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Abstract 

Profiling heterogeneous cell types in the tumor microenvironment (TME) is important for 

cancer immunotherapy. Here, we propose a method and validate in independent samples for 

mapping cell types in the TME from only hematoxylin and eosin (H&E)-stained tumor tissue 

images using spatial transcriptomic data of lung adenocarcinoma. We obtained spatial 

transcriptomic data of lung adenocarcinoma from 22 samples. The cell types of each spot 

were estimated using cell type inference based on a domain adaptation algorithm with single-

cell RNA-sequencing data. They were used to train a convolutional neural network with a 

corresponding H&E image patch as an input. Consequently, the five predicted cell types 

estimated from the H&E images were significantly correlated with those derived from the 

RNA-sequencing data. We validated our model using immunohistochemical staining results 

with marker proteins from independent lung adenocarcinoma samples. Our resource of spatial 

transcriptomics of lung adenocarcinoma and proposed method with independent validation 

can provide an annotation-free and precise profiling method of tumor microenvironment 

using H&E images.  

 

Key Words: Spatial transcriptomics, tumor microenvironment, deep learning, lung cancer, 

single-cell RNA-seq 
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INTRODUCTION 

The tumor microenvironment (TME), which comprises stromal and immune cells, is 

associated with tumor initiation, progression, and metastasis 1-4. Notably, the importance of 

TME in cancer treatment has been strengthened since immune checkpoint inhibitors (ICIs) 

have dramatically changed cancer treatment 5, 6. However, only a subset of patients responds 

to ICIs, while the others eventually experience disease progression. One of the reasons for the 

resistance or non-response to ICI is the immunosuppressive TME 7, 8. Therefore, various 

studies have been conducted to decipher the intricate components of the TME that impact 

response to ICIs. These studies have aimed to improve the accuracy of response prediction 

and to design new treatments that various targets such as stromal and immune cells within the 

TME overcoming the limitations associated with ICI resistance 9, 10.  

The spatial patterns of various cell types in the TME are key factors in predicting 

therapeutic response and prognosis 11-13. Single-cell RNA sequencing (scRNA-seq) 

approaches provide molecular information to decipher cell types in the TME, but one of the 

drawbacks is the loss of spatial information. Spatial transcriptomics is a new technology that 

obtains whole-genome expression data from numerous small spots within tissue 14. Since this 

method produces histopathological images as well as gene expression data, it can provide an 

opportunity for an integrative analysis strategy of imaging and gene expression to understand 

the spatial patterns of TME 15, 16. Besides, analysis of the whole-slide histologic images with 

deep learning (DL) algorithms has become a significant and rapidly growing tool in 

analyzing the spatial heterogeneity of TME 17. This approach could also provide predicted 

spatial information on cell types, which include immune cells, molecular markers such as 

programmed death-ligand 1 (PD-L1), and cancer cells 18-20. Considering multiple cell types 

could be defined by spatial transcriptomics with high resolution, training DL on tissue images 
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with these multiple cell types could replace manual labeling by experts that need intensive 

and time-consuming process 17.  

In this study, we present a strategy of cell-type mapping to understand spatial patterns by 

using spatial transcriptomic data and hematoxylin and eosin (H&E) histopathological images. 

We obtained spatial transcriptomic data with H&E images of lung adenocarcinoma (LUAD) 

to develop the model, which captured the spatial distribution of multiple cell types in the 

TME. This model was validated in a separate set of spatial transcriptomic data. We also found 

that the DL model effectively predicted the spatial distribution and proportion of cell types in 

independent LUAD samples using an immunohistochemistry (IHC) assay as an external 

validation study. With this study, we provide a resource of spatial transcriptomic data of 

LUAD and present a framework for producing DL models to effectively map cell types from 

H&E images without the need for human labeling for H&E image-based biomarkers. 
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METHODS 

Patients Samples 

 Overall, 22 LUAD samples were collected from lung specimens of 10 patients who 

underwent curative surgical resection. The collected samples were embedded in an optimal 

cutting temperature compound (25608-930, VWR, USA) in the operating room and stored at 

-80°C until cryosectioning. For the cryosectioning, samples were equilibrated to -20°C with a 

cryotome (Thermo Scientific, USA) and cut to a thickness of 10 μm. Next, the sections were 

imaged and processed for spatially resolved gene expression using the Visium Spatial 

Transcriptomic kit (10X Genomics, USA). The study protocol was reviewed and approved by 

the Institutional Review Board of Seoul National University (application number: H-2009-

081-1158). Supplemental Table S1 summarizes the clinical information of all the patients. 

