1	Single-Cell Map of Dynamic Multicellular Ecosystem of Radiation-Induced
2	Intestinal Injury
3	
4	Short title: Single-cell map of dynamic ecosystem of RIII
5	
6	Hua Yan ^{1,4} , Hao Lu ^{1,4} , Yuan Xing ¹ , Yumeng Ye ¹ , Siao Jiang ¹ , Luyu Ma ¹ , Hongyan
7	Zuo ¹ , Yanhui Hao ¹ , Chao Yu ¹ , Yang Li ^{1,2,*} , Yiming Lu ^{1,*} , Gangqiao Zhou ^{1,3,*}
8	
9	Affiliations:
10	¹ Beijing Institute of Radiation Medicine, Beijing 100850, China;
11	² Academy of Life Sciences, Anhui Medical University, Hefei City, Anhui Province,
12	230032, China;
13	³ Collaborative Innovation Center for Personalized Cancer Medicine, Center for
14	Global Health, School of Public Health, Nanjing Medical University, Nanjing City,
15	Jiangsu Province, 211166, China.
16	⁴ These authors contributed equally: Hua Yan, Hao Lu.
17	
18	*To whom the correspondence should be addressed:
19	Dr. Gangqiao Zhou, Department of Genetics & Integrative omics, State Key
20	Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of
21	Radiation Medicine, 27 Taiping Road, Beijing, 100850, P. R. China. E-mail:
22	zhougq114@126.com; Phone & fax: 86-10-66931201.

- 23 OR
- 24 Dr. Yiming Lu, Department of Genetics & Integrative omics, State Key Laboratory of
- 25 Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation
- 26 Medicine, 27 Taiping Road, Beijing, 100850, P. R. China. E-mail:
- 27 ylu.phd@gmail.com; Phone & fax: 86-10-66930297.
- 28 OR
- 29 Dr. Yang Li, Department of Experimental Pathology, Beijing Institute of Radiation
- 30 Medicine, Beijing 100850, P. R. China. E-mail: leeyoung109@hotmail.com; Phone &
- 31 fax: 86-10-66930232.

33 Abstract

34	Intestine is a highly radiation-sensitive organ that could be injured during the
35	radiotherapy for abdominal or pelvic cavity tumors. However, the dynamic change of
36	the intestinal microenvironment related to radiation-induced intestine injury (RIII) is
37	still unclear. Using single-cell RNA sequencing, we pictured a dynamic landscape of
38	the intestinal microenvironment during RIII and regeneration. We showed that the
39	multicellular ecosystem of intestine exhibited heterogeneous radiosensitivities. We
40	revealed the distinct dynamic patterns of three subtypes of intestinal stem cells (ISCs),
41	and the cellular trajectory analysis suggested a complex interconversion pattern
42	among them. For the immune cells, we found that $Ly6c^+$ monocytes can give rise to
43	both pro-inflammatory macrophages and resident macrophages after RIII. Besides,
44	through cellular communication analysis, we identified a positive feedback loop
45	between the macrophages and endothelial cells, which could amplify the
46	inflammatory response induced by radiation. Overall, our study provides a valuable
47	single-cell map of the dynamic multicellular ecosystem during RIII and regeneration,
48	which may facilitate the understanding of the mechanism of RIII.
49	

50 KEYWORDS: Radiation-induced intestinal injury; Single-cell sequencing; Intestinal
 51 stem cell; Radiation-induced inflammation.

