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Abstract

Gene expression is characterised by stochastic bursts of transcription that occur at brief and random
periods of promoter activity. The kinetics of gene expression burstiness di�ers across the genome and
is dependent on the promoter sequence, among other factors. Single-cell RNA sequencing (scRNA-
seq) has made it possible to quantify the cell-to-cell variability in transcription at a global genome-
wide level. However, scRNA-seq data is prone to technical variability, including low and variable
capture e�ciency of transcripts from individual cells. Here, we propose a novel mathematical theory
for the observed variability in scRNA-seq data. Our method captures burst kinetics and variability
in both cell size and capture e�ciency, which allows us to propose several likelihood-based and
simulation-based methods for the inference of burst kinetics from scRNA-seq data. Using both
synthetic and real data, we show that the simulation-based methods provide an accurate, robust
and �exible tool for inferring burst kinetics from scRNA-seq data. In particular, in supervised
manner, a simulation-based inference method based on neural networks proves to be accurate and
useful in application to both allele and non-allele speci�c scRNA-seq data.

1 Introduction

Gene expression is stochastic in nature due to the random timing of chemical reactions involving low
numbers of key molecular players, such as genes and mRNAs, as well as the coupling to other variable
cellular processes, such as the cell cycle. This stochasticity gives rise to cell-to-cell phenotypic
variability in a population of genetically identical cells, with a broad impact on cellular function.

Over the last twenty years, a considerable body of research combining experimental and mathe-
matical studies has provided a deep understanding of the sources and consequences of this kind of
biomolecular noise [1, 2, 3]. Single-cell imaging studies of �uorescently tagged proteins were the �rst
to quantify gene expression noise [4]. Pioneering experimental and mathematical research broadly
classi�ed the sources of stochastic gene expression as either intrinsic due to random timing of the
reactions involved in gene expression or as extrinsic due to the �uctuations of other relevant cel-
lular factors [5]. Also, direct time-lapse imaging and inference from snap-shot data revealed gene
expression could occur in bursts [6, 7, 8, 9, 10]. Methods such as the single-molecule Fluorescence
In Situ Hybridisation (smFISH) and MSN2 system allowed for the quanti�cation of gene expression
noise and burstiness at the mRNA level [11, 12]. Most recently, the development of single-cell RNA
sequencing (scRNA-seq) has made it possible to map global transcript counts in many cells and
many genes routinely and cheaply [13]. scRNA-seq data can reveal biophysical mechanisms of gene
regulation when they are combined with mechanistic models [14, 15]. However, due to additional
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technical variability in scRNA-seq data, inferring burst kinetics from such data is a challenging
mathematical and statistical problem [13].

As mRNA copy numbers are typically low, it is generally well accepted that transcription is
dominated by intrinsic noise [7] but the cell cycle can contribute to extrinsic expression noise [16].
Recent work has shown that transcription is coupled to cell size in eukaryotic systems, which un-
derlies mRNA concentration homeostasis and also underlies extrinsic variability in gene expression
[17, 18, 19, 20]. Accounting for cell size and cellular context transcription is reported to be non-
bursty following a Poisson distribution in some cellular systems [17, 21]. However, more generally
transcription is observed to be bursty and is modelled well using a so-called telegraph model, in which
transcription switches between on and o� states [7]. The telegraph model is analysed theoretically
extensively and it is known that it admits Beta-Poisson distribution at steady-state [22, 23, 7, 24, 25].
At the bursty limit of transcription the solution of the telegraph model can be approximated as a
negative-binomial distribution characterised by burst size and burst frequency [7, 24, 26, 27, 28].
Moreover, the negative binomial (NB) distribution is a versatile over-dispersed distribution that is
commonly used in bulk and scRNA-seq studies to model gene expression capturing both biological
and technical dispersion [29, 30, 31, 32].

The inference of parameters of mathematical models of stochastic gene expression from single-
cell data is an important and challenging problem. Depending on the type of model, type of data,
and the form of extrinsic noise, a range of di�erent approaches have been developed recently to
tackle this kind of inference problem [17, 33, 34, 35, 36, 37, 38, 39, 40, 41]. The inference of gene
expression burst kinetics from scRNA-seq data has its own unique challenges due to speci�c kind of
technical variability, complexity and sparsity of such data. Several recent studies have used single
allele-speci�c scRNAs-seq data to map global burst kinetics genome-wide based on the Beta-Poisson
distribution solution of the telegraph model [42, 43, 25, 44]. However, it is still an open question how
to take into account the extrinsic biological and technical variability such as variation in cell size
and capture e�ciency in such methods [45]. The model by [44] considers the cell-speci�c variations
via spike-ins data, which is an experimental control that is not commonly available. In addition, the
model by [44] does not properly account for low and variable capture rates in scRNA-seq protocols.
Meanwhile, the recent work by [42] applies Maximum Likelihood Estimation (MLE) directly on the
raw scRNA-seq counts, hereby ignoring the cell-speci�c extrinsic variations. Ignoring extrinsic noise
in such inference can in�ate the amount of variability attributed to intrinsic noise and could lead to
misleading estimates of the burst kinetics.

Here, we revisit the problem of statistical inference of the parameters of gene expression from
scRNA-seq data focusing on the role of extrinsic variability. We present a mathematical model
of gene expression measured by scRNA-seq. Our model appropriately accounts for the extrinsic
variability introduced by cell-to-cell variations in scRNA-seq capture e�ciency and cell size. To
estimate the gene-speci�c kinetic parameters, we implement and compare four di�erent inference
schemes: MLE, methods of moments estimation (MME), an Approximate Bayesian Computation
(ABC) rejection sampling algorithm, and using direct likelihood free inference based on a neural
network (NN) implementation [46]. We benchmark these inference methods in a series of applications
to synthetic and real data and discuss which methods work best.

2 Methods

2.1 Theory and model

The classic model for stochastic gene expression is the so-called telegraph model (Fig. 1a). It is known
that the Chemical Master Equation of the telegraph model results in a Beta-Poisson distribution
for the mRNA at steady state [22, 7, 47].

This result is only valid in the absence of any extrinsic noise and cell cycle e�ects with a gene
with a constant transcription rate (ksyn). However, as discussed in the introduction, gene expression
is coupled to cell size and is, therefore, a�ected by the cell cycle [17, 21]. Moreover, we have recently
shown that the telegraph model satis�es the so-called stochastic concentration homeostasis condition
when the transcription rate scales with cell size (s) [48]. This notion implies that the transcript

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.06.531327doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531327
http://creativecommons.org/licenses/by-nc/4.0/


counts (Xij) of gene i in cell j in a population of growing and dividing cells (Fig. 1) is distributed
as follows:

Xij ∼ Poisson(sjk
′
syn,ipi),

pi ∼ Beta(k′on,i, k
′
o�,i), (1)

where sj is the cell size, and k′x,i = kx,i/(φi + α) denote the gene-speci�c synthesis and promoter
switching rates scaled by the e�ective degradation rate. The latter comprises the gene speci�c
degradation rate φi and the exponential growth rate α of the population.

During scRNA-seq, only a fraction of transcripts in each cell is captured. As we have recently,
the transcript counts observed in scRNA-seq data can be well modelled by a binomial model with a
cell-speci�c capture e�ciency (probability) denoted by βj [31]. Intuitively, the binomial model is a
natural choice as each transcript in a given cell is captured with the same cell-speci�c probability βj .
Notably, the binomial model can explain the statistics of drop-out events without a need to invoke
any zero-in�ation models [31, 32].

Using this binomial model, one can show that the distribution of observed transcripts (xij) in a
cell of size sj and capture e�ciency βj still follows the Beta-Poisson distribution but with a scaled
e�ective synthesis rate:

xij ∼ Poisson(ke�syn,i(βj , sj)pi),

pi ∼ Beta(k′on,i, k
′
o�,i)

(2)

with ke�syn,i(β, s) = βjsjk
′
syn,i denoting an e�ective transcription rate for the observed counts. The

observed counts x are necessarily lower than the actual original counts X and we therefore also
refer to these as the downsampled counts. The dependence of the actual and observed transcript
distributions on β and s is illustrated in Fig. 1b and c. This distribution then represents the correct
likelihood function that should be used in the inference of kinetic rates from scRNA-seq data as it
takes the biological variability introduced by the cell size and technical variability introduced by the
capture e�ciency into account. In the following, the kinetic rates of the model are de�ned relative
to the e�ective decay rate, and as we are dealing with snap-shot data (and assuming steady state),
we will omit the primes on the scaled rates.

2.2 Estimation of the capture e�ciency

Let xij (i ∈ {1, 2, . . . , P} and j ∈ {1, 2, . . . , Q}) denote the number of transcripts reported for the
ith gene in the jth cell in a scRNA-seq study. The measurements could be single allele or non-
single allele, depending on the protocol. We introduce β̂j = sjβj for cell j, which can simply be
estimated using an appropriate cell-speci�c scaling factor [13] from the raw data (xij). One simple
such measure of the cell-speci�c scale factor is the total number of counts:

Tj =
∑
i

xij .

We posit that β̂j =
Tj

T̄
β̄ where β̄ is the average capture e�ciency in the scRNA-seq protocol and T̄

is the average total count across cells. It can be estimated, for example, from smFISH data [31, 49].
Throughout most of this paper, β̄ is set to 0.06 in accordance with Klein et al. [50].

2.3 Likelihood- and moment-based estimation of burst kinetics

2.3.1 Maximum Likelihood Estimation (MLE)

Let dBP denote the Beta-Poisson distribution. A parameter estimation method proposed in the
literature ([42]) is obtained by the maximising the log-likelihood:

`ori,i =

Q∑
j=1

log(dBP(xij , kon,i, ko�,i, ksyn,i)),
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Figure 1: Model of stochastic gene expression and the e�ect of cell size and sequencing capture e�ciency
on observed transcript count distributions. (a) An illustration of the telegraph model of stochastic gene
expression and its associated parameters. Gene switches between an inactive and active state and mRNAs
are transcribed only from the active state. (b) Illustration of downsampling in scRNA-seq with a constant
β = 0.5 (note that in reality β tends to be smaller and varies across the cells. E�ective transcription
rate (keffsyn) is proportional to cell size in original transcript counts (right) and both cell size and capture
e�ciency in the observed counts (right). (c) Distributions of original mRNA counts in cells with constant
size for three speci�c parameters sets for the telegraph model (left) and their corresponding downsampled
distribution (right). Distribution of cell speci�c capture e�ciencies (β) used in downsampling is illustrated in
the middle top arrow (sampled from a log-normal distribution as described in Section 2.4.3). The challenge
is to use the downsampled observed count distribution that is also a�ected by variability in capture e�ciency
and cell size to infer the parameters of the original distribution (middle bottom arrow).
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where xij are the raw single-allele scRNA-seq counts for gene i in cell j as above, and the sum
runs over all cells in the data set � here, we assume the observations are independent. This
approach attributes all variations in the transcript counts to the intrinsic stochastic properties of
gene expression (in this case, in the framework of the telegraph model). As this method does not
use any normalisation and relies on raw scRNA-seq counts, we have termed it in this study as bare
MLE (denoted as BMLE).

There are two ways to evaluate `ori numerically. First, one might employ the so-called integral
method used in previous studies (see [44] and [42] for more details). Alternatively, one can use the
analytic form derived by Raj et al. [7] and Amrhein et al. [27]:

dBP(xij = n, kon,i, ko�,i, ksyn,i)

=
Γ(kon,i + ko�,i)ksyn,i

nΓ(kon,i + n)

Γ(kon,i)Γ(n+ 1)Γ(kon,i + ko�,i + n)
1F1(kon,i + n, kon,i + ko�,i + n,−ksyn,i). (3)

The limitation of this method is that it implicitly assumes perfect capture e�ciency. This could
in principle be overcome by considering the log-likelihood function derived from model (2):

`i =

Q∑
j=1

log(dBP(xij , kon,i, ko�,i, ksyn,iβ̂j)). (4)

This method is denoted simply as MLE in this study (in contrast to BMLE). The integral method is
not suitable for our modi�ed MLE method, however, as we consider cell-speci�c parameters which
would require us to marginalise over all cells. Since it is not possible to e�ciently vectorize this
approach, the computation becomes very time-consuming. We hence utilised the analytic form (3)
to take cell-speci�c parameters into consideration. However, this method is numerically challenging
since it involves evaluation of Eq. (3) for various expression levels and parameter combinations.
This circumstance can lead to uncontrolled numerical errors that impair the accuracy of the MLE
(Fig. S1).

2.3.2 Method of Moments Estimation (MME)

As an alternative to the MLE method, we consider the Method of Moments Estimation as presented
by Larsson et al. [42]. In this study, we denote this approach as the bare MME (BMME) as it is
based on raw counts. The method considers the �rst three moments M i

1, M
i
2, and M

i
3 of each gene

that can be estimated based on the raw single-allele scRNA-seq data (cf. [42]):

M i
1 =

1

Q

Q∑
j=1

xij , M i
2 =

1

Q

Q∑
j=1

xij(xij − 1), M i
3 =

1

Q

Q∑
j=1

xij(xij − 1)(xij − 2). (5)

For brevity of notation, we will omit the index i from the moments as the parameters of each gene
can be estimated independently. One can then de�ne the quantities

r1 = M1, r2 = M2/M1, r3 = M3/M2, (6)

that are related to the kinetic parameters:

kon =
2r1(r3 − r2)

r1r2 − 2r1r3 + r2r3
,

ko� =
2(r3 − r2)(r1 − r3)(r2 − r1)

(r1r2 − 2r1r3 + r2r3)(r1 − 2r2 + r3)
,

ksyn =
2r1r3 − r1r2 − r2r3

r1 − 2r2 + r3
.

(7)

To take variations in the capture e�ciency (β̂) into consideration, we propose a heuristic approach
that uses xij/β̂j instead of the raw xij in the estimation of the moments. We denote this method
simply as MME in contrast to BMME.
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2.4 Simulation-based estimation of burst kinetics

2.4.1 Approximate Bayesian Computation (ABC)

When dealing with our modi�ed MLE method, there are numerical instability issues, and the optimi-
sation is challenging. Meanwhile, it is known that MME may lead to biased estimates. Alternative
methods that avoid these issues are likelihood-free approaches that imply sampling simulations. In
our case, we sample from our analytical distribution (Eq. (4)).

Here, we employ ABC rejection sampling using priors that are constructed based on Section 2.4.3.
In ABC, one relies on a distance measure between the data and the simulations. For this purpose,
we employ the Hellinger distance since it has good properties with respect to model misspeci�cation
[51].

The data, one gene's expression (x̂) are a vector of scRNA-seq counts of length Q cells associated
with another vector of capture e�ciencies β̂. For each gene, the algorithm goes through the following
steps:

1. We draw kinetic parameter sets from the prior: θ? ∼ π(θ) (Section 2.4.3). Some parameter
sets are �ltered out to make sure that M1 ∈ {M5%,M95%}, where M5% and M95% indicate the
5th and 95th percentiles of 1,000 M1 estimates from bootstrapped MME (that is, we sample
cells with replacement 1,000 times and hence obtain 1,000 M1 estimates for each gene).

2. We simulate data (x?) by sampling a vector of gene expressions from 2 using θ? and a cell-
speci�c vector for β̂.

3. We calculate the Hellinger distance between the data (x̂) and the model predictions (x?:
H = d(x, x?)).

4. We repeat the steps above 10, 000 times, whereby we obtain a vector of distances, H =
(H1, H2, . . . ,H10,000). The parameter sets within the lowest 5% of s are accepted.

5. Lastly, we use the medians of the accepted parameter sets as point estimates for the three
kinetic parameters.

2.4.2 Direct likelihood-free inference based on neural networks (NN)

Recently, machine learning approaches are �nding applications in likelihood-free inference [52]. In
one such approach that we have recently developed [53] (here denoted by NN), we train a Bayesian
neural network using sets of parameters sampled from data and their corresponding summary statis-
tics of the simulated output. We employ a broad deep neural network with 3 hidden layers with 100
neurons each. To avoid over�tting, we invoke early stopping and dropout during the training process
[54]. By also including dropout during the inference phase in tandem with the loss function presented
by Gal and Ghahramani [55], approximating a Bayesian neural network, we can furthermore access
the uncertainty associated with the parameter predictions. So, given summary statistics of the data,
be it synthetic or real data, the trained neural network produces samples from the approximate
posterior distribution.

As in the case of the rejection ABC, we simulate data by sampling gene expression counts based
on the desired kinetic parameter values and subsequently downsampling the counts based on the
capture e�ciency. The training and test data for the NN are thus constructed analogously to the
synthetic data used in the self-consistent tests in Section 3.1. For data with 5000 cells, our NN is
trained on 10,000 simulations drawn from the uniform Fano prior discussed in Section 2.4.3. 4000
additional samples were drawn for the validation of the network. We note that the performance
of the NN is only marginally altered when reducing the training set to 1000 simulations. When
dealing with data with lower cell counts, we increase the number of simulated genes in the training
and validation sets proportionally to the relative decrease in the cell count. When dealing with
data with, say, 500 cells as opposed to 5000 cells, the number of genes in the training set is hence
increased from 10000 to 100000, while 40000 rather than 4000 genes are used in the validation set.
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The NN draws on 15 summary statistics. Three of these measures relate to the raw reported gene
expression after downsampling. These measures are the logarithm of the mean number of reported
transcripts, the logarithm of the sum of reported transcripts, and the fraction of zeros in the scRNA-
seq data. For the remaining twelve summary statistics, we estimate the capture e�ciency based on
the data and scale the reported gene expression based on this estimate. The summary statistics
that rely on the scaled gene expression include the logarithm of the range of scaled transcript count,
the logarithm of the highest scaled transcript count, the 10th percentile, the 25th percentile, the
median transcript count, the 75th percentile, the 95th percentile, the logarithm of the variance, the
skewness (3rd moment), the kurtosis (4thth moment), the logarithm of the coe�cient of variation,
and the logarithm of the total number of scaled transcript counts. All logarithms are base 10. With
this wide range of summary statistics, we aim to capture most of the information present in the
scRNA-seq data. The compression of distributions into a set of key features thus often comes with
the loss of relevant information (cf. a discussion on the su�ciency of summary statistics by [56]).
However, we also note the performance is not dramatically compromised by dropping some of these
summary statistics.

2.4.3 Choice of priors in simulation-based methods

We need a choice of prior for the parameters of the model for the ABC method. The same priors
is used to train the NN method and also to generate synthetic data for bench-marking. We have
chosen these priors in a speci�c way to create reasonable parameter sets. In this paper, these kinetic
parameters that enter Eq. (2) are computed in the following steps. First, we draw the logarithm of
kon from a uniform prior:

kon ∼ 10U(log10(0.01), log10(100)) (8)

Secondly, we draw the ratio between kon and koff from a normal prior with a mean of 0.05 and a
standard deviation of 0.5:

ko� =
kon
r
, r ∼ |Normal(µ = 0.05, σ = 0.5)|. (9)

Finally, we compute ksyn based on the values of kon and ko� as well as the Fano factor (F ; variance
over mean, for constraining parameter sets lie in reasonable range.):

ksyn =
(F − 1)(kon + ko�)(kon + ko� + 1)

ko�
. (10)

Here, we assume that the prior on the logarithm of the Fano factor is uniform: F ∼ 10U(log10(1.001), log10(30)).
Given a parameter set θ = (kon, ko�, ksyn), we simulate the outcome for a predetermined number

of cells by drawing from a Beta-Poisson distribution. We then downsample the synthetic data based
on the capture e�ciency, β. When simulating synthetic data, we either employ a �xed value for all
cells, mirroring the approach by Larsson et al. [42], or draw individual values for β for each cell from
a log-normal distribution. For this purpose, we draw samples from a log-normal distribution with a
mean of 2.74 and a standard deviation of 0.39 [31]. This distribution is subsequently scaled to have
a mean of β̄.

2.5 Extension to non-allele-speci�c counts

The previous methods can be applied to allele-speci�c scRNA-seq data since they rely on a model for
single genes based on the telegraph model. To go beyond this limitation, we modi�ed the methods
discussed above so that they can be directly applied to non-allele-speci�c scRNA-seq data that
measures the sum of transcript counts from both alleles for each gene. To this end, we have made
the simplifying assumption that the two gene alleles share the same parameters and their expression
is independent of one another.

For MLE applied to non-allele-speci�c data, including protocols based on Unique molecular
identi�ers (UMI)[57], the likelihood is the distribution of observed counts of two independent
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integer-valued random variables (X=Y+Z), which can be obtained as follow: dBPUMI(X = x) =∑x
k=0 dBP(Y = k)dBP(Z = x− k). It follows that ` =

∑
log(dBPUMI(x)) for optimization, where

the summation is taken across cells. However, for our purposes, it is not e�cient to evaluate the
log-likelihood in this manner. We hence omit MLE when dealing with non-allele-speci�c data.

In order to apply MME to non-allele-speci�c counts, the procedure can be modi�ed by replacing
M1, M2 and M3 in Eq. (6) with m1, m2 and m3 de�ned below:

m1 = M1/2,

m2 = M2/2− 2m1,

m3 = M3/2− 3m1m2.

(11)

With regards to rejection ABC and the training data for the NN, we simulate non-allele-speci�c
data by taking the sum of two random variables drawn independently from a Beta-Poisson distri-
bution and subsequently downsampling the total count.

3 Results

3.1 Benchmarking on synthetic data

Our aim is to infer the parameters of the classic model of stochastic gene expression, the telegraph
model (Fig. 1(a)), from scRNA-seq data. As illustrated in Fig. 1(b), gene expression is coupled to
cell size and scRNA-seq observations are a�ected by heterogeneous cell-speci�c capture e�ciencies
inherent to scRNA-seq protocols. This makes inference of the parameters of the gene expression,
also referred to as burst kintetic parameters in this study, from downsampled scRNA-seq data a
challenging task (as illustrated in Fig. 1(c)). As discussed in Section 2, the inference methods we are
considering �rstly include the existing bare maximum likelihood (BMLE) and bare method of mo-
ments estimation (BMME), in which raw scRNA-seq counts are used for inference [42]. In this study,
we have introduced modi�ed MLE and MME methods (denoted simply as MLE and MME), where
the cell size and capture e�ciency variability are taken into account in an approximate manner (see
Sections 2.3.1 and 2.3.2). We have also introduced two likelihood-free approaches, the approximate
Bayesian computation rejection sampling scheme (ABC) and a direct inference approach based on
the Bayesian neural networks (NN) presented by Jørgensen et al. [46] (see Sections 2.4.1 and 2.4.2).

We begin the result section by benchmarking the performance of the di�erent inference methods
on synthetic data sets that are generated from known gene-speci�c parameter sets as discussed in
Section 2.4.3. By comparing the inferred parameter sets to the ground truth, this section thus
presents a self-consistency check that allows for an evaluation of the di�erent methods in ideal
settings. The synthetic data sets include di�erent numbers of cells, spanning from 200 to 5000. In
each case, we sample between 1000 and 7000 di�erent combinations of kinetic parameters, repeating
each combination 20 times.

When assuming a �xed capture e�ciency of 1.0, we �nd that all methods yield accurate and
precise predictions for single-allele data. We summarize the results of this analysis in Fig. S2-Fig. S4
in the supplementary material. However, this scenario is not realistic; in real-world experiments, the
capture e�ciency is variable and much lower than one. So, next, we created another synthetic data
set for single-allele measurements with β̄ = 0.06 [50, 31]. For this data set, we �nd that the BMLE
and BMME procedures by Larsson et al. [42] lead to a pronounced systematic bias (o�set) between
the predictions and the ground truth for ko� and ksyn as well as the ratio of the two (Fig. 2). As
a result, the scores of many performance metrics, including the mean squared and absolute errors,
fall below those obtained from randomly assigning values to these parameters (Figs. S7 and S8).
This makes sense as these methods e�ectively assume that the capture e�ciency is 100% by not
considering any normalisation. Moreover, both the BMLE and BMME procedures fail to attribute
parameter values to a large fraction (about 65%) of the data set, yielding no parameter estimates
and also producing outliers when the optimisation methods fail. We note that while the modi�ed
MLE correctly includes capture e�ciencies and therefore does not su�er from the systematic bias
observed in BMLE, it su�ers from numerical problems in the evaluation of the modi�ed likelihood
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and the optimisation (see Figs. S5 and S6). In contrast, our simulation-based approaches, rejection
ABC and the NN, consistently yield accurate and precise predictions across all data sets and kinetic
parameters. They thus consistently yield the lowest mean absolute and mean squared errors among
all six methods, and the true values lie within the assigned 95% con�dence interval of both methods
in the majority of cases (Fig. 2).

As seen in Fig. Fig. 2, the accuracy of inferring koff is the poorest among the kinetic parameters,
suggesting some degree of non-identi�ablity. Also, as expected, increasing the number of cells from
200 to 5000 improves the performance metrics of all methods. Interestingly, NN has the best
performance at small cell numbers. We also note that only the MME, ABC and NN attribute
con�dence intervals while the remaining methods solely provide the best �t (Figs. S4 and S8). The
MME generally leads to narrower con�dence intervals than both the ABC and NN, but a signi�cantly
larger fraction of the true values do not lie within the error bars of the MME, suggesting that the
MME signi�cantly underestimates the prediction error.
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Figure 2: Comparison between di�erent modelling approaches allele-speci�c synthetic data
with β̄ = 0.06. (a): logarithmic residuals across all four parameters for a data set containing 1000 cells.
(b-c): contain four performance metrics for data containing 200 and 5000 cells, respectively. These metrics
are the coe�cient of determination (R2), the mean absolute error (MAE), the fraction of the true parameter
values that lie outside of the 95 % con�dence intervals (O95), and the width of the 95 % con�dence intervals
in logarithmic space (FW95). Only the NN, ABC and MME supply con�dence intervals. For each number
of cells, the synthetic data set contains 7000 genes with 20 repetitions each. All metrics (except for FW95)
are formulated such that a lower value implies a better �t. Note that the modi�ed MLE is omitted from
this summary as our implementation su�ers from numerical issues (see Fig. S5).

Finally, we developed a modi�ed MME, ABC and NN method that works for non-allele-speci�c
data (Section 2.5) and benchmarked their performance on synthetic non-allele-speci�c data. We �nd
that the NN yields narrower and smaller residuals. The results are summarized in Fig. S9 in the
supplementary material. So, overall, we propose that the NN method is the most robust approach,
and we mostly use this approach in the applications to real data in the rest of this study.
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3.2 Sparsity of gene counts lead to wrong model identi�cation

We note that even if expression counts are drawn from Beta-Poisson distribution, they may equally
well �t by other distribution models depending on parameters. This can be the case, for example, if
these models have fewer parameters such as the Poisson distribution or the negative binomial (NB)
distribution which have one and two parameters, respectively, compared to the three parameters
of the Beta-Poisson model. To investigate this we use Akaike information criterion (AIC), which
is a commonly used metric for model selection that accounts for both quality of the �t (likelihood
of data) and the complexity of the model (number of parameters). We generated a simulated data
set (500 cells and 7000 genes) using the Beta-Poisson model and we calculated the AIC using the
following three models and choice of parameters for each gene:

� Beta-Poisson: ground truth parameters were used.

� Negative binomial: R package bayNorm[31] (NB model for non-allele speci�c scRNA-seq data)
was applied to the raw counts to infer NB parameters for calculating the AIC.

� Poisson: raw counts were scaled by β̂, then the mean expression of each gene was calculated.
For each gene in each cell, the mean expression was multiplied by β̂ to be the mean parameter
in the Poisson distribution, which was used for calculating the Poisson model AIC.

Then genes were assigned to one of three models (Beta-Poisson, negative binomial or Poisson)
with the lowest AIC value. As data is generated from a Beta-Poisson model, one might expect this
model always selected, however, we found for many genes one of the simpler models are selected.
The genes in the Poisson and NB category tend to have the lower mean expression (Fig. 3(a)), which
highlights the fact that there is less information for estimating Beta-Poisson parameters. Indeed,
ksyn, which regulates the mean expression, has the highest impact on the identi�ability of the Beta-
Poisson model Fig. S10. This indicates that inference of burst kinetics is only possible for genes
that have high enough expression as expected. In line with this result, we observe that the inference
accuracy is poorer for the lowly expressed genes in our synthetic data (Fig. 3(b), Fig. S11).

3.3 Application to real-world data

3.3.1 Estimating kinetic parameters from individual allele data

We used the NN method to reassess the allele-speci�c data from Larsson et al. [42] containing 10727
genes and 224 cells. The data contains missing values. The number of missing values varies between
di�erent genes. Here, we only include genes with mean expression across non-missing values above 1.
As shown, this is important as genes with low counts do not contain enough information. This �rst
�ltering leaves us with 1992 genes. Of these genes, we remove genes with large number of missing
values. This leaves us with 1953 genes. We �nd that the NN yields kinetic parameter estimates that
are consistent with those obtained from the BMLE procedure by [29] when assuming that β̄ = 1.0.
However, as seen in Fig. S12 using realistically small and cell speci�c capture e�ciencies leads to a
systematic shift to higher burst sizes and a wider spread in burst frequency. The choice of prior used
in training our NN inference method has only a small e�ect on the inference results, which suggests
the robustness of our method Fig. S12.

As investigated in the original study [42], we look at the link between the presense of TATA
elements and Initiator (Inr) and the burst kinetics using our inferred parameters. We �nd NN yields
kinetic parameter estimates that are qualitatively consistent with those obtained from the original
MLE procedure by [42] such that genes with TATA elements have larger burst size (Fig. 4 (a-b)).
By �ltering out lowly expressed genes, our analysis reveals that genes with only Inr can boost burst
sizes (Fig. 4). Similar qualitative results can be achieved via the MLE approach adapted by Larsson
et al. [42] after removing the lowly expressed genes (Fig. 4). In addition, the NN results reveal that
genes with Inr have lower burst frequency than genes without TATA element and Inr. We note that
Larsson et al. [42] did not arrive at the same conclusions. The explanation for this is that they
kept around 7000 genes which include lots of lowly expressed genes for which inference results are
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Figure 3: Genes with low counts are assigned to simpler models. (a) Based on synthetic data
generated by the Beta-Poisson model, genes were labelled to be from one of the three models according to
the their AIC value. The mean counts for genes assigned to each model is shown. (b) The ratios between
inferred and true parameter values in each group of genes are shown. Estimates from genes which are
assigned to BP correctly are closer to ground truth values.
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not reliable (see Section 3.2 and Fig. S11). Interestingly, the NN results also reveal that genes with
both TATA and Initiator (Inr) tend to have relatively lower burst frequency compared with genes
without TATA and Inr, which was not found by [42] (Fig. 4 (d)).

Based on the present data set, we note that we �nd the simulations to successfully recover the
observed relation between the dropout rate and the mean expression for each allele (Fig. S14),
providing further support for the accuracy of our mathematical model of scRNA-seq data.

Finally, in our inference methods, the only source of biological and technical variability is con-
sidered to be the cell size and capture e�ciency. To test the validity of this assumption in real data,
we produced synthetic data for two independent alleles from 100 cells down-sampled by the same
capture e�ciency using parameters inferred by the NN method on the single-allele data of Larsson
et al. [42]. We then computed the correlations between the two alleles in our synthetic data and
plotted the results against the correlation between two alleles in the real data (Fig. S15). We �nd a
clear linear relationship between the simulated correlation and real correlation. This indicates that
it is reasonable to consider cell size and capture e�ciency as an important source of extrinsic noise
since we observe most genes to have a signi�cantly positive correlation between the two alleles, cap-
tured in our simulations. These results suggest the observed positive correlation between the gene
expression between the two alleles can be well explained by variation in capture e�ciency across
cells. So, one does not need to invoke correlated activity between the alleles or other signi�cant
sources of extrinsic noise. This further motivates the approach we have proposed for the inference
of gene expression parameters from non-allele-speci�c data. Interestingly, for some genes in the real
data, there is a negative correlation between two alleles, which might indicate anti-correlation in the
activity of those genes.

3.3.2 Estimating kinetic parameters from non-allele-speci�c scRNA-seq data

In this section, we analyse scRNA-seq data of mouse brain cells form two recent study (Mizrak et al.
[58] and Ximerakis et al. [59]) to highlight the application of our inference methods (MME, ABC and
NN) on non-allele-speci�c data that assumes that the counts are related to the sum of two identical
but independent alleles (Section 2.5).

The data from Mizrak et al. [58] contains 28407 cells from mouse brains (after removing doublets),
and covers multiple cell types like neuronal progenitors (active neural stem cells, transit amplifying
cells, and neuralblasts (aNSC+TAC+NB)), oligodendrocyte progenitor cells (OPCs), committed
oligodendrocyte precursors (COPs), oligodendrocytes (OLG), microglia (MG), astrocytes (ASC)
and neurons. In addition, we explored the data from mouse brains Ximerakis et al. [59], where there
are 37069 cells collected from either young or old mice. The data set contains various cell types,
including Neural stem cells (NSC), mature neurons (mNEUR), OPC and other cell types from young
and old mice.

Cell type markers are by de�nition the ones that are overexpressed in a particular cell type
but not others. Here, we investigate if these gene expression alterations are associated with the
changes in bust size or burst frequency. When comparing stem cells (aNSC+TAC+NB) with other
di�erentiated cells, all inference methods reveal higher burst frequencies for stem cell markers in stem
cells than di�erentiated cells like neurons and oligodendrocytes (Fig. 5). To a lower degree we see
burst size (Fig. S16), though burst size from MME is not consistent with ABC and NN. Interestingly,
cells at di�erent stages of oligodendrocyte di�erentiation (COP, OPC and oligodendrocyte) tend to
have either slighterly higher or similar burst frequency/size to the other mature cell types.

Our second dataset from Ximerakis et al. [59] that has data from both young and old brains
con�rms the high burst frequency for stem cell markers in stem cells regardless of brain age (Fig. S17).
In this study, they have reported that genes encoding ribosomal subunits have a reduced expression
upon aging [59]. We asked is it burst frequency or burst size of the ribosomal genes that is down
regulated upon aging. Results from NN and ABC shows again burst frequency but not burst size
is downregulated for ribosomal genes upon aging in NSC[59], ASC[59, 60] and OPC[59] compared
with other mature cells (Fig. 6).

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.06.531327doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531327
http://creativecommons.org/licenses/by-nc/4.0/


group Genes without TATA and INR Genes with only INR Genes with only TATA Genes with TATA and INR

0.0058
1.3e−07

8.3e−08

0

2

4

6

B
ur

st
 s

iz
e

(a) BMLE

0.026

1.9e−05

7.2e−06

0

2

4

6

B
ur

st
 s

iz
e

(b) NN

0.57
0.94

0.23

−2

−1

0

1

2

B
ur

st
 fr

eq
ue

nc
y

(c) BMLE

0.91

0.44

0.06

−2

−1

0

1

2

B
ur

st
 fr

eq
ue

nc
y

(d) NN

Figure 4: The relationship between burst kinetics and promotor characteristics based on the
NN results with β̄ = 0.06 and the BMLE from Larsson et al. [42]. Results are shown for Allele c57.
(a-b) Box plots of Burst size and (c-d) burst frequency estimates of genes with or without TATA elements
and Inr. The P-values of the Wilcox test between groups are shown.
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burst frequency. Cell types are allocated using aNSC marker genes reported in Mizrak et al. [58]. The �rst
three cell types are stem cell-like and the rest are mature cell types (a) Box plots of mean expression of stem
cell markers across the cell types are shown. Mean expressions was calculated after total count normalized;
Box plots of inferred burst frequencies using NN (b), MME (c) and ABC (d) inference approach.
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Figure 6: Ratio of burst frequency of genes encoding ribosomal subunits from young and old
mice within each cell type. Dark color shows the ratios within NSC and progenitor cells; light color
shows the ratios within mature cells. (a) Box plots of ratio of mean expression of genes encoding ribosomal
genes. Mean expression was calculated after total count normalized; Box plots of ratio of inferred burst
frequencies using NN (b), MME (c) and ABC (d) inference approach.
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4 Discussion

In this paper, we revisited the problem of inferring burst kinetics of gene expression from scRNA-seq
data. We provide a novel expression for the likelihood for single-allele scRNA-seq data, which allows
us to take cell-to-cell variation in size and capture e�ciency correctly into account. We show that
maximum likelihood estimation (MLE) could be unreliable due to numerical challenges. However,
we introduce likelihood-free approaches that include a modi�ed method of moments (MME) and
two simulation-based inference methods. Through a series of benchmarks on synthetic and real
data, we demonstrate the reliability and �exibility of the simulation-based inference methods. We
show that these methods also provide con�dence intervals and could also be easily generalised to
non-single-allele situations, which makes them more widely applicable. We obtain the best results
using a recent implementation of a simulation-based inference method based on Bayesian neural
networks [46].

Recent studies have used the maximum likelihood estimation method using a Beta-Poisson model
without any normalisation Larsson et al. [42], Kim and Marioni [25] termed here as bare maximum
likelihood estimation (BMLE). As we show in this paper, this approach can result in biased and
distorted distributions of estimates for burst kinetic parameters, including burst size. Also, we show
that burst kinetics parameters become unidenti�able for lowly expressed genes and that this prop-
erty could result in misleading results. While maximum likelihood estimation has good theoretical
guarantees, computational challenges in evaluating the likelihood and also challenges in optimisation
can make this method less favourable. Indeed, a recent study has likewise highlighted the challenges
with maximum likelihood estimation and the non-identi�ability for similar models of stochastic gene
expression [33].

There are not many available allele-speci�c scRNA-seq data, but UMI-based non-allele-speci�c
scRNA-seq data are highly abundant. We have therefore modi�ed the MME method and also our
simulation-based methods to infer the kinetic parameters directly from non-allele-speci�c (e.g. UMI)
count matrices. Although we assume that the two gene copies have identical kinetic parameters and
transcribe independently in this study, we note that these assumptions can easily be relaxed for
simulation-based methods. Indeed, some recent studies have suggested there is evidence for allelic
imbalance and dependence in burst kinetics across the gene alleles in existing the scRNA-seq data
Choi et al. [61], Mu et al. [62]. We applied our methods to two mouse brain scRNA-seq datasets.
Our results indicate that gene regulation across stem cells and aging brain tends to be associated
with the regulation of burst frequency and to a lower degree burst size. A recent study has proposed
epigenetic regulation of burst frequency in �tness genes upon stress could underly evolution of cancer
[63].

We note here we are neglecting other possible sources of extrinsic variabilities, such as �uctuations
in the kinetic rates due to �uctuations of other molecules in the cells. However, we have shown here
that a lot of gene expression correlations between alleles can be explained by accounting in variation
in cell size and capture e�ciency. In �ssion yeast, we have shown previously accounting for cell
size variation can capture most of the extrinsic variability observed in gene expression [17]. Other
studies have included the e�ect of di�erent cell cycle stages, replication and gene copy numbers [33].
Sun and Zhang [57] used allele-speci�c expressions in diploid cells and intrinsic and extrinsic noise
decomposition to study the genetic factors a�ecting gene expression noise. We also note that more
detailed mechanistic models of RNA-sequencing protocols can help to explain more of the technical
noise and biases in the data [14, 64, 65, 66, 67].

Inferring kinetic parameters of stochastic gene expression from scRNA-seq data is challenging.
First and foremost, the data is sparse and has missing values. This characteristic of the data presents
an obstacle to any attempt to accurately estimate the parameters. In addition, the extrinsic vari-
ables, such as cell size and capture e�ciency, are usually not known (for an exception, where cell
size has been measured along with scRNA-seq see [49]). Furthermore, measurements or theoretical
considerations that constrain the range within which the kinetic parameters lie are not readily avail-
able. Statistical analysis, such as the one presented in this paper, would thus bene�t from additional
measurements or other constraints that would provide tighter priors. While many researchers have
already studied the inference of kinetic parameters from high-throughput data, such as scRNA-seq
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data, several aspects are hence, by far, not fully explored. An important area of future research
is using multi-omic single-cell data. The data is quickly becoming available and could thus inform
our understanding of global gene expression variability [68, 69]. Some research is already starting in
this important area based on both statistical data integration [68, 70, 71] and model-based inference
[72, 73, 66]. Ultimately, by harnessing gene-gene correlations such multi-omic single cell datasets
could be used for the inference of genetic networks [74, 75].

In summary, we have proposed a simple and accurate method to take into account the variation
of cell size and capture e�ciency in the inference of burst kinetics from scRNA-seq data. We provide
likelihood free implementations of our approach that is robust and �exible and apply it to synthetic
and real data. Our analysis shows how state-of-the-art inference tools can help us to extract the
valuable information that is not caught by the standard approaches.

Code availability

Code for running ABC and NN methods can be found in https://github.com/WT215/Julia_ABC
and https://github.com/WT215/nnRNA respectively.
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Figure S1: Two ways of calculating the negative log likelihood. Using the simulated data and
the corresponding ground truth parameters, the negative log-likelihoods of most genes are almost the same
whether compute them using the integral method or the analytic form given in (Eq. (3)). However, the
analytic form is more likely to give an in�nite outcome as the upper bound and 0 as the lower bound than
the integral method. The arrows in the �rst panel highlight this property. The inconsistencies between the
two approaches stem from parameter sets where the kon is high.
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Figure S2: Comparison between di�erent modelling approaches as a function of the number
of cells at a �xed capture e�ciency of 1.0 for allele-speci�c synthetic data. For each number of
cells, the synthetic data set contains 1000 genes with 20 repetitions each.
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Figure S3: Performance metrics across methods and cell counts based on allele-speci�c syn-
thetic data with a �xed capture e�ciency of 1.0. For all metrics lower numbers imply better perfor-
mance. These metrics include the coe�cient of determination (R2), the explained variance (Ve), the mean
squared error (MSE), the mean absolute error (MAE), the median absolute error (med. AE), and the failure
rate, i.e. the fraction of test cases, for which the method is unable to provide parameter estimates. To put
the scores into perspective, the upper row of each heat map includes the results (rand.) that are obtained
when consistently guessing the parameters to take the mean value of the ground truth across all samples.
For all approaches, we use a uniform prior for the logarithm of the Fano factor.
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Figure S4: Additional performance metrics across methods and cell counts related to the
predicted 95 % credibility intervals. The plot is based on allele-speci�c synthetic data with a �xed
capture e�ciency of 1.0. O95 denotes the fraction of the true parameter values that lie outside of the 95 %
credibility intervals. FW95 denotes the width of the 95 % credibility intervals in logarithmic space, while
E95 is the median absolute error of the predictions in units of FW95. A uniform prior for the logarithm of
the Fano factor was employed.
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Figure S5: Scatter plot showing the predicted parameters as a function of the ground truth
across di�erent methods and cell counts. The plot includes 500 cells for each method and is based on
allele-speci�c synthetic data.
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Figure S6: Comparison between di�erent modelling approaches as a function of the number
of cells for a varying capture e�ciency with β̄ = 0.06 for allele-speci�c synthetic data. For each
number of cells, the synthetic data set contains 7000 genes with 20 repetitions each.
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Figure S7: Performance metrics across methods and cell counts based on allele-speci�c syn-
thetic data with a varying capture e�ciency (β̄ = 0.06). For more information, see the caption of
Fig. S3.
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Figure S8: Additional performance metrics across methods and cell counts related to the
predicted 95 % credibility intervals. The plot is based on allele-speci�c synthetic data with a varying
capture e�ciency (β̄ = 0.06). For further details see Fig. S4.
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Figure S9: Comparison of inference methods. Based on non-allele speci�c simulated data with mean
capture e�ciency set to be 0.06. Ratio between estimates and ground truth of burst frequency (a); ko� (b)
; ksyn (c) and burst size (d) are shown.
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Figure S10: Low ksyn lead to wrong identi�cation. (a-c): each dot represents one gene. Model
selection of BP (Beta-Poisson), NB (negative binomial) and Poisson based on the lowest AIC. (d) Impact
of magnitude of kinetic parameters on model selection.
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Figure S11: Histogram summarizing the errors in the predicted kinematic parameters for our
synthetic data (Fig. S5) based on the NN for 5000 cells.. The genes have been categorized based
on their expression. We thus distinguish between those genes that have fewer than 500 counts, those that
have fewer than 5000 counts and those that have more than 5000 counts across all 5000 cells. As can be
seen from the �gure, lowly expressed genes generally lead to higher errors.
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Figure S12: Predicted burst frequency and burst size for each allele (CAST/EiJ Ö C57BL/6J)
based on data from [42]. The burst kinetics were inferred using the neural network. During the training,
we either imposed a uniform prior for the logarithm of the Fano factor (left-hand side) or directly for the
logarithm of ksyn (right-hand side). Two scenarios for the capture e�ciency (β) were considered: A �xed
capture e�ciency of β = 1.0 (grey markers) and a varying capture e�ciency with β̄ = 0.06. The error bars
signify 68 % credibility intervals.
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Figure S13: Figure corresponds to Fig. 4. Allele c57. (a-b): burst size inferred from MME and ABC;
(c-d): burst frequency inferred from MME and ABC. The P-values of the Wilcox test between groups are
shown.
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Figure S14: Comparison between real and simulated data in terms of the dropout-mean
relationship. Simulated data was generated based on parameters estimated using the NN method. Kinetic
parameters were inferred based on data from (a) allele c57 and (b) allele cast respectively.
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Figure S15: Kinetic parameters inferred from allele-speci�c data Larsson et al. [42]. Each point
represents the Spearman correlation between two alleles for one gene. Dots are coloured according to the
adjusted P-values calculated using the real data. Three dashed lines represent diagonal line; vertical lines
x=0 and y=0 respectively.
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Figure S16: Figure corresponds to Fig. 5. (a)Mean expression, calculated after total count normalized;
Burst size estimated using NN (b), MME (c) and ABC (d). Use aNSC marker genes reported in Mizrak
et al. [58].
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Figure S17: Figure corresponds to Fig. 6. (a)Mean expression, calculated after total count normalized;
Burst frequency estimated using NN (b), MME (c) and ABC (d). Use NSC marker genes reported in
Ximerakis et al. [59].
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Figure S18: Figure corresponds to Fig. 6. Ratio of burst size of genes encoding ribosomal subunits
within each cell type from young and old mice respectively. (a) Mean expression, calculated after total
count normalized; Burst size estimated using NN (b), MME (c) and ABC (d).
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