 

Slide preparation and RNA sequencing 

First, tissue sections were placed on chilled Visium tissue optimization slides 

(1000193, 10X Genomics, USA) and Visium spatial gene expression slides (1000184, 10X 

Genomics). Next, the sections were fixed in chilled methanol and stained with H&E, and the 

brightfield images of the H&E slides were obtained. For the gene expression analysis, cDNA 

libraries were constructed following the Visium Spatial Gene Expression User Guide. Briefly, 

the sections were incubated with permeabilization enzymes, and the timing was determined 

using the Visium Spatial Optimization Slides (1000193, 10X Genomics, USA). Subsequently, 

after washing with saline sodium citrate buffer, RT Master Mix (Visium Reagent kit, 10X 

Genomics, USA), which contained reverse transcription reagents, was added to the 

permeabilized tissue sections and reverse transcription was performed based on the 

manufacturer’s protocol. Next, after reverse transcription, the sections were incubated in 
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KOH (0.08 M) for 5 min and then incubated in Second Strand Mix for 15 min at 65°C. 

Finally, cDNA amplification and library construction were performed. Sequencing was 

performed on a NovaSeq 6000 System S1 200 (Illumina, USA) at a sequencing depth of 

approximately 250 megadread pairs per sample.  

 

Processing of the raw spatial transcriptome data  

Raw FASTQ files and histology images were processed using Space Ranger v1.1.0 

software. The alignment process was based on the Spliced Transcripts Alignment to a 

Reference (STAR) v.2.5.1b, using the hg38 reference genome. Next, the alignment and count 

process were performed using the ‘spaceranger count’ command by specifying the input of 

FASTQ files, reference, section image, and Visium slide information. The pipeline detected 

the tissue area by aligning the image to the printed fiducial spot pattern of the Visium slide 

and recognizing stained spots from the image.  

 

Cell type score estimation from spatial transcriptomic data 

 Spatial transcriptomic data based on barcodes were used to estimate cell-type scores. 

Therefore, to define the cell types, scRNA-seq data obtained from human LUAD were used 

21. Next, the cell types defined by the scRNA-seq data were transferred to the spatial 

transcriptomic data of the multiple LUAD samples using CellDART 22. We used 42 cell types 

of scRNA-seq data defined in a previous study (Supplemental Table S2). The markers for 

each cell type were selected using the Wilcoxon test in the Scanpy package (version 1.5.1) 23. 

In addition, for the CellDART, we selected 10 marker genes per cell type, and 10,000 

pseudospots were generated with the number of mixed cell types set to 8. The cell type scores 

of each spot were estimated, and the five major cell type scores were calculated by the sum of 
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subtype scores.  

 

A convolutional neural network model for predicting cell type scores 

 We utilized spatially registered spatial transcriptomic data co-registered with H&E 

images to develop a model that predicts cell type scores. Image patches were acquired using 

H&E slide images from the spatial transcriptomics after the stain normalization process using 

the staintools python package (https://pypi.org/project/staintools). The center of each image is 

similar to a spot, which represents the gene expression data. In addition, the sizes of the 

image patches were adjusted to have a 128 × 128 × 3 matrix size of approximately 4 µm per 

pixel. Therefore, image augmentation was included to train the model by using rotation, 

zooming with 20% range, RGB channel shift with 20% range, and random horizontal and 

vertical flips. Overall, 43,074 patches and corresponding spots obtained from the 19 samples 

were used for the model training. Among these patches, 5% of randomly selected patches 

were used for the internal model validation. Finally, 5,653 patches obtained from three 

sample were used as the independent dataset.  

 A convolutional neural network (CNN) model based on the ResNet50 backbone was 

constructed to estimate the cell type scores derived from the CellDART. The final layer of the 

ResNet50 model was excluded, and a global average pooling layer was added, followed by a 

fully-connected layer with 1024 dimensions. The final output layer had five nodes 

representing the five major cell type scores. An Adam optimizer with a learning rate of 1 x 

10-5 was used for the optimization. Furthermore, the Poisson loss function was used as the 

loss function, which is defined as follows:  

𝐋(𝐲, 𝐟(𝐗)) = ∑(𝒇(𝑿𝒊) − 𝒚𝒊𝒍𝒐𝒈𝒇(𝑿𝒊) 

𝒊

)  
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DL-based cell types enrichment scores from H&E images 

 The model trained by the H&E images paired with spatial transcriptomic data was 

applied to the H&E images. For the application, the pixel sizes were adjusted to 4 µm, and 

stain normalization was conducted as the training set. In addition, the DL model was directly 

applied to estimate the score of the cell types for each patch in the datasets with H&E image 

patches. For the whole slide image, the trained DL models were repeatedly applied to the 

patches defined by the sliding windows to estimate the scores for the center of each window. 

Furthermore, for windowing to obtain image patches, the sliding step was set to 64 pixels for 

the whole slide images. Finally, each window size was set to 128 × 128.  

 

Correlation with cell type enrichment scores estimated by bulk RNA-seq of TCGA data 

TCGA data comprised histopathological images and omics data across multiple 

cancer types. Histopathologic image data of 479 patients with LUAD who had also bulk 

RNA-seq were downloaded from GDC portal (https://portal.gdc.cancer.gov/). Next, 5 cell 

types enrichment score maps were estimated by the trained DL model and H&E images of 

TCGA. The 5 cell type scores of each sample were evaluated by mean value of whole tissue 

region. To compare the results of DL-based cell type scores with those of other methods, cell 

type enrichment scores were estimated from RNA-sequencing data. The xCell tool 

(http://xcell.ucsf.edu/) was used to infer cell types from tissue transcriptome profiles 24. In 

addition, to compare the T/NK cell enrichment score estimated by DL model, cytotoxic score 

was estimated 25. We estimated cell enrichment scores for B cells, macrophages and 

microenvironment score of xCell. Subsequently, we performed Spearman’s correlation 

analysis between cell type enrichment scores estimated from RNA-sequencing data and those 
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from the histopathological images using our DL-based prediction model. 

 

H&E and IHC assay for external validation 

Representative H&E-stained slides from 11 patients with LUAD who underwent 

curative surgical resection at our institution. The H&E-stained slides were scanned using a 

WSI scanner Aperio GT 450 WSI scanner (Leica Biosystems, Germany) at 40x the original 

magnification. Supplemental Table S3 summarizes the clinicopathological characteristics of 

the patients. We predicted the cell enrichment scores of the five cell types from the H&E-

stained slides using our model. The non-stained slices adjacent to the H&E-stained slides 

were taken. In addition, IHC staining for the following six markers was performed: CD3 

(clone 2GV6, Ventana Medical Systems, Tucson, AZ, USA), CD20 (clone L26, DAKO, 

Carpinteria, CA, USA), CD56 (clone 123C3. D5, Cell Marque, Rocklin, CA, USA), CD68 

(clone KP1, DAKO), pan-cytokeratin (clone AE1/AE3, DAKO), and SMA (clone 1A4, 

DAKO). Staining was performed using a Ventana Benchmark XT (Ventana Medical Systems, 

Inc., Tucson, AZ, USA) or Bond-Max autostainer (Leica Microsystems, Melbourne, 

Australia).  

 

External validation with surgically resected LUAD samples 

Since H&E and IHC slides were obtained from the adjacent tissue sections, they 

were not completely registered with each other. For each IHC image, a deconvolution for 

DAB staining results was performed for all slides using the ‘rgb2hed’ function in the scikit-

image package. Next, the spatial registration was performed using the symmetric 

diffeomorphic image registration 26. This process was performed using the DiPy Python 

package. In addition, both H&E and IHC slide images were converted to a grey scale. The 
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registration process included linear registration followed by nonlinear registration. In 

addition, the center of mass was matched first, and the rigid and affine transformations were 

performed based on the mutual information of the two grayscale images. The nonlinear 

transformation was performed using a function, Symmetric Diffeomorphic Registration, with 

a cross-correlation similarity metric. The final warping matrix was estimated and applied to 

the deconvoluted image of the DAB channel. Therefore, the warped DAB channel image was 

co-registered with the corresponding H&E image. In contrast, the five cell-type maps 

predicted by H&E images were co-registered with the corresponding DAB channel image. 

The cell type maps and the deconvoluted images for the DAB channel were subjected to 

Gaussian smoothing using a specific parameter, sigma = 10. Finally, a pixel-wise Spearman’s 

correlation analysis was performed to measure the similarity between DAB staining results 

and cell type maps predicted using the H&E images. 

 

Statistical analysis 

Statistical analyses were performed using the R software package version 4.1.1 and 

Python with the SciPy package (version 1.5.1). The correlation between variables was 

evaluated using Pearson’s or Spearman’s correlation analysis, as applicable.  
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RESULTS 

Model development and validation 

Figure 1 shows a schematic of the workflow of the proposed model. The H&E 

histopathological images were converted to patches corresponding to spots, which were 

classified into training and internal validation sets. We designed the model to predict five cell 

types (B cells, T/NK cells, myeloid cells, fibroblasts, and epithelial cells) of each spot in the 

H&E-stained histopathological image patch. First, we mapped five cell types using spatial 

transcriptomic data with cell types defined by the scRNA-seq of human LUAD 21. The cell 

type scores for each spot was estimated using a domain adaptation (CellDART) 22. The five 

major cell type enrichment scores were calculated as the sum of specific subtypes defined by 

a previously published paper 21 (Supplemental Table S2). Supplemental Figure S1 presents 

the representative results of the estimated cell-type maps.  

The correlation coefficient (Pearson’s correlation) between the cell type enrichment 

scores predicted by the DL model and those of the outputs from the CellDART were 

calculated. The DL-based scores significantly positively correlated with those of the 

CellDART across all five cell types as follows: B cell (R = 0.57, p < 1 × 10-5), T/NK cells (R 

= 0.29, p < 1 × 10-5), myeloid cells (R = 0.56, p < 1 × 10-5), fibroblasts (R = 0.61, p < 1 × 10-

5), and epithelial cells (R = 0.44, p < 1 × 10-5) (Figure 2A). We also performed validation 

using independent spatial transcriptomic data (Figure 2B, C). The DL-based predicted scores 

were significantly positively correlated with the scores of the CellDART output across the 

five cell types (B cell: R = 0.67 and p < 1 × 10-5; T/NK cell: R = 0.16, p < 1 × 10-5; myeloid 

cells: R = 0.18, p < 1 × 10-5; fibroblasts: R = 0.24, p < 1 × 10-5; and epithelial cells: R = 0.49, 

p < 1 × 10-5).  
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DL-based and bulk RNA sequencing-based cell types enrichment scores 

We compared the enrichment scores of DL-based cell types with those of bulk RNA-

sequencing-based cell types to validate the DL-based model further. The H&E and bulk RNA 

sequencing data of LUAD from TCGA were used. Notably, the regions of tumor samples for 

bulk RNA sequencing were not directly matched with the regions of H&E images, which is 

an intrinsic limitation of the TCGA data. We estimated the immune, microenvironment, and 

enrichment scores of the B cells, macrophages, and cytotoxic lymphocytes from the bulk 

RNA-sequencing data of TCGA-LUAD samples using the xCell analysis tool 24.  

 We applied the DL model to H&E images of LUAD data to further validate the 

robustness of the model. To generate heatmaps for the cell type enrichment scores on the 

H&E slides, the trained DL models were applied to the whole-slide images with a sliding 

window to estimate the scores for the center of each window (Figure 3A). The DL-based 

scores of 5 cell types of H&E images of TCGA data were calculated (an example is shown in 

Figure 3B). Correlation analyses were performed between the DL-based and bulk RNA-

sequencing-based cell-type enrichment scores. Figure 3C shows the correlations between the 

DL-based and bulk RNA-sequencing-based cell type enrichment scores. The DL-based 5-cell 

type scores were mean values of each tissue. The B-cell estimated using the DL model and 

RNA-sequencing respectively were significantly positively correlated (R = 0.12, p = 0.0076; 

Figure 3C). Myeloid scores of DL-based model also showed a positive correlation with 

macrophages enrichment scores estimated by RNA-seq (R = 0.15, p = 0.001; Figure 3C). 

The T/NK cell types estimated by DL-based model were significantly positively correlated 

with cytotoxic scores (R = 0.15, p = 0.001) and immunescore (R = 0.13, p = 0.0056) 

calculated by RNA-sequencing data. Microenvironment scores, which is related to noncancer 

cells, were positively correlated with DL-based fibroblasts score (R= 0.13, p = 0.0055) and 
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negatively correlated with epithelial cells score (R = -0.099, p = 0.03; Figure 3C).  

 

External validation on independent LUAD dataset with IHC assay 

Accordingly, a heatmap for each cell type was generated from the whole-slide image. 

Consequently, using the consecutive unstained slides of selected tumor sections, six different 

antibodies for IHC staining were used as follows: CD3, CD20, CD56, CD68, cytokeratin (CK), 

and smooth muscle actin (SMA) for the T, B, NK, myeloid, and epithelial cells, and fibroblasts, 

respectively. Figure 4 and Supplemental Figure S2 present the representative samples for this 

validation process.  

