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Abstract 
 

    In the brain, many regions work in a network-like association, yet it is not known how 

durable   these associations are in terms of activity and could survive without structural 

connections. To assess the association or similarity between brain regions with a new 

“generating” approach, this study evaluated the similarity of activities of neurons at the 

cellular level within each region after disconnecting between regions. To this end, a 

multi-layer LSTM (Long-Short Term Memory) model was used. Surprisingly, the results 

revealed that generation of activity from one region to other regions that had been 

disconnected was possible with similar reproduction accuracy as generation between 

the same regions in many cases. Notably, not only firing rates but also synchronization 

of firing between neuron pairs, which is often used as neuronal representations, could 

be reproduced with considerable precision. Additionally, their accuracies were 

associated with the relative distance between brain regions and the strength of the 

structural connections that initially connected them. This outcome not only enables us to 

look into principles in neuroscience based on the potential to generate new informative 

data, but also creates neural activity that has not been measured in adequate amounts 

and could potentially lead to reduced animal experiments. 
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1. Introduction 

 

1-1. Researches on multicellular neural activity      
   In the nervous system, a large number of neurons are repeatedly firing as they interact with 

each other. This scene has been likened to a symphony of complex spikes [Varela, 1995; 

Buzsaki, Draguhn, 2004; Engel et al., 2002]. When measuring neural activity, it is customary for 

electrophysiologists to discern from the sound of spikes whether the measurement points are in 

contact with active neurons, and then to be satisfied or disheartened. 

 It is also known that certain long-time correlations exist in the spike time series of neural 

activity [He, 2012; Martinello et al., 2017; Safonov et al., 2010; Fagerholm et al., 2016], 

indicating that an activity state of a neuron population at a time already has some information 

about its future state. The state of whether or not an individual neuron fires is essentially 

maintained as an interdependent relationship among multiple neurons, rather than maintained 

individually for inherent activity mode of each neuron. 

     The number of neurons that can be measured simultaneously is growing every year [Brown 

et al., 2004; Stevenson, Kording, 2011]. Thanks to these advances, we now have the capability 

afforded by recording technology necessary to reliably verify how accurately we can generate 

the future activity of individual neurons from past activity of the neuron population. 

 

1-2. Time series data-generation 

    When we consider a symphony of neural activity (i.e., a coordinated flow in time) as music, 

we notice an interesting technical diversion. Polyphonic music includes multiple musical notes 

sounding simultaneously as found in piano music and ensemble music which can be regarded 

as time series data similar to multicellular spikes data. We are mapping the pitches of musical 

notes to the neurons and the onset time to the time of firing. The existence of co-occurrence 

relationships and long-time correlations between specific pitches is similar for music data. 

 Attempts to automatically generate music have been made since the 1950s [Ames 1987]. 

Many have also utilized Artificial Neural Networks (ANNs) for music generation [Todd 1989; Eck, 

Schmidhuber, 2002]. Along with recent advances in data analysis techniques using ANNs, 

music generation techniques based on ANNs have been significantly improved. 

     For example, a method was developed to solve the gradient loss problem of recurrent neural 

networks (RNNs) [Hochreiter, Schmidhuber, 1997], and a long short-term memory (LSTM) 

network, a type of RNN that considers the effects of short- and long-term memories, has been 

applied [Boulanger-Lewandowski et al., 2012]. A multi-layer LSTM network is an ANN with 

multiple layers of LSTM units between the input and output layers. Recently developed 

techniques of ANNs, such as the Generative Adversarial Network (GAN) and Transformer, have 
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also been applied to music generation, making it possible to generate music data that better 

approximate real data with long-time correlations and dependencies among musical notes 

[Huang et al., 2018; Dong et al., 2017]. 

    We can expect that it is also possible to generate spike data with properties similar to those 

of real-world music. 

    Despite the fact that ANNs are based on nervous system motifs, surprisingly, they have rarely 

been applied to neural activity spike generation  [Gers et al. 2002] and have not yet been fully 

deployed. Technology to automatically generate spikes by applying Artificial Neural Networks 

for analyzing neural spike data has long remained unexplored. 

 

1-3. A brief research history of neural spontaneous activity 

     The nervous system is active even in the absence of external stimuli. Such neural activity is 

called spontaneous activity. For a long time, neural activity has been measured while animals 

undertake any tasks and the neural activities have been evaluated in correlation with the task. In 

fact, more than 80% of the energy in the brain is expended in the task-free state, and 

spontaneous activity consumes most of the energy of neural activity [Raichle, 2015]. 

     As we will discuss later, it is also known that stimulus-induced activity is fundamentally 

rooted in the state of preceding spontaneous activity. 

     In the past, when many neurons could not be measured simultaneously, temporal changes in 

the activity of individual neurons were regarded only as classical stochastic activity. However, 

recent measurements have shown that spontaneous activity is also considered to retain a 

causal relationship between activities with a degree of inevitability [Kaminski et al., 2001; Quinn 

et al., 2011]. 

     On a macroscopic (anatomical) scale, spontaneous activity has been observed to produce 

specific patterns throughout the brain. A typical example is the default mode network, a pattern 

of activity that is inversely correlated with presentations of external stimuli [Raichle et al.]. It is 

also clear that there are multiple other modes in the macroscopic spontaneous activity patterns 

[Power et al., 2014]. 

   This massive amount of research on spontaneous activity on a macroscopic scale forms a 

huge research field that continues to this day. The spontaneous functional activity patterns can 

also be systematically interpreted by comparing them to structural wiring [Jonston et al. 2008; 

Honey et al. 2010; Goni et al. 2014; Rosenthal et al. 2018]. 

   The measurement and analysis of spontaneous activity of neurons at the microscale have 

been pursued both in vitro and in vivo. Classically, the firing timings of individual neurons have 

been quantified as a deviation from the Poisson point process generated when we regard them 

as a random time series [Heeger, 2000; Kass, Ventura, 2001]. Randomness and simple 

repetitive patterns have also been assumed in the activity patterns of multiple neurons. 
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     Recent studies have begun to capture the presence of complex, but non-random rules within 

these patterns. One of pioneering studies, using real-time optical imaging, revealed the patterns 

of spontaneous activity observed when multiple neuronal activities are measured 

simultaneously. For example, in the rodent visual cortex, spontaneous activity was found to 

intrinsically exhibit variations of spatial patterns in evoked activity even before stimulus 

presentation [Arieli et al., 1996]. The same research team also demonstrated that activity 

patterns obtained from optical imaging time-locked to the firing timing of single neurons show 

significant similarity to patterns time-locked to evoked activity [Tsuodyks et al., 1999]. 

 Such interactions between multiple neurons have sequential patterns caused by a series of 

inevitable interactions that are thought to be mediated by synaptic connections between 

neurons. 

The connections of quantified causal interaction between neurons drawn as arrows is called 

effective connectivity. Much work has also been done to reconstruct structural wiring as 

effective connectivity reconstructed from neural activity [Stetter et al. 2012; De Blasi et al. 2019; 

Gu, et al. 2019]. It has also been pointed out that networks reconstructed from neural activity 

are closely related to stimulus-dependent evoked activity of neurons [Bock et al., 2011]. 

 

1-4. Topics conducted in this research 

     The main goal of this study is to generate neuronal spike data using one of the techniques 

described in section 1-2 that can capture causal interactions between neurons. Beyond the 

naive methodology of using correlations between spike’s data, we evaluated the similarities and 

differences between real  and generated neural activities in terms of predicting future neural 

spikes. 

   The overview of the entire data processing flow in this study is summarized in Figure 1.   
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Figure 1. The workflow of this study: (a) We prepared brain slices from individual regions, as illustrated here with 

orange circles. We used two of these regions for the training step and the generation step, respectively. (b) Prior to 

this, we classified the cortical regions into 16 groups (see Table 1 for their short names). Pairs of regions, like the 

examples in panel (a), were selected from those 16 groups. (c) We measured neuronal activity from hundreds of 

neurons in each region with a multi-electrode device. (d) An example of a spike train obtained from one of the 

measurements. The horizontal axis is time [sec] and the vertical axis is the index of neurons. The timing at which a 

certain neuron fires is indicated by a dot. This diagram is called a raster plot in neuroscience. (e) We used stained 

images to extract only neuron groups in cortical areas and then divided the neuron groups with lines orthogonal to the

cortex so that only 128 cells were included in each data set. (f) Such spike sequence, binary data, is input to the 

Multi-layer LSTM model to predict one step ahead after learning from the past data. The horizontal axis is time [ms], 

and the input vector is a binary vector. 

 

 
    This study targeted the analysis of electrical activity of multiple neurons in the mouse cortex, mainly 

neocortex, measured with a Multi-Electrode Array (MEA) (fig1-c,d).  The neocortex consists of one to 

six layers, numbered from the surface in the direction of the depths. In each brain region, 

neurons were selected by sliding a section orthogonal to the cortical surface along the cortical 

surface so that all 1-6 layers were included, and a total of 128 cells were selected and collected 

into each regional data (fig1-e, Refer method 4-1 in detail). 

 The neural activity recorded with an MEA is called spikes as mentioned before, which is 

represented as binary data, where elements with 1 describe firing timings. 

   In individual analysis, we prepared a pair of training and test spike data from two datasets. 

Training data is used to optimize the internal parameters of the multi-layer LSTM model, 

enabling the best prediction within the training data. This is called the training process. After 

training is finished (fig1-f), we use the trained network to generate new spike data and compare 
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it with the test data (fig1-a) (Refer to method 4-3-2, 4-3-2 for more details). This is called the 

generating process. In the generating process, we generated one step future neuronal spikes 

with hypothesizing that we know all neuronal spike sequences.  

 The test data is also sometimes referred to as target data because this data is the target of the 

generation process. The training and test data were respectively obtained from one of the 16 

regions of the neocortex (fig1-b, Table 1) [Matsuda et al., 2022]. 

 The generated data were evaluated using the firing rate and the Synchronization score 

(Method 4-3-3). It is important to note that the ability to generate a highly predictive time series 

means that new future neural activity can be generated by extending time from existing spike 

data. We think that the above is important because it means that new time series data can be 

obtained without the need for new experiments, leading to fewer physiological experiments in 

the future. 

     In particular, when a time series generated by a model trained using data in one brain region, 

original data, is evaluated with test data obtained in another brain region, we can systematically 

investigate how the generation performance depends on the relative "closeness" of the two 

brain regions. Not only were we concerned about the geometric distance, but we also were 

concerned about connection strength of structural wiring through white matter fibers between 

the source and target brain regions. 

 

 L (Left) R (Right) 

OD L Occipital Dorsal R Occipital Dorsal 

D L Dorsal R Dorsal 

FD L Frontal Dorsal R Frontal Dorsal 

F L Frontal R Frontal 

FV L Frontal Ventral R Frontal Ventral 

V L Ventral R Ventral 

OV L Occipital Ventral R Occipital Ventral 

O L Occipital R Occipital 

 
Table1: Definition of 16 regional groups: Right and left hemispheres include 8 groups, respectively, and expressed as 

L or R at the beginnings of individual names. The name is followed by combinations of O, D, F and V expressing 

abbreviations of Occipital, Dorsal, Frontal and Ventral. (Refer to the supplemental material for detailed locations of 

the slices used for the 16 area groups.) 
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2. Results 

2-1. Training process 

 The internal parameters of the Multi-layer LSTM model were optimized to minimize the 

prediction error for approximately 17 minutes of training data.   

 As described in Method 4-3-1, based on the result of a preliminary study testing various 

parameterizations, we use a Multi-layer LSTM network with three hidden layers, each with 128 

LSTM units. We used a focal loss function to quantify the prediction error [Refer method 4-3-3]. 

The number of epochs for training was set to 350. This was chosen based on the fact that, 

although even after the value of the loss function, had converged at about 25-100 epochs, the 

precision of the firing rate and the reproducibility of synchronous firing improved [ Fig.2 ]. The 

Adam algorithm was used for optimization [Kingma, Ba, 2014]. 

