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Abstract 

Identifying and characterizing mobile genetic elements (MGEs) in sequencing data is essential for 

understanding their diversity, ecology, biotechnological applications, and impact on public health. Here, 

we introduce geNomad, a classification and annotation framework that combines information from gene 

content and a deep neural network to identify sequences of plasmids and viruses. geNomad uses a large 

dataset of marker proteins to provide functional gene annotation and taxonomic assignment of viral 

genomes. Using a conditional random field model, geNomad also detects proviruses integrated into host 

genomes with high precision. In benchmarks that included diverse MGE and chromosome sequences, 

geNomad significantly outperformed other tools in all evaluated clades of plasmids and viruses. Leveraging 

geNomad’s speed and scalability, we were able to process public metagenomes and metatranscriptomes, 

leading to the discovery of millions of new viruses and plasmids that are available through the IMG/VR and 

IMG/PR databases. We anticipate that geNomad will enable further advancements in MGE research, and it 

is available at https://portal.nersc.gov/genomad. 

Main 

Mobile genetic elements (MGEs) are selfish genetic entities that, unlike cellular organisms, are unable to 

self-replicate and instead rely on host cells and cellular machinery to propagate. MGEs are associated with 

all domains of life and are incredibly diverse, encompassing elements with various replication and mobility 

strategies, such as plasmids and viruses. Mobile elements are also ubiquitous in nature and found across 

virtually all of Earth’s ecosystems. Plasmids, for instance, are found in the vast majority of bacterial and 

archaeal isolates1, whereas viruses have been shown to be the most abundant biological entities in oceans 

and harbor a large reservoir of genetic diversity2. Due to their mobility, plasmids and viruses can serve as 

key drivers of horizontal gene transfer (HGT), a process in which cells acquire genetic information from a 

mobile gene pool rather than through vertical descent. This process allows distantly related lineages to 

exchange genetic material, enabling rapid phenotypic shifts that can facilitate adaptation to environmental 
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or biological pressures3,4. As a result, plasmids and viruses play a significant role in driving fast evolutionary 

and ecological innovation, greatly impacting the dynamics of all biological communities. 

With the increased availability of metagenomic sequencing data from diverse ecosystems, it became 

possible to study the diversity and distribution of MGEs on a global scale. In recent years, numerous studies 

have harnessed these data to uncover an unprecedented diversity of viral genomes, greatly expanding our 

understanding of their genetic diversity, distribution, function, and evolution. Plasmids, on the other hand, 

have been mostly overlooked in metagenomic surveys5,6 and most known sequences are derived from 

clinical isolates, highlighting the need for further research to understand the factors underlying their 

spread and evolution in natural environments. Because the HGT promoted by plasmids and viruses can 

affect the host ecology, metabolism, virulence, and resistance to antibiotics, the identification of these 

MGEs in sequencing data is also crucial to allow holistic investigation of biological communities. 

Additionally, detection of MGEs also has important implications for biotechnology and public health, where 

monitoring virulent strains or sequences carrying antibiotic resistance genes can help prevent the spread 

of diseases. 

Computational identification of plasmids and viruses from sequence data relies on the use of sequence 

classification models, which can be broadly categorized into two types: alignment-free models and gene-

based models. Alignment-free models perform classification directly from nucleotide sequences and 

employ deep-learning architectures such as recurrent neural networks or convolutional neural networks to 

learn discriminative sequence motifs that are informative for classification7. By dispensing explicit 

alignments to reference genomes or proteins, these models are theoretically not constrained by the 

sensitivity of sequence search algorithms or the completeness of reference databases, which often lack 

close homologues for the fast-evolving genes encoded by MGEs. However, alignment-free models are 

typically uninterpretable and do not capitalize on prior biological knowledge for classification, hence they 

are prone to produce overly-confident classification mistakes that can be difficult to diagnose (out-of-

distribution generalization problem)8. In contrast, gene-based classification methods perform database 

searches and alignments to identify marker proteins that are indicative of the underlying identity of the 

sequence9. As a consequence, these methods leverage existing biological insights and human-designed 

features, providing more interpretable outputs. Both alignment-free and gene-based approaches have been 

used successfully for plasmid and virus identification, but no existing tool effectively combines the 

strengths of both methods in a single framework. 

Here we introduce geNomad, a tool for concurrent identification and annotation of both plasmids and 

viruses in sequencing data. We demonstrate that geNomad's classification framework, which utilizes a 

hybrid approach that combines alignment-free and gene-based models, significantly outperforms other 

plasmid and virus identification tools across various host and virus taxa. A newly assembled set of 227,897 

marker protein profiles that is included in geNomad enables the delimitation of integrated viruses 

(proviruses), taxonomic assignment of viruses, and rich functional annotation, which includes the 

identification of antimicrobial resistance genes, conjugation genes, and plasmid and virus hallmark genes. 
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Applying geNomad to metagenomes and metatranscriptomes revealed numerous RNA and giant virus 

sequences that were missed by large-scale surveys, significantly expanding phylogenetic diversity of giant 

viruses. Additionally, we show that geNomad is computationally efficient and scalable, making it suitable 

for use in large-scale surveys, such as identification of potential virus and plasmids sequences across all 

public genomes and metagenomes in the IMG database10. 
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Results and discussion 

The geNomad framework for identifying and annotating virus and plasmid sequences 

 

Figure 1 | A hybrid framework for identifying and annotating plasmids and viruses. (A) geNomad processes 
user-provided nucleotide sequences through two branches. In the sequence branch, the inputs are one-hot-
encoded fed to an IGLOO neural network, which scores inputs based on the detection of non-local sequence motifs 
(A1 I). In the marker branch, proteins encoded by the input sequences are annotated using markers that are specific 
to chromosomes, plasmids, or viruses (A1 II). A set of numerical features are then extracted from the annotated 
proteins and fed to a tree ensemble model, which scores the inputs based on their marker content. Next, the scores 
provided by both branches are aggregated by weighting the contribution of each branch based on the frequency of 
markers in the sequence (A2). Aggregated scores can then be calibrated to approximate probabilities in a process 
that leverages the sample composition inferred from the classification of sequences from the same batch (A3). 
Lastly, classification results are summarized and presented together with additional data, such as virus taxonomy, 
gene function, and the inferred genetic code (A4). (B) The sequence branch is based on the IGLOO architecture, 
which uses convolutions to produce a feature map from a one-hot-encoded input. Patches encoding non-local 
relationships within the sequence are then generated by slicing the feature map. Lastly, these patches are used as 
an attention matrix to produce a sequence representation from the feature map. (C) The relative contribution of 
the marker branch (y-axis, quantified using SHAP) increases as the marker frequency (fraction of genes assigned to 
a marker) in the sequence increases. (D) Calibration curves of pre-calibration (left) and post-calibration (right) 
scores, showing that sample composition can be used to map classification scores to actual probabilities. The x-
axis represents scores averaged across multiple bins; the y-axis represents the fraction of positives in each bin; the 
45° dashed line represents a perfect calibration scenario. MAE: mean absolute error of the scores relative to the true 
probabilities. 
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geNomad employs a hybrid approach to plasmid and virus identification that combines an alignment-free 

classifier (sequence branch) and a gene-based classifier (marker branch) to improve classification 

performance by capitalizing on the strengths of each classifier. geNomad’s framework consists of five stages 

(Figure 1A): (1) alignment-free classification in the sequence branch; (2) sequence annotation and gene-

based classification in the marker branch; (3) aggregation of the branch scores; (4) score calibration; and 

(5) output generation. 

To identify sequences of plasmids and viruses in an alignment-free manner, geNomad’s sequence branch 

processes inputs using a neural network model that is able to classify the sequences from their nucleotide 

makeup alone (Figure 1A, box A1 I). To accomplish this, the input sequences are first converted to a 

numerical format by tokenizing them into arrays of 4-mer words, which are then one-hot-encoded, creating 

binary 256-dimensional matrices that reflect the presence of specific 4-mers (rows) across different 

positions within the sequence (columns). These matrices are then passed to an encoder, which generates 

vector representations of the sequences in a 512-dimensional embedding space. In this space, sequence 

representations from the same class (chromosome, plasmid, or virus) will be more similar compared to 

sequence representations from different classes. The resulting representations are subsequently fed to a 

dense neural network that produces three scores, representing the model's confidence of the sequence 

belonging to each of the three classes. 

To generate vector representations of the inputs, geNomad employs an encoder based on the IGLOO 

architecture11, which is able to extract patterns that are useful for classification from the sequence data and 

encode them into an embedding space (Figure 1B, Supplementary Figure 1). The IGLOO encoder begins 

processing one-hot-encoded matrices by applying 128 convolutional filters to generate sequence feature 

maps. To gather relationships between non-contiguous parts of the sequence, IGLOO generates 2,100 

patches, each containing slices extracted from random positions within the sequence. These patches are 

subsequently integrated in a self-attention mechanism, where different parts of the feature map are 

weighted, leveraging the long-range dependencies encoded in the patches, to derive the final sequence 

representation. The IGLOO architecture has demonstrated superior performance compared to traditional 

alternatives (such as recurrent neural networks and convolutional neural networks) when applied to 

sequence data. This is attributed to its capability to gather information from non-local relationships across 

the entire sequence to create a global representation11,12. 

To classify sequences based on their gene content, geNomad's marker branch predicts and annotates the 

proteins encoded by input sequences using a set of custom markers that are informative for classification 

(Figure 1A, box A1 II). To predict proteins, geNomad uses a modified version of the Prodigal13 software 

called prodigal-gv, which we developed to allow automatic detection of TAG-recoded stop codons (common 

in phages of the Crassvirales order14) and annotation of TATATA motifs that are frequently found upstream 

of coding sequences of Nucleocytoviricota viruses15 and which facilitate their identification. Predicted 

proteins are then queried against a set of 227,897 protein profiles — specific to chromosomes, plasmids, or 

viruses  (Figure 2) — using MMseqs216 protein-profile search. Next, geNomad computes a total of 25 numeric 
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genomic features that summarize the sequence structure (e.g., gene density, and strand switch rate), RBS 

motifs (e.g., TATATA motif frequency), and marker content (e.g., frequency of chromosome, plasmid, and 

virus markers) of the input sequences. These features are then fed to a tree ensemble classification model, 

which outputs the confidence scores for each class. Detailed explanations of the features used for 

classification can be found in the Supplementary Note and their importance for the model is shown in 

Supplementary Table 1. 