52 INTRODUCTION

53	As one of the most sensitive organs to ionizing radiation, intestine could be damaged
54	during the radiotherapy for abdominal or pelvic cavity tumors or uncontrolled release
55	of radioactive materials, which would lead to radiation-induced intestinal injury (RIII).
56	Treatments of RIII are very limited and generally focused on reducing symptoms, and
57	the curative effects are not satisfactory. RIII is largely defined as clonogenic cell death
58	and apoptosis in the crypt cells, which results in insufficient replacement of villus
59	epithelium, breakdown of the mucosal barrier ^{1, 2} , inflammation and immune
60	abnormality ³ . Previous studies mainly focused on the roles of molecules and pathways
61	in DNA damage, apoptosis, autophagy ⁴ , inflammation and immune. However, the
62	dynamics of the microenvironment during intestine injury and regeneration remains
63	poorly understood, which limits the elucidation and treatment of RIII. Therefore, the
64	present study aims to clarify the dynamic variation of the cellular microenvironment
65	of RIII.
66	It has been widely accepted that the intestinal stem cells (ISCs) are able to
67	replenish the whole crypt-villus axis, generating all differentiated cell types required
68	for the physiological function of the intestine ⁵ . A number of ISC subpopulations in the
69	small intestine have been identified, including Lgr5+ crypt-based columnar cells
70	(CBCs), +4 reserve stem cells (RSCs) and revival stem cells (revSCs). Lgr5+ CBCs
71	are considered indispensable for intestine recovery following exposure to radiation ⁶ .
72	+4 RSCs, which express specific markers <i>Bmi1</i> , <i>Hopx</i> and <i>Tert</i> ⁷⁻⁹ , have been
73	described as a slow dividing reserve stem cell population. Recently, a group of

74	revSCs was identified to be extremely rare under homoeostatic conditions and arise in
75	damaged intestines to reconstitute Lgr5+ ISCs and regenerate the intestine ¹⁰ .
76	Irradiation causes a sharp reduction in the number of ISCs, which brings great
77	challenges in the repair of injured intestinal epithelium. Despite the advances in our
78	understanding of the ISCs in the past few years, a dynamic landscape of ISCs during
79	injury and regeneration is still lacking and their interconversion relationships remain
80	puzzling.
81	Immune cells also play important roles in the pathogenesis of RIII. Macrophages
82	are crucial component of the immune system in the intestine, which modulate
83	inflammation by secreting distinct cytokines and acting as professional
84	phagocytes ¹¹⁻¹³ . Intestinal macrophages require continuous replenishment by blood
85	monocytes and have very poor proliferative capacity, which is different from the other
86	tissue macrophages. Exposure to radiation can significantly decreases the levels of
87	macrophages in the damaged intestine ¹⁴ . Besides, the elucidation of the role of
88	cross-talk between the macrophages and other cells in the initial inflammatory
89	response and microenvironment homeostasis recovery post irradiation is also of great
90	significance for the development of new therapeutic targets.
91	Recently, the single-cell RNA sequencing (scRNA-seq) has been applied to
92	identify new cell types or cell states ¹⁵⁻¹⁷ , investigate cellular plasticity and stemness of
93	ISCs ^{10, 18} , or trace developmental relationships among different cell populations in the
94	intestine ¹⁹ . However, these studies have not investigated the dynamic changes of
95	microenvironment during intestine injury and regeneration. Here, we utilized the

96	scRNA-seq to explore the multicellular ecosystem of homeostatic and regenerating
97	intestine in a time-course manner. We generated transcriptomes of 22,680 single cells
98	in the intestinal microenvironment, trying to profile the dynamics of ISCs and
99	immune cells located in the mucous layer. This large-scale single-cell transcriptome
100	data can be used as a valuable resource for further studying the cellular mechanism of
101	RIII and development of potential therapy strategies.
102	RESULTS
103	A dynamic single-cell map of multicellular ecosystem in healthy and injured
104	small intestine
105	Mice were exposed to 15 Gy of abdominal irradiation using a Co^{60} irradiator to induce
106	intestinal injury (Figure 1A). About 20% mice died in the irradiation group within 3-6
107	days post-irradiation (Figure 1B). The body weights of mice after irradiation exposure
108	continued to lose in the first 7 days and then gradually increased afterward (Figure
109	1C). In line with this, exposed mice showed significantly reduced intestinal weight at
110	day 3 and day 7 post-irradiation as compared to unexposed mice and showed recovery
111	at day 14. Morphological and cellular phenotype analyses also showed significant
112	decrease of villus length, villus width, crypt depth and number of crypts at day 1
113	and/or day 3 post-irradiation (Figures S1A–S1D). A peak of TUNEL-positive cells at
114	day 1 post-irradiation suggested that the radiation-induced cell death occurs mostly
115	within the first 24–48 hours (Figure S1E). An increase of Ki-67-positive cells from
116	day 3 to day 14 indicated that the day 3-14 is a key time-window for intestinal
117	regeneration (Figure S1F).