 

              
Figure 2. Learning procedure: The figure depicts how the loss on the training data and the loss on the validation data 

decreases as the multi-layer LSTM model is trained. A decrease in loss indicates that the training of the Multi-layer 

LSTM has progressed. The loss, common to both data, decreases sharply at 25-100 epochs.  

 
 

2-2. Generation with a same region for source and target regions 

   The neocortex was divided into 16 regional groups, with two datasets per regional group. 

Formally, the first 16 data sets are collectively named dataset 1 and the remaining data sets are 

named dataset 2. In the following sections, we observe the results of evaluating the data 

generated as a result of the training in various cases. Then, we present the average of the 

results obtained for these two data sets. The results presented in what follows are confirmed to 

be reproducible between the two data sets. 

a 

re 
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 In this section, we first performed generation through the multi-layer LSTM model by dividing 

the data given by the same group of brain regions in each dataset into the first half and the 

second half on the time axis, and preparing them as training data and test data, respectively 

[Fig. 3-(a,b)] 

 Multi-layer LSTM inputs time series data of 128 cells in the past and outputs information on 

whether 128 neurons are active in the future (fig. 1-f). Multi-layer LSTM was trained by swiping 

data in the first half of the time from time 0 to 17 min (Refer in more detail to the method 

sections 4-3-2 about Multi-layer LSTM). In the second half, the learning process is stopped, and 

the data is swiped from 17 min to 34 min to evaluate how well the rules learned in the first half 

can be used to predict future activity states. In other words, the similarity between the first half 

of the data and the second half of the data is evaluated through the data generation 

performance.  

     The accuracy of how well the generated time series reproduced the statistical properties of 

the actual data was evaluated as the average of dataset 1 and dataset 2.  The accuracy was 

evaluated using the firing rate and the synchronization score (Refer method section 4-3-2). The 

firing rate refers to the number of spikes per unit time [spikes/sec], and the synchronization 

score refers to the frequency of events in which other neurons also fire during a certain time 

window after one neuron fires. 

 Because the training and test data are originally the same time series, this case is relatively 

easy to generate and predict. Therefore, it was expected that it would perform close to the best 

prediction performance when the training and test data are cut out from the same time series. 

    As a result, Fig. 3-(c) and Fig. 3-(d) show scatter plots between predicted and measured 

values for both the firing rate and the synchronization score, respectively. In these scatter plots, 

we observed a concentrated point on the diagonal for both the firing rate and the 

synchronization score, indicating that the generation was successful [Fig. 3-(c)(d)]. 

    Fig. 3-(g) plots the correlation coefficients of the Firing rate for each brain region used in the 

measurement. In all regions, the correlation values exceed 0.9, indicating high predictive 

success, with the exception in RFV [refer to supplemental material]. 

    For further evaluation of the synchronization score, the first and third quadrants of the scatter 

plot were extracted and histograms were drawn in the direction of the rotation axis. Examples 

are shown in fig. 3-(e),(f). As seen in these results, it can be observed that the generation is 

successful as peaks. 

     From these results, it was found that when the training data and the generated data are 

obtained from the same region, both the firing rate and synchronization could be nicely 

reproduced (figs. 3-(g-j)). 

      In the next section, we will observe the case where the training data and the generated data 

are obtained from different regions.  The results given in this section provided us the 
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approximate values of every prediction performance in the relatively easy problem of generating 

from training to test data cut out from the same time series (figs. 3-(g-j)). The performance 

would give us perspective on the highest value when generating across different data shown in 

the next subsection. 

 
Figure 3.(a) Both training data and prediction, generation, data are prepared from the same region in this evaluation. 

(b) In the case of example (a), both training data (first 17 minutes) and test data (second 17 minutes) of the same 

time series are obtained from area A. (c) This panel shows the result of predicting the firing rate in this case, where 

the x-axis is the firing rate in the original data and the y-axis is the firing rate in the data generated by training Multi-

layer LSTM. (d) This panel shows the result of predicting synchronization score. Again, the x-axis is the 

synchronization score in the original data, and the y-axis is the synchronization score in the generated data. This data

was expressed in r-θ rotational coordinates, and a histogram of the number of data in 0-π/2 with respect to θ, or in 

the first quadrant, was drawn in panel(e). Finally, panel(f) is the histogram of the number of data in π-3/2π with 

respect to θ, or the third quadrant. In particular, if the output is coming from inhibitory cells, it is distributed in the third 

quadrant. The sharpness of the peaks in these histograms (e) and (f) was evaluated by sharpness [Refer 4-3-4]. 
(g) Correlations between expected and true values of firing rates in the inhibitory neurons are plotted for every 16 

regions. The two points for every group of regions correspond to the two data sets, and the line is the averaged value 

between the two data sets. The meaning of the points and lines is the same for (h)-(j). (h) Correlations between 

expected and true values of firing rates in excitatory neurons are plotted in the same way as in (g). (i) shows 

correlations between expected and true values of synchronization score in the first quadrant for every 16 regions. (j) 

shows correlations between expected and truth values of synchronization score in the third quadrant. 
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2-3. Generation with all brain regions as source and target regions 

 While training and generating evaluations were performed on data acquired from the same 

brain region in 2-2, in this section, we also analyze and evaluate the training and target data 

recorded respectively from two different brain regions groups included in the same one of two 

datasets [Fig. 4-(a,b)]. The prediction performance was then shown as the average of dataset 1 

and dataset 2 [Fig. 4-(g-k)]. 

 By comparing between different data, the similarity of their neural activity can be assessed by 

predictability by generating process rather than by cross-correlation. It should also be noted that 

in this in vitro experimental environment, the connections between the brain regions are broken, 

so the similarity between time series data from two brain regions is by no means produced by 

the interaction of the two brain regions. 

 Again, the quality of generation was evaluated using the firing rate  (Fig. 4-(g-i)) and the 

synchronization score (figs. 4-(j, k)) (Refer method section 4-3-2). 

    First, accuracy with respect to firing rate in generation was evaluated simply by cross-

correlation between the firing rate in the original test data and the firing rate in the generated 

data (Fig. 4-(c)). Color maps of the correlation values between the firing rates of all neurons (Fig. 

4-(g)),  inhibitory cells only (Fig. 4-(h)), and excitatory cells only (Fig. 4-(i)) are plotted. 

Hierarchical clustering was performed to sort brain regions that show similar patterns in terms of 

prediction performance into close indices.   

 Second, when evaluating the accuracy with respect to the degree of synchrony in the 

generation, we used the scatter plot (Fig. 4-(d)) between the synchronization score in the 

original test data and the synchronization score in the generated data. 

     Then, in the scatter plot, we evaluated the peakness of the angle-dependent distribution in 

the first (Fig. 4-(j)) and third (Fig. 4-(k)) quadrants of the data distribution as the sharpness 

(method 4-3-4). In the synchronization results, the data were sorted by hierarchical clustering so 

that regions with similar characteristics are close to each other. 

 In all the results so far, the diagonal components are brighter than in other cases because the 

generation between the same region shows a high prediction performance. However, at the 

same time, the generation between different regions also sometimes showed high prediction 

performance at the same level as the generation from the same region. 

    In a later section (sections 2-5), we will further analyze how such brain-region pairs of non-

diagonal cases, showed similar prediction performances with the diagonal cases are related to 

each other, based on the relative spatial distances and/or structural connectivity between brain 

regions. 
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Figure4: (a) In this evaluation, training data and prediction, generation, data are also prepared from different regions. 

(b) In the case of (a), training data (first 17 minutes) is obtained from region A and test data (second 17 minutes) from 

region B. (c) This panel shows the result of predicting the firing rate in a particular case, where the x-axis shows the 

firing rate in the original test data and the y-axis shows the firing rate in the generated test data by training Multi-layer 

LSTM. (Again, the x-axis is the synchronization score in the original test data, and the y-axis is the Synchronization 

score in the generated test data. This two-dimensional distribution was expressed in terms of r-θ rotational 

coordinates, and panel (e) depicted the density distribution of the number of data in 0-π/2 with respect to θ, i.e., in the 

first quadrant. Finally, panel (f) is the density distribution of the number of data in π-3/2π with respect to θ, or the third 

quadrant. In particular, we have confirmed that the distribution is restricted to the third quadrant when the output is 

from inhibitory cells. The sharpness of the peaks in these histograms (e) and (f) was evaluated by sharpness.  (g) is 

the correlations between generated and truth values in firing rates for all cells, (h) for inhibitory cells, and (i) for 

excitatory cells. x-axis is the region index of the original data and y-axis is the region index of the predicted data. The 

correlations of firing rates in all those pairs are plotted as color maps. In addition, these color maps are sorted based 

on hierarchical clustering. (j) and (k) are the color maps at sharpness in the first and third quadrants, respectively. 

The point that the sorting is based on hierarchical clustering is the same as in the case of the color map of firing rates

 
 

2-4. Relationship with connection strength and relative distance 

    Finally, in order to study how anatomical “closeness” relates with the unevenness of 

performance in intergeneration between different brain regions in the results obtained in 
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sections 2-2 and 2-3, we evaluated the results in comparisons to the relative distances between 

brain regions and the strength of structural connections.    

     As shown in Figure 5-(a), relative  distances were calculated based on the relative angles 

from the regions of interest selected from 16 regional groups. First, the relative distance in the 

group of interest was set to zero. Then, within the ipsilateral cortex of the group of interest, the 

relative distance was incremented by +1 with every one angle difference. However, the 

completely opposite angles were set to +2 since they are adjacent to each other on the same 

slice plane. (fig 5-(a)). 

 We utilized tracer data published by Allen institute with the Mouse Reference atlas for the 

structural connections [Lein et al. 2007; Dong et al. 2008; Oh et al. 2014]. In this study, we 

calculated the connection strength between two square recording regions in four steps. : First, 

we enumerated the cortical areas on the atlas that belonged to the two square recording regions 

where electrical activity was measured. Second, we calculated the strength of the structural 

connections between all pairs of the cortical areas belonging to each square region. Third, the 

connection strength was then normalized by the percentage of area within the region located at 

either end of the connection. Finally, the normalized connection strength was averaged for all 

combinations of regions and calculated as the connection strength between electrode recording 

regions (fig 5-(b)). See Method 4-3-5 for the detailed formula. 

    Then, we evaluated the relationship between either the relative distance or the connection 

strength between the electrode recording regions and either the accuracy of predicting the firing 

rate or the sharpness and accuracy of predicting the synchronization score between the region 

pairs. This evaluation was performed with the left and right hemispheres separately (fig5-(c-v)). 

The statistical test here is a Bonferroni correction for a sample size of 4 in the panel. 

     First, fig.5-(c-l) lists the results for relative distance (angle). For a difference of 1 relative 

distance (angle) from 0, the predicted firing rate showed a significant difference (fig5-(c-g)) 

(p=0.006, p<0.01, Bonferroni correction). However, sharpness, which is the prediction 

performance of connection strength,  in relation to relative distance showed no significant trend. 

    Second, fig5-(m-v) lists the results for the connection strength. No significant trend was 

observed in the prediction of firing rate for connection strength in any condition (fig5-(m-q)). 

However, there was a significant positive correlation between connection strength and predicted 

sharpness in the first hemisphere (Left hemi.: p=5.510-9, Right hemi.: p=2.010-8, p<0.01, 

Bonferroni correction), which was common in the left and right hemisphere. 

  In general, the results indicate that the prediction performance of the index of firing activity in 

the multi-layer LSTM is related to both the relative distances between measurement sites and 

the strength of the structural connections. We will address more in-depth discussions of this 

relationship in the discussion section. 
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Figure5: (a) shows the definition of a score calculated based on the relative distance from a certain region of interest 

(in this case, the Left Frontal Dorsal region). The score at the region of interest was set to zero, and the score was 
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added by one for every shift of one angle from the region of interest. However, the score for the region completely 

opposite to the region of interest was reduced to +2 because that region is located at the same slice surface as the 

region of interest and adjacent to the region of interest. 
(b) illustrates the definition of the values required to calculate the strength of the structural connections between the 

square recording regions where electrodes were placed. We downloaded the original connection strengths and atlas 

data from open data shared by Allen institute (https://connectivity.brain-map.org), and reconstructed the connection 

matrices.    In this illustration, the two squares represent the areas (e.g., Slice A, Slice B) where electrical 

measurements were made. In addition, two examples of connections between them are expressed as pipes. The 

connection strength between the atlas areas included 
 

in the square region of the electrical recording was calculated for each connection as a normalized value in terms of 

the percentage of the area, expressed as a dark red area in fig. 5-b, of the intersection of the region of the electrical 

recording with the area of the atlas at both ends of the connection (see Method III-6). The normalized value as a 

percentage of the area, expressed as a dark red area in fig. 5-b,  was calculated for individual connections (Refer to 

Method III-6 for details). 
 

In the square region of the electrical recording, the normalized value, expressed as a dark red area, was calculated 

for each connection as a percentage of the area of the intersection of the region of the electrical recording with the 

area of the atlas at both ends of the connection (see Method III-6).  The normalized value as a percentage of the area 

was calculated for individual connections (Refer to Method III-6 for details). 
 

Then, the connection strength between the regions of electrical recording was calculated as an averaged quantity of 

connection strength in all connected pairs of atlas areas at both ends. 
     Panels (c) ~ (l) plot the prediction results for the relative distances (angles) between the measurement regions. 

Among them, panels (d) ~ (g) plot scatter plots with the predicted firing rates for the relative angles between the 

regions, and panel (c) summarizes the correlation values (upper panel) and p-values (lower panel) for the points 

between Angle=0 and Angle=1 in panels (d) ~ (g) as a four-bar graph corresponding to the order from (d) to (g). 

Among (d)-(g), (d) represents results to excitatory neurons in the left hemisphere, (e) to inhibitory neurons in the left 

hemisphere, (f) to excitatory neurons in the right hemisphere, and (g) to inhibitory neurons in the right hemisphere. 
    Panels (i) through (l) are plotted as scatter plots with sharpness, prediction performance of Synchronization score, 

as the vertical axis relative to the relative distances (angles) between the measurement regions. The difference in the 

meaning of the x-axis in the four panels (i) ~ (l) means results to the first quadrant of the left hemisphere, (j) to the 

third quadrant of the left hemisphere, (k) to the first quadrant of the right hemisphere, and (l) to the third quadrant of 

the right hemisphere. In the panel (h), the correlation values (upper panel) and p-values (lower panel) for the points at 

Angle=0 and Angle=1 in (i)~(l) are summarized as bar graphs. The panels (n)~(q) and (s)~(v) are the same as the 

panels (d)~(g) and (i)~(l), except that the horizontal axis is the connection strength. Then, the correlation values in the 

upper panel and p-values in the (lower panel at (n)~(q) are summarized in (m), and the correlation values (upper 

panel) and p-values (lower panel) at (s)~(v) are summarized in panel (r). The significance level is set at about p=0.01 

and the dotted lines are overlaid, and it can be read that the p-values corresponding to (s) and (v) are much lower 

than that level. 
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3. Discussion 

3-1. Summary of the results 

    In this study, we developed a new approach to evaluate the homology between two regions 

through the generation and evaluation of synthetic neural spike data using a Multi-layer LSTM 

network. 

    Specifically, spiking data for a group of over 100 neurons were measured from slices taken 

from 16 cortical regions of the mouse, and from those 16 regions, 16�16=196  different pairs of 

training and test data were prepared. 

     When interpreting the given results, it is important to keep in mind that in slices cut from one 

region, connections to other regions are physically severed. It was well expected that our newly 

applied spike generation technique between different regions would not work at all because the 

recording regions are disconnected from each other. 

     However, surprisingly, the results showed that there are hidden rules in the spike data that 

allow the Deep Neural Networks used in this study to even generate complex spike sequences 

to the point of reproducing them with nontrivial accuracy. It is extremely difficult for the human 

eye to decipher the rules utilized in their generation. 

     It should also be emphasized that even if one creates a detailed computational model of 

neural systems, it is actually very difficult to prepare a computational model that generates 

spikes that somehow reproduce the synchrony among the many pairs of neurons in the system  

[Nolte et al., 2019; Dura-Bernal et al., 2019; Feldotto et al., 2022]. The findings of this study can 

be summarized in the following three categories: 

     First, the case of learning and generation among time series of different time periods in the 

same data showed clearly significant prediction performance, not only in terms of firing rate, but 

also in terms of the degree of synchrony. 

     Second, even in the predicted performance among the regions measured from different 

regions, surprisingly, there were some combinations that came close to the performance for the 

same data. 

This indicates that the characteristics of electrical activity within cortical local circuits have 

enough commonality or universality to generate each other even if the regions are different. 

There is no precedent for showing this commonality through the mutual generation of activity. 

     Third, we compared the prediction performance of firing rate and synchronization with the 

relative distance (angle) between the measured regions and the strength of the structural 

connections.  The results showed that there was a significant difference in the prediction 

performance of firing rates between generations made between the same region and those 

made between regions that were one relative distance (angle) adjacent to each other. Moreover, 

and more surprisingly, although no significant correlation was observed between structural 
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connection strength and prediction performance of firing rate, significant correlations between 

structural connection strengths and sharpness, which is prediction performance of 

synchronization score, were observed in both left and right hemispheres or in one hemisphere 

in some cases. 

 
 

3-2. Potential contributions of data generation technology to improve the 

3Rs 

     The methods developed in this study have very important significance for the fundamentals 

of animal experimentation. In neurophysiological experiments, synchronization still plays an 

important role in quantifying neural representations of neural interactions and cognitive functions 

[Hunt et al., 2018; Galske et al., 2019; Knoblich et al., 2019; Luo et al., 2022]. If such spiking 

data can be generated from artificial models with high accuracy, there is no need for redundant 

experiments. As a result, they can contribute to the 3R principle, Replacement, Reduction and 

Refinement, regarding animal experiments [Törnqvist et al. 2014]. Such techniques will become 

even more important for rare data, where large amounts of data are difficult to obtain  

[Alexandra, 2020; Perretta, 2009]. Therefore, it is likely that research schemes to quantify the 

similarity of different datasets measured under different conditions in terms of their inter-

generational capabilities will expand in the future. 

 

3-3. Interpretation of non-uniformity in generation performance 

      It is also important to keep a dispassionate attitude in considering high projection 

performance. 

For example, in the relation between the prediction performance of the firing rate and the 

relative distance (angle), there was a significant difference in the prediction performance of the 

firing rate between the case of generations made between the same regions and the case of 

generations made between one adjacent region. Remember, however, that there is a possibility 

that the advantage of being cut from the same data (beyond being in the same region) worked 

in the prediction between the same regions. Therefore, further verification is necessary to check 

if it is not an artifact. Nevertheless, the trend in the first quadrant that synchronization score 

increased with each increase in structural connectivity is a non-trivial trend that cannot be 

explained by such reasoning. 

 

3-4. Argumentation on structural connectivity 

 It should be noted that there have been numerous previous studies on structural 

connectivity. First, the hierarchy of information processing, which is described in terms 
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of structural connectivity patterns between cortical areas, has been logically defined 

based on differences in laminar patterns along the cortical depth direction. This is the 

definition conventionally employed in the analysis of wide-ranging structural connectivity 

patterns, mainly for the visual system [Fellman, VanEssen, 1991]. 

    Some researchers have attempted to understand the hierarchy of information 

processing by integrating this pattern with the auditory and somatomotor systems in 

informatic ways [Modha et al., 2010].  The understanding of the hierarchical structure of 

information processing was then extended to an understanding of hierarchy in the 

sense of going from peripheral areas closely connected to the peripheral nervous 

system of information processing to central core areas corresponding to the association 

cortex [Kötter, Wanke, 2005]. 

    We can also confirm that the hierarchy of information processing reflected in connection 

structure patterns is related to cell density [Shimono, 2013]. Furthermore, as we obtained 

better systematic data on connection strength, it became clear that there is a clear empirical 

relationship between connection strength and spatial distance [Markov et al., 2014]. 

  Various studies have reported that the pattern of structural connections is similar to the 

pattern of functional connections defined on the basis of synchronization of activity between 

joined brain regions [ Honey et al. 2007, 2009; Mišić et al. 2016].       

 
 

3-5. Prospects and future challenges 

3-5-1. Comparisons of generation performance with physiological indicators 

 
 Even with the important background knowledge described in the above subsections, it is quite 

surprising that we observed a significant positive correlation between structural connection 

strength and sharpness for the first quadrant (for example, fig. 5-s), since we measured each 

brain region as slices. This is because, as we have mentioned many times, we measured neural 

activity from brain regions after sectioning them as slices. 

 Structural connectivity patterns in mice have been measured and analyzed on a large scale 

with increased resolution in a way that also integrates with genemics or transcriptomics studies 

[Lein et al., 2007; Harris, et al., 2019; Hawrylycz et al., 2015]. This study also aided the 

structural wiring pattern information obtained in those studies [Oh, et al., 2014]. 

    Since such genes and transcription factors are internalized characteristics of each brain 

region, there is a possibility that they are related to the ease of mutual generation of neural 

activity in each brain region, which we have discovered. Therefore, it is a future challenge to 

investigate the relationship between these genomics and transcriptomics and the internal 
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characteristics of activities within individual brain regions. 

 

3-5-2. Improvements of generation and evaluation methods 

     One of the other issues is the improvement of the generation method using multilayer LSTMs 

and the evaluation method. When generation does not work well, the disappearance of the 

diagonal component in the scatterplot of the relationship between the predicted and correct 

answers generally occurs. Although this report does not go into detail, several characteristic 

patterns were observed following the disappearance of the diagonal component in the scatter 

plots. By classifying these characteristic patterns and exploring their causes individually, 

guidelines for their generation and evaluation at high performance will be more mature than now. 

     In this study, we chose the region that brings together the cell groups as the square 

recording region in the electrical measurements. In other words, the brain regions of the atlas 

provided by the Allen institute were grouped together within the square measurement area, and 

the analysis was performed to compare them with the structural connections. Another future 

task is to analyze cell groups separately according to the atlas brain area segmentation 

provided by the Allen institute. This will allow for a more stable combination of cell groups, 

including those within a single region, which will positively affect the generation and prediction 

results. -This could have a positive effect on prediction performance. However, new ideas are 

needed to deal with the fact that the number of cells in each region may differ due to the 

difference in size of each region. 

      This study collectively analyzed populations of neurons existing in the square region used 

for electrical measurements. However, there may be cases where histologically distinct brain 

areas coexist within these square recording regions. Therefore, one of the future tasks is to 

analyze the neuron groups according to segmentations of brain atlases such as the Allen brain 

atlas. This will allow us to include only neuron groups within a single region, and to make the 

groups of neurons belonging to each individual group more uniform. As a result, we expect that 

this will have a positive influence on the performance of the generation and prediction. However, 

new ideas are necessary because the number of cells within a region should be different due to 

differences in sizes of these regions. 

    Although new models do not necessarily improve performance, changing the learning-

generating model from a multi-layer LSTM to a model such as Transformer [Vaswani et al., 

2017] also has the potential to contribute to improved performance. 

 
 
 
 

4.  Final remarks 
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 This study showed that the activity of multiple neuron groups in the cortex can sometimes be 

generated reciprocally, even between different regions. We also showed that the non-uniformity 

of the reciprocal generation can be explained, to some extent, by the relative positional 

relationships and structural wiring. In such a method, the combination of the original data and 

the target data to be generated is very broad. 

