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ABSTRACT  

Different production systems of livestock animals influence various factors, including the gut 

microbiota. We investigated whether changing the conditions from barns to free-range impacts the 

microbiome over the course of three weeks. We compared the stool microbiota of chicken from 

industrial barns after introducing them either in community or separately to a free-range 

environment. Over the six time points, 12 taxa - mostly lactobacilli - changed significantly. As 

expected, the former barn chicken cohort carries more resistances to common antibiotics. These, 

however, remained positive over the observed period. At the end of the study, we collected eggs 

and compared metabolomic profiles of the egg white and yolk to profiles of eggs from commercial 

suppliers. Here, we observed significant differences between commercial and fresh collected eggs 

as well as differences between the former barn chicken and free-range chicken.  

Our data suggest that the gut microbiota can change over time following a change in production 

systems. This change also influences the metabolites in the eggs. We understand the study as a 

proof-of-concept that justifies larger scale observations with more individual chicken and longer 

observation periods.  
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INTRODUCTION 

Over the past 50 years, the world’s population has been increasing exponentially, currently 

counting approximately 8 billion individuals. Researchers estimate to reach 10 billion people in 

20501, which in addition to rising income and global urbanisation leads to an increasing demand 

for food sources, in particular animal-derived foods. Poultry meat displays the fastest expanding 

meat production globally, with an average annual growth rate of 5 % over the past 50 years, 

followed by 3.1 % for pork, and 1.5 % for beef 2. Furthermore, egg production has been constantly 

increasing globally in the last decades3. To achieve high production efficiency, the chicken 

industry used to supply chicken with sub-therapeutic doses of antibiotics, provoking antimicrobial 

resistances in microorganisms inhabiting them. In 2003, Europe banned the preventive use of 

antibiotics, which resulted in an increase of systemic infections in livestock chicken, requiring the 

use of therapeutic doses of antibiotics4. The massive use of antibiotics led to an emergence of 

antimicrobial resistant bacteria found on poultry meat, which raises health concerns for humans5. 

Of note, bacteria themselves as natural producers present in soil or other samples are a relevant 

source for new sustainable antibiotics6.  

Based on the technological advances in next generation sequencing and the gaining 

importance of the microbiome regarding various factors, researchers make use of genome wide 

shotgun sequencing to explore the microbiome in human health7,8. Different specimen types, 

extraction kits and sequencing approaches affect the results of respective studies, calling for 

standardized approaches9. With maturing technology and algorithms, researchers have also 

initiated projects focusing on impacts on the intestinal microbial composition of chicken and other 

livestock, such as diet, supplementation and living conditions10-13. It has been shown that the 

gastrointestinal tract impacts animal productivity and health14. In dairy cows, for example, a 

certain, yet dynamic gut bacteria composition was associated with greater milk production and 

better overall health. In chicken, a free-range housing environment positively affects egg quality 

of laying hens15. Further, the intestinal microbial composition of chicken influences eggshell 

quality and safety regarding offspring and human consumers16.  

On the one hand, threats arising from caged poultry production, as well as the increasing 

importance of high-quality food, consumers demand free-range egg and meat production17. On the 
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other hand, free-range poultry farming is more costly requiring larger surfaces and reducing 

sustainability. Accordingly, the exploration of hybrid keeping methods appears worthwhile.  

Therefore, in this study, we aim to explore the impact of changing production systems on 

the microbiome and egg composition in chicken. In detail, we wanted to understand initial 

differences in gut microbiota composition associated with production systems and we wanted to 

see if a short intervention on such can lead to an approximation to the free-range chicken gut. 

Further, we wanted to test if, given enough time eggs appear indistinguishable among cohorts. We 

performed a longitudinal analysis of the intestinal microbiome of free-range chicken, compared to 

previous barn chicken which were transferred to a free-range environment using fecal samples 

over the course of 8 weeks. Additionally, we investigated metabolites in the egg white and egg 

yolk of store-bought eggs of barn and free-range chicken and compared the metabolite composition 

to the chicken we kept in a free-range environment, those that were placed into a free-range 

environment coming from a barn industry, and chicken that originated from a barn industry and 

were put into a free-range community of existing free-range chicken. 

 

RESULTS 

We defined a study set-up that lets us conclude on the change of the stool microbiomes and 

get additional information on the eggs as secondary read out. We acquired six barn chicken, which 

were primarily held for industry purposes and randomly split them into two cohorts of three 

chicken (Fig. 1a). The first cohort consisting of chicken H1-H3 remained isolated with access to a 

small chicken coop with an enclosure. The second cohort, H4-H6, was released from the industry 

barn and joined another cohort of existing free-range chicken, H7-H8, in a different coop with 

enclosure. For each chicken, we monitored microbial composition in their feces at timepoints day 

0, 3, 7, 10, 14, and 21 and performed genome-wide metagenomic sequencing. Of note, the 

collection approach enabled us to unambiguously match the stool samples to the individual chicken 

because each sample was picked immediately. Of note, the gut microbiome of chicken is known 

to depend on the collection site within the digestive system. We, however, collected excreted 

samples. Especially the feces originating from the comparably large ceca and non-ceca parts (Fig. 
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1b) of the gut differ, calling for attention during the data analysis. Even though visual differences 

exist, molecular profiling facilitates additional insights on the origin of the sample picked.  

Additionally, to the fecal samples. we also collected eggs of the various cohorts 97 days 

after study start for the duration of 7 days. We then analyzed the metabolite composition of the 

egg white and egg yolk of each egg by mass spectroscopic analyses. Further, we compared the 

results with the metabolite composition of free-range eggs and barn chicken eggs bought in a local 

supermarket (Fig. 1c). 

 

Fecal microbiome composition varies upon release 

Following sequencing we performed a stringent quality control (QC) including removal of host 

DNA from the metagenomic samples and other QC steps (c.f. methods). The QC identified on 

average 0.57% (1.9% ± SD) of reads to be of low quality per sample. Afterwards, we performed 

taxonomic profiling where we observed an estimated average 50.18% (16.5% ± SD) assignment 

rate on a metagenomic assembled genome/strain level. With these taxonomic profiles, we initiated 

a first ordination analysis. Here, we observed no patterns linked to either time or the cohort (Fig. 

2a). We thus repeated a similar analysis with MinHash similarities where we again did not observe 

any clusters or explainable trends associated with the two features (time and cohort) of interest 

(Fig. 2b). While these analyses suggest no general trend with respect to the cohort and time, the 

spread of the points motivates a closer look. Focusing on the relative microbiome compositions, 

we observed major variations and heterogeneity across samples (Fig. 2c). One group of samples 

(including amongst others H2 day 0, H3 day 7, or any of the samples by H7) are mostly composed 

of Lactobacillus, Limsilactobacillus, and Ligilactobacillus. Another group (including most 

measurements, e.g., H4 day 21, H5 day 10 and H8 day 10) differs significantly. The samples of 

the second group are characterized by a larger diversity on the genus level. The first set of samples 

falls in line with the foregut chicken microbiome that is extensively discussed in literature18,19. The 

larger diversity in the composition of the second group can be attributed to ceca samples in 

chicken, as discussed above (compare to Fig. 1b). Accordingly, we repeated the previous MinHash 

similarity analysis but extended our samples with the data generated by Huang et al.20, providing 

an atlas of chicken metagenomes in different gut regions. Indeed, we confirm the expected 

clustering: most samples with lower Lacto-, Limsilacto-, and Ligilactobacillus relative abundances 
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clustered closer to the cecum samples, whereas other samples scattered into the ileum, duodenum, 

and jejunum region (Fig. 2d). As expected, the major variations within the samples are mostly due 

to the detection of either the foregut or hindgut microbiome. To minimize effects associated with 

gut regions in further analyses, we decided to subset our data to retain only the samples that 

clustered into the foregut region of the previous analysis. On the remaining 29 samples, we 

performed differential abundance analysis at the species level and performed three different 

statistical tests, comparing i) differences in the microbiome due to initial production systems, ii) 

changes in the microbiome in relocated chicken over time iii) differences in changes over time 

comparing the two resettled cohorts. Combining all three test results, a total of twelve different 

OTUs showed statistical significance (adjusted alpha level of 0.01) (Fig. 2e). Four of the twelve 

species were significantly differentially abundant in all three tests (Fig. 2f). 

 

Increased number of resistances seems to remain in free-range environment 

Among the most relevant aspects in livestock farming are resistances against antimicrobials21-

25. We thus searched for potential antimicrobial resistance mechanisms across all metagenomic 

samples. Consistently over all cohorts, we identified microbial resistance against tetracyclines, 

which is an antibiotic frequently used in veterinarian medicine. Further, macrolide resistance 

appears to be prevalent in most chicken. In consideration of the One Health aspect, vancomycin 

resistance detected in all cohorts is a considerable threat, as bacteria carrying the resistance might 

also transfer onto humans and add onto the global health crisis of antimicrobial resistances. 