From the outputs produced by the sequence and marker branches, geNomad generates an aggregated 

classification that leverages the strengths of each approach, as the two approaches use distinct and often 

complementary methods to classify input sequences. Aggregated classification is achieved through an 

attention mechanism that consists of a linear model that weighs the branches based on the frequency of 

chromosome, plasmid, and virus markers in the input sequence (Figure 1A, box A2). The attention 

mechanism works in such a way that the contribution of the marker branch goes higher as the fraction of 

genes that are assigned to markers increases (Figure 1C). Essentially, the branch aggregation gives more 

weight to the marker branch when it is more informative (i.e., when most of the genes encoded by the input 

sequence are assigned to markers) and relies more on the sequence branch when marker information is 

scarce. This allows geNomad to take advantage of both marker-based and alignment-free classification 

approaches in a principled manner. 

During inference, a classification model assigns a score to each prediction, indicating the level of 

confidence in that prediction, with higher values representing more confident predictions. However, these 

scores do not reflect the true probabilities of the predictions being correct, as classification models will 

exhibit varying false discovery rates when classifying samples with distinct underlying composition. For 

example, if the same classification model is used to identify viruses in a metagenome (where cellular 

sequences outnumber viral sequences) and in a virome (that is enriched in viral sequences), it is expected 

that the model will yield a higher proportion of false positive viruses in the metagenome, where more 

cellular sequences (that are prone to be misclassified as viruses) will be present (Supplementary Figure 2A). 

The cause of this issue is that models assign the same score to a given sequence regardless of the 

composition of the rest of the sample. To address this, we devised an optional calibration mechanism in 

geNomad that leverages sample composition data to approximate the true underlying probabilities. The 

algorithm consists of a dense neural network that takes raw scores and the empirical sample composition 

(i.e., the frequency of chromosomes, plasmids, and viruses in the pre-calibration classification) as inputs 

and outputs calibrated scores (Figure 1A, box A3) that accurately approximate probabilities (mean absolute 

errors for pre- and post-calibration scores in Figure 1D). Because this process depends on reliable estimates 

of the underlying compositions, it works best for samples with sufficient size (e.g., ≥ 1,000 sequences), for 

which the mean absolute error of the calibration is very low (≈ 1%, Supplementary Figure 2B). In essence, 

the calibration mechanism adjusts raw scores by reducing or increasing the scores of a given class 

(chromosome, plasmid, or virus) when its frequency within the sample is low or high (Supplementary 

Figure 2C and D). When the sample composition is very uneven, this tends to result in large changes in raw 
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scores, while very high or low scores are less affected (Supplementary Figure 2C and E). The calibrated 

scores produced by geNomad offer users two benefits: (1) estimated probabilities can be used to compute 

false discovery rates, allowing users to make more informed decisions (e.g., setting a threshold to achieve 

a desired proportion of false positives), and (2) improved classification performance by adjusting the 

assigned labels of some sequences after calibrating scores (for more details see the “geNomad outperforms 

other tools for plasmid and virus classification, and allows accurate taxonomic assignment of viruses” section). 

Sequences classified as viral with geNomad’s markers are then assigned to taxa defined by the International 

Committee on Taxonomy of Viruses (ICTV)17. This process is made possible by the fact that more than 85 

thousand of the markers are specific to a virus taxon (for more details see the “A dataset of marker protein 

profiles with rich functional and taxonomic metadata” section). Briefly, geNomad first designates a taxon to 

each gene annotated with a taxonomically-informed marker.  Then, weights are computed for each taxon 

included among the gene-level assignments, as well as their parent taxa (up to the root of the taxonomy) by 

summing the bitscores obtained from the alignments with marker profiles. Finally, the taxonomy of the 

sequence is determined as the most specific taxon that is supported by at least 50% of the total weight (sum 

of the bitscores of all genes with taxonomy, Supplementary Figure 3). 

Upon completion of its execution, geNomad produces a list of sequences that have been classified as either 

plasmids or viruses. This list can be refined using additional user-adjustable filters, such as a minimum 

score, maximum false discovery rate (if score calibration was performed), or a minimum number of 

plasmid or virus hallmark genes (that are involved in key plasmid or virus functions). At this stage, 

sequences encoding multiple universal single-copy genes, which are rarely found in MGEs, can also be 

excluded. The generated output includes rich metadata that can be useful for downstream analysis (Figure 

1A, box A4), including model scores (uncalibrated or calibrated), predicted genetic code (as inferred by 

prodigal-gv), structural and functional gene annotation, presence of conjugation and antimicrobial 

resistance (AMR) genes, number of hallmark genes, and virus taxonomy. The user is also provided with the 

nucleotide and amino acid sequences of the identified plasmids and viruses. 
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A dataset of marker protein profiles with rich functional and taxonomic metadata 

 

Figure 2 | Generating of a dataset of protein profiles with abundant metadata for sequence classification and 
protein annotation. (A) Protein sequences from genomes and metagenomes were clustered and aligned to 
produce de novo protein profiles. De novo profiles and profiles obtained from public databases were then clustered 
and cluster representatives were selected to reduce redundancy. In parallel, reference chromosome, plasmid, and 
virus sequences were clustered into reference clusters (RCs). Sequences were then weighted in such a way that the 
sum of the weights within each RC was constant. Representative protein profiles were mapped to reference 
sequences and chromosome-, plasmid-, and virus-specificity metrics were computed for each profile based on the 
weighted number of hits to sequences of each class. Markers that were highly specific to one of the three classes 
were then selected. The position of each selected marker (circles) in the ternary plot is determined by its specificity, 
and the colors represent the marker density in a region. (B) Bar plots showing: the sources of the selected profiles 
(upper plot); the total number of markers (light shades) and the number of functionally annotated markers (dark 
shades) for each class (middle plot); the fraction of ICTV taxa covered by the taxonomically-informative markers at 
each rank. (C) Multidimensional scaling of semantic similarities of the GO terms enriched in chromosome (left), 
plasmid (center), and virus (right) markers. Labels of related terms were aggregated for clarity. Semantic similarities 
were computed with REVIGO. (D) RadViz visualizations of the relative frequencies of geNomad markers across 
distinct ecosystems. Each marker is represented by a circle and the colors depict the marker density within a region. 
The position of the markers in the plot is determined by their frequency in each environment. Markers close to the 
center of the plot were found in similar frequencies across all ecosystems. Median entropies of the ecosystem 
distributions are shown below the plots. AO: aquatic (other), AF: aquatic (freshwater), AM: aquatic (marine), HO: 
host-associated (other), HA: host-associated (animals), EN: engineered, HP: host-associated (plants), TS: terrestrial 
(soil), TO: terrestrial (other). 

geNomad uses a marker set of 227,897 protein profiles specific to chromosomes, plasmids, or viruses to 

perform classification based on gene content and to provide functional information for processed 

sequences (Figure 2A). To build this marker dataset, which covers sequences from uncultured 
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microorganisms and viruses from diverse environments, we gathered approximately 232 million protein 

sequences from diverse isolates (bacteria, archaea, and viruses), metagenome-assembled genomes (MAGs, 

from bacteria and archaea), and uncultured viruses and plasmids from diverse ecosystems (see complete 

list of sources in the “Database of chromosome, plasmid, and viral sequences for training and benchmarking” 

section). These sequences were then clustered and the resulting protein clusters were independently 

aligned to generate 812,511 de novo protein profiles, which can be used to perform sensitive searches for 

homologs. We supplemented these de novo profiles with 612,966 additional protein profiles from external 

sources and performed dereplication by clustering similar profiles and selecting a representative for each 

cluster, resulting in a non-redundant set of 470,039 profiles (Supplementary Figure 4A). Compared to other 

sources, de novo profiles comprised the majority of the diversity of profile clusters, as 44.0% of these clusters 

contained at least one de novo profile and 29.9% of the clusters contained only de novo profiles 

(Supplementary Figure 4B). This dereplication process was carried out to obtain a reduced set of profiles 

that cover as much of the protein sequence space as possible while improving geNomad's computational 

efficiency by reducing the time required for sequence searches. 

To identify profiles that are informative for classification, we computed the specificity of each profile to 

each one of the targeted classes (chromosomes, plasmids, and viruses) by mapping them to reference 

genomic sequences (Supplementary Figure 4C). This diverse dataset of references was obtained by 

retrieving both isolate and uncultivated (bacteria, archaea and eukaryote MAGs, and uncultured viruses and 

plasmids) nucleotide sequences and curating the data to remove sequences that would lead to 

misrepresentations of the underlying specificity of each profile (such as phages integrated in host genomes, 

viruses and chromosomes mislabeled as plasmids, and plasmid and virus scaffolds binned within MAGs). 

To measure the specificity of the profiles, we matched them to reference protein sequences and counted 

the number of hits in each targeted class in a weighted manner, taking into account representation bias. 

Because plasmid and virus sequences in public databases are heavily skewed towards elements that infect 

a limited range of microbes (such as model species, pathogens, and human-associated microbes), we 

downweighted sequences belonging to overrepresented taxa by grouping them into reference clusters (RCs) 

based on high average amino acid identity (AAI). We assigned weights to the references so that the sum of 

the weights in all RCs was constant, effectively downweighting sequences within large RCs and preventing 

a few taxa from dominating the marker selection process6. After computing specificity, we discarded 

profiles that were poorly specific or matched few proteins, resulting in a final set of 227,897 profiles to be 

used for classification and annotation. Most of the markers originated from the de novo protein profile 

dataset (38.8%), the efam18 database of protein families from uncultivated viruses (34.9%), and EggNOG19 

(16.0%) (Figure 2B, top, Supplementary Table 2). Virus-specific markers dominate the dataset (69.2%), 

followed by chromosome-specific (23.5%), and plasmid-specific markers (7.3%) (Figure 2B, middle, lighter 

shades). 

geNomad also provides users with detailed taxonomic and functional information to facilitate biological 

interpretation of the results, enabling more thorough analysis of the identified sequences. To allow this, 
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geNomad markers were functionally annotated using sensitive HMM-HMM alignments against databases 

of protein families with well-annotated functions (Pfam-A20, TIGRFAM21, KEGG Orthology22, and COG23). A 

total of 98,108 (43.0%) markers were annotated, though the proportion of annotated markers varied 

significantly among the different specificity classes, with chromosome-specific markers having the highest 

annotation rate (82.5%), followed by plasmid-specific markers (63.3%), and virus-specific markers (27.5%) 

(Figure 2B, middle, darker shades, Supplementary Table 2), highlighting the limited availability of 

functional information for viral proteins. Functional enrichment analysis of the annotated markers (Figure 

2C) showed that chromosome markers were enriched in functions related to translation, transport, and 

metabolism; plasmid markers were enriched in quorum sensing and motility functions; and virus markers 

were enriched in functions related to virus replication and assembly. To identify hallmark markers — which 

can serve as strong evidence of a given sequence being classified as a plasmid or virus — we manually 

selected 967 plasmid and 14,626 virus markers annotated with functions directly related to core functions 

of these MGEs (such as conjugation genes for plasmids and capsid proteins for viruses). To provide 

additional context for MGE research, markers were also annotated using specialized databases for specific 

domains of interest (Supplementary Table 2). This resulted in the identification of 481 markers for genes 

involved in conjugation and 382 markers for antimicrobial resistance, annotated through alignment with 

the CONJscan24 and NCBIfam-AMRFinder25 databases, respectively. In addition, 741 markers for universal 

single-copy genes (USCGs), which are infrequently present in MGEs and can help reduce false positives, 

were identified through comparison with profiles from the BUSCO dataset26. 

To allow taxonomic assignment of viruses using geNomad’s markers, virus taxa from the ICTV (Virus 

Metadata Resource version 19) were assigned to 85,315 markers. This was accomplished by aligning the 

markers to viral proteins from NCBI’s NR and then obtaining a consensus taxonomy for each one based on 

the taxonomy of its hits (details in the Methods section). The taxonomically-annotated markers can be used 

to assign virus sequences to a significant fraction of the viral taxa up to the family rank (Figure 2B, bottom), 

as at least one marker was assigned to 83.3% of the realms (the only realm missing is Ribozyviria), 100% of 

the kingdoms and phyla, 94.9% of the classes, 87.7% of the orders, and 61.8% of the families. Most of these 

markers were assigned to the Caudoviricetes class (93.1%), which dominates metagenomic data10, but other 

major taxa, such as Riboviria (2.8%), Nucleocytoviricota (2.2%), and Monodnaviria (0.7%), are also largely 

covered (Supplementary Table 2). 

Our marker selection process was designed to maximize the range of covered uncultivated genomes found 

globally. To evaluate the environmental breadth of geNomad's markers, we used them to scan a total of 2.3 

billion proteins from 28,865 metagenomes and 7,258 metatranscriptomes of various ecosystems. For each 

marker class (chromosome, plasmid, and virus-specific), frequencies in each ecosystem were used to build 

RadViz visualizations of the environmental distributions of the markers (Figure 2D). This revealed that 

while chromosome and plasmid-specific markers are generally not specific to any particular environment 

(high density near the center of the RadViz visualization and high average entropy of frequencies), virus-

specific markers tend to be found in restricted ecosystems (low density over the entire RadViz visualization 
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and low average entropy of frequencies). This suggests that the gene repertoire of uncultivated viruses is 

highly variable and highlights the importance of incorporating environmental data to develop a framework 

that can cover a large fraction of the virosphere. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531206doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.05.531206
http://creativecommons.org/licenses/by-nd/4.0/


geNomad outperforms other tools for plasmid and virus classification, and allows accurate taxonomic 

assignment of viruses 

 

Figure 3 | geNomad accurately identifies viruses and plasmids, and allows taxonomic assignment of viral 
genomes. (A, B) Classification performance of multiple plasmid (A) and virus (B) identification tools across 
sequence fragments of varying length. Performance was measured using the Matthews correlation coefficient 
(MCC). For each sequence range interval, tools were evaluated with five different test sets, each containing the 
sequences of one RC. Coloured circles represent the performances measured in each test set. Mean values are 
shown next to the circles. (C) Sensitivity of virus identification tools across major viral taxa at different ranks. The 
score cutoff of each tool was determined so that the false discovery rate was approximately 5%. (D) Virus taxonomic 
assignment performance. Bar lengths represent the number of sequence fragments assigned at a given taxonomic 
rank. Light blue represents sequences that were correctly assigned to their most specific rank (up to the family 
level); dark blue represents fragments that were assigned to the correct lineage, but to a rank that is above its most 
specific rank; red represents sequences that were assigned to the wrong lineage; the grey bar represents sequences 
that were assigned to any taxon. 

To evaluate the classification performance of geNomad and compare it to other virus and plasmid 

identification tools that use different approaches for sequence classification (Table 1), we used test datasets 

consisting of diverse sequence fragments with varying lengths (Supplementary Figure 5A). To minimize 
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overestimation of geNomad’s performance due to the presence of similar sequences in the train and test 

data, we randomly assigned RCs to five different data splits and performed cross-validation using the leave-

one-group-out strategy (more details in the Methods section), which forced sequences from the same RC to 

remain together in either the train or test sets. Performance metrics for all tools were measured five times, 

using each RC as the test set at a time. The following metrics were computed: precision (fraction of true 

plasmids/viruses among the sequences classified as plasmid/virus); sensitivity (fraction of the true 

plasmids/viruses that were classified as such); Matthews correlation coefficient (MCC, correlation between 

the true and predicted labels); and F1-score (harmonic mean of recall and precision). 

By inspecting the classification performance as a function of the similarity to the train data, we found that 

performance dropped amongst sequences that were more divergent from the train data. However, 

geNomad still performs rather well on unseen sequences (Supplementary Figure 5B), especially viruses, 

illustrating its potential for the discovery of new viral taxa. Measurement of geNomad’s performance on 

sequences with varying marker coverage (i.e., fraction of proteins assigned to markers) revealed that even 

those that were targeted by no or few markers were still detected due to the sequence branch of the 

algorithm (Supplementary Figure 5C). When compared to other tools, geNomad presented superior overall 

classification performance  across all sequence length ranges in both plasmid and virus classification tasks 

(Figure 3A and B, Supplementary Tables 3 and 4). The difference in performance was especially apparent 

in short sequences (< 6 kb): while the performance of most tools significantly declined due to the limited 

genetic information in such sequences, geNomad leveraged its extensive marker dataset and alignment-

free neural network to extract as much information as possible and maintain high sensitivity and precision. 

This highlights the usefulness of geNomad in metagenomic and metatranscriptomic assemblies, where 

most scaffolds are short. 

geNomad's calibration mechanism enhances the classification process by incorporating sample 

composition data and assigning estimated probabilities to each sequence, which reflect the likelihood of 

the sequence belonging to each class. By using calibrated scores instead of raw scores to assign labels, the 

average classification performance improves because biases introduced during model training are 

corrected. Indeed, our analysis showed that the plasmid classification performance increased significantly 

with the use of calibrated scores, particularly for shorter sequences (average ΔMCC: +11.8% for sequences 

< 3 kb, +5.6% for 3–6 kb, and +3.2% for 6–9 kb) (Supplementary Figure 5D). We also found that short virus 

sequences benefited from calibration, though the improvement was not as pronounced. These results 

showcase the effectiveness of the introduced calibration mechanism for improving classification quality. 

Plasmid classification is a challenging task due to the variable genetic makeup of these elements, their 

similarity to other mobile elements that can integrate into host chromosomes, and the lack of a standard 

for reporting plasmids in sequencing data. As a result, most evaluated tools (DeepMicrobeFinder27, PPR-

Meta28, PlasClass29, and viralVerify30) had low average classification precision (11.0–40.1%, Supplementary 

Table 3), even when classifying long sequences (Supplementary Table 4), as they often produced a high 

number of false positives that can impact downstream analysis. In contrast, PlasX6 had high precision 
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(81.6%), but low sensitivity (40.5%), which impairs the detection of plasmids in sequencing data. geNomad 

had the best overall performance by a significant margin (Figure 3A, MCC and F1-score in Supplementary 

Tables 3 and 4), with the highest sensitivity (89.8%) and the second highest precision (70.8%), after PlasX. 

It's worth noting that geNomad’s marker branch, which can be run independently, achieved a considerably 

higher precision than PlasX (91.2%). 

Most of the plasmid sequences in public databases are limited to a few taxa, such as Gammaproteobacteria 

and Bacilli, which can bias the training process if taxonomic imbalance is not taken into account. Because 

it was designed to reduce the effects of taxonomic representation biases during marker selection and 

training, geNomad is able to identify plasmids from underrepresented groups more accurately. A similar 

process was also used in PlasX. When compared to other plasmid identification tools, geNomad had the best 

performance across all appraised taxa (Supplementary Table 5). Notably, geNomad was the only tool to 

accurately identify the majority of Archaea plasmids (92.54%), which were frequently missed by other tools 

(3.1–55.3%), and it greatly outperformed other tools for identifying plasmids from major phyla such as 

Cyanobacteria (geNomad: 96.7%, other tools: 6.3–64.3%), Actinobacteria (geNomad: 95.5%, other tools: 2.5–

61.9%), and Bacteroidota (geNomad: 86.4%, other tools: 2.4–69.2%). 

Plasmid identification algorithms can be affected by low quality plasmid annotations in public data. 

Extrachromosomal viruses and secondary chromosomes are often incorrectly labeled as plasmids in these 

databases, so it's important to carefully filter the data to train reliable models and assess classification 

performance (details in the Methods section). To evaluate if existing plasmid identification tools are prone 

to misclassifying viruses as plasmids — possibly due to contamination in the training data — we measured 

the fraction of viruses in our test dataset that were labeled as plasmids by the benchmarked tools 

(Supplementary Table 6). geNomad and PlasX had the best performances in this benchmark (1.7% and 

1.5%, respectively), while DeepMicrobeFinder and PlasClass performed the worst (16.0% and 64.4%, 

respectively). Of note, geNomad’s marker branch classified only 0.2% of the virus sequences as plasmids, 

which highlights the limitations of current alignment-free tools at this task and the importance of careful 

dataset curation. 

In virus classification, geNomad attained the best overall performance when considering all length strata 

(MCC: 95.3%, F1-score: 97.3%), followed by VirSorter231 executed with all models (MCC: 81.3%, F1-score: 

88.9%), VirSorter2 executed with default parameters (MCC: 79.7%, F1-score: 87.1%), and PPR-Meta (MCC: 

77.4%, F1-score: 86.6%) (Figure 3B, Supplementary Table 3). VIBRANT32, geNomad, VirSorter2 (default 

parameters), and viralVerify achieved the highest classification precision (97.5%, 97.3%, 94.7%, and 91.3%, 

respectively), while Seeker33, DeepVirFinder34, DeepMicrobeFinder, and PPR-Meta obtained the lowest 

scores (61.8%, 80.5%, 84.5%, and 88.5%, respectively). VIBRANT’s overall classification performance 

metrics appeared low (MCC: 36.0%, F1-score: 35.2%) due to its very low sensitivity when classifying short 

sequences (Figure 3B, Supplementary Table 4), a consequence of it not classifying sequences that encode 

less than four genes and not being designed to identify eukaryotic viruses (see paragraph below). 
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The development of tools that can accurately identify diverse viral taxa is challenging, as no genes are 

universally shared across the virosphere. Additionally, unequal representation of viral groups — illustrated 

by the dominance of tailed phages from the Caudiviricetes class — in sequencing data can bias classification 

models and prevent the discovery of underrepresented taxa. In a benchmark study using representative 

genomes from the ICTV, we found that geNomad outperformed other tools in all major taxa we evaluated 

(Figure 3C, Supplementary Table 7). Notably, geNomad was the only tool that achieved high sensitivity for 

viruses that encode an RNA-dependent RNA polymerase (Orthornavirae, 98.64%), retroviruses 

(Pararnavirae, 90.18%), and giant viruses (Megaviricetes, 94.74%) at a fixed false discovery rate of 5%. The 

only other tool to display sensitivity over 50% for all taxa was viralVerify, while the remaining tools failed 

to achieve this for at least two of the groups. When evaluating sensitivity across different host clades, we 

found that geNomad was the only tool that identified more than 90% of the viruses infecting bacteria, 

archaea, and multiple eukaryotic groups, while other tools struggled to identify viruses that infect at least 

two of the eukaryotic groups that were evaluated (Supplementary Table 8). In an additional benchmark 

where we measured classification sensitivity on a catalog of metagenomic Inovirus35, which are known to be 

challenging to detect automatically, geNomad (recall: 84.8%) also outperformed other evaluated tools 

(average recall: 29.9%, Supplementary Table 9). These results show that geNomad can be employed to 

identify a wide range of virus taxa infecting a variety of hosts, enabling the discovery of viruses that are 

often missed in metagenomic analyses, such as non-tailed phages and viruses that infect eukaryotes. It is 

worth noting that several of the tested tools (DeepVirFinder, PPR-Meta, Seeker, and VIBRANT) were trained 

only on phage data and are therefore not designed to identify viruses that don't infect prokaryotes. In fact, 

VIBRANT was a top performer for Caudoviricetes, Tokiviricetes, Tubulavirales, and Microviridae. 

We assessed the performance of geNomad's taxonomic assignment (Figure 3D, Supplementary Table 10) by 

assigning 116,250 artificially fragmented genomes of ICTV exemplar species to viral lineages using a 

modified marker dataset with modified taxonomic metadata to simulate novelty (see Methods for details). 

Of the processed fragments, the majority (80.3%) was successfully assigned to a viral lineage, with most 

being classified at the class (54.4%), order (13.6%), or family (10.1%) levels. Among those, 48.2% were 

correctly assigned to the most specific rank (up to the family level), 49.5% were under-classified (assigned 

to the correct lineage, but to a rank that is above its most specific rank), and only 2.3% were assigned to the 

wrong lineage. These results indicate that while geNomad may sometimes under-classify, it is reliable at 

assigning sequences to higher taxa. The unassigned fragments, which lacked hits to taxonomically-

annotated markers, were mostly shorter than 3 kb (80.6%), indicating that geNomad's marker-based 

approach will have limited taxonomic assignment sensitivity for short sequences. 
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Table 1. Classification methodology and average runtimes of plasmid and virus identification tools. Runtimes were 
measured across five executions using the hyperfine tool. A random selection of 10,000 metagenomic scaffolds 
(total of 18.3 Mb, IMG/M Taxon Object ID: 3300038405) was used as input for all tools. All speed measurements were 
performed in an Amazon EC2 instance (c5.12xlarge, SSD storage). SEM: standard error of the mean; CNN: 
convolutional neural network; LSTM: long short-term memory neural network. 

Tool Method Plasmid Virus/Provirus Runtime ± SEM (s) 

geNomad Hybrid ✓ ✓/✓ 241.73 ± 0.18 

geNomad (marker branch) Marker-based ✓ ✓/✓ 119.20 ± 0.12 

geNomad (sequence branch) Alignment-free (IGLOO) ✓ ✓/× 118.58 ± 0.10 

DeepMicrobeFinder Alignment-free (CNN) ✓ ✓/× 256.03 ± 0.30 

DeepVirFinder Alignment-free (CNN) × ✓/× 710.00 ± 1.75 

Phigaro Marker-based × ×/✓ 1,585.61 ± 3.23 

PlasClass Alignment-free (k-mer freq.) ✓ ×/× 20.50 ± 0.09 

PlasX Marker-based ✓ ×/× 1,965.15 ± 1.02 

PPR-Meta Alignment-free (CNN) ✓ ✓/× 374.41 ± 1.21 

Seeker Alignment-free (LSTM) × ✓/× 758.85 ± 2.93 

VIBRANT Marker-based × ✓/✓ 662.35 ± 9.39 

viralVerify Marker-based ✓ ✓/× 1,641.64 ± 8.12 

VirSorter2 Marker-based × ✓/✓ 6,303.27 ± 4.25 

VirSorter2 (all models) Marker-based × ✓/✓ 6,745.52 ± 10.14 
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Leveraging geNomad’s markers for sensitive and precise identification of proviruses 

 

Figure 4 | geNomad uses marker information to demarcate provirus boundaries. (A) Provirus identification 
starts by annotating the genes within a sequence with geNomad markers, which store information of how specific 
they are to hosts or viruses. These specificity values are then fed to a conditional random field model, which will 
score each gene using information from the markers in its surroundings. A score cutoff is used to demarcate viral 
islands, and islands that are close together are merged. Islands with few viral markers are discarded and the 
boundaries of the remaining islands are extended up until nearby tRNAs or integrases. (B) Distributions of the 
precision and sensitivity of multiple provirus-identification tools, measured at the gene-level for each provirus. 
Proviruses from the TIGER database were used as the ground truth for this benchmark. (C) Completeness and 
contamination estimates of demarcated proviral regions that did not overlap with proviruses in the TIGER database. 
Estimates for TIGER proviruses are shown with a grey background as a reference. 

Temperate phages can integrate into host genomes and form proviruses, which can greatly affect host 

metabolism and ecology36–38. Several approaches have been developed to demarcate integrated viruses 

within host sequences, including: identification of virus marker genes32, sequence alignment to databases 

of reference phage genomes39, comparative genomics40, and mapping of paired-end reads41. The sensitivity 

of methods that rely on comparing sequences to references is limited by the fact that such genomes 

represent a small fraction of the virosphere. While comparative genomics and read mapping can provide 

accurate coordinates of the provirus integration sites, they rely on the availability of adequate data, heavy 

computation, and are unable to detect proviruses that are not active. To achieve high sensitivity and speed, 

geNomad leverages its extensive marker dataset to identify proviruses based on the annotation of viral 

hallmarks (Figure 4A). 

To demarcate the coordinates of viruses integrated within host genomes, geNomad employs a conditional 

random field (CRF) model that uses contextual information to search for regions enriched in viral markers 

that are flanked by chromosome markers. The CRF model used in geNomad takes advantage of the high 
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gene coverage provided by the marker database to score a given gene, taking into account the level of 

specificity of the markers that were assigned to that gene and its neighbors. To filter out spurious viral 

islands (regions of consecutive genes that were labeled as viral), geNomad merges islands that are close 

together and then removes the ones with a low marker enrichment (that is, with few virus markers). Finally, 

because tRNAs and integrases are commonly found next to the edges of integrated elements due to the 

dynamics of site-specific recombination40, geNomad extends provirus boundaries up until neighboring 

tRNAs and/or integrases (identified using a supplementary set of 16 site-specific tyrosine integrases), 

improving the detection sensitivity of genes close to provirus edges, which sometimes include accessory 

genes, such as those encoding defense systems, that influence the phage-host dynamics42. 

We assessed geNomad’s provirus demarcation performance and compared it to that of other popular tools 

(Phigaro43, VIBRANT, and VirSorter2) using the TIGER dataset40, which contains precisely mapped 

integration sites across 2,168 prokaryotic genomes, as the ground truth (Figure 4B, Supplementary Table 

11). For each proviral region that was predicted by the tools being benchmarked, precision was measured 

as the fraction of genes that were located within TIGER proviruses. Sensitivity was measured for each TIGER 

provirus as the proportion of genes that were contained within the regions predicted by each tool. This 

benchmark revealed that geNomad was able to find more proviruses than the other tools and displayed high 

precision and sensitivity values. While Phigaro also showed high precision, it failed to detect a large number 

of proviruses and exhibited very low sensitivity. Conversely, VirSorter2 displayed very low precision — 

meaning that it left host genes within provirus boundaries — and high sensitivity. Not all of the predicted 

proviral regions overlapped with TIGER coordinates, since this dataset doesn’t include inactive phages nor 

proviruses that don’t integrate at tRNAs. To measure the quality of such predictions, we used CheckV44 

(version 1.0.1) to estimate the quality of each proviral region and found that geNomad outperformed other 

tools as the proviruses it demarcated tended to be more complete and have low contamination levels (i.e., 

few host genes) (Figure 4C, Supplementary Table 11). The completeness of most of these proviral regions 

was, however, notably lower than the proviruses contained in TIGER, indicating that they likely represent 

inactive proviruses that underwent gene loss. 

In an additional benchmark, we compared provirus prediction tools using comparative genomics. We 

employed PPanGGOLiN45 (version 1.2.74) to create a Pseudomonas aeruginosa pangenome from 442 genomes 

and to identify its core genes, which are persistent across genomes and are not expected to be found within 

proviruses. Next, we measured the fraction of core genes in each predicted provirus region as a proxy for 

contamination and found that, compared to the other evaluated tools, geNomad retrieved significantly 

more proviruses that tended to have low contamination levels (Supplementary Figure 6A, Supplementary 

Table 11). To illustrate the importance of precise boundary demarcation for downstream biological 

interpretation, we show that geNomad was able to find provirus-encoded defense systems — such as DarTG46 

and Hachiman47, detected with DefenseFinder48 (version 1.0.9) — that were missed by overly conservative 

tools (Phigaro and VIBRANT) while excluding core host genes that were left within prophages by VirSorter2. 
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DarTG was found right next to an integrase, illustrating how leveraging tRNAs and integrases for boundary 

prediction can improve interpretation of the phage-host interactions (Supplementary Figure 6B). 

geNomad is fast and user-friendly, allowing analysis of large datasets 

To enhance user experience and make geNomad accessible to a wide audience, we designed it to be user-

friendly and efficient, allowing it to run quickly on a broad range of hardware. geNomad can be installed 

locally though diverse methods (pip, Conda, and Docker), facilitating its installation in a variety of 

scenarios. In regards to user experience, we designed an informative command-line interface that contains 

detailed explanations of the commands and a detailed logging of the executions. To make geNomad more 

accessible to those who may not be familiar with command-line interfaces, we have also made it available 

as a web application through the NMDC EDGE platform (available at https://nmdc-

edge.org/virus_plasmid/workflow). This allows users to upload their data and visualize the results directly 

in their web browser. Additionally, the integration with NMDC EDGE enables geNomad to be easily 

incorporated into larger workflows that include other tasks, such as assembly and binning. 

In bioinformatics analysis, execution speed can often be a bottleneck due to limited access to powerful 

hardware and time constraints faced by researchers. To address this, we aimed to make geNomad as fast as 

possible through several approaches: (1) employing a dereplication approach to produce a marker dataset 

that covers as much as possible of the protein space with a reduced number of profiles; (2) utilizing 

MMseqs2 profile search, which is more sensitive than standard protein searches and is much faster than 

the commonly used hmmsearch command; and (3) implementing the IGLOO architecture for the sequence 

branch classifier, rather than traditional architectures like CNNs and LSTMs that are more time-consuming. 

In a benchmark measuring the time it took to classify 10,000 metagenomic scaffolds (Table 1), geNomad 

outperformed all but one of the evaluated tools, taking significantly less time than VirSorter2 (26.1× 

improvement), PlasX (8.1×), viralVerify (6.8×), and VIBRANT (2.7×). The only tool that was faster was 

PlasClass, which only uses k-mer frequencies for classification and exhibited low classification 

performance in our benchmarks (Figure 3A). It's worth noting that geNomad's marker and sequence 

branches can be run independently, reducing runtime by half while still maintaining good classification 

performance (Supplementary Table 3), in cases where time is a concern. These results demonstrate that, 

due to its speed, geNomad can be used in varied hardware and can be scaled to process large datasets. In 

fact, geNomad was recently used to process approximately 260 million scaffolds from IMG/M to gather the 

data used to build the IMG/VR v410 and IMG/PR databases, which represent the largest available databases 

of virus and plasmid sequences, respectively. In the following sections, we highlight the identification of 

previously undetected genomes of RNA viruses and giant viruses, two groups that especially benefit from 

geNomad’s classification framework. 
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geNomad allows sensitive detection of RNA viruses in natural environments 

 

Figure 5 | geNomad allows the discovery of RNA viruses and giant viruses in environmental sequencing data. 
(A) Histograms showing the geNomad score distribution of three groups of scaffolds of the Sand Creek Marshes 
metatranscriptomes: scaffolds that binned with RdRP-encoding sequences (top row, in green); scaffolds that 
contain the RdRP gene (middle row, in blue); and the remaining scaffolds (bottom row, in orange). The median 
geNomad score and the fraction of scaffolds classified as viral is indicated for each group. (B) Genome maps of 
selected sequences that were classified as viral by geNomad. Two pairs of co-occurring Orthornavirae scaffolds are 
represented (Marnaviridae and Cystoviridae bins). Genes targeted by geNomad markers are coloured, while genes 
that do not match any marker are shown in grey. Rows and colors match those of panel A. (C) Number of scaffolds 
assigned to Nucleocytoviricota orders across multiple ecosystems (left bar plot). Sequences were identified by 
geNomad in a large-scale survey of metagenomes of diverse ecosystems. Only scaffolds that are at least 50 kb long 
or more were evaluated. Bar colors represent the ecosystem types where the sequences were identified. The 
phylogenetic diversity (PD) fold change is shown on the right bar plot. PD fold change values correspond to the ratio 
between the total PD of trees reconstructed with and without geNomad-identified giant viruses. (D) Maximum-
likelihood phylogenetic tree of soil giant viruses identified with geNomad (brown tree tips). Reference sequences 
from GenBank and from a previous metagenomic survey (GVMAGs) were included and the ones that were 
sequenced from soil samples are indicated with turquoise tree tips. Tree tips that are not colored represent 
representative genomes sequenced from samples obtained from other ecosystems. The ranges corresponding to 
different Nucleocytoviricota orders are represented using distinct colors. 

Recent studies have revealed a previously undetected diversity of RNA viruses from the Orthornavirae 

kingdom by performing large-scale metatranscriptome surveys49–51. However, these surveys are limited by 

their reliance on detecting the RNA-dependent RNA polymerase (RdRP) hallmark protein, thus 

systematically overlooking genome segments that do not encode RdRP and fragmented scaffolds missing 

this gene. As geNomad leverages an extensive set of markers covering diverse functions (1,293 out of the 

1,906 markers assigned to Orthornavirae are not functionally annotated as RdRP) and an alignment-free 

classification model that doesn't rely on gene families, we tested whether it could reliably detect segments 
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or fragmented sequences of RNA viruses that are missing the RdRP protein. To evaluate this, we gathered 

likely RNA virus sequences that do not encode RdRP by binning metatranscriptomes from microbial 

communities in the Sand Creek Marshes52 based on high read coverage correlation with RdRP-encoding 

scaffolds. The co-occurrence of a given sequence with another encoding the hallmark protein across 

multiple samples suggests that they came from the same Orthornavirae genome. Importantly, this binning-

based approach does not rely on features used by geNomad for classification to identify those scaffolds, 

allowing us to avoid potential biases in our analysis. 

In total, we identified 623 scaffolds that co-occurred with RdRP-encoding sequences across 34 

metatranscriptome assemblies. The majority of these scaffolds (98.1%) were classified as viruses, indicating 

that geNomad is capable of identifying sequences of RNA virus genomes even when they lack the RdRP 

hallmark protein (Figure 5A). When evaluating how other tools classify these sequences we found that, on 

average, only 43.3% of the scaffolds were classified as viral and that alignment-free models presented a 

higher sensitivity (Supplementary Table 12), highlighting that such scaffolds are often not targeted by 

markers. As expected, sequences containing RdRP genes were almost always classified as viral (99.9%, 

Figure 5A). Inspection of pairs of co-occurring scaffolds revealed that they fell into two categories: (1) linear 

genomes that were assembled into two sequence fragments, one of which lacked the RdRP gene 

(Marnaviridae bin in Figure 5B); and (2) segmented genomes, where the genome is encoded across multiple 

DNA molecules, only one of which encodes the RdRP (Cystoviridae bin in Figure 5B). Closer examination of 

these sequences revealed that they encoded domains associated with viral function, such as helicases, 

proteases, and structural proteins. Many of these domains were covered by geNomad's markers (coloured 

genes in Figure 5B), demonstrating that the use of an extensive set of protein profiles enabled geNomad to 

sensitively identify fragments of RNA virus genomes. Among sequences not encoding RdRP and not binned 

with RdRP-encoding scaffolds, yet classified as viruses by geNomad, we found fragments of RNA virus 

genomes missing the RdRP gene (Leviviridae scaffold in Figure 5B) and transcripts of DNA viruses 

(Caudoviricetes scaffold in Figure 5B). 

Application of geNomad in metagenomic data significantly expands the diversity of giant viruses 

Giant viruses of the Nucleocytoviricota phylum possess large and complex genomes, and their virions can be 

as large as the cells of many bacteria and archaea53. Due to their expansive genomes and diverse genetic 

repertoires, the identification of these viruses through high-throughput methods is challenging and often 

relies on computationally expensive phylogenetic analyses and metagenomic binning, which limits the 

search space54,55,15. To make geNomad capable of sensitive detection of giant viruses in sequencing data, we 

expanded the diversity of Nucleocytoviricota in the training data by including genomes identified in a 

previous metagenomic survey (Schulz et al. 2020)15. Additionally, we included classification features 

specifically designed to enhance their detection, such as frequency of giant virus-specific markers and the 

TATATA motifs (Supplementary Table 1, Supplementary Note). As a result, we found that geNomad 

significantly outperformed other tools in the classification of Megaviricetes giant viruses (Figure 3C). 
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To assess geNomad’s capability to uncover new clades of giant viruses in sequencing data, we applied it to 

28,865 metagenome assemblies from the IMG/M56 database. Scaffolds classified as virus by geNomad that 

were at least 50 kb in length were further analyzed using the GVClass pipeline, which placed 

Nucleocytoviricota scaffolds in a phylogenetic context by identifying a set of conserved protein families and 

reconstructing gene trees together with reference genomes. A total of 11,414 scaffolds identified by 

geNomad were phylogenetically placed in the Nucleocytoviricota tree (median length: 73.3 kb, interquartile 

range: 58.6–102.7 kb, Figure 5C, Supplementary Table 13). Other tools classified, on average, 71.2% of these 

scaffolds as viral (Supplementary Table 14). To compare the results with those obtained using the pipeline 

described in Schulz et al. (2020), we examined metagenomes that were processed using both methodologies 

and found that 1,562 sequences (43% of total) were only detected by geNomad, 1,976 scaffolds (55%) were 

identified by both methodologies, and only 74 (2%) were found exclusively in the previous survey, 

demonstrating that geNomad allowed increased recovery of Nucleocytoviricota sequences. 