118	To generate a dynamic single-cell map of the intestinal microenvironment related
119	to RIII, we employed a droplet-based scRNA-seq approach to profile the
120	transcriptomes of single cells from the intestinal tissues at day 1 ($n = 4$), day 3 ($n = 3$),
121	day 7 (n = 3) and day 14 (n = 3) after irradiation exposure as well as the unexposed
122	healthy intestinal tissues $(n = 4)$ (Figure 1A). After quality filtering, we obtained the
123	transcriptomes of a total of 22,680 single cells, with an average of 1,778 genes and
124	7,843 unique transcripts per cell (Figures S2A and S2B; Table S1). These
125	transcriptomes of single cells from all samples were merged using a canonical
126	correlation analysis (CCA)-based batch correction approach to generate a global map
127	of cellular microenvironment of healthy and injured intestines. Shared nearest
128	neighbor (SNN) graph-based clustering of single cells identified a total of 54 cell
129	clusters (subtypes), which were visualized on the t-distributed stochastic neighbor
130	embedding (t-SNE) dimensional reduction map (Figures 1D, S2C and S2D).
131	Differentially expressed genes were calculated for each cell cluster using the
132	Wilcoxon rank sum test.
133	Using canonical marker genes, we identified 10 major cell types in our dataset,
134	including intestinal stem cells (ISCs), transit amplifying (TA) cells, enterocytes,
135	goblet cells, enteroendocrine cells (EECs), Paneth cells, endothelial cells, T cells, B
136	cells and myeloid cells, and most of them consist of multiple subtypes (Figures 1E
137	and S2E), suggesting a complex cellular ecosystem of healthy and irradiation-injured
138	intestines. We found the intestinal ecosystem changed greatly during RIII and
139	regeneration (Figure 1F and 1G). Specifically, the stem cells and immune cells (T

140	cells, B cells and myeloid cells) decreased markedly at day 1 post-irradiation;
141	enterocytes decreased sharply at day 3; and immune cells and endothelial cells
142	exhibited a dramatic increase at day 3. Despite of the great alterations of intestinal
143	microenvironments during the first 7 days post-irradiation, intestinal tissues at day 14
144	exhibited very similar cellular composition with those non-irradiated ones. These
145	results suggested that intestinal multicellular ecosystem disrupted by intense
146	abdominal irradiation can be largely reconstructed within 14 days post-irradiation,
147	which is in line with our morphological observations (Figure S1).
148	Intestinal multicellular ecosystem showed heterogeneity of in vivo
149	radiosensitivities
150	The dynamic change of cellular composition in intestines before and after irradiation
151	exposure provided an opportunity to explore the <i>in vivo</i> radiosensitivities of various
152	cell subtypes. To quantify the radiosensitivity for each cell cluster, we compared the
153	ratios between the observed and expected cell numbers from the intestinal samples at
154	day 1 after irradiation. Consistent with previous studies ^{6, 20} , most ISC and immune
155	cell subtypes are highly radiosensitive, exhibiting significantly lower frequencies than
156	expected at day 1 (Figure 2A). Nevertheless, there are a few ISC and immune cell
157	subtypes (C22, C30, C19 and C35) exhibited similar or higher frequencies than
158	expected at day 1, suggesting they are radioresistant subpopulations. Apart from ISCs
159	and immune cells, we found all the endothelial and stromal cell subtypes are
160	radioresistant, while the enