Abstract
The emergence of symbolic thinking has been proposed as a dominant cognitive criterion to distinguish humans from other primates during hominization. Although the proper definition of a symbol has been the subject of much debate, one of its simplest features is bidirectional attachment: the content is accessible from the symbol, and vice versa. Behavioral observations scattered over the past four decades suggest that this criterion might not be met in non-human primates, as they fail to generalize an association learned in one temporal order (A to B) to the reverse order (B to A). Here, we designed an implicit fMRI test to investigate the neural mechanisms of arbitrary audio-visual and visual-visual pairing in monkeys and humans and probe their spontaneous reversibility. After learning a unidirectional association, humans showed surprise signals when this learned association was violated. Crucially, this effect occurred spontaneously in both learned and reversed directions, within an extended network of high-level brain areas, including, but also going beyond the language network. In monkeys, by contrast, violations of association effects occurred solely in the learned direction and were largely confined to sensory areas. We propose that a human-specific brain network may have evolved the capacity for reversible symbolic reference.
Competing Interest Statement
The authors have declared no competing interest.