Vancomycin is commonly used as a last resort drug as resistance development is usually slow26. 

Moreover, we found bacteria resistant to carbapenems in the cohort, which was released from the 

industry barn and placed into an isolated free-range environment. Carbapenem resistance in Gram-

negative bacteria is mainly caused by carbapenemases and counts as a major and on-going global 

health problem which is spreading rapidly and causing serious outbreaks with limited treatment 

options (Fig. 3a). Interestingly, the carbapenem resistance found in the industry barn chicken is 

caused by the subclass B1 metallo-beta-lactamase JOHN-1, which was previously described in 

Flavobacterium johnsoniae but not detected in human colonizing bacteria yet27. A relevant aspect 

is the number of present resistances in the different cohorts. We thus computed the average number 

of resistances for the original barn chicken and the free-range chicken at the beginning of the 
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observation period and at the end after three weeks (Fig. 3b). For both time points, we recognize 

an increased number of resistances for the industrial barn chicken. This number seems however 

not to change over time, i.e., present resistances remain in the stool microbiota for at least three 

weeks. Comparing the early and late time point average resistances (Fig. 3c) and those in the free-

range and former barn cohort separately (Fig. 3d) emphasizes this trend. Of note, we only reach 

statistically significant differences if all early and late time points are pooled together (Wilcoxon 

Mann-Whitney p-value 0.016) due to the limited number of chickens in the cohorts. Having 

identified changes in microbiota over time and having observed resistance factors in the 

metagenomes, we asked on differences in the eggs.  

 

Metabolomic profiles of egg differ between free-range and barn as well as commercial eggs 

To assess differences in egg composition we performed untargeted HPLC-MS of egg yolk 

and egg white separately. After peak calling and bias correction, we searched two different sets of 

features. First, we aimed to find features that separate our collected eggs by initial production 

system. Second, we aimed to identify features that separate shop eggs (organic eggs from a 

supermarket) from fresh eggs. Initially, we selected only significant ANOVA features. For the first 

test, we found no feature to be statistically significant after p-value adjustment. In the second test, 

we observed 14 and 90 features in egg white and egg yolk respectively to meet our criteria. The 

small number of features undercutting the significance threshold of 0.05, the high dimensional 

feature spaces, and the low expected assignment rate in targeted MS, did not allow us to limit our 

further analysis only on ANOVA significant features. Instead, we decided to select high variance 

features allowing for reasonable separation after a first filtering based on ANOVA analysis. 

Naturally, principal component analysis (PCA) on these ANOVA pre-filtered features already 

displayed clear separation for our cohorts, as well as separation among bought and collected eggs 

(Fig. 4a). Based on the most important features in the high variance principal components of the 

PCA, we trained linear discriminant analyses and attained an average cross-validation accuracy of 

96% (6.2% ± SD) (Fig. 4b). Asking about the nature of the identified features, we performed a 

targeted MS approach. We successfully identified 10 of the most relevant features identified in the 

PCA via targeted MS (Fig. 4c). Breaking them up in the different classes, six features derived from 

lipids, three from amino acids and one was matched to a flavonoid. Post hoc testing identified in 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.531264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531264
http://creativecommons.org/licenses/by/4.0/


6 of the 10 cases the eggs from the supermarket to be the most significantly differing cohort. In 

four cases, however, the egg from originally free-range chicken differed from all other eggs, 

including the former ban chicken that were put in the free-range setting.  

DISCUSSION 

Our study analysed the fecal microbial composition over time of two different chicken 

cohorts being introduced to a free-range environment, isolated and within a community of existing 

free-range chicken, and a control cohort. We aimed to identify potential differences in initial gut 

microbiota composition of free-range compared to barn chicken and detect changes over time 

under the different conditions mentioned above. Further, we investigated metabolite composition 

of egg yolk and egg white for each cohort and drew the comparison to store-bought free-range and 

barn eggs.  

The applied statistical analysis highlighted 12 different species to have differing 

abundances among initial production systems or over time. Lacticaseibacillus paracasei was 

initially higher in existing free-range chicken (H7, H8) and increased over time in both released 

cohorts. L. paracasei is believed to have regulatory effects on chicken gut immunity, microbial 

composition, and an overall higher microbial diversity as its presence was correlated with the 

enrichment of the genera Anaerotignum, Coprococcus, and Massilimicrobiota28. Anaerotignum 

sp. produce so called short-chain fatty acids29, which play a key role in health homeostasis and 

inflammation reduction. Corprococcus sp. were correlated with the presence of other bacteria, 

which have a positive effect on host health 28. Therefore, an enrichment in L. paracasei seems 

favourable for chicken. H3, which was released into a group of existing free-range chicken further 

displays an increase in Lactobacillus crispatus, which belongs to the most prevalent species in the 

chicken gastrointestinal tract and 30 its presence is correlated with a protection against infectious 

diseases in poultry31,32. We further observed an initially lower abundance of Lactobacillus 

gallinarium in the existing free-range chicken (H7, H8), and a decrease of L. gallinarium in those 

chicken, which were released and grouped with H7 and H8. L. gallinarium is currently not 

correlated with any substantial positive or negative effect on poultry health or fitness32. However, 

as a lactic acid producing bacterium, Lactobacillus sp. are overall associated with health 

homeostasis and many species belonging to this genus display well-known probiotics in the animal 

industry33. Last, we observed an increase in Limosilactobacillus reuteri (former Lactobacillus 
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reuteri) in all former barn chicken and an initially higher abundance of L. reuteri in the free-range 

chicken. In new-born chicken, supplementation with L. reuteri has been shown to suppress growth 

of non-beneficial Proteobacteria, while it promoted enrichment of rather beneficial Lactobacillus 

sp.34. Also in humans, L. reuteri displays enormous potential as a probiotic strain35. As of today, 

little to nothing is known about Lactobacillus pullistercoris, Limosilactobacillus merdigallinarum, 

Limosilactobacillus sp012843675 and sp014836425, MAG4339 (Ligilactobacillus), MAG5921 

(Lactobacillus), and MAG617 (Limosilactobacillus), which were highlighted in our analysis (Fig. 

2e). Overall, we conclude that chicken in a free-range environment show higher abundances of 

beneficial bacteria, and that resettling chicken from an industry barn to a free-range environment 

has a positive effect on health-associated bacterial abundances. Nevertheless, we want to underline 

that statistical analysis may be impacted by the initial sampling strategy. When combining our 

analyses with existing microbiome data on different gastrointestinal parts of chicken, it is obvious 

that our first group clusters with samples extracted from the cecum, and our second group clusters 

separated from all other parts of the chicken gastrointestinal tract (Fig. 2d). Previously, it could be 

shown that the microbial composition in the small intestine differs from those of the relatively 

large cecum of chicken, the large intestine, and the colorectum20. Chicken are capable of releasing 

cecal content towards the ileum or towards the cloaca, then called the cecal drop36. This can occur 

every 8-10 hours. Based on the results depicted in Fig. 2b, c, and d, we believe that some of the 

collected fecal samples belong to the group of cecal drops and rather represent the cecum microbial 

composition, whereas all other samples represent a mixture of all parts of the gastrointestinal tract, 

which is released with normal feces release. Depending on the selected separation criteria of these 

clusters, differential abundance analysis may highlight other species. 

Concerning the metabolomic egg composition ANOVA results indicated reliable 

differences between bought and collected eggs. On the contrary, statistical analysis did not 

highlight differences in our collected eggs comparing initial production systems. This may likely 

be due to a shrinkage in overall sample size. When we looked at overall variances in a total of four 

investigations where we did observe variations in corrected peak area. However, whether these 

differences hold in the general case, would require a larger study cohort. On the one hand, our 

measurements of e.g., Schleichol 1, which belongs to the flavonoids, or PC25:137 which are 

generally positively connotated in literature were non-significantly reduced in our free-ranged 

cohort. On the other hand, in the same cohort, we observed e.g., 1,25-Dihydroxy-cholesterol38 to 
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be slightly increased, which is associated with cell homeostasis and a precursor for steroid 

hormones. Accordingly, we cannot clearly advocate for a production system if we use egg 

composition as only quality criterion. 

