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ABSTRACT 15 

Aging represents the greatest risk factor for chronic diseases and mortality, but to understand it 16 

we need the ability to measure biological age. In recent years, many machine learning algorithms 17 

based on omics data, termed aging clocks, have been developed that can accurately predict the 18 

age of biological samples. However, there is currently no resource for systematic profiling of bi-19 

ological age. Here, we describe ClockBase, a platform that features biological age estimates 20 

based on multiple aging clock models applied to more than 2,000 DNA methylation datasets and 21 

nearly 200,000 samples. We further provide an online interface for statistical analyses and visu-22 

alization of the data. To show how this resource could facilitate the discovery of biological age-23 
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modifying factors, we describe a novel anti-aging drug candidate, zebularine, which reduces the 24 

biological age estimates based on all aging clock models tested. We also show that pulmonary 25 

fibrosis accelerates epigenetic age. Together, ClockBase provides a resource for the scientific 26 

community to quantify and explore biological ages of samples, thus facilitating discovery of new 27 

longevity interventions and age-accelerating conditions. 28 

INTRODUCTION 29 

Aging is an extremely complex biological process that represents the greatest risk factor for 30 

chronic diseases 1,2. This makes the aging process a desirable target for preventing age-related 31 

diseases and reducing their global burden 3–5. However, to associate aging with diseases and in-32 

terventions that target aging, it is important to be able to measure the rate of aging 6,7. In recent 33 

years, various machine-learning models based on omics data have emerged (also known as aging 34 

clocks), which can accurately predict the age of samples derived from different tissues, cell 35 

types, and even single cells 6,8,9. Various molecular markers have been shown to have the poten-36 

tial to profile the rate of aging, including DNA methylation, transcriptome, proteome, 37 

metabolome, microbiome, and other types of omics data 6. In addition to assessing chronological 38 

age, many aging clock models were trained to reveal associations with various aging-related 39 

phenotypes and mortality 10. 40 

Aging clocks based on the methylation levels of CpGs are the earliest and some of the most ac-41 

curate age predictors 11,12. Such clocks are represented by the blood biomarker developed by 42 

Hannum and colleagues 12 and the human pan-tissue epigenetic clock developed by Horvath, the 43 

latter trained on 51 different tissue types 11. These epigenetic clocks could accurately predict the 44 

chronological age of samples, but since they are trained based only on age, only a fraction of the 45 

biological variation of the sample could be captured by them. Subsequently, the “second-46 

generation” epigenetic clocks emerged: instead of training solely on chronological age, these 47 

clocks incorporated health-related phenotypic information and therefore could reveal a stronger 48 

association with aging-related phenotypes. For example, PhenoAge was trained based on the 49 

phenotypic age score, which was derived from chronological age and certain mortality-related 50 

blood test parameters 13. Additionally, GrimAge emerged as a robust predictor that is based on 51 

multiple phenotypes and the remaining time to death 14. More recently, DunedinPOAm and 52 
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DunedinPACE biomarkers were reported that are trained based on the pace of biological aging 53 

that was derived from multiple clinical biomarkers measured in the Dunedin longitudinal cohort 54 

15,16. We also developed DamAge and AdaptAge, which are causality-informed clock models 55 

that could separately measure age-related damage and adaptation 17. Similar to humans, multiple 56 

mouse epigenetic clocks were developed and shown to be able to robustly predict the chronolog-57 

ical age of mice 18,19. 58 

One of major applications of aging clocks is the identification of conditions or treatments that 59 

modify the aging rate of individuals or reduce their biological age, which could potentially lead 60 

to the development of anti-aging therapies 20,21. For example, parabiosis and iPSC reprogram-61 

ming were shown to be associated with the decrease in epigenetic age 22–24, and unhealthy life-62 

styles such as smoking and stress could accelerate epigenetic aging 10,25. Although this type of 63 

research has been described in many publications, there has been no systematic effort to identify 64 

the impact of available interventions on biological age. One reason is that various clock models 65 

require different transformations and pre-processing of omics data, making it difficult to use 66 

them and compare them across studies. Some tools exist that try to tackle this problem, but they 67 

typically only utilize a small subset of human methylation clocks 26. Moreover, although a large 68 

amount of omics data has been acquired by the scientific community that is publicly available 69 

through the databases such as Gene Expression Omnibus (GEO) 27, there is currently no public 70 

resource that could uniformly process them for biological age profiling. 71 

To address this problem, we created ClockBase, a comprehensive platform for biological age 72 

profiling in humans and mice. We curated 11 best-performing aging clock models, including ep-73 

igenetic clocks for humans and mice, and used them to profile the biological age of samples 74 

(Figure 1). We re-processed over 2,000 publicly available DNA methylation datasets from GEO. 75 

In total, ClockBase contains the biological age information for around 200,000 samples in both 76 

mice and humans under various experimental settings. Besides preprocessed data, users can up-77 

load their data to ClockBase for biological age calculation. ClockBase provides an interactive 78 

analysis tool to allow users to perform statistical analyses and visualization of biological age 79 

online. We believe that ClockBase may provide a valuable resource for the scientific community 80 

to explore the biological age of samples, and thus facilitate the discovery of new longevity inter-81 

ventions and age-accelerating conditions.  82 
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Results 83 

Overview of ClockBase 84 

To develop ClockBase, we processed over 2,000 publicly available DNA methylation datasets 85 

from GEO and calculated biological age based on multiple aging clocks (Figure 1). In total, 86 

ClockBase contains biological age information for ~200,000 human and mouse samples (Figure 87 

1). We standardized metadata for each experiment, which allows users to search for diseases and 88 

treatments of interest and examine biological age under a variety of experimental conditions. All 89 

data are available for download. Besides preprocessed data, users can upload their data to 90 

ClockBase and calculate predicted biological age. 91 

ClockBase provides an interactive analysis tool that allows users to perform statistical analyses 92 

and visualization of biological age online. We also embedded each sample into a low-93 

dimensional space which allows users to explore data interactively. Our toolkit includes group 94 

comparison, which allows users to compare biological age across different experimental groups; 95 

correlation analysis, which allows users to explore the relationship between biological age and 96 

other numeric variables, or the correlation across different clock models; and accuracy analysis, 97 

which allows users to explore the accuracy of clock models. All plots and statistical results are 98 

available for download. We also created a companion R package called ClockBasis, that allows 99 

users to calculate biological age of their samples. ClockBase is available at https://clockbase.org 100 

ClockBase offers insights into the relationship among clock models 101 

To understand the biological meaning and relationship among aging clocks, it is important to 102 

compare different clocks and have information on their correlation. Although several studies re-103 

ported on this topic, all were performed with established human cohorts and biobanks 35,36, which 104 

contain only a limited number of interventions and biological variables. As ClockBase consists 105 

of a large number of samples with highly diverse biological statuses, it provides a unique oppor-106 

tunity for exploring the relationship among different clock models in a much more diverse sam-107 

ple population. We first explored the distribution of biological age measurement across 192,635 108 

highly diverse human samples (Figure 2a). Among them, 80,346 samples also had age infor-109 

mation. We, therefore, calculated biological age acceleration for the samples based on each clock 110 

(delta age, which is calculated as predicted age minus real age). Note that DunedinPoAm and 111 

DunedinPACE are predictors of the pace of age that is independent of the age of samples and is 112 
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centered at 1. We then examined the distribution of biological age acceleration across the sam-113 

ples (Figure 2b). chi-square test was performed to determine whether there are significantly more 114 

samples with accelerated biological age or decelerated biological age. Interestingly, while 115 

DunedinPACE, HannumAge, HorvathAge, and ZhangAge clocks showed that there are signifi-116 

cantly more age-accelerated samples, DunedinPoAm and PhenoAge revealed the opposite effect 117 

(i.e. there are significantly more age-decelerated samples), whereas PedBE clock showed no sig-118 

nificant difference. This suggests that different clocks may measure different aspects of aging 119 

and therefore have a disagreement on the biological age of samples. 120 

We further analyzed correlation across biological age prediction based on seven aging clock 121 

models (Figure 2c, d). Prior to adjusting for age, PedBE, Horvath Clock, Zhang clock, Hannum 122 

Clock, and PhenoAge showed strong correlation with one another, with Pearson’s correlation 123 

coefficients ranging from 0.59 (PhenoAge and PedBE) to 0.85 (Zhang clock and Hannum 124 

Clock). Correlations between DunedinPoAm/DunedinPACE and other clocks were low. This is 125 

expected as both DunedinPoAm and DunedinPACE measure the rate of aging, which shows only 126 

a weak correlation with chronological age 16. Yet surprisingly, Pearson’s correlation coefficient 127 

between DunedinPoAm and DunedinPACE was -0.05. 128 

After adjusting for age, the five epigenetic age clocks (Horvath Clock, Zhang clock, Hannum 129 

Clock, PedBE, and PhenoAge) still showed a significant, yet weaker, positive correlation (Figure 130 

2d). Pearson’s correlation coefficients ranged from 0.31 (HorvathAge and PhenoAge) to 0.89 131 

(ZhangAge and PedPE). DunedinPoAm and DunedinPACE still showed a weak correlation with 132 

all other clocks. Notably, DunedinPACE has a significant negative correlation with all other 133 

clocks except HorvathAge. These findings reveal the internal discrepancy among different aging 134 

clocks when applied to diverse biological samples. 135 

To better visualize inconsistency among different aging clocks, we embedded each sample into 136 

two-dimensional space by performing UMAP on biological age predictions from each clock 137 

model (Figure 3a, b). Locations of the samples on UMAP embedding indicated the relationship 138 

among biological age prediction for different aging clocks. 139 

As a demonstration, we show that although DunedinPACE has a very weak correlation with oth-140 

er aging clock models, it predicts iPSCs and ESCs to have extremely slow rates of aging, which 141 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.28.530532doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530532
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

is related to other clock models that revealed consistently low ages of these cells following long-142 

term maintenance in culture. Therefore, iPSCs/ESCs form a unique cluster in the UMAP space. 143 

Similarly, cells overexpressing DNA methyltransferases (DNMTs) are predicted to be relatively 144 

young based on Horvath Clock and PhenoAge, and also have a very slow rate of aging based on 145 

DunedinPACE 37. In contrast, during induced differentiation in vitro, hepatocytes appear to be 146 

more than 200 years old based on Horvath Clock and PhenoAge and also exhibit an extremely 147 

fast rate of aging 38. 148 

In general, samples form a trajectory in the UMAP space, where the upper left corner represents 149 

biologically older samples and the lower right and lower left corners younger samples (Figure 150 

3a). The branching of the trajectory indicates disagreement among different aging clocks. For 151 

example, the lower left branch has low biological age prediction based on HannumAge, 152 

HorvathAge, PhenoAge, and ZhangAge clocks. Yet PedBE shows a moderate biological age 153 

prediction, and DunedinPoAm shows that this region contains samples with an accelerated pace 154 

of aging. The discrepancy becomes even more obvious when we used biological age acceleration 155 

(delta age) as the attribute for t-SNE embedding (Figure 3c). The interactive three-dimensional 156 

UMAP and t-SNE embedding are available in the ClockBase online analysis tool. 157 

ClockBase facilitates the discovery of longevity interventions and age-accelerating condi-158 

tions 159 

To demonstrate the utility of ClockBase for identifying novel longevity interventions and age-160 

accelerating conditions, we show two datasets that to our knowledge have not been studied in the 161 

context of biological aging. In the first dataset (GSE60446), two different cholangiocarcinoma 162 

cell types, TFK-1 and HuCCT1, were treated with a DNA methyltransferase inhibitor zebularine 163 

(1-(β-D-ribofuranosyl)-1,2-dihydropyridine-2-one) 39. Through only a few clicks on the 164 

ClockBase online statistical analysis tool, we found that the zebularine treatment significantly 165 

reduces the epigenetic age based on almost all clock models and in both cell lines (Figure 4a). In 166 

addition, both DunedinPoAm and DunedinPACE showed that the zebularine-treated cells exhib-167 

ited a slower pace of aging. Zebularine has never been studied for its role in rejuvenation, and 168 

our results suggest that this compound is a potential longevity intervention, which may be further 169 

studied in future studies. 170 
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The second example is from GSE63704, which includes 204 plasma DNA methylation samples 171 

representing healthy controls and lung cancer, pulmonary fibrosis, and chronic obstructive pul-172 

monary disease (COPD) patients 40. We observed that pulmonary fibrosis patients exhibit a sig-173 

nificantly higher epigenetic age compared to control patients, based on Horvath Clock, PedBE, 174 

Zhang clock, and Hannum Clock models (Figure 4b). Additionally, DunedinPACE showed that 175 

pulmonary fibrosis patients had a significantly faster pace of aging. Notably, both of these exam-176 

ples were semi-randomly selected for demonstration purposes, suggesting that there are many 177 

other potential associations that remain to be explored by future ClockBase users. 178 

Discussion 179 

The emergence of aging clocks provided researchers with promising tools to estimate the age of 180 

biological samples and shed light on the associated biology. However, there are currently multi-181 

ple dozens of aging clocks that have been created, making it increasingly important to under-182 

stand the relationship between different aging clocks 8,41–43. There have been some efforts to 183 

compare clocks based on established human cohorts and biobanks 35,36, but these studies are lim-184 

ited in both clocks examined and the dataset used. ClockBase currently contains DNA methyla-185 

tion for both mice and humans, with much more diverse sample coverage compared to human 186 

biobanks. We believe that this resource can be used to help researchers to understand the rela-187 

tionship between clocks in different experimental settings. 188 

Another challenge is that it is currently hard for non-computational experts in the field to use ag-189 

ing clocks, as they usually require different transformations and data preprocessing. Even for 190 

computational biologists, downloading individual datasets from GEO and preprocessing each of 191 

them is a time-consuming task. ClockBase is designed to provide a simple and easy-to-use inter-192 

face for biologists to perform statistical analyses and visualization of biological age. Only a GSE 193 

accession identifier and a few clicks are required for analyzing a dataset from GEO. This could 194 

remove the barrier for researchers and domain experts to use and understand the aging clocks. 195 

We illustrated the utility of ClockBase by discovering zebularine, a potent DNMT inhibitor, 196 

which affects the methylation status of the samples by directly targeting the DNA methylation 197 

machinery 44. Our data suggest that zebularine is a candidate longevity intervention, as it signifi-198 

cantly reduced the epigenetic age of cultured cells based on almost all clock models. However, 199 
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as zebularine affects the DNA methylation machinery, DNA methylation clocks should be used 200 

with caution. Further investigation and in vivo studies are required to understand the role of 201 

zebularine in the aging process. 202 

We believe many other potential anti-aging interventions are hidden in a large number of availa-203 

ble experimental conditions, that could be explored and explained by domain experts. 204 

MATERIALS AND METHODS 205 

Data collection 206 

The data used in this study were downloaded before July 30th, 2022, from Gene Expression 207 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo). Raw data were downloaded using the R 208 

package GEOquery (https://bioconductor.org/packages/release/bioc/html/GEOquery.html), and 209 

metadata were extracted using the R package GEOmetadb 210 

(https://www.bioconductor.org/packages/release/bioc/html/GEOmetadb.html). For mouse DNA 211 

methylation analyses, all GEO entries associated with “Methylation profiling by high throughput 212 

sequencing” were collected; for human DNA methylation analyses, all GEO entries associated 213 

with “Methylation profiling by (genome tiling, SNP, or other) array” were collected. Methylation 214 

level data were then downloaded from supplementary files of each GEO entry. Only the datasets 215 

with at least 6 samples were used for downstream analyses. 216 

Methylation data preprocessing 217 

Existing mouse DNA methylation data are not uniformly structured. A custom R script was used 218 

to identify CpG sites and methylation levels of each sample and then standardize data format. 219 

Metadata are standardized based on the custom pipeline aspired by refine.bio 28. Datasets with 220 

missing information or in unrecognized format were excluded. Then, for both mouse and human 221 

DNA methylation data, the range of methylation levels was standardized to the 0-1 scale. The 222 

data with out-of-range values were replaced with missing values. We impute missing methyla-223 

tion level data using mean methylation for the reference dataset. For humans, we used 2,664 224 

blood samples measured using the 450k Human Methylation Beadchip as a reference 29. For 225 

mice, since sequencing-based methods were used, DNA methylation data were more sparse 226 

compared to array-based data. Therefore, we first imputed missing values based on mean meth-227 

ylation levels within 100 base-pair regions, as it was reported in a previous study that the nearby 228 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.28.530532doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530532
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

sites tend to exhibit a high correlation with regard to methylation levels 30. For the sites still hav-229 

ing missing values, we imputed missing values based on the mean methylation levels of the ref-230 

erence dataset from Petkovich et al. 18. We report the ratio of missingness for each clock model. 231 

In general, samples with more than 20% missing values were considered unreliable for biological 232 

age prediction; however, we included them in the database with a warning message as they may 233 

still provide information. 234 

The code for all the preprocessing steps is included in the ClockBasis R package 235 

