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ABSTRACT 
Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial 

for patient treatment decisions. However, intermediate-risk patients diagnosed in Gleason 

Grade Groups (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, 

resulting in under- or over-treatment of a significant number of patients. Here, we performed 

proteomic, differential expression, machine learning, and survival analyses for 1,348 matched 

tumour and benign sample runs from 278 patients. Three proteins (F5, TMEM126B and 

EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. 

Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to 

dichotomise prostate cancer patients into low- and high-risk groups. This 18-protein signature 

is prognostic for the risk of biochemical recurrence and completely independent of the 

intermediate GG. Our results suggest that markers generated by computational proteomic 

profiling have the potential for clinical applications including integration into prostate cancer 

management. 
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INTRODUCTION 
Prostate Cancer (PCa) is the third most common cancer among men by incidence (14.1%) and 

the fifth in terms of cancer-related mortality worldwide (among men 7%)1. In Australia, 

Western Europe and North America, PCa is the most commonly diagnosed cancer among men 

and the second most common cause of cancer-related death1. PCa is a highly heterogeneous 

disease, and so far, most of the treatment-decision algorithms depend on risk stratification 

based on tumour stage, Prostate Specific Antigen (PSA) level at the time of diagnosis and the 

Gleason Grade Group (GG)2. Although this clinical risk stratification has been shown to be of 

prognostic and predictive value3, better biomarkers are still required to improve patient 

stratification.  

The Gleason score (GS) is a grading classification of the growth pattern of prostatic 

adenocarcinoma. The total GS (from 6 to 10) represents the summation of the two most 

common predominant scores (from 1 to 5) within the specimen4. Despite its proven prognostic 

value, there was major heterogeneity within the GS7, with a differential prognosis observed 

between the GS7 (3+4) and GS7 (4+3) patterns5. Because of this, the International Society of 

Urological Pathology (ISUP) developed a modification to the GS system in 2014 and created 

a new grading of five groups, with the aim of differentiating GS7 (3+4) (termed GG2 in ISUP 

2014) from GS7 (4+3) (GG3)6. The prognostic value of the GG system was validated in 

multiple cohorts, although its accuracy did not significantly differ from the older GS system7. 

In addition, for the new GG system there is controversy regarding the value of incorporating 

the percentage of GS4 within the GG2 and GG3, among other questions8. This was addressed 

in the ISUP 2019 modification for PCa grading, which recommends reporting the percentage 

of GS4 patterns in any GG2 or GG3 case9. Despite all of these modifications, both the GS and 

GG systems still have several limitations, including relatively long processing time, 
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subjectivity, inter-observer variability, and unsatisfactory prediction of outcomes 10, 

11,12,13,14,15,16.  

Therefore, there is a need to develop better prognostic biomarkers that can be interpreted either 

alone or when integrated with clinico-pathological features. There have been several ongoing 

efforts that aim to identify better molecular and genetic-based prognostic biomarkers. These 

include metabolomic-based biomarkers17, mRNA-based biomarkers such as SelectMDx® and 

ExoDx Prostate IntelliScore®, urine biomarkers such as PCA3, and genetic tissue-based 

biomarkers such as Oncotype DX®, Confirm MDx®, Prostatype®18,19,20 , and Prolaris®21. Of 

note, only PCA3 and Polaris® are FDA-approved for specific indications21. More recently, 

Proclarix showed better accuracy in detecting clinically significant PCa compared to free PSA 

percentage alone22, with its utility in clinical practice yet to be confirmed.  

During the last decade, proteogenomics has revealed a range of intra-patient network effects 

across multi-omic layers15, and has described novel regulated pathways that are related to PCa 

progression23 and PCa aggressive phenotypes24,25. Proteogenomics appears to have the 

potential to provide a deep and dynamic interpretation of the underlying pathways related to 

cancer development, classification, and progression26. However, the lack of robust proteomic 

analyses of large cancer cohorts27 has limited the incorporation of proteomic-based biomarkers 

into clinical practice28,29.  

To address this limitation, we have compiled a cohort of 290 patients procured from the 

Prostate Cancer Outcomes Cohort Study (ProCOC)30 to generate large-scale proteomic 

measurement of PCa tissue samples using data-independent acquisition mass spectrometry 

(DIA-MS). The data have been analysed through purpose-built computational workflows at the 

Australian Cancer Research Foundation International Centre for the Proteome of Human 

Cancer (ProCan®) in Westmead, Australia31,32,33,34,35,36,37. We have identified differentially 
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expressed proteins and pathways involved in PCa development and biochemical recurrence 

(BCR), including the identification of possible new therapeutic targets. Further, we have built 

a protein-based signature, which showed better prognostic power than GG and was completely 

independent of it.  
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RESULTS 

Proteomes of prostate tissue samples 

A total of 290 PCa patients representing the full range of GG from GG1 to GG5 were selected 

from the ProCOC retrospective cohort30. Proteomes of 1,348 matched tumour and benign 

prostatic hyperplasia tissue sample runs from 278 patients were acquired and analysed with 12 

patients being removed due to quality control (QC) steps. In each of the 31 batches, two 

controls (CTRL-A and CTRL-B) in duplicate were added to investigate technical variation, 

control quality, and assess reproducibility (Fig. 1A; Methods; Supplementary Table 1; 

Supplementary Fig. 1). In this cohort, 198 of 278 patients had BCR data with a median follow-

up of 59 months (Supplementary Table 1). Overall, most patients belong to GG2 (n = 135), 

followed by GG3 (n = 70; Fig. 1A). Although there was significant difference in outcome for 

GGs (p-value = 0.002), no significant difference was observed between GG2 and GG3, and 

GG4 unexpectedly showed the worst prognosis compared to all other GGs (Supplementary 

Fig. 2), reflecting the limitations of the GG system.   