Our study set up that includes the immediate collection of stool samples and allowing an 

analysis on the individual chicken also leads to challenges. First, the cohort sizes are limited 

because only a small number of chickens can be overseen. Here, camera-based systems with 

automated image analysis might support to handle larger cohorts. Further, even using molecular 

metagenomic measurements, the distinction between microbiota from the foregut and the cecum 

is challenging. The nucleic acid based read out bears further challenges: the observed resistances 

are encoded in the genome and do not reflect actual resistances. Additionally, the number of time 

points and the follow up period of three weeks may not be sufficient and an adaption of former 

ban chicken to the free-range chicken may happen. We thus plan to re-analyze stool microbiota of 

the cohort after a one-year interval. Further, the data suggest other downstream analyses such as 

the identification of novel bioactive gene clusters that might be a source of novel antibiotics.  

We thus consider our study as a proof-of-concept justifying further analyses at larger scale. 

Using time series and individually matched metagenomes bears an enormous potential to provide 

further insights in the dynamics of livestock metagenomes. Finally, high-resolution metagenomics 

might enable an improved surveillance of arising resistances in animal populations.  

 

METHODS 

Study design and sample collection: We acquired six chickens from a local industry barn in July 

2022 and divided them into two cohorts (n=3). H1-H3 were released from the industry barn and 

transferred to a free range but were kept isolated from other free-range chicken with access to a 

small chicken coop with an enclosure, and ii) H4-H6 released from the industry barn and joined 

an existing cohort of free-range chicken (H7, H8). From all eight chickens, we collected fecal 

samples on day 0, 3, 7, 10, 14, and 21. All fecal samples were subjected to whole-genome DNA 

extraction and subsequent whole-genome sequencing. Further, after 97 days past study begin, we 

collected eggs from all study cohorts (H7, H8 n=5, H1-H3 n=5, H4-H6 n=5) and analyzed the 

metabolite composition of egg white and egg yolk via mass spectrometry. We compared the results 
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with the analyses of store-bought free-range eggs (n=5) and eggs from barn chicken (n=6). We 

further analyzed an egg from a newly resettled former barn chicken, which was transferred directly 

into an existing herd of free-range chicken. The respective egg was collected on the day of 

relocation (Fig. 1).  

DNA extraction: DNA was extracted from all fecal samples using the ZymoBIOMICS DNA 

Miniprep Kit. The DNA was extracted according to the manufacturer’s protocol. Briefly, 50 mg 

of fecal samples were used for DNA extraction according to the manufacturer’s recommendation. 

The mechanical lysis of bacterial cells was performed using the MP Biomedicals™ FastPrep-24™ 

5G Instrument (Fisher Scientific GmbH, Schwerte, Germany). The velocity and duration were 

adjusted to 6 m/s for 45 s three times with 30 s of storage on ice in between each lysis step. DNA 

was eluted in 20 µl DNase/RNase free water9. The DNA concentration was determined via 

NanoDrop 2000/2000c (Thermo Fisher Scientific, Wilmington, DE) full-spectrum microvolume 

UV-Vis measurements.  

Library Preparation and sequencing: Extracted whole-genome DNA was sent to Novogene 

Company Limited (Cambridge, UK) for library preparation and sequencing. Briefly, samples were 

subjected to metagenomic library preparation and further sequenced via paired-end Illumina 

Sequencing PE150 (HiSeq). For all samples, 5 Gb reads per sample were generated.  

Sequencing data analysis: As the first step of metagenomics shotgun sequencing analysis, we 

cleaned the reads by removing host sequences and performed QC with BBduk (version (v):38.98, 

command line arguments (cla): “k=23 mink=11 hdist=1 ktrim=r tbo tpe out=stdout.fq -ref 

illumina.fasta" & “maq=10minlength=50k=31 mcf=0.5 -ref GRCg6a.fasta”) and GRCg6a as a 

reference. QC information was visualized with MultiQC (v1.11)39. For MinHash based 

comparison and taxonomic profiling we computed signatures on cleaned reads with sourmash40 

(v4.4.3, cla:”sketch dna -p k=21,k=31,k=51,scaled=1000,abund --merge”). Comparison between 

samples was based on k-mer size 31. Own reanalysis of samples from Huang et al.20 followed the 

same data cleaning and signature computation pipeline. To prepare taxonomic profiling, we 

extended the Genome Taxonomy Database (GTDB ; vGTDB R07-RS207)41 with metagenomic 

assembled genomes from Segura-Wang et al.11 and Feng et al.42. To this end MAGs of both studies 

were dereplicated together with GTDB using drep43 (v:3.4.0 cla “comp 50 -con 10--

checkM_method lineage_wf --S_algorithm fastANI --S_ani 0.95 -nc 0.5”). All dereplicated 
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MAGs that were not part of GTDB were retained and their signatures and indexes were computed 

with sourmash. Taxonomic profiling was performed with sourmash on quality-controlled reads 

with k-mer size 51 using the union of GTDB and the previously dereplicated MAGs as a reference. 

All further downstream analysis of taxonomic profiles was performed in R relying on the phyloseq 

package44 (v1.40.0). Ordination analysis was computed with non-metric multidimensional scaling 

on Bray-Curtis distances. For all three differential abundance analysis with ANCOMBC45 (v:1.6.2) 

we kept only the samples that resembled a foregut signature as described in the results section. 

Further, for every test, we set the significance level at 0.01, the prevalence cutoff at 0.8, and the p-

value adjustment method to “Benjamini-Hochberg". For the first test comparing initial conditions 

we subset the remaining samples to only keep samples from day 0 and compared cohort of existing, 

free-ranged chicken with those of former barn chicken. In the second and third test we used all 

samples except those derived from the control group. The second test performed regression on the 

number of days, whereas the last test looked at the interaction term of days and final production 

systems. Metagenomic assembly was performed with spades (v:3.15.4, cla: “--meta”). Resistance 

annotation was done with ABRicate (v:1.0.1) and the NCBI AMRFinderPlus database (v) 

Metabolomics sample preparation: All eggs were separated and egg white and yolk were frozen 

for one week at –20 °C. Afterwards, 400 µL methanol:ethanol (1:1, v/v) containing the internal 

standards 48 µM tryptophan-d5, 53.4 µM glucose-d7, 34.8 palmitic acid-d31, and 8.6 µM creatinine-

d3 were added to 100 µL egg white or 100 mg egg yolk. All samples were shaken for 2 min at 

2000 rpm and subsequently centrifuged for 30 min at 15,000 rpm and 2 °C. 150 µL of the 

supernatant were transferred into a new reaction tube and evaporated to dryness using a vacuum 

centrifuge (Concentrator plus, Eppendorf, Hamburg) at room temperature and program “V-aq” for 

roughly 4 h. The residue was reconstituted in 100 µL of a mixture containing methanol and 

acetonitrile (30:70, v/v) by shaking for 5 min at 15,000 rpm and 22 °C. Ten µL of each sample of 

both drugs of abuse were pooled to obtain one quality control sample (group QC) for every cell 

experiment. Every obtained sample was transferred into an amber glass vial and 1 µL was injected 

onto the HPLC-HRMS/MS as described below. 

LC-HRMS/MS apparatus for metabolomics: The analysis was performed using a Thermo 

Fisher Scientific (TF, Dreieich, Germany) Dionex UltiMate 3000 RS pump consisting of a 

degasser, a quaternary pump, and an UltiMate Autosampler, coupled to a TF Q Exactive Plus 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.531264doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531264
http://creativecommons.org/licenses/by/4.0/


system equipped with a heated electrospray ionization HESI-II source. Mass calibration was done 

prior to analysis according to the manufacturer’s recommendations using external mass 

calibration. Additionally, before each experiment, the spray shield and capillary were cleaned. The 

performance of the column and mass spectrometer was tested using a mixture described by Maurer 

et al. before every experiment. The conditions were set according to published procedures46,47. 

Gradient reversed-phase elution was performed on a TF Accucore Phenyl-Hexyl column (100 mm 

× 2.1 mm, 2.6 µm, TF, Dreieich, Germany) or on a hydrophilic interaction liquid chromatography 

(HILIC) Nucleodur column (125 × 3 mm, 3 μm, Macherey-Nagel, Düren, Germany) for normal-

phase chromatography. The mobile phases for gradient elution using the Phenyl-Hexyl column 

consisted of 2 mM aqueous ammonium formate containing acetonitrile (1 %, v/v) and formic acid 

(0.1 %, v/v, pH 3, eluent A), as well as 2 mM ammonium formate in acetonitrile and methanol 

(1:1, v/v), containing water (1 %, v/v), and formic acid (0.1 %, v/v, eluent B). The flow rate was 

set from 1-10 min to 500 µL/min and from 10-13.5 min to 800 µL/min using the following 

gradient: 0-1.0 min hold 99 % A, 1-10 min to 1 % A, 10-11.5 min hold 1 % A, 11.5-13.5 min hold 

99 % A. Normal-phase chromatography was performed using aqueous ammonium acetate solution 

(200 mM, eluent C) and acetonitrile containing formic acid (0.1 %, v/v, eluent D). The flow rate 

was set to 500 µL/min using the following gradient: 0-1 min 2 % C, 1-5 min to 20 % C, 5-8.5 min 

to 60 % C, 8.5-10 min hold 60 % C, 10-12 min hold 2 % C. For preparation and cleaning of the 

injection system, a mixture containing isopropanol and water (90:10, v/v) was used. The following 

settings were used: wash volume, 100 µL; wash speed, 4000 nL/s; loop wash factor, 2. Every 

analysis was performed at 40 °C column temperature, maintained by a Dionex UltiMate 3000 RS 

analytical column heater. The injection volume for metabolomics analyses was 1 µL and for those 

analyses investigating the formation of imines 10 µL. The HESI-II source conditions for every 

experiment were as follows: ionization mode, positive or negative; sheath gas, 60 AU; auxiliary 

gas, 10 AU; sweep gas, 3 AU; spray voltage, 3.50 kV in positive mode and -4.0 kV in negative 

mode; heater temperature, 320 °C; ion transfer capillary temperature, 320 °C; and S-lens RF level, 

50.0. Mass spectrometry for UM was performed according to a previously optimized workflow48 

using full scan (FS) only. The settings for FS data acquisition were as follows: resolution, 140,000 

at m/z 200; microscans, 1; automatic gain control (AGC) target, 5 × 105; maximum injection time, 

200 ms; scan range, m/z 50-750; polarity, negative or positive; spectrum data type, centroid.  
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Settings for parallel reaction monitoring (PRM) data acquisition were as follows: resolution, 

35,000 at m/z 200; microscans, 1; AGC target, 5 × 105; maximum injection time, 200 ms; isolation 

window, 1.0 m/z; collision energy (CE), 10, 20, or 40; spectrum data type, centroid. The inclusion 

list contained the monoisotopic masses of all significant features, and a time window of their 

retention time 30 s. Analysis was performed using a randomized sequence order with five 

injections of pure methanol (reversed-phase chromatography) or eluent D (normal-phase 

chromatography) samples at the beginning of the sequence for apparatus equilibration, followed 

by five injections of the pooled QC sample. Additionally, one QC injection was performed every 

five samples to monitor batch effects as described by Wehrens et al.49. TF Xcalibur software 

version 3.0.63 was used for all data handling. 

 

Metabolomic Data analysis: Thermo Fisher LC-HRMS/MS RAW files were converted to mzML 

format using Proteo Wizard50 and subsequently parsed by XCMS51 in an R environment for raw 

data inspection and peak picking. Total ion chromatograms, base peak chromatograms and mean 

intensity chromatograms were visually inspected for deviations that may hint to improper 

measurements. Additionally, total ion currents of the samples were monitored in boxplots to 

discover batch effects during measurements. The quality of the peak picking and the alignment 

was monitored using total ion chromatograms and extracted ion chromatograms of the used 

internal standards. Annotation of isotopes, adducts, and artifacts was performed using the package 

CAMERA52. Optimization of XCMS parameters was in accordance with a previously optimized 

strategy. Peak picking and alignment parameters can be found in the according Jupyter notebooks. 

Names of the features were adopted from XCMS using “M” followed by the rounded mass and 

“T” followed by the retention time in seconds (e.g., “M218T222” for an ion at m/z 218.1538 and 

a retention time of 222 s). Before log transformation, missing values were replaced by the lowest 

measured peak area as proposed by Wehrens et al.49 as a surrogate limit of detection. Batch 

correction was performed for each HPLC experiment by performing linear regression on QC 

samples, predicting each peak area based on the position of the investigated sample in the 

respective experiment. Based on these regression models, areas of all peaks for all samples were 

corrected by subtracting residuals and adding the average peak area. After area correction, we 

aggregated all peaks across all yolk 4 HPLC experiments into one feature vector and repeated the 
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same for egg white. We removed QC samples for all further analysis. We then proceeded to 

analyze both egg components independently. Further, we made minor changes to the following 

workflow as needed depending on the hypothesis we tested, resulting in 4 workflows. For the first 

hypothesis comparing only collected eggs from our chicken, we removed the egg from the newest 

chicken for further analysis. The second hypothesis comparing shopped eggs included this egg. 