The majority of the giant virus sequences identified by geNomad were found to belong to the 

Mesomimiviridae family (n = 6,372) of the Imitervirales order (n = 8,915), which includes viruses of 

haptophytes and ochrophytes57 (Figure 5C, Supplementary Table 13). By measuring the increase in 

phylogenetic diversity brought by scaffolds from this survey, we found that the diversity of multiple orders 

was significantly expanded (Figure 5C, Supplementary Table 13), particularly that of Asfuvirales (2.7× 

increase) and Algavirales (2.3× increase). Within metagenomes from soils, an understudied niche for giant 

viruses58, we identified 235 additional Nucleocytoviricota scaffolds, up from 16 metagenomic bins reported 

in the previous survey. Phylogenetic reconstruction of these soil giant viruses revealed that they include 

several novel clades of Imitervirales, Pimascovirales, and Asfuvirales that do not have representatives in 

GenBank or Schulz et al. (2020) (Figure 5D), suggesting that the underlying diversity of Nucleocytoviricota in 

soil is greatly underestimated. 

Conclusion 

Identifying plasmids and viruses in sequencing data is a crucial process, as it sheds light on the diversity of 

these mobile elements, their impact on the evolution and ecological interactions of cellular organisms, and 

facilitates high-throughput monitoring of clinically-relevant strains. Here, we present geNomad, a novel 

computational framework that enables the identification, annotation, and classification of plasmids and 

viruses in sequencing data. This is supported by a database of marker protein profiles that are richly 

annotated in terms of functional and taxonomic information. As a result, this framework has broad 

application for sequence classification and annotation, allowing, for example, end-to-end identification of 

conjugative plasmids that carry AMR genes. geNomad incorporates innovative concepts such as a hybrid 

classification process that combines alignment-free and gene-based approaches in a principled manner, 

and a score calibration algorithm that enhances the quality and interpretability of results and can be applied 

in various computational biology applications relying on machine learning. Given its improved 

classification performance and computational efficiency compared to other tools, as well as its ability to 
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taxonomically classify viruses and functionally annotate genes, we anticipate geNomad will be a valuable 

resource for the plasmid and virus research communities. We also foresee that it will drive further 

exploration of the virosphere and foster new initiatives to uncover the diversity and ecology of plasmids in 

natural environments, an area that has often been overlooked. 

While geNomad provides significant performance improvements compared to other tools, downstream 

quality assessment of the predictions is highly recommended as automated sequence classification 

algorithms are inherently susceptible to false positives and benchmarks cannot account for all the diversity 

present in real metagenomics samples. For instance, fragments of genomic islands, transposons, and other 

mobile genetic elements can have gene content similar to some plasmids, leading to incorrect classification. 

Manual or automated44 quality assessment of virus predictions are also important to identify virus-derived 

elements, such as gene transfer agents59 and tailocins60, that are susceptible to be flagged as proviral regions 

by geNomad since the algorithm does not make a distinction between active and domesticated phages. 

Therefore, acknowledging such limitations, geNomad has been designed to provide users with abundant 

information on top of classification results, allowing them to analyze data based on their own criteria. 

In the future, geNomad can be improved by incorporating new knowledge on plasmid and virus diversity 

and biology. As more sequence data become available, new classification models can be trained, and 

markers can be added or removed to improve the classification performance of new and existing groups of 

plasmids and viruses. Additionally, new features can be incorporated to provide a more comprehensive 

toolkit for mobile genetic element (MGE) discovery and annotation. First, binning data could be leveraged 

to increase the amount of information available for a given genome during classification, an approach that 

has been shown to improve the classification of phages61. This would be particularly useful for giant viruses, 

which commonly require metagenomic binning as their genomes are rarely recovered on a single scaffold 

due to their relatively large genome sizes62. Second, geNomad could benefit from read mapping to improve 

the precision of provirus delimitation41 and to allow detection of integrative and conjugative elements, 

which, despite their similarities with plasmids, are frequently overlooked in metagenomic studies as 

current identification methods rely on comparative genomics40,63. Finally, additional models could build 

upon geNomad's markers to further annotate viruses and plasmids, for example, by classifying phages 

based on their lifestyle (temperate or virulent) and plasmids based on their motility (conjugative, 

mobilizable, or non-mobilizable), providing users with additional biological information about the 

identified MGEs. 

Methods 

Database of chromosome, plasmid, and viral sequences for training and benchmarking 

Prokaryotic genomes (2,886 bacterial and 336 archaeal) were retrieved from GTDB64 (release 202). To reduce 

taxonomic bias and to limit computational overhead, we only used the genome with the highest quality 

score (completeness − 5 × contamination − 0.05 × no. scaffolds) per GTDB family. Provirus and provirus-like 
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regions were identified using VirSorter2 (version 2.2.2), Phigaro (version 2.2.6), and VIBRANT (version 

1.2.1) and removed from the scaffolds. Plasmids were removed by identifying sequences that either had the 

word “plasmid” in their header or that shared at least half of their genes with any plasmid in the PLSDB 

database65 (release 2020_11_19). Eukaryotic genomes were obtained from the TOPAZ dataset66, which is 

composed of 988 metagenome-assembled genomes of small eukaryotes that are more likely to be found in 

metagenomic assemblies. To reduce taxonomic imbalance, we clustered these genomes based on their AAI 

into 385 clusters using the Leiden algorithm67 (as implemented in the igraph Python package, resolution 

parameter = 0.5) and picked the genome with the least contamination (as estimated by the study’s authors) 

as the representative. 

Plasmid sequences were obtained from the PLSDB database (release 2020_11_19), RefSeq (archaeal 

plasmids, retrieved in 2021/07/23), and a dataset of complete plasmids identified in metagenomic data 

(IMG/M Taxon Object ID: 3300053491). To identify chromosome sequences that were mislabeled as 

plasmids, we performed gene prediction with Prodigal (version 2.6.3, parameters: “-m -p meta”) and used 

hmmsearch68 (HMMER version 3.3.2, parameter: “--cut_ga”) to match the proteins to sets of essential single-

copy genes (ar122 and bac120, used for phylogenetic reconstruction in GTDB). Scaffolds encoding two or 

more essential genes were discarded. 

To further remove viral scaffolds from the prokaryotic and eukaryotic chromosome datasets, as well as 

phage-plasmids from the plasmid data, we performed an additional filter using HMMs of viral hallmarks 

from VirSorter2 and viral and host markers from CheckV (database version 1.0). Briefly, we used 

hmmsearch (parameter: “-E 1e-5”) to match Prodigal-predicted proteins from all chromosome and plasmid 

scaffolds to these HMMs and discarded the sequences that encoded any viral hallmark or that had no. viral 

markers ≥ 0.5 × no. host markers. 

The virus sequence dataset was assembled using data from GenBank (retrieved on 2021/07/06), IMG/VR v369, 

Nucleocytoviricota from Schulz, F. et al. (2020)15, Leviviridae from Callanan, J., et al. (2020)70, Asgard archaea 

viruses from Medvedeva, S. et al. (2022)71, archaeal tailed viruses from Liu, Y. et al. (2021)72, and 

Orthornavirae from Neri, U. et al. (2022)51. To remove short genome fragments and contaminants from the 

IMG/VR sequences, we only retained sequences that contained direct terminal repeats or that fulfilled the 

requirements to be considered high-quality according to the MIUViG standard73. Because the 

Nucleocytoviricota genomes from Schulz, F. et al. consist of metagenomic bins that might contain 

contamination, we opted to keep only the contigs that encode the major capsid protein (MCP), identified 

using hmmsearch (parameter: “-E 1e-5”) to match their proteins to the set of MCP HMMs provided in the 

original study. 

To reduce sequence redundancy, plasmid and virus scaffolds were de-replicated using pairwise average 

nucleotide identities (ANI), computed as described in Nayfach et al. (2021)44 (code available at 

https://bitbucket.org/berkeleylab/checkv/src/master/scripts/anicalc.py). Specifically, we used Megablast74 

(version 2.11.0+) to perform all-versus-all nucleotide alignments and computed the pairwise ANI as the 

length-weighted average identity of all the matches between a pair of sequences. Next, scaffolds with ANI ≥ 
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97% over at least 95% of the length of the shorter sequence were clustered using a greedy algorithm, as 

previously described75, and the longest sequence within each cluster was selected as the representative. 

Scaffolds shorter than 2,000 bp were discarded. In total, the final selection contained 300,990 sequences 

from prokaryotic chromosomes, 42,595 sequences from eukaryotic chromosomes, 41,424 plasmid 

sequences, and 240,411 virus sequences. 

To account for the taxonomic representation imbalance of public databases, plasmid and virus sequences 

were structured into reference clusters (RCs) containing related sequences. The RCs would serve two main 

purposes: (1) to minimize representation bias in model training, by downweighting the sequences within 

large RCs to that the total weight of each RC was the same; (2) to allow us to perform an informed cross-

validation splits6, where the sequences of a given RC will remain together in either the train or test sets, 

allowing us to measure geNomad’s performance on novel sequences. To obtain the RCs, we computed the 

AAI between all pairs of plasmids and viruses and built a network using these values as edge weights (code 

available at https://github.com/apcamargo/bioinformatics-snakemake-pipelines/tree/main/contig-aai-

pipeline). Next, we employed the Leiden algorithm to cluster the scaffolds, tuning the resolution parameter 

to make the average within-cluster AAI as close to 95% as possible. In total, we obtained 32,134 plasmid RCs 

and 215,618 virus RCs. Because prokaryotic and eukaryotic scaffolds are organized in genomes, we opted to 

treat all the sequences within a given genome as members of an effective RC. The RCs were randomly 

assigned to five distinct data splits that would be used for benchmarking. 

Given that metagenomic assemblies are mostly comprised of short sequence segments, we created a dataset 

of artificially fragmented sequences that would be used for model training and evaluation. We first built an 

empirical length distribution from all public IMG/M metagenomes (as of 2021/09/11) and truncated the 

distribution to a minimum of 3,000 bp. Next, we split the sequences of our final selection into fragments 

whose lengths were randomly drawn from the distribution. Sequences shorter than 3,000 bp were left 

untouched. 

Across all analyses, we obtained the AAI by performing protein prediction with Prodigal (version 2.6.3, 

parameters: “-m -p meta”) and then carrying out all-versus-all protein alignments with DIAMOND76 (version 

2.0.15, parameter: “--sensitive”). Pairwise AAI values were then computed as the length-weighted average 

identity of the reciprocal best hits of pairs of scaffolds that share at least 75% of the proteins of the shortest 

sequence. Only matches with E-value ≤ 0.001, and query and target alignment coverage ≥ 50% were allowed. 

Marker profile database 

To build a comprehensive dataset of protein profiles that could be used to identify diverse plasmids and 

viruses, as well as to identify provirus boundaries, we gathered protein alignments from external sources 

and built de novo clusters from a diverse collection of protein sequences. Alignments were retrieved from 

the following external sources: Pfam-A seed alignments (release 34.0), TIGRFAM (release 15.0), ECOD77 

(release 20210713), EggNOG Bacteria/Archaea/Virus (version 5), VOGdb (release 206, retrieved from 

https://vogdb.org/), PHROG78, efam and efam-XC, CONJscan, double jelly-roll MCPs from Yutin, N. et al. 
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(2018)79, Lavidaviridae MCPs and core proteins from Paez-Espino, D. et al. (2019)80, Inoviridae protein families 

from Roux, S. et al. (2019)35, Leviviridae core proteins from Callanan, J., et al. (2020)70, and RNA-dependent 

RNA polymerases from the RVMT dataset51. 

De novo protein clusters were built from 232,031,767 protein sequences retrieved from IMG/VR v3, GTDB 

(release 202) species representatives, GenBank viruses (retrieved in 2021/07/06), PLSDB (release 

2020_11_19), and complete metagenomic plasmids (IMG/M Taxon Object ID: 3300053491). To reduce 

computational overhead and prevent the formation of low diversity clusters, we first de-replicated proteins 

at 95% identity using MMseqs2 linclust81 (version 13-4511, parameters: “--kmer-per-seq 80 -c 1.0 --cluster-

mode 2 --cov-mode 1 --min-seq-id 0.95”). Next, we clustered the de-replicated protein sequences with 

MMseqs2 cluster, requiring a minimum 80% bidirectional alignment coverage (parameters: “-s 5.5 -e 1e-5 -

c 0.8 --cov-mode 0 --cluster-mode 0 --max-seqs 5000 --min-seq-id 0.5 --cluster-reassign 1”). Finally, we 

performed multiple sequence alignment of all the 786,782 clusters containing at least 20 proteins using 

Kalign82 (version 3.3.1). Since we wanted to maximize the profile coverage of underrepresented viral groups, 

we performed independent clustering of the proteins obtained from the Nucleocytoviricota from Schulz, F. 

et al. (2020), Asgard archaea viruses from Medvedeva, S. et al. (2022), archaeal tailed viruses from Liu, Y. et 

al. (2021), and unannotated domains of polyproteins from the RVMT dataset. For these datasets, we allowed 

clusters to contain as few as four proteins. 

To identify the protein profiles that are informative for sequence classification (hereinafter markers), we 

measured the specificity of the 1,425,477 profiles by computing the weighted number of matches of each 

profile to each class (chromosome, plasmid, and virus). We first assigned weights to each sequence in such 

a way that the total weight of each RC within each class would be the same and that the total weight of the 

three classes would also be identical. Next, we converted the protein profiles into HMMs and used 

hmmsearch (parameter: “-E 1e-5”) to match them to Prodigal-predicted proteins from the sequence dataset. 

Finally, we counted the number of matches of each profile to each class taking into account the RC weights 

and scaled the counts within each class so that the median profile count would be the same for the three 

classes. Scaled counts were used to compute each profile’s Pielou’s specificity — a single summary of the 

profile’s specificity — and specificity measures (SPM) — which measure how specific the profiles are to each 

class — using the tspex83 tool (version 0.6.2). 

To reduce the redundancy of the protein profile set, we performed a de-replication process to identify 

groups of profiles that target similar sets of proteins. To do that, we used the HMMs to generate artificial 

protein sequences with the hmmemit command (parameter: “-N 10”) and used hmmsearch (parameter: “-E 

1e-5”) to align the HMMs to all artificial protein sequences. Next, to measure the empirical redundancy of 

all possible pairs of protein profiles, we employed the SetSimilaritySearch Python package 

(https://github.com/ekzhu/SetSimilaritySearch) to compute the cosine similarity of all pairs of profiles, 

based on the identity of their hits. Finally, we identified groups of profiles that target similar sets of proteins 

by clustering them using the Leiden algorithm (resolution parameter = 0.25) and selected the most specific 

profile of each cluster, based on their Pielou’s specificity, as its representative. 
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To select the markers that would be used for classification, we required protein profiles that had either 

Pielou’s specificity ≥ 0.4 or the maximum SPM (among the three classes) ≥ 0.75. To prevent the selection of 

profiles that target genes from genomic islands (which are enriched in mobile elements) as chromosome 

markers, we required chromosome-specific profiles to be highly prevalent by only selecting the ones that 

were above the median of the count distribution. For plasmid and virus markers, we required profiles to be 

above the first quartile of the distribution. As it was previously observed that eukaryotic sequences are 

prone to be misclassified as viral, we performed a negative selection of virus-specific profiles that 

frequently matched eukaryotic proteins. To do that, we first retrieved all the proteins that comprised 

eukaryotic ortholog groups in OrthoDB84 (version 10.1) and removed the ones that corresponded to typical 

viral genes, resulting in a total of 16,928,157 eukaryotic proteins. In addition, we also obtained the sequences 

of 159,003 proteins that were previously shown to have been horizontally transferred from viral to 

eukaryotic genomes85. We matched HMMs of virus-specific markers to the retrieved protein sequences 

using hmmsearch and counted the number of hits for each HMM. Profiles that matched at least 200 OrthoDB 

eukaryotic proteins or at least 10 horizontally transferred proteins were removed from the final marker 

selection. In total, 227,897 profiles were selected to be used in geNomad for distinguishing between 

chromosome, plasmid, and virus sequences. For benchmark purposes we repeated this process five 

additional times, using only the train sequences of each data split to perform the profile selection. 

To assign functional annotations to the geNomad protein profiles, we used HHblits86 (version 3.3.0) to align 

them with HMMs from Pfam-A (release 35.0), TIGRFAM (release 15.0), KEGG Orthology (release 98.0), COG 

(release 2020), CONJscan, NCBIfam-AMRFinder (release 2022-10-11.2), and Bacteria and Archaea near-

universal single-copy orthologs from BUSCO (version 5). We accepted hits with probability ≥ 90%, E-value 

≤ 0.001, and target coverage ≥ 60%. Only the best hit to each database was kept, apart from Pfam, for which 

we allowed multiple non-overlapping hits. Names and Gene Ontology terms were assigned to geNomad 

markers by transferring them from the accepted Pfam, TIGRFAM, and KEGG Orthology hits. GO enrichment 

for each class was appraised using the Kolmogorov–Smirnov test (as implemented in the hypeR87 package, 

version 1.13.0) on lists of markers sorted by the SPM of each class. REVIGO88 was used to generate 

visualizations of the enriched GO terms. 

To assign ICTV taxa to geNomad markers, we first built a protein database from viral sequences retrieved 

from NCBI NR (in 2022/05/19) and decorated the proteins with a custom taxdump generated from ICTV’s 

VMR 19 (details in Supplementary Note) using TaxonKit89 (version 0.11.1). We then used MMseqs2 to align 

geNomad’s markers to the viral protein database (parameters: “-s 8.2 -e 1e-3”) and employed taxopy (version 

0.9.2, available at https://github.com/apcamargo/taxopy) to assign a single taxon to each marker by 

aggregating the taxonomic lineages of all the hits of each marker using the “find_majority_vote” function. 

Because viruses of the Nucleocytoviricota phylum encode homologs of bacteriophage proteins90, we raised 

the minimum fraction parameter to 0.85 to assign taxonomy to markers that were initially assigned to 

Nucleocytoviricota but matched at least one Caudoviricetes protein. For benchmarking purposes, we 

simulated taxonomic novelty by masking proteins that were similar to the ones encoded by ICTV exemplar 
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species. This was achieved by conducting a separate round of taxonomic assignment where we ignored the 

hits to proteins that had ≥ 60% identity to proteins of exemplar species. 

Ecosystem distribution of markers 

The distribution of geNomad’s markers across ecosystems was assessed by mapping the markers to proteins 

from public metagenomes and metatranscriptomes (retrieved from IMG/M on 2022-04-10) using MMseqs2 

protein-profile search. The marker frequency matrix was then normalized using DESeq291 (version 1.34.0), 

by setting the size factor of each ecosystem (according to GOLD’s ecosystem classification92) to the total 

number of proteins in it. Next, markers that mapped to less than 10 proteins were filtered out and DESeq2’s 

variance stabilizing transformation was employed to transform the frequency matrix. To generate the 

RadViz visualizations from the transformed matrix, the Radviz R library (version 0.9.3) was used. 

Classification models 

To train the gene-based classifier, we first predicted the proteins encoded by the sequence fragments using 

prodigal-gv (version  2.7.0, parameter: “-p meta”, available at https://github.com/apcamargo/prodigal-gv) 

and then assigned geNomad markers to them using MMseqs2’s protein-profile search (parameters: “-s 6.4 -

e 1e-3 -c 0.2 --cov-mode 1”). Next, we computed, for each sequence, a total of 25 features derived from the 

gene structure and marker annotation (full list and description in Supplementary Note) and used them to 

train a decision forest classification model with the XGBoost93 library (version 1.5.1, parameters: “eta=0.2, 

max_depth=10, n_estimators=135”). Feature selection was performed using the Boruta algorithm and SHAP 

importance values, as implemented in the shap-hypetune Python package (version 0.2.4, “BoostBoruta” 

function). Hyperparameter tuning (learning rate, tree depth, and number of trees) was performed with a 

random grid search (“BoostSearch” function in shap-hypetune). 