 In the future, as the physiological interpretation is deepened and the prediction performance 

is improved, it will become the basis of a method to "measure" physiological data through 

mathematical models instead of experiments, and is expected to contribute to the comparison of 

experimental data among animal species and the performance evaluation of model animals as 

well as the 3Rs. This method is expected to contribute not only to the 3Rs but also to the 

comparison of experimental data among animal species and the evaluation of model animal 

performance. 

     In this study, we demonstrated for the first time that the activity of groups of multiple neurons 

in the cerebral cortex can often be mutually generated, even between different brain regions. 

We also suggested that the non-uniformity of performance in mutual generation can be 

somehow explained by relative spatial positions and structural connections. 

      It should be emphasized that such a generation method allows a very wide range of choices 

in what data to use for the combination of original data and target data to be generated. In other 

words, this method allows us to evaluate similarities between a wide range of neural activities. 
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4. Methods 
 4-1. Data acquisition of neuronal activities 

     We used neuronal spike data recorded and studied in detail in our past study. Here, we 
briefly explain the experimental procedure utilized in the past study [Kajiwara et al., 2021; 
Shirakami, 2021, Matsuda et al., 2022]. The whole experimental processes are also now open 
in a video journal [Ide et al., 2019]. 
      We used female C57BL/6J mice (n=32=16×2, aged 3-5 weeks). This study grouped the 
cortex ( mainly the neocortex) into 16 groups, and prepared two sets of data for each of these 
groups (Fig. 1-(b), supplemental material). All animal procedures were conducted in accordance 
with the guidelines of animal experiments of Kyoto University (KU), and have been approved by 
the KU Animal Committee. 
 
     This study recorded neuronal spikes from cortical slices with a Multi-electrode array(MEA) 
system (Maxwell Biosystem, MaxOne) with refluxing an artificial cerebrospinal fluid (ACSF) 
solution that was saturated with 95% O2/5% CO2 [Kajiwara et al., 2021; Ide et al., 2019]. 
 Prior to slice preparation, mice are thoroughly anesthetized (1%-1.5% isoflurane), cervical 
vertebrae was dislocated, and brains are removed. We immersed the removed brain  in a 
cutting solution, an ice-cold solution used to prevent brain deterioration, and bubbled it with 
oxygen continuously. The brain was cut with a vibratome (NLS-MT, DOSAKA EM CO.,LTD), 
scanned, and sliced by a slicer in the target region of the brain. 300-μm slices were made by 
changing the height of the cutter. The slices were immersed  in an ACSF solution, saturated 
with 95% O2/5% CO2, for one hour before electrical measurements were taken. 
 
      The recording area of the MEA used was 3 x 4mm2, and 26,000 electrodes were uniformly 
arranged at 15-μm intervals (on the order of cell spacing distance). This high-density electrode 
arrangement enables accurate determination of neuron location. For the main measurement, we 
used on the 1020 electrodes, selected, as receiving strong input from the neurons, in the 20-
minute prescan. 
    We performed spike sorting (Spyking Circus software) from the time series obtained in the 
main measurement and converted to time series binary data of the activity of the cell population. 
Refer these following references about the details of the experimental procedure [Ide et al., 
2019 , Kajiwara et al., 2021; Shirakami et al., 2021, Matsuda et al., 2022]. 
 

4-2. Arrangements of data formats to input into the analytical model 
      The spike data can be represented as a binary matrix X�� where t and i are time and neuron 
indices: if neuron i is firing at time t, then X��= 1 , and otherwise X��= 0. We sorted the neurons 
so that inhibitory neurons have earlier indices than excitatory neurons. Within each set of 
neurons, neurons are sorted in the order of layers (from 6 to 1). Each segment of spike data 
was split into training and test data. After removing the first 30 minutes, two 17-minute-long 
segments, earlier segment (30–47min) and later segment (48–65 min), were cut out.In the same 
region cases, we used the earlier segment as training data and the later segment as test data. 
In contrast, in the different region cases, one of the earlier segments from the two regions was 
used as training and the other one as test data. 
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4-3. Analysis 

4-3-1. How to connect different data ? 

      In this study, we use a Recurrent Neural Network (RNN) with long short-term memory 
(LSTM) units for generating spike data. [Hochreiter, Dchmidhuber, 1997]. An RNN takes time 
series data as input and outputs time series data of the same length, and it iteratively processes 
a time-sliced (vector) data at a time instant. Thanks to its design, the information accumulated 
from the past data is to be utilized along with the current input. 
 
       Simple RNNs have difficulty for dealing with long-range dependence and have limited ability 
to learn the influence of data from the distant past. The LSTM units are proposed to alleviate 
this problem by introducing an architecture to deal with long-term memory. An LSTM unit 
contains three gates: "input", "output" and "forgetting". These gates determine the degree to 
which information is allowed to pass through depending on the conditions. The LSTM unit can 
store information more efficiently by gradually changing the long-term memory while maintaining 
the RNN structure itself. 
 
       Here, let us describe the history of LSTM. In 1997, Hochreiter and Schmidhuber et al. 
proposed LSTMs with cells and input and output gates, and in 1999 Gers et al. introduced an 
oblivious gate in the LSTM structure. In 1999, Gers et al. introduced an oblivion gate in the 
LSTM structure, which allows the LSTM itself to reset its own state. In 2000, Cummins et al. 
added peephole connections to allow cell-to-gate coupling; in 2014, Cho et al. proposed a gated 
regression unit, and a subsequent speech recognition using LSTM showed a 95.1% recognition 
accuracy. The LSTM network has been applied to speech recognition [Graves, et al. 2013], 
handwriting generation [Graves, 2013], language modeling [Sundermeyer et al. 2012], and 
many other tasks. The model is still widely used today. 
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Figure 6.  This study utilizes multi-layer LSTMs (multi-layer LSTMs), which are networks of LSTMs layered on top of 

each other to allow for even longer-term learning than single-layer LSTMs. The input is a prediction of the probability 

of firing, and the output is the result of the target prediction. Whether or not a target has fired is determined by 

whether or not the measurement results exceed a threshold value. 