Proteomic profiles of all samples including controls were acquired by DIA-MS in technical 

duplicate at ProCan36 using operating conditions that enable reproducible and high throughput 

data acquisition across six SCIEX™ TripleTOF® 6600 mass spectrometers31,35. We quantified 

5,803 proteins (Supplementary Fig. 3A), with tumour samples showing a higher number of 

quantified proteins (average proteins per sample = 3,922) compared to benign samples (average 

proteins per sample = 3,587) (Supplementary Fig. 3A). The technical reproducibility of the 

cohort was evaluated by the Pearson correlation coefficient (Pearson’s r) among the sample 

replicates. There was a high degree of correlation between technical replicates of all samples 

with an average Pearson’s r of 0.94 (Supplementary Fig. 3B). Of the 5,803 proteins identified, 

>2,200 proteins were quantified in >90% of the samples and around 800 proteins were 

quantified in <20% of the samples (Supplementary Fig. 3C).  
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The t-distribution stochastic neighbour embedding (tSNE) analysis did not show batch effects 

from sample preparation. However, batch effects from different mass spectrometers appeared 

non-trivial without batch correction (Supplementary Fig. 3D and 3E). The tSNE analysis also 

showed a clear difference between benign and tumour samples (Fig. 1B). As expected, CTRL-

A and CTRL-B samples are distinct from one another (Fig. 1B), implicating variation from 

both the mass spectrometer and sample preparation (CTRL-A) and variation from the mass 

spectrometer alone (CTRL-B). Tumour samples of high GGs (GG4 and GG5) were only 

partially separated from other groups, and separation of intermediate groups (GG2 and GG3) 

was barely visible (Supplementary Fig. 3F). A heatmap of the protein matrix showed distinct 

expression patterns of tumour and benign samples, however, no patterns were observed for 

GGs, which indicates that GG system alone does not explain the proteomic heterogeneity (Fig. 

1C). Tumour and benign samples were compared by differential expression analysis as a data 

pre-processing step (Fig. 1D), resulting in the identification of 512 tumour-enriched proteins. 

These proteins were employed for the subsequent differential expression analysis, machine 

learning and survival analysis (Fig. 1E).   
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Figure 1. Proteomic analysis of PCa samples. A. An overview of the study design. Dataset consists 
of prostatic tumour and matched benign tissue samples from 278 patients. Proteomics data were 
collected for 277 tumour samples and 278 benign samples in duplicate from 278 patients. A total of 
1,475 MS runs were analysed in 31 batches, including tumour, benign, CTRL-A and CTRL-B 
samples. The raw proteomics data were analysed by DIA-NN, quantifying 5,803 proteins. B. tSNE 
projection of protein data superimposed with colour annotation of sample types. C. Heatmap 
representation of the protein matrix with samples shown on the y-axis and proteins shown on the x-
axis. The protein intensities were sorted first by the mass spectrometers, followed by tissue types and 
GGs. MS1 - MS6 indicate the six mass spectrometers. D. A volcano plot showing the upregulated (n 
= 368) and downregulated (n = 144) proteins in tumours with fold change (FC) > 1.5 and < 0.67 and 
Benjamini-Hochberg (BH) adjusted p-value < 0.01. Significant proteins are presented in red and blue 
colour, whereas other proteins are coloured in grey. E. Analysis pipeline employed in this study and 
the number of proteins identified in each analysis. A total of 512 tumour-enriched proteins were 
identified from the comparison between tumour and benign samples, followed by stratification of 
GG2 and GG3 using differential expression analysis and machine learning, and identification of a 
prognostic signature using survival analysis. Finally, pathway enrichment analyses were conducted 
for the significant sets of proteins. 
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Pre-processing by differential expression analysis between tumour and benign samples 
 
To build a protein-based prognostic signature that stratifies GG2 and GG3 patients, we 

selected tumour-enriched proteins by performing a differential expression analysis between 

tumour and benign samples. In this pre-processing step, all tumour and matched benign 

samples were used with the full set of 5,803 proteins. The analysis resulted in 512 tumour-

enriched proteins, of which 368 were upregulated and 144 were downregulated in tumour 

samples (Fig. 1D). The expression pattern of these differentially expressed proteins are 

shown in Supplementary Fig. 4A where proteins in the top cluster (upregulated proteins) 

exhibited considerably higher expression in tumour samples compared to benign samples 

(Supplementary Fig. 4A). Proteins in the bottom cluster were downregulated in tumour 

samples (Supplementary Fig. 4A).  

Pathway enrichment analysis and protein-protein interaction (PPI) networks38 revealed that 

most of the upregulated pathways were related to ribosomal RNA processing, mitochondrial 

transmembrane transport, and protein folding (Supplementary Fig. 4B and 4C). When 

searched within the Hallmark gene sets38, the upregulated proteins were also found to be 

enriched in the MYC (proto-oncogene) targets V1 and V2 gene sets, which are known to be 

associated with tumour aggressiveness (Supplementary Fig. 4D).  

Pathways and Gene Ontology (GO) processes that were significantly enriched in benign 

samples compared with tumour samples included muscle structure development, 

supramolecular fibre organization and response to elevated platelet cytosolic Ca2+ 

(Supplementary Fig. 4B, 4C and 4D). Of the top 20 differentially expressed proteins 

identified in tumour samples, four (MDH2, FASN, EPCAM, HSD17B10) are targetable by 

FDA-approved drugs, whereas two (AMACR and GLYATL1) are potentially targetable 39 and 

are of potential interest for future research.  
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The protein complexes identified in the PPI network, using the Molecular Complex Detection 

(MCODE) method showed upregulation of a large set of ribosomal proteins (both large and 

small subunits) that promote the process of protein translation, upregulation of proteins actively 

involved in the RNA metabolic process (RRS1, RPF2, BRIX1, RSL1D1), ribosome biogenesis 

(FTSJ3, DDX56, NPM3, GNL3, SNU13) and protein folding (HSPD1, HSPA9, HSPA5, 

PUM3) (Supplementary Fig. 4E). This is consistent with previous work showing the 

overexpression of proteins associated with cell adhesion, mitochondrial and ribosomal 

biogenesis and translation in PCa tissue samples40. Thus, we identified a list of differentially 

expressed proteins within tumour tissues for use in the downstream analyses, and identified a 

number of potentially important proteins and pathways in PCa. 

Stratification of GG2 and GG3 patients  

To characterise the PCa samples from GG2 and GG3, we performed a differential expression 

analysis between the two GGs using the 512 tumour-enriched proteins. Of these, 35 proteins 

were significantly enriched in GG2 and one protein was enriched in GG3 (FC > 1.5 and < 0.67, 

p-value < 0.05, Fig. 2A). The significantly differentially expressed proteins formed two 

clusters based on their expression in GG2 and GG3 samples (Fig. 2B). As the set of 

significantly up- and down-regulated proteins was small, no significantly enriched pathway 

between GG2 and GG3 was identified. However, of the 35 upregulated proteins in GG2, two 

(TGFB1 and FLNA) are involved in androgen receptor pathways, three (FLNC, DES and 

LMOD1) have previously been associated with better prognosis in PCa25,41,42,43,44,45 four 

(PRKCA, ACTN1, AOC3 and LDHB) are targets for FDA-approved drugs39 and three 

(MYLK, FLNA, and FLNC) are potential drug targets39. The results suggested likely biological 

differences between GG2 and GG3 and identified several potential diagnostic and prognostic 

biomarkers that could be further investigated.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2023. ; https://doi.org/10.1101/2023.03.03.530910doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.03.530910
http://creativecommons.org/licenses/by/4.0/


   
 

   
Page 11 of 38 

 
 
Figure 2. Differentially expressed proteins in GG2 vs GG3. A. A volcano plot showing the GG2 (n 
= 35) and GG3 (n = 1) enriched proteins in tumours with FC > 1.5 and < 0.67 and p-value < 0.01. 
Significant proteins are presented in red and blue colour, whereas other proteins are coloured in grey. 
Only a small number of proteins were found to be significant using differential expression analysis 
while most of them showed low FC. B. Heatmap representation of the expression levels of differentially 
expressed proteins between GG2 and GG3 samples shown in A. Expression data are converted to z-
scores. Samples are shown on the x-axis whereas proteins are clustered on the y-axis.  
 
To stratify GG2 against GG3 patients by machine learning, a dataset containing only GG2 and 

GG3 patients and the 512 tumour-enriched proteins was used. The results, aggregated over 

1,000 Monte-Carlo cross-validation runs of an XGBoost classifier with 80% training and 20% 

testing splits, demonstrate that the difference between GG2 and GG3 can be predicted from 

protein intensities with high accuracy (Fig. 3A). The Receiver Operating Characteristics 

(ROC) curve of the best model had an Area Under the ROC (AUROC) of 0.89, with a mean 

AUROC of 0.74 (Fig. 3A). To obtain a reproducible list of top 20 most significant proteins in 

separating GG2 and GG3 samples, SHapley Additive exPlanations (SHAP) values were 

calculated over the entire cohort (Fig. 3B, see Methods). 
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Figure 3. Machine learning of GG2 vs. GG3. A. ROC curves for the best and average models for 
predicting GG2 and GG3 samples based on 1000 Monte-Carlo runs by XGBoost. The red dashed line 
represents the random guess, the blue solid curve shows the mean ROC curve over 1000 Monte-Carlo 
runs, the blue band represents one standard deviation of the curves, and the orange curve shows the best 
ROC curve. B. SHAP values of the top 20 most significant proteins to distinguish between GG2 and 
GG3 samples, sorted (from top to bottom) by their respective absolute mean SHAP values. SHAP 
values of proteins in different samples are shown on the horizontal axis; the top 20 proteins are sorted 
(by importance) from top to bottom on the y-axis. The colours from blue to red indicate protein 
expression levels from low to high. The vertical zero-line (SHAP value = 0) is the line that has no 
impact on prediction, while the values on the left and right sides represent negative and positive impacts 
on prediction. 
 

To study the dysregulated biological pathways in GG2 and GG3, a total of 127 proteins were 

selected by taking the union of 36 differentially expressed proteins (Fig. 2A) and the top 100 

proteins from the machine learning that contains the top 20 proteins in Fig. 3B. Pathways 

enrichment analysis and PPI interactions from Reactome pathways38 for these proteins 

highlighted an overrepresentation of proteins involved in muscle structure, ECM organization 

and response to elevated platelet cytosolic Ca2+ pathways (Fig. 4A). When compared against 

the Hallmark gene sets, enrichment for proteins in the epithelial-mesenchymal transition gene 

sets was observed38 (Fig. 4A). The significant protein complexes identified in the PPI network 

using MCODE (Fig. 4B) included proteins involved in smooth muscle contraction (CALD1, 

TLN1, TPM2, TPM1, 4 myosin proteins), actin cytoskeleton proteins (ACTN4, MYO1C, 

FLNA), and mitochondrial translation (ribosomal subunit proteins). Most of these PPI proteins 
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findings extend upon previous research showing that CALD1, TPM2 and TPM1 can be used 

as potential diagnostic biomarkers for PCa46. Although these findings are of biological interest, 

further modelling is required to better understand the biological pathways associated with each 

GG, and thus improve the GG prognostic performance.  

 
Figure 4. Differentially expressed proteins and pathways in GG2 and GG3 PCa. A. GO biological 
processes, Reactome pathways and hallmark gene sets enriched for the selected significant proteins. B. 
PPI network components obtained using MCODE algorithm, showing the enriched biological processes 
and proteins. Proteins are coloured according to the absolute mean SHAP values. The width of the edge 
(between nodes) indicates the strength of the connection. Functional description is provided beside each 
component.  
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Protein-based prognostic signature for biochemical recurrence  

To overcome one of the limitations of the GG system, exemplified in an inability to 

differentiate prognosis between GG2 and GG3 in our dataset (Supplementary Fig. 2), a 

protein-based signature was constructed. First, 100 runs of multivariate Cox regression47 with 

least absolute shrinkage and selection operator (LASSO) regularisation were performed on the 

512 tumour-enriched proteins using 20-fold cross-validation (see Methods). For each run, a 

list of significant proteins was obtained, and a merged list of these proteins was collated and 

ranked according to the descending order of mean significance of individual proteins over all 

the 100 runs. A subset comprising the top 25 of these proteins was then used to model a 

multivariate Cox regression with recursive feature selection, yielding a final list of 18 proteins 

(Fig. 5A). Almost all of the 18 proteins were significantly associated with BCR with a 

concordance index (C-index)48 of 0.95 (Fig. 5A), indicating robust prognostic power from 

these proteins. 

A patient’s risk score was calculated as the sum of the intensities of each of the 18 proteins, 

multiplied by the corresponding regression coefficients (Fig. 5A and Methods). The midpoint 

of risk scores was used as the threshold to dichotomise patients to either a high-risk or a low-

risk group. This two-step process gave rise to an 18-protein signature. To assess the prognostic 

power, the 18-protein signature was benchmarked with another signature calculated from the 

top 20 proteins identified by a random survival forests (RSF)49 model as well as with other 

clinicopathologic variables including GG, clinical risk, PSA, surgical margin, age at diagnosis, 

and pathological T stage (pT stage). The 18-protein signature showed the strongest association 

with BCR among all variables in the univariate Cox regression analysis (Fig 5C). This was 

also true in a multivariate Cox regression analysis after adjusting for the clinicopathologic 

variables and the 20-protein RSF signature independent of recursive feature selection (Fig 5D). 

This confirms that the 18-protein signature is not confounded by other clinicopathologic 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2023. ; https://doi.org/10.1101/2023.03.03.530910doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.03.530910
http://creativecommons.org/licenses/by/4.0/


   
 

   
Page 15 of 38 

variables and can be considered an independent prognostic factor. The stable concordance 

index of all these models further suggests that the 18-protein signature can explain most of the 

association with BCR. 

Moreover, our 18-protein signature was compared with the 20-protein RSF signature using a 

time-dependent ROC analysis, which measures how well an independent variable can 

differentiate between target classes at different time points in the study. The comparison of 

time-dependent ROC curves after 60 months for both risk scores showed an AUROC of 0.95 

for the 18-protein signature and an AUROC of 0.82 for the RSF signature (Supplementary 

Fig. 5A). Further comparison demonstrated the higher predictive power of the 18-protein 

signature over time compared with the RSF signature (Supplementary Fig. 5B). RSF uses 

bootstrapped samples in each tree to avoid overfitting and generalises well on unseen test 

datasets49. For this reason, it is noteworthy that our 18-protein signature outperformed the RSF 

signature even in the absence of a validation dataset. 

The dichotomised Kaplan-Meier curve with the low p-value (< 0.0001) indicated substantial 

predictive power by the 18-protein signature (Fig. 6A). Overall, there were more patients with 

GG2 and GG3 in our cohort compared with GG1, GG4 and GG5. Interestingly, the number of 

patients with GG2 and GG3 was equally distributed between the low-risk and high-risk groups 

(GG2: 55 and 50; GG3: 22 and 24, respectively), indicating that our protein-based signature is 

independent of GG. To confirm this, we applied the 18-protein signature within the group of 

patients including both GG2 and GG3 (Fig. 6B), with GG2 only (Fig. 6C) and GG3 only (Fig. 

6D). The 18-protein signature was able to identify a sub-group of patients with a higher risk of 

developing BCR within each GG, confirming its independence of GG and suggesting potential 

clinical utility. 
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Figure 5. Survival Analysis of BCR-free survival (BCRFS) of PCa. A. Forest plot showing the 18 
proteins with their individual hazard ratios, p-values, 95% CIs, and C-index of the final multivariate 
Cox model. B. Protein intensities for each PCa sample (according to the colour scale shown). The 
magnitude of the corresponding risk scores is represented by the scale bar. PCa samples with high risk 
scores expressed risk proteins, whereas samples with low risk scores expressed protective proteins. 
C. Forest plot comparing the importance of the 18-protein signature with RSF-based risk score and with 
other clinical variables using univariate Cox models. pT stage (pT1 vs pT2). Surgical margin (positive 
vs negative). Age at diagnosis (< 64 vs ≥ 64). D. Forest plot showing a simple multivariate Cox model 
that includes the 18-protein signature, RSF-based risk score and other clinical variables. With recursive 
feature selection, the 18-protein signature remains the most important variable, with a stable C-index 
(from 0.96 to 0.95).  
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Figure 6. Kaplan-Meier (KM) curves for BCRFS. KM curves with 95% CIs of the low- and high-
risk groups based on the 18-protein risk score, along with respective numbers of samples corresponding 
to each GG. Vertical lines illustrate patients who were censored at the time of their last clinical follow-
up visit. The p-value shows significance of the difference between survival estimates evaluated by the 
log-rank test. Coloured values represent the number of patients in each group under risk. A. KM curves 
for PCa patients in all GGs. B. KM curves for PCa patients in GG2 and GG3. C. KM curves for PCa 
patients in GG2 only. D. KM curves for PCa patients in GG3 only. 
 

By taking the union of the 18 signature proteins (Fig. 5A) and 26 proteins that were 

significantly associated with BCR in a univariate Cox regression model (p-value < 0.05), a 

total of 39 unique proteins (Supplementary Fig. 6) were analysed to study the association 

between biological pathways and BCR. Among these 39 proteins, five (F5, CALD1, RRP9, 

MUC2 and AGR3) were identified in common (see Methods), and six were related to 

androgen-regulated genes (F5, CALD1, TPM1, PUM3, ANXA4 and MYLK)50. Most of the 

18 signature proteins were not involved in common biological pathways and thus contribute 

unique biological information. However, when including all 39 proteins, several enriched 

pathways were identified. This included muscle structure development (CALD1, MYL9, 

MYLK, TPM1) and rRNA metabolic processes (RRP9, PUM3, EARS2, RPF2, FTSJ3) (Fig. 

7A and 7B). Of the total 39 proteins, two (F5 and ANXA4)39 are targetable by FDA-approved 

drugs and three (TMEM126B, EARS2, and MYLK) are potentially targetable39. Among the 

list of 26 proteins associated with BCR in the univariate Cox regression modelling, F5 (HR 

1.7, 95% CI [1.2, 2.4]), TMEM126B (HR 1.5, 95% CI [1.1, 2.0]), and EARS2 (HR 1.9, 95% 

CI [1.1, 3.2]) were associated with increased risk of BCR, suggesting potential utility for 

further investigation as drug targets in clinical practice.  
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Figure 7. Significant biological pathways identified from univariate Cox regression model. A. GO 
biological processes, Reactome pathways and Hallmark gene sets enriched for the selected significant 
proteins. B. PPI network components obtained using the MCODE algorithm, showing the enriched 
biological processes and proteins. Proteins are coloured according to the p-values from the BCRFS 
analysis. The width of the edge (between nodes) indicates the strength of the connection. A functional 
description is provided next to each component.  
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DISCUSSION 
 

We performed a large-scale quantitative proteomic analysis from 278 PCa patients with 

primary tumour and matched benign tissue samples, each analysed in technical duplicate. We 

identified differentially expressed proteins and multiple signalling pathways related to PCa 

development and progression. In addition, we built an 18-protein signature that overcomes the 

limitations of GG in distinguishing between intermediate-risk PCa patients, and which has a 

higher prognostic value compared with the standard classification. We were also able to 

identify potential therapeutic targets that can be explored for their utility in the treatment of 

PCa. The main finding of this study is that patients with GG2 adenocarcinomas of the prostate 

(clinically the most common subgroup) could be significantly and independently divided into 

two subgroups with differential risk of BCR by our proteomic-based survival analysis, albeit 

an exploratory investigation. 

The pathway enrichment analyses on tumour-enriched proteins showed that pathways related 

to protein folding, rRNA processing, ECM organisation, mitochondrial translation initiation, 

PCa development. Among the top 20 differentially expressed proteins, several proteins 

(AMACR, MDH2, FASN, HSD17B10) were involved in metabolic-related pathways51,52,53. 

Although few proteins were related to androgen (HSD17B10, F5, PUM3)54 and DNA damage 

repair (NPM1, FEN1)54 pathways, 16% of our 512 differentially expressed proteins overlapped 

with the over-expressed genes in PCa55. In addition, AMACR, FASN, IGFBP2, and PHB 

identified in our analysis are among biomarkers previously suggested for PCa diagnosis40. 

Four of the top 20 differentially expressed proteins (MDH2, FASN, EPCAM, HSD17B10) are 

targetable with FDA-approved drugs, while two are potentially targetable proteins (AMACR 

and GLYATL1)39. AMACR was the top significantly upregulated protein in the tumour tissue. 

AMACR has a major role in fatty acid oxidation and has previously been found to be 
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overexpressed in PCa at the proteomic and transcriptomic levels, confirming its validity as a 

potential biomarker56,57,58,59. Among the four FDA-approved targetable proteins, MDH2 is 

known to be overexpressed in PCa and castrate-resistant PCa (CRPC), highlighting its role in 

PCa progression23 and resistance to chemotherapy60. FASN is a key enzyme in de novo fatty 

acid synthesis and has been found to be overexpressed in CRPC and many other types of solid 

tumours 51. It is also associated with PCa progression, mainly through the activation of the 

PI3K/Akt/mTORC1 pathway, with a recent study suggesting the potential therapeutic benefit 

of its inhibition to overcome resistance to anti-androgen treatment52. EPCAM is a marker for 

cancer stem cells that are associated with cancer proliferation, adhesion and differentiation, 

and it is overexpressed in different types of cancer, including PCa61. In a meta-analysis, 

EPCAM overexpression was associated with a higher risk of BCR and the development of 

bone metastasis62. Finally, HSD17B10 is involved in different metabolic pathways, has an 

important role in regulating tissue androgen levels and may be involved in PCa progression 

through androgen-independent pathways53. Further studies will be required to confirm the 

value of these potential therapeutic targets in PCa management.  