The sequence-based classifier was trained using a two-step supervised contrastive learning approach94. In 

the first step we trained an IGLOO encoder to learn to produce vector representations of nucleotide 

sequences in such a way that sequences of the same class will tend to be clustered together and separate 

from sequences of different classes. To achieve this, input sequences are converted into 4-mer vectors (step 

size = 1) that are one-hot-encoded and zero-padded to 5,997 elements, which correspond to the number of 

4-mers in a 6 kb sequence. These inputs are then fed to an IGLOO encoder, trained using the supervised 

contrastive loss, that produces 512-dimensional representations. In the second step, we trained a dense 

neural network classifier on top of the IGLOO representations using a focal loss95, which forces the model 

to focus on hard-to-classify sequences. For inference, sequences longer than 5,997 bp are split into multiple 

non-overlapping windows whose scores are averaged at the end of the classification. To account for class 

imbalance and taxonomic bias during the training of both the encoder and classifier models, sequences 

were weighted in accordance with their RC. For both models, training was conducted using the Adam 

optimizer with gradient centralization96. Hyperparameter tuning (k-mer size, number of IGLOO patches, 

number of filters in IGLOO’s convolutional layers, size of the filters, dimensionality of the classifier hidden 

layer) was performed with KerasTuner (version 1.1.0) using the HyperBand algorithm97. 
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The outputs of the gene-based and sequence-based classifier are aggregated by a small feedforward neural 

network, which uses an attention mechanism to weight the contribution of each model towards the final 

scores. Briefly, we trained a model that encodes in an attention matrix A the reliability of the gene-based 

classifier, estimated from the relative marker frequency within each sequence. To aggregate the results of 

the two classifiers, the scores generated by them are scaled according to their expected reliability encoded 

in A, and then averaged and fed to a dense layer with softmax activation. 

For benchmark purposes we trained the gene-based classifier, sequence-based classifier, and the 

aggregator model five additional times, using the train data and the selected markers of each data split. The 

models used for the remaining analysis were trained with the entire dataset. 

Score calibration mechanism 

To train the model underlying geNomad’s score calibration, 1,000,000 artificial communities with varying 

proportions of chromosome, plasmid, and virus sequences were generated by random sampling of the train 

dataset. For each community, scores were calibrated using an isotonic regression and the empirical 

composition was obtained by using geNomad to predict the most likely class of each sequence. Because 

isotonic regressions are dataset-specific, a regression feedforward neural network was trained to predict 

calibrated scores from the empirical composition and uncalibrated scores of a given community. The model 

was trained with the Adam optimizer and mean squared error loss. 

Provirus identification 

To identify regions that correspond to proviruses within host chromosomes, geNomad employs a CRF 

model that was trained on a dataset of mock proviruses built from prokaryotic chromosome sequences and 

phage genomes. The CRF takes as input the chromosome and virus SPM values of the genes annotated with 

geNomad markers and computes the conditional probability of a sequence of states (chromosome or 

provirus). Genes are then assigned to their most likely states, forming provirus islands — that represent 

regions that are enriched in virus markers. To prevent having proviruses split into multiple islands due to 

incomplete marker coverage, provirus islands that are separated by short gene arrays (less than 6 genes or 

2 chromosome markers) are merged. Next, provirus boundaries are refined by extending them to the closest 

tRNA (identified with ARAGORN98, version 1.2.41) within 5 kb and integrase (identified using MMseqs2 

profile search) within 10 kb, as long as there are no chromosome markers between the original edge and 

the new putative coordinate. The 16 tyrosine integrase profiles used for integrase identification were 

manually selected from the CDD database. Finally, islands with few viral markers, which usually are not 

bona fide proviruses, are filtered out by removing the regions where the sum of the virus SPM of the markers 

is below a certain threshold. 

Performance benchmarks 

The following tools were included in our benchmarks: geNomad (version 1.0.0), DeepMicrobeFinder 

(“hybrid” model, version 1.0.0), DeepVirFinder (version 1.0), PPR-Meta (version 1.1), Seeker (version 1.0.3), 
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VIBRANT (version 1.2.1), viralVerify (version 1.1), VirSorter2 (version 2.2.3), Phigaro (version 2.3.0), 

PlasClass (version 0.1), and PlasX (commit 7349226). The tools were executed with default parameters and 

installed following the authors’ instructions, with the exception of PPR-Meta, which was executed through 

a Docker container. VirSorter2 was also executed with the “--include-groups 

dsDNAphage,NCLDV,RNA,ssDNA,lavidaviridae” parameter to measure its performance when using all 

classification models. To benchmark DeepMicrobeFinder we first assigned sequences to the class with the 

highest score, next we labeled the ones classified as “Eukaryote” or “Prokaryote” as chromosome and the 

ones assigned to “EukaryoteVirus” or “ProkaryoteVirus” as virus. 

For the benchmarks that measured the sensitivity of virus detection across different viral and host taxa, we 

established cutoffs that approximated the false discovery rate of each tool to 5%. The same was done in the 

benchmark that measured the sensitivity of plasmid detection across different host taxa, but set the target 

false discovery rate to 10%, as some tools could not achieve a 5% false discovery rate regardless of the 

threshold. The procedure was performed to prevent overly sensitive tools (with elevated false discovery 

rate) from dominating the benchmarks. 

Binning of the Sand Creek Marshes metatranscriptomes 

To evaluate whether geNomad is able to identify RNA virus segments that don’t encode the RdRP hallmark 

gene, we retrieved the raw sequencing data and the assemblies of 34 metatranscriptome samples from 

microbial communities from the Sand Creek Marshes (GOLD Study ID: Gs0142363)52 from IMG/M. Scaffolds 

shorter than 2 kb were discarded and the remaining sequences were classified using geNomad. Scaffolds 

encoding RdRP were identified by performing protein prediction with prodigal-gv and using the predicted 

proteins as queries to search against a database of RdRP HMM models51 using  hmmsearch (parameter: “-E 

1e-5”). Using Minimap299 (version 2.24, parameters: “-N 5 -ax sr”), sequencing reads from each sample were 

independently mapped to sequences in a combined assembly, which was generated by concatenating the 

assemblies from individual samples. Then, we used samtools100 (version 1.16.1) to sort the mapped reads 

and input them into CoverM (version 0.6.1, parameter: “-m metabat”, available at 

https://github.com/wwood/CoverM), which measured scaffold coverage across samples. To perform an 

initial binning of scaffolds based on co-abundance, we employed Vamb101 (version 3.0.2, parameter: “-a 

0.025”). Bins containing RdRP-encoding sequences were refined by retaining only the scaffolds that 

presented high correlation to the coverage of the RdRP scaffold (Pearson correlation coefficient ≥ 0.95). To 

prevent spurious correlations, we only considered RdRP-encoding sequences with high prevalence 

(coverage > 0 in at least 20% of the samples). 

Metagenomic survey and phylogenetic analysis of giant viruses 

From a set of 28,865 metagenomes (retrieved on 2022-04-10 from IMG/M) we selected scaffolds longer than 

50 kb that were classified as viruses by geNomad and subjected them to further processing using GVClass 

(available at https://github.com/NeLLi-team/gvclass/), a framework that identifies giant viruses and assigns 

them to taxonomic lineages using a phylogenetic placement approach. Briefly, we identified nine conserved 
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giant virus orthologous groups (GVOGs)102 using hmmsearch and used these GVOGs as queries for 

DIAMOND searches against databases of the respective GVOGs, which were built from a representative set 

of bacteria, archaea, eukaryotes, and viruses. We extracted the top 100 hits, combined them with the query 

sequences, and aligned them with MAFFT103 (version 7.490). The alignments were then trimmed with 

trimAl104 (version 1.4, parameter: “-gt 0.1”) and used to build a phylogenetic tree with FastTree105 (version 

2.1.11, parameters: “-spr 4 -mlacc 2 -slownni -lg”). To determine the final classification, we identified the 

nearest neighbor in the tree using branch lengths and the existing taxonomic string for that reference 

genome. The taxonomic strings from all identified nearest neighbors were then compared at different 

taxonomic levels (genus, family, order, class, phylum) to yield the final classification at the lowest 

taxonomic level on which all nearest neighbors were in agreement. 

To measure the phylogenetic diversity (PD) gained by identifying giant viruses with geNomad, we extracted 

DNA PolB orthologs encoded by these sequences and by genomes from two external sources (Schulz et al., 

2020, Aylward et al., 2021; only sequences on scaffolds longer than 50 kb were considered) using the DNA 

PolB HMM model from the GVOG database (GVOGm0054). These protein sequences were aligned with 

MAFFT, trimmed with trimAl, and used to build a phylogenetic tree with FastTree. We then performed 

separate alignments and built trees for each of the orders in the Nucleocytoviricota, with and without 

geNomad contigs. The increase in PD was then determined as the fold difference between the sum of the 

branch lengths for each viral order after adding the giant viruses identified with geNomad. 

To build the phylogenetic tree that included the giant viruses identified from soil metagenomes using 

geNomad, we employed a representative set of giant viruses from Aylward et al. (2021) and added additional 

GVMAGs recovered from soil samples in Schulz et al. (2020). The sequences of the seven predominantly 

vertically inherited GVOGs were identified across all scaffolds using hmmsearch, aligned using MAFFT, and 

trimmed with trimA. Subsequently, a concatenated alignment was used as input to reconstruct a 

phylogenetic tree with IQ-TREE106 (version 2.2.0.3, parameters: “-m LG+F+I+G4”). 

Code and data availability 

geNomad is an open source software and its code can be found at https://github.com/apcamargo/genomad. 

Multiple sequence alignments, HMMs, and a MMseqs2 database of geNomad’s markers are available at 

https://doi.org/10.5281/zenodo.7586412. The code used to build the taxonomically annotated viral protein 

database can be found at https://github.com/apcamargo/ictv-mmseqs2-protein-database and the database 

can be downloaded from https://doi.org/10.5281/zenodo.6574913. Reference sequences utilized for training 

and evaluation, the list of P. aeruginosa genomes used to build the pangenome, giant virus sequences 

discovered in metagenomes, and the code applied to train geNomad’s neural network and conditional 

random field models can be downloaded from https://doi.org/10.5281/zenodo.7697490. 
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