      We utilize a multi-layer LSTM network, which can learn even longer-range dependence on 
the data than a single-layer LSTM network can (Fig. 6). The following hyperparameters of the 
LSTM network, which are different from the parameters to be trained from data, were used in 
this study. 
First, the number of layers in the LSTM network is five, including the input and output layers. 
The number of LSTM units, which is the dimension of data in the intermediate layers, was 128 
(same for all intermediate layers). The dimension of the input and output vectors, which are the 
number of neurons, was also 128. 
      The input of our LSTM network at time  is the vector  =( ), , and the output at time  is 
the vector of probabilities that neurons  will be firing at  (each element  

takes a real value between 0 and 1). 
The network is trained with a loss function defined in the next section. 
After training, to generate spike data, we use the test data as input and apply thresholding to the
output : neuron  is regarded to be firing at time  if > , where  is a threshold value. 
 

4-3-2. Loss function 
    The binary cross entropy loss function is often used for training a neural network for data 
generation. 
It is formulated as 
 

 

he 
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where πti denotes the network's output and Xti denotes the training data. 
In the spike data, most elements in  X�� are 0 since the firing rates are small. In such a situation, 
the binary cross entropy loss often makes the network learn to output very small firing 
probabilities, which hinder the appropriate generation of spike data. To deal with such 
imbalances between states, a refined loss function called focal loss has been proposed [Lin et 
al., 2017]. 
     The loss function has an additional parameter γ and is given as 

L� � 	 
�X���1 	 π����ln π�� � �1 	 X���π���ln�1 	 π����
�,�

 

Here, the parameter γ>0 induces the two terms to balance since the non-firing probabilities 1-
π��  are much larger than the firing probabilities π�� . 
We use the value γ=2 as suggested in the original study [Lin et al., 2017]. 
 
The number of epochs for training was set to 350. We chose this number because, although the 
loss value had converged in about 150 epochs, the prediction performance of the firing rate and 
the reproduction performance of synchronous firing improved as the training further proceeded. 
The Adam optimizer [Kingma, Ba, 2014] was used for training. The batch size, which is the 
number of data segments used in one update of the training process, was set to 64. 
 

4-3-3. Evaluation of similarity between generated and real data 
 

     We analyzed the probability of synchronous firing between neurons to evaluate generated 
data with respect to the reproducibility of the property that the timings of neuron firing are 
synchronized between two cells with a specific delay.  To formulate an evaluation metric, 
suppose a situation where after neuron i fires neuron j fires with an acceptable delay D. 
If the firing of neuron i has a positive effect on the firing of neuron j, then we expect a larger 
firing probability of neuron j within some acceptable delay D than its mean firing probability (i.e. 
firing rate). 
     Let us express the conditional probability that neuron j fires at least once within delay D after 
neuron i fires as q�j|i; D�. If neuron i and neuron j are not synchronous (i.e. they are 
independent), the conditional probability is given as 

               q�j|i; D� � 1 	 �1 	 p��� �  q�	 �j; D� 

where pj expresses the firing rate of neuron j. We used the following indicator Z to evaluate how 
much the actual conditional probability  q�j|i; D�  is biased from the null hypothesis q�	 �j; D�: 

 

  Z�j|i; D� �

��|�;�������

�
��;��

�� ��
�
��;�������

�
��;���

   

 
where N� is the number of firings of neuron i, C�j|i; D�=N��j|i; D� is the number of times that 
neuron j fires at least once within delay D after neuron  i fires, and the denominator represents 
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the standard deviation in the null hypothesis. 
      We call this quantity synchronization score. We obtained a scatter plot of the 
synchronization score plotted with the real data on the horizontal axis and the generated data 
on the vertical axis (refer fig. 3-(d),4-(d)), and a histogram with the rotation angle θ from 0 
degrees as the main axis. 
      The histogram is called sharpness positive (refer fig. 3-(e),4-(e)), which is calculated as the 
ratio of the area around the peak (width of π 4⁄ ) in the first quadrant (Θ � 0 ~π 2⁄ ) to the area at 
other angles included in θ � 0~ π 2⁄ . The sharpness of the area around the peak (width of π/4) 
in the third quadrant (θ � π~3 π 2⁄ ) is also calculated in the same way and is called sharpness 
negative (refer fig. 3-(f),4-(f)). 
Just before detecting those peaks, we performed a linear regression on the histogram, and only 
the trend of the slope of the line was removed. The acceptable delay D was set to 1. The reason 
is that the sharpness for other values of D had a negative effect on observing the relationship 
between the generated and real data, blurring the diagonal components of the scatterplot than 
when D=1. 
 
 

4-3-5. Definition of angles between recording regions 

      The angles between regions were classified into eight groups in 45-degree increments in the 

direction of rotation with the line connecting the left and right ears as the axis. In other words, 

the left and right hemispheres were taken into account and classified into 8 � 2 � 16 groups 

(fig.5-(a)).  Note that in this study, the angle between two groups is also called the distance 

between two groups. 16 groups are named as shown in Table 1, with two data belonging to 

each region (Refer the supplemental material). 

 

4-3-6. Definition of connection strength 

     In this study, we superimposed the cut-out position of each slice on the Allen reference atlas 
(ver.3, https://mouse.brain-map.org/static/atlas) and extracted the brain region in the Allen atlas 
that each slice includes. 
    Now, as shown in Fig. 5-(b), we consider two slices and call them slice A and slice B. 
    Then, focusing on brain regions a�, a�, … , a� included in slice A (divided by the atlas) and brain 
regions b� , b� , … , b�  included in slice B, We obtained the connection strength W�� between ai 

( i � 1~n) and b�  ( j � 1~m) for all pairs. 

    Next, calculated the ratio R��  = s��/S�� ( i � 1~n) of the area S��  of the entire brain region on 
the slice A cross-section to the area s�� that is in the recording region on the slice A. Similarly, 
R��  ( j � 1~m) is calculated for slice B. Then, for example,  W��R��R��was calculated for a 

connection pair of regions i and j. 
    Finally, we obtained the connection strength between slice A and slice B regions by adding it 

between all i and j, ∑ 2∑ W��R��R������ 3���� . 
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