(https://github.com/albert-ying/ClockBasis). 236 

Aging clock models implementation 237 

Aging clock models were implemented on the web server and precalculated for all datasets, in-238 

cluding 4 mouse epigenetic clocks and 7 human epigenetic clocks. The following mouse epige-239 

netic clocks were included: Petkovich blood clock (90 sites) 18, Meer multi-tissue clock (435 240 

sites) 19, Thompson multi-tissue clock (582 sites) 31, and Wang liver clock (148 sites) 32. The fol-241 

lowing human epigenetic clocks were included: Horvath multi-tissue clock (353 sites) 11, 242 

Hannum clock (71 sites) 12, PhenoAge (513 sites) 13, PedBE pediatric buccal clock (94 sites) 33, 243 

Zhang blood clock (514 sites) 34, DunedinPOAm (46 sites) 15, and DunedinPACE (173 sites) 16. 244 

All clock models are publicly available and could be downloaded from the original source. All  245 

epigenetic clocks are also available as functions in the ClockBasis R package. 246 

Online statistical analysis 247 

Three types of statistical analysis were implemented in the ClockBase online interface. 248 

(1) Group comparison: the group comparison function allows users to compare the biological 249 

age or another numeric variable across different experimental groups in the dataset. The 250 

pairwise T-test is performed across each group and p-value is adjusted by the number of 251 

comparisons using the Benjamini-Hochberg procedure. p-value for ANOVA across all 252 

groups is also reported. The result is an output in the form of a boxplot followed by the 253 

result table. 254 

(2) Correlation: the correlation function allows users to calculate Pearson’s correlation across 255 

two numeric variables in the dataset. The result is an output in the form of a scatter plot 256 

with regression lines. Pearson’s correlation coefficient and p-value are also reported. Us-257 

ers can further calculate correlations within each subgroup of the dataset and report statis-258 

tics separately. Notably, this function is also useful for quality control by visualizing cor-259 

relation between biological age prediction and percentage missingness of the data. This 260 
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could avoid reporting false positive results due to imbalanced missingness across experi-261 

mental groups. 262 

(3) Accuracy: the accuracy function allows users to calculate accuracy of biological age pre-263 

diction when the true age is given in the dataset. Pearson’s R, RMSE, MAE, and p-value 264 

are reported. 265 

 266 

Data availability 267 

All data are available on the ClockBase online resource (https://clockbase.org) and GEO 268 

(https://www.ncbi.nlm.nih.gov/geo/). 269 

Code availability 270 

All codes are available in the ClockBasis R package (https://github.com/albert-ying/ClockBasis) 271 
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Figure legends 282 

Figure 1. ClockBase overview. Schematic diagram shows data sources and main functionalities 283 

of the ClockBase online resource.  284 
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Figure 2. Distribution and correlation of biological age in human samples. a. Density plot 285 

shows the distribution of biological age measurements across 192,635 samples based on 7 human 286 

DNAm aging clocks. b. Density plot shows the distribution of biological age acceleration across 287 

80,346 samples with chronological age annotation. Dashed line shows the boundary between 288 

samples with accelerated and decelerated ages. chi-square test was performed, and the ratio and 289 

p-value are shown above the plots c,d. Correlation plot shows Pearson’s correlation across dif-290 

ferent biological age measurements (c) and biological age acceleration (d). Upper triangle: Pear-291 

son’s correlation plot; lower triangle: Pearson’s correlation coefficient. Areas of the squares rep-292 

resent the absolute value of corresponding Pearson’s correlations. P values are corrected using 293 

Bonferroni correction for 21 tests with Padjusted < 0.05. 294 

Figure 3. ClockBase reveals discrepancy across different biological age measurements. a, b. 295 

The UMAP plot of 192,635 human DNA methylation samples. Colors of the dots represent bio-296 

logical age prediction based on HorvathAge (a) and other human DNAm clocks (b). c. t-SNE 297 

plot of 80,346 human DNA methylation samples with chronological age annotation. Colors of 298 

the dots represent biological acceleration based on each clock. 299 

Figure 4. Identifying novel biological age-modifying conditions using ClockBase. a. Epige-300 

netic age comparison between zebularine-treated and untreated cells. b. Epigenetic age compari-301 

son across healthy control, lung cancer, pulmonary fibrosis (fibrosis), and COPD patients. Boxes 302 

indicate 25−75% interquartile ranges, and whiskers indicate minimum to maximum. * Padjusted < 303 

0.05, ** Padjusted < 0.01, *** Padjusted < 0.001, **** Padjusted < 0.0001. COPD: chronic obstructive 304 

pulmonary disease. 305 

  306 
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