can be found in the NCBI SRA under accession 537 

number PRJNA939256. 538 
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 539 

Qualified researchers can access the full Arivale deidentified dataset supporting the findings in 540 

this study for research purposes through signing a Data Use Agreement (DUA). Inquiries to 541 

access the data can be made at data-access@isbscience.org and will be responded to within 7 542 

business days. 543 
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Figure Captions 697 

 698 

Figure 1. Microbial community-scale metabolic models (MCMMs) predict personalized SCFA 699 

production profiles. Schematic of our workflow for validating MCMM-based personalized predictions 700 

for SCFA production. (A) Prior to modeling, an in silico medium is constructed, containing a matched 701 

diet mapped to its constituent metabolic components. The medium is depleted in compounds absorbed 702 

by the host in the small intestine and augmented with other host-supplied compounds, in addition to 703 

adding a minimal set of metabolites required for growth. (B) MCMMs are constructed, combining 704 

abundance and taxonomic data with pre-curated GEMs into a community model. (C) Growth in the 705 

MCMM is simulated through cooperative tradeoff flux balance analysis (ctFBA), yielding predicted 706 

growth rates and SCFA production fluxes. (D) To validate predicted levels of SCFA production fluxes, 707 

measured values of production fluxes are collected from fecal samples cultured anaerobically ex vivo at 708 

37°C over time. (E) Predicted and measured SCFA production fluxes are compared to assess the 709 

accuracy of the model.  710 

 711 

Figure 2. Relationship between predicted and measured butyrate production rates in in 712 

vitro co-cultures. Each point denotes one of 1,387 anaerobic co-culture assays. Butyrate 713 

production flux predictions from MCMMs are shown on the y-axes and measured values are 714 

shown on the x-axes, along with R2 and p-values from a Pearson’s correlation (A) Synthetically 715 

constructed communities were cultured anaerobically in a defined medium. Endpoint butyrate 716 

concentration was measured and compared with MCMM-predicted flux. (B) Predicted and 717 

measured butyrate fluxes in models of low richness synthetic communities  (1-5 genera per 718 

model, N = 882). (C) Predicted and measured butyrate fluxes in models of high richness 719 

synthetic communities (10-25 genera, N = 697). In (B-C) the dashed line denotes a linear model 720 

fit to the data.  721 

 722 

Figure 3. Human stool ex vivo assays show quantitative agreement between measured 723 

and predicted SCFA production fluxes. SCFA production flux predictions from MCMMs are 724 

shown on the y-axes and measured values are shown on the x-axes, along with R2 and p-725 

values from a Pearson’s correlation. Marginal rug plots show separation in SCFA production 726 

between treatment groups. Error bars show standard error as calculated from measured and 727 

predicted values for each sample in triplicate. (A-C), Results from a two-donor ex vivo study 728 

(Study A) showed significant agreement between measured and prediction rates for all three 729 

SCFAs following inulin treatment. (D-F) Results from Study B14, which included pectin 730 

treatments to stool homogenates from 10 individuals 14. Samples showed significant association 731 

between predicted and measured production rates for all three SCFAs. (G-I) Results from Study 732 

C, which included both pectin and inulin interventions across stool homogenates from 9 733 

individuals. Samples treated with inulin and pectin showed significant associations between 734 

predicted and measured fluxes for both propionate and butyrate, but not for acetate. 735 

 736 

Figure 4. Predicted SCFA production profiles were associated with variable immune 737 

response groups following a high-fiber dietary intervention. (A) Summary of the study from 738 

Wastyk et al.26, where a cohort of 18 individuals participated in a 10-week high-fiber dietary 739 

intervention. Immune profiling based on circulating inflammatory cytokines and immune cells 740 

clustered individuals into three groups: two low-inflammation groups and one high-inflammation 741 

group. (B) Average predicted total butyrate and propionate production across the three immune-742 
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response groups identified in the original study. (C) Predicted total butyrate and propionate 743 

production rates across the duration of the intervention, stratified by immune response group 744 

(D) Average predicted total acetate production across the three immune response groups. (E) 745 

Predicted acetate production rates across the intervention, stratified by immune response 746 

group. In (A-E) stars denote significance under an Independent Student’s t-test, *** = p<0.001. 747 

 748 

Figure 5. SCFA flux predictions are significantly associated with blood-derived clinical 749 

markers. (A) MCMMs were constructed for 2,687 Arivale participants, assuming an average 750 

European diet, to predict SCFA production profiles. SCFA predictions were regressed against a 751 

set of 128 blood-based clinical labs and health markers, with sex, age, and sequencing vendor 752 

as covariates in the regressions. (B) Heatmap showing the 37 significant associations (FDR-753 

corrected Wald test p<0.05) between measured blood markers and predicted SCFA production 754 

rates. (C-E) Relationship between pairs of predicted SCFA production rates. Each dot denotes 755 

an individual model reconstructed for a single sample in the Arivale study (n=2,687). The black 756 

line denotes a linear regression line and the gray area denotes the 95% confidence interval of 757 

the regression. R2 and p-values from Pearson’s correlations. 758 

 759 

Figure 6. Microbial MCMMs can be used to design, build, and test personalized prebiotic, 760 

probiotic, and dietary interventions aimed at optimizing SCFA production profiles. (A) 761 

MCMMs built from the Arivale cohort (N = 2,687) were used to test personalized responses to 762 

dietary interventions. Personalized models were simulated on an average European (Euro) diet, 763 

as well as on a high-fiber diet, and divided into responders, non-responders, and regressors, 764 

based on the changes in predicted butyrate production in response to increasing dietary fiber. 765 

Non-responders were defined as individuals who produced less than 10
����

�����
 of butyrate on the 766 

European diet and showed an increase of less than 20% in butyrate production on the high-fiber 767 

diet. Regressors were defined as individuals who produced at least 20 
����

�����
 butyrate on the 768 

European diet and showed a drop in butyrate production on the high-fiber diet. Single-fiber and 769 

probiotic interventions were applied to non-responders and regressors. (B) Distribution of 770 

butyrate production rates on two different diets simulated for all participants in the study. 771 

Butyrate production ranges that contain non-responders (N=29) and regressors (N=45) are 772 

highlighted in green and yellow shaded areas, respectively. (C) Distributions of butyrate 773 

production rates for the non-responder group (N=29). The optimal intervention resulting in the 774 

highest butyrate production is shown in blue. (D) Butyrate production rates for the regressor 775 

group (N=45). The optimal intervention that resulted in the highest butyrate production is shown 776 

in blue. (E) Heatmap of butyrate production rates across simulated interventions for the 777 

individuals in the non-responder and regressor groups. Rows denotes specific interventions 778 

(Euro - average European diet, HF - high fiber diet). Columns denote individuals in the response 779 

groups (N=74). Cell shading (white-to-red) denotes butyrate production rate. Added 780 

interventions tested on both non-responders and regressors included probiotic supplementation 781 

(inulin or pectin) as well as prebiotic supplementation (10% relative abundance 782 

Faecalibacterium). The most successful intervention for each individual is denoted by a black 783 

border around that cell in the corresponding column.  784 
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