For both hypotheses we performed ANOVA on both egg components with Benjamini-Hochberg 

correction as p-value adjustment method. For yolk feature filtering was applied on unadjusted 

ANOVA p-value threshold of 0.01. For egg white we used 0.05. On the remaining features and 

datapoints, PCA was performed. We then computed feature loadings on principal components with 

a higher-than-average variance, with a minimum of three first principal components. The highest 

absolute loadings were selected for targeted MS analysis. We performed linear discriminant 

analysis only on high variance principal components using Monte-Carlo cross-validation.  

Identification of significant features: MS² spectra were recorded using the above mentioned 

PRM method to allow identification of significant features. Individual spectra were exported after 

subtracting the baseline left and right of the peak. After conversion to mzXML format using Proteo 

Wizard, spectra were imported to NIST MSSEARCH version 2.3. A library search for 

identification was conducted using the following settings: Spectrum Search type, Identity 

(MS/MS); Precursor Ion m/z, in spectrum; Spectrum Search Options, none; Presearch, Off; Other 

Options, none. MS/MS search was conducted using the following settings: Precursor tolerance, ± 

5 ppm; Product ion tolerance, ± 10 ppm; Ignoring peaks around precursor, ± m/z 1. The search 

was conducted by using the following libraries: NIST 14 (nist_msms and nist_msms2 

sublibraries), Wiley METLIN Mass Spectral Database, HMDB 553 (MS/MS Experimental), 

LipidBlast54, and MassBank (NIST). Additionally, LipidMaps COMP_DB search55, MetFrag56, 

and MONA similarity search were used for inconclusive spectra matches or those that were not 

matched in MSSEARCH. Metabolites of the investigated NPS were identified by comparing and 

interpreting their spectra to those of the parent compounds. 
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Figure 1: Study design and sample collection. a) Cohort design, fecal sample collection and 

subsequent analyses. Barn chicken (depicted as brown chicken) were released from an industry 

barn and divided into two cohorts. H1-H3 were released into a free range, isolated from existing 

free-range chicken (depicted in white). H4-H6 were released and grouped together with existing 

free-range chicken. Samples were also collected from long-term existing free-range chicken H7 

and H8. Fecal samples were collected from all cohorts on several days and subjected to whole-

genome DNA extraction and subsequent whole-genome sequencing. b) From all cohorts, eggs 

were collected 97 days past study begin and the egg white and egg yolk of each egg were analysed 

by mass spectrometry. Results were compared to eggs and eggs from barn chicken from a local 

supermarket. Additionally, an egg from a newly relocated former barn chicken (entered the 

environment the day of egg collection), which was transferred into a free-range environment and 

grouped with H7 and H8 was analyzed. 

Figure 2: Stool Microbiota Composition. a) Non-metric Multidimensional Scaling (NMDS) of 

Bray–Curtis dissimilarities computed on species information of gathered metagenomic samples 

after quality controlled. Time of sampling is indicated by color, whereas point shaped designates 

the cohort. b) Principal coordinate Analysis computed on 1-MinHash similarity. Point shape shows 

sampling cohort, colors represent sampling time after study kick-off. c) Relative species 

abundance on genus level for the different timepoints and chickens. d) PCoA of Mash 

dissimilarities computed on our own samples extended by the dataset by Huang et al. All 

highlighted fecal samples are from this study. e) Operational taxonomic units that were highlighted 

as significant after p-value adjustment in at least one of the three statistical tests. The different 

intersections (compare to panel f are marked by +, # and *, respectively) f) Visualized concordance 

among test results. Each set denotes one statistical test and entries indicate the number of 

statistically significant differentially abundant OTUs. 

Figure 3: Resistances in free-range and caged chicken. a) Detected resistances with ABRicate 

in the different assembled metagenomic samples. b) Boxplots with individual data points showing 

the averaged resistances in the early and late time point split by the cohorts. c) Boxplots with 

individual data points showing the averaged resistances in the cohorts split by the early and late 

time points.  
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Figure 4: Metabolomics profiles of eggs. a) PCA of batch-corrected areas on ANOVA prefiltered 

features derived from untargeted HPLC-MS of eggs. b) Projections of the four different trained 

LDA classifiers. Visualization includes the training data. c) Batch-corrected peak areas of driving 

features we were able to identify with targeted MS/MS. 
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