We performed pixel-wise correlations after spatial registration to compare the results 

of IHC and DL-based predicted cell-type enrichment score maps. Since H&E and IHC slides 

were obtained from the adjacent tissue sections, spatial registration was performed using 

symmetric diffeomorphic image registration 26. The DL-predicted cell type enrichment score 

and deconvoluted image matrix for the DAB channel were applied to Gaussian smoothing, 

followed by a pixel-wise Spearman’s correlation analysis (Figure 5A). As a result, we observed 

significantly positive correlations between the deconvoluted IHC and DL-based cell type 

enrichment score as follows: CD20-B (rho = 0.58 ± 0.26; range: 0.09–0.85), CD3-T/NK (rho 

= 0.66 ± 0.29; range: -0.09–0.91), CD56-T/NK (rho = 0.74 ± 0.15; range: 0.43–0.89), CD68-

myeloid (rho = 0.58 ± 0.31; -0.17–0.88), and CK-epithelial (rho = 0.46 ± 0.24; range: 0.12–

0.79) cells, and SMA-fibroblasts (rho = 0.60 ± 0.17; range: 0.34–0.89) (Figure 5B). Most of 

the samples showed strong correlation coefficients between the DL model and IHC assays of 

the immune cells.   
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DISCUSSION 

 Profiling the heterogeneity of TME has been recognized as an essential factor for 

understanding cancer evolution and developing novel biomarkers and therapeutic agents 27, 28. 

Therefore, RNA-sequencing data as well as histopathologic images have been used to 

analyze cellular heterogeneity in TME 29-31. In particular, one of the major factors in 

predicting response to ICI is whether immune cells, particularly the T-cells, are enriched in 

the TME 32, 33. However, additional information is required above simple enrichment score of 

cell types in the TME. Tumor immune properties related to treatment response and prognosis 

are associated with the spatial contexts of cell types, such as ‘immune-exclusive’ and 

‘immune-infiltrative’ types, which is beyond solely quantitative immune cell enrichment 12. 

This spatial distribution and contexture of multiple cells can be analyzed using 

histopathologic images. However, the quantitative analysis of the various immune cell types 

on images remains difficult for several reasons:1) limitations in the labor-intensive labeling 

process, 2) interpersonal variability, and 3) only a few cell types that can be visually 

identified. Notably, integrating RNA-sequencing data with high-resolution and spatially co-

registered information is a major opportunity for spatial transcriptomics technology. 

Consequently, investigators could interpret the complex spatial characteristics of the TME 

and develop computational models by combining transcriptome data, spatial location, and 

visual features of cell morphology. Using this integrative approach, we illustrated that a 

readily available H&E histopathological image could predict the spatial distribution of major 

cell types without manual labeling and employing intrinsic data features. We found that the 

cell proportion scores predicted by the DL model from the histopathological images had a 

positive correlation with cell estimation scores calculated using the bulk RNA-sequencing 

data from the TCGA data. We also used IHC assays to validate the model, which was 
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accurate in the independent surgical cohorts. 

 This DL model could be used for various purposes in clinical settings, particularly to 

examine immunotherapy response and prognosis while considering the immune contexts 

using H&E images alone. Spatial patterns of specific immune and stromal cells are linked 

with the responses to ICIs and clinical outcomes 34. Moreover, a recent study illustrated that 

the spatial phenotype of tumor-infiltrating lymphocytes within the TME using an artificial 

intelligence-powered model showed a significant association with immunotherapy response 

in non-small cell lung cancer 18. Since our model could determine B-cell enrichment maps in 

the TME, the location and localized patterns of these cell types can aid us in identifying 

tertiary lymphoid structures 35. Notably, the presence of tertiary lymphoid structures in solid 

tumors is associated with immunotherapy response and progression-free survival 36-38. 

Therefore, we believe the spatial phenotype using our approach could be used as a method to 

develop a novel biomarker for prognostic stratification and treatment response in various 

solid tumors. In addition, as various transcriptomic analysis has been used to find new 

molecular markers associated with prognosis and response, our framework using a DL model 

could be trained to predict these markers or molecular signatures on spatial transcriptomic 

data. Then, this DL model can predict key molecular markers only using the histologic 

images.  

The strategy that uses major cell types or molecular pathways derived from spatial 

transcriptomics as labels for developing DL models could be used to develop flexible 

biomarkers for companion diagnostics with numerous potential therapeutics for the TME. In 

precision medicine approaches, various biomarkers are extensively adopted in clinical trials 

to apply new therapeutics to select patients who are expected to benefit from the therapeutics 

39. Recently, novel therapeutic targets for immune and stromal cells within the TME, as well 
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as T-cells, have been developed and assessed in phase 1 or 2 clinical trials 40, 41. Similar to our 

suggested strategy, cell type maps were constructed based on scRNA-seq data, and the model 

could show the specific cell types or molecular markers within the TME with their spatial 

contextures 42. For example, novel therapeutics that target tumor-associated macrophages or 

fibroblasts can be analyzed using a potential biomarker derived from the proposed DL model.  

Conclusively, our study showed that integrating cell-type maps derived from spatial 

transcriptomics and histopathologic images using DL facilitated the prediction of TME 

characteristics in LUAD. This strategy will enable various types of image-based biomarkers 

to demonstrate spatial phenotypes that could be used in clinical settings, such as prognosis 

stratification and predicting response to therapeutics targeting tumor microenvironment.  
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FIGURE LEGENDS 

 

Figure 1. Overview of the deep learning (DL)-based model 

We generated spatial transcriptomic data from 22 samples of 10 patients with lung 

adenocarcinoma (LUAD) containing thousands of spots with transcriptomic data and their 

spatially matched hematoxylin and eosin (H&E)-stained histologic image. We collected 

patches of 128 x 128 pixels centered on the spatial transcriptomic spots. The proportion of the 

five cell types (B cell, NK/T cell, myeloid cell, fibroblast, and epithelial cell) were estimated 

through the spatial and single-cell RNA-seq data using the cell type inference with domain 

adaptation (CellDART). A convolutional neural network was trained to predict the 

enrichment score of the five cell types in each spot.  
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Figure 2. Internal validation of the DL-based model. (A) Patch-wise internal validation 

using 5% of randomly-selected patches from all patches for model training. Correlations of 

the five cell types estimation score between the DL model and CellDART on each image 

patch. (B) Correlations of five cell types estimation score between DL model and CellDART 

on each image patches from independent spatial transcriptome data. (C) Spatial mapping of 

the cell type estimation and predicted scores by the CellDART and DL model, respectively, 

for the five cell types. The outputs were obtained from the one of independent spatial 

transcriptome samples.  
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Figure 3. Results from the DL model prediction for the cancer genome atlas (TCGA) -

LUAD data. (A) The schematic diagram for predicting five cell types scores from the 

independent samples with the DL model. The output of the DL model for H&E images was 

estimated according to the sliding windows, which were reconstructed into a heatmap 
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overlaid with the original H&E image. (B) An example of estimated cell type enrichment 

score maps using the DL model from a H&E image of TCGA. (C) Scatter plots and 

correlation coefficients between cell enrichment scores respectively estimated from the bulk 

RNA-sequencing data and the DL-model were depicted. B cells, myeloid cells, and T/NK 

cells estimated by the DL model were correlated with B cells, macrophages, cytotoxic score, 

and immunescore estimated by the bulk RNA-seq data. Microenvironment cell scores were 

estimated using RNA-sequencing represented other cells excluding cancer cells in the tumor. 

They were negatively correlated with epithelial scores and positive correlated with fibroblasts 

estimated by the DL model.   
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Figure 4. A representative case of DL-based cell type maps and immunohistochemistry 

(IHC). Visualization of H&E-stained tissue image and predicted cell enrichment score for the 

five cell types by DL model. IHC staining for CD56, CD20, CD68, CD3, smooth muscle 

actin (SMA), and cytokeratin (CK) for the same sample were provided. 
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Figure 5. Image-based correlation analysis for external validation. (A) Image registration 

and deconvolution for IHC performed for the pixel-wise correlation for the IHC map and DL-

based output as a heatmap. A 2-dimensional Gaussian smoothing was applied to the 

deconvoluted IHC images and DL-based output heatmaps to reduce the noise effects linked 

with fine-level misregistration. The pixel-wise correlation was performed using Spearman’s 

correlation. (B) Results of correlation analysis between the DL model and IHC staining. 

(CD20 vs. B cells, CD3 vs. T/NK cells, CD56 vs. T/NK cells, CD68 vs. myeloid cells, CK 

vs. epithelial cells, and SMA vs. fibroblasts).  
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