Our analyses identified 39 proteins significantly associated with BCR, of which five were listed 

in the Human Protein Atlas database63 either as FDA-approved targetable proteins (F5 and 

ANXA4) or potentially targetable proteins (TMEM126B, EARS2, and MYLK)39. None of 

these proteins overlapped with a published list of potential biomarkers for PCa aggressiveness 

or treatment resistance56. This may be due to the nature of our study cohort being a treatment-

naïve patient population that was not yet exposed to anti-androgen treatment. However, three 

proteins (HNRNPA2B1, MRPS22, and PUM3) from our analysis were identified within the 

The Cancer Genome Atlas (TCGA) list of genes associated with poor prognosis64. Our results 

suggest the potential usefulness of F5, TMEM126B and EARS2 as potential therapeutic 

targets. Using PPI network analysis and tissue-specific gene co-expression network analysis, 
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F5 was identified as one of the core genes in PCa65. Interestingly, F5 was also associated with 

an increased risk of breast cancer and the activation of the immune microenvironment66. 

TMEM126B is a complex I assembly factor that is critical for oxidative stress and 

inflammatory response67. Previous studies have demonstrated its role in response to chronic 

hypoxia through HIF-1-dependent mechanisms68. Although the role of TMEM126B in PCa is 

not fully explored, its interaction with HIF-1-dependent pathways, which play a critical role in 

PCa progression69, 70, warrants further exploration. EARS2 is involved in mitochondrial protein 

synthesis and was found to be associated with breast, pancreatic, renal and colorectal 

cancers71,72. There is some evidence of the co-expression of EARS2 with PALB2 in breast and 

pancreatic cancer and the association of their overexpression with poorer outcomes72. This 

finding suggests that PALB2 may also be involved in PCa progression and response to 

treatment73,74,75. 

Despite the established prognostic value of the GG system and its use in PCa management, its 

limitations are well-recognised8,9,12. Previous studies have illustrated the differences between 

GG2 and GG3 on the metabolomic level, with higher intensity of phosphatidylcholines, and 

cardiolipins, among others, within GG3 samples, suggesting the involvement of differential 

biological pathway17. Similarly, Kawahara et al. performed proteomic analysis on 50 PCa 

tissue samples and identified a panel of 11 proteins that were associated with high-grade (GG4 

and GG5) versus low-grade (GG1 and GG2) PCa25. Interestingly, this 11-protein panel was not 

able to distinguish samples within GG325. In another study, a five-gene signature was 

constructed using data from the GEO and TCGA datasets, which was independent of the 

Gleason score when dichotomised as less or more than 776. However, the prognostic power of 

this signature was not explored within each GG (especially the intermediate groups, GG2 and 

GG3).  
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In our analysis, there was an overlap between GG2 and GG3 in terms of their risk of developing 

BCR (Supplementary Fig. 2), reflecting the limitations of GG stratification. Our study 

identified 35 upregulated proteins in GG2 compared with GG3. These proteins were related to 

muscle structure development, epithelial-to-mesenchymal transition, metabolic pathways, and 

ECM interaction. As expected, most upregulated proteins are related to cancer genes39, with 

seven of them known to be enhanced in PCa (SYNM, DES, MYH11, TAGLN, CNN1, 

LMOD1, and PGM5)39. Four upregulated proteins within the GG2 group are FDA-approved 

drug targets (PRKCA, ACTN1, AOC3 and LDHB)39, and three are potential drug targets 

(MYLK, FLNA, and FLNC)39. In addition, several proteins that were upregulated in GG2 can 

be used as potential prognostic biomarkers that need further investigation. Of these, FLNC, a 

potential drug target that is involved in cell-extracellular matrix interaction has been associated 

with progression-free survival and lower risk of BCR41,42. DES, a cancer-enhanced gene that 

is involved in Aurora B signalling and striated muscle contraction, has been found to be 

underexpressed in PCa, and is associated with better prognosis43,44,45. Finally, LMOD1, a PCa-

enhanced gene has lower expression in high-grade and metastatic PCa25. Further research is 

required to determine the utility of those proteins as prognostic biomarkers at the time of PCa 

diagnosis. 

To overcome the limitations of GG, we have built a protein-based signature and explored its 

prognostic power together with and in comparison with GG. Our 18-protein signature 

identified patients at higher risk of developing BCR with high accuracy. Its prognosis was 

maintained even after adjusting for other clinical variables, including GG, pT-stage, and 

baseline PSA. In addition, the 18-protein signature was independent of GG, being able to 

identify patients at a higher risk of developing BCR within each of the GG2 and GG3 groups 

separately. This distinction is of considerable clinical importance, considering the recent BCR 

management guidelines, which depend only on GG and PSA doubling time77. Further 
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exploration of this protein-based signature for patients planned for active surveillance would 

be useful considering its potential ability to identify patients at higher risk of progression 

independent of their clinical risk score (PSA, GG and pT-stage)3. Our results both complement 

and extend upon recent proteomic studies in PCa27. The novel contribution of our work is first 

in presenting a substantially larger cohort size (n = 278) than previous studies, which typically 

comprise <100 patients27. Second, our study is able to identify potential novel therapeutic 

targets and build a prognostic signature that is completely independent of the GG, with the 

ability to identify patients at higher risk of developing BCR within the relatively indolent GG2. 

Although BCR is a problematic endpoint78, evidence suggests that patients who develop BCR 

are at higher risk of developing clinical progression79. It will be important to further investigate 

and validate the utility of our 18-protein signature on selecting the group of patients at higher 

risk of clinical progression and poorer survival. Finally, our dataset will serve as an important 

public resource for the scientific community seeking to understand the proteomic landscape in 

PCa. 

This study is hampered by the unavailability of metastatic relapse and mortality data and the 

smaller number of patients within the GG1, GG4 and GG5 groups, which prevented us from 

confirming the prognostic value of the 18-protein signature within these GG groups. Although 

we did not have access to a validation cohort to verify our findings at the time of these analyses, 

our data will become an important resource for any future work requiring a validation data set. 

Showing that our 18-protein signature had higher significance and AUROC as compared with 

the 20-proteins RFS signature does provide a level of confirmation because the RSF model 

works on selecting bootstrapped samples in each tree while computing the importance of 

proteins. This process mimics internal cross-validation, avoids overfitting, and has been shown 

to generalise well on future data49.  
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We conclude that PCa proteomic analysis is a promising tool for understanding the biological 

pathways associated with PCa development and progression. Our analysis has identified 

several novel therapeutic targets, and possible diagnostic and prognostic biomarkers that can 

be further investigated in pre-clinical and clinical studies. Importantly, we have also built an 

18-protein signature that was predictive of BCR and is independent of GG. Further work is 

required to first validate our findings in an independent cohort and then to integrate them into 

clinical practice. 
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ONLINE METHODS 

Biospecimen collection and pathology and clinical data 
 
The sample collection of this study was approved by the Cantonal Ethics Committee of Zürich 

(KEK-ZH-No. 2008-0040). Detailed information on the patients and samples has been 

published15 (PMID: 33317623) and is also provided in Table S1. Tumour tissue samples were 

fixed with formalin and embedded with paraffin.  

Sample preparation and mass spectrometric acquisition 

About 0.5 mg of FFPE tissue was punched from the sample, weighed and processed for each 

biological replicate via the workflow as described previously34. 

An Eksigent nanoLC 425 HPLC operating in microflow mode, coupled online to a 6600 Triple 

TOF (SCIEX) was used for the analyses. The peptide digests (2 µg) were injected onto a C18 

trap column (SGE TRAPCOL C18 G 300 µm x 100 mm) and desalted for 5 min at 8 µL/min 

with solvent A (0.1% [v/v] formic acid). The trap column was switched in-line with a reversed-

phase capillary column (SGE C18 G 250 mm × 300 µm ID 3 µm 200 Å), maintained at a 

temperature of 40℃. The flow rate was 5 µL/min. The gradient started at 2 % solvent B (99.9% 

[v/v] acetonitrile, 0.1% [v/v] formic acid) and increased to 35% over 69 min. This was followed 

by an increase of solvent B to 95% over 4 min. The column was washed with 95% solvent B 

for 5 min, then decreased to 2% solvent B over 3 min followed by a 13 min column 

equilibration step with 98% solvent A. For SWATH acquisition peptide spectra were analysed 

using the Triple TOF 6600 system (SCIEX) equipped with a DuoSpray source and 50 µm 

internal diameter electrode and controlled by Analyst 1.7.1 software. The following parameters 

were used: 5500 V ion spray voltage; 25 nitrogen curtain gas; 100°C TEM, 20 source gas 1, 

20 source gas 2 with 100 variable windows, as per SCIEX technical notes. The parameters 

were set as follows: lower m/z limit 350; upper m/z limit 1250; 150 ms acquisition time, 
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window overlap (Da) 1.0; CES was set at 5 for the smaller windows, then 8 for larger windows; 

and 10 for the largest windows. MS2 spectra were collected in the range of m/z 100 to 2000 

for 30 ms in high-resolution mode and the resulting total cycle time was 3.2s. 

Proteomic data analysis  
 
We analysed 278 out of 290 PCa patients whose malignant tissue samples were classified by 

pathologists alongside matched benign tissue. A total of 12 patients were removed after QC. 

The entire cohort was then divided into 31 batches, with each containing between 15 and 29 

samples including two control samples (CTRL-A, n = 62 and CTRL-B, n = 62) for QC and the 

evaluation of reproducibility (Supplementary Fig. 1). The samples were analysed in technical 

duplicate in different mass spectrometers in ProCan31,36.  

From each patient, a malignant tissue sample and its matched benign sample were processed 

using pressure cycling technology (PCT)80 in technical duplicates, and randomly selected 

samples were processed with both biological replicates and technical replicates. The samples 

were processed in 31 batches, each containing a reference sample (CTRL-A) of a homogeneous 

PCa tissue sample that could account for technical variation introduced during the entire PCT-

SWATH-MS sample processing methodology, and a reference sample of a homogeneous 

prostate tissue digest (CTRL-B) that could account for technical variation introduced during 

SWATH-MS.  

DIA-based spectral library generation. DIA-MS data in wiff file format were collected for 

1,475 runs and were processed using DIA-NN (version 1.8)81. A spectral library was generated 

using 1,475 DIA-MS runs and consisted of 9230 proteins and 89,408 peptides. The spectral 

library was used to search the complete cohort of 1,475 runs.  

Data extraction. DIA-NN was implemented using RT-dependent normalization and with 

parameters given below: 
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-report-lib-info --out step3-out.tsv --qvalue 0.01 --pg-level 1 --mass-acc-

ms1 40 --mass-acc 40 --window 9 --int-removal 1 --matrices --temp . --smart-

profiling --peak-center 

Data were then filtered to retain only precursors from proteotypic peptides with 

Global.Q.Value ≤ 0.01. Proteins were then quantified using maxLFQ, with default parameters82 

and implemented using the DIA-NN R Package (https://github.com/vdemichev/diann-

rpackage). Data were then log2-transformed. There were 1,475 mass spectrometry runs with 

669 benign and 679 tumour samples. For downstream analysis, a final protein matrix with only 

benign and tumour samples (n = 1,348 samples) was used. The protein matrix showed an 

average of 35% missingness per individual sample. Missing values in this dataset were then 

imputed with a constant lower than the minimum value of the whole protein matrix to maintain 

the distinction between missing values and protein intensities. Sample replicates were merged. 

The imputed protein matrix was z-score standardized and was then used as input for further 

analyses.  

Batch effect analysis. The tSNE analysis of the data were performed on the final protein data 

matrix with 5,803 proteins. The instrument batch effect was observed as samples were run on 

six different mass spectrometers. The tSNE-based two-dimensional visualization of protein 

data showed that the instrument batch effect was corrected after the built-in normalization 

method in the software suite DIA-NN (Supplementary Fig. 3D and 3E).  

Differential proteomic analysis 

Differential expression analysis between tumour and benign samples was performed on all 

5,803 proteins, and analysis between GG2 and GG3 samples was performed on 512 tumour-

enriched proteins. Empirical Bayes moderated t-statistics, packaged in the Limma R package 

version 3.54.1, was performed to compute the p-value of protein intensity between the two 

classes. Tumour-specific significantly expressed proteins were selected at Benjamini-
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Hochberg (BH) adjusted p-value < 0.01 and with log fold change (FC) (expressed as the 

difference in the group means) cut-off of ±0.5 (FC > 1.5 and < 0.67), whereas GG2 and GG3-

specific differentially expressed proteins were selected at p-value < 0.01 and with log FC 

(expressed as difference in the group means) cut-off of ±0.5 (FC > 1.5 and < 0.67). Heatmaps 

were generated using the R package pheatmap version 1.0.12. The complete linkage clustering 

algorithm was used along with Euclidean distance as the distance measure.” 

Survival analysis 

Finding a proteomic signature. The protein dataset, containing the 512 tumour-enriched 

proteins, was used as the input for the survival analysis. To reduce the number of important 

proteins, 100 runs of multivariate Cox regression with LASSO regularization were executed 

on the whole dataset. The LASSO regularization hyperparameter in each run was tuned using 

20-fold cross-validation. Each run returned a list of proteins with non-zero coefficients. These 

lists were then combined into a list of unique proteins, which was then ranked according to the 

mean importance of the individual proteins (average absolute coefficient over 100 runs) in 

descending order. The top 25 of these proteins were then used in a multivariate Cox model 

with recursive feature selection, which yielded the final 18 proteins. These 18 proteins were 

then used to construct the proteomic risk score (Sj), for the jth patient, as below: 

𝑆! =#$𝛽"𝑋!"  (
#

"$%

 

where n is total number of proteins; bi is the co-efficient of the ith protein and Xji the intensity 

of the ith protein, in the jth patient.  

Analysing performance of the proteomic risk score. The performance of the risk scores was 

analysed in multiple ways. First, patients were dichotomized into low and high-risk groups 

using midpoint of the range of risk scores as a threshold, and their Kaplan-Meier (KM) curves 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2023. ; https://doi.org/10.1101/2023.03.03.530910doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.03.530910
http://creativecommons.org/licenses/by/4.0/


   
 

   
Page 30 of 38 

were then plotted. Differences between survival estimates were evaluated by the log-rank test 

and p-values were reported. The number of samples corresponding to each GG falling in both 

low- and high-risk groups were counted to analyse how well the KM curves justified 

categorization based on GG. Furthermore, to check its performance in GG2 and GG3 patients, 

KM curves for the dichotomized risk score were plotted in both combined as well as separate 

GG2 and GG3 patients. 

The C-index is a measure of rank correlation between the predicted risk score and the observed 

time points. For instance, if the predicted risk score of a sample is higher than that of another, 

and the observed time point for that sample is earlier than that of the other sample, then the 

predictions and observations are said to be concordant. 

Functional enrichment analysis 

Functional and pathways enrichment analysis of significantly expressed proteins was 

performed using Metascape38 along with the entire set of 5,803 proteins as the background 

gene set. The gene ontology (GO) biological processes, Reactome pathways and Hallmark gene 

sets enriched in dysregulated proteins were acquired. The input parameters were p-value < 

0.05, minimum gene count of 3 and enrichment factor > 1. The p-values are calculated based 

on accumulative hypergeometric distribution and are adjusted using BH correction. For tumour 

versus benign, statistically significant enriched terms were selected at adjusted p-value (q-value 

or FDR) of 0.05 (-log10 FDR > 1.3), whereas for GG2 vs. GG3 comparisons, statistically 

significant enriched terms were selected at p-value of 0.05 (-log10 p-value > 1.3). 

PPI enrichment analysis  

PPI enrichment analysis was performed using the Metascape38 by incorporating the data from 

STRING and BioGrid databases. As a result, a network of subsets of proteins is formed where 

proteins in the input list form physical interaction with at least one other member in the list. In 
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order to identify the functional protein complexes for the differentially expressed proteins, the 

Molecular Complex Detection (MCODE) algorithm was applied within the Metascape38. 

MCODE detects and generates the significant protein complexes (p-value < 0.05) with 

minimum three proteins and maximum 500 proteins and provides the functional description 

for each complex. Using the MCODE algorithm, proteins and protein complexes that are 

enriched in the significantly dysregulated pathways were identified. The protein networks were 

visualized using Cytoscape83 where nodes represent the proteins and edges represent the 

connections between the nodes. The size of the node in a complex shows the MCODE score 

whereas width of the edge shows the strength of the connection. 

Machine learning 

The protein dataset with 512 tumour-enriched proteins was used as the input in this analysis. 

Since the number of patients is not large, a single train and test split of the dataset will lead to 

biased conclusions. Therefore, we decided to draw our conclusion based on results aggregated 

from multiple Monte-Carlo runs of XGBoost classifier with random train and test splits. We 

used 1000 runs of Monte-Carlo cross-validation on a random XGBoost classifier with 300 base 

learners and the rest of the hyperparameters set to defaults (Python package “xgboost”). In each 

Monte-Carlo run, the dataset was split randomly into 80% training and 20% test sets, stratified 

by the target variable GG (GG2 vs. GG3). The test results from all the 1000 runs were then 

aggregated and the expected performance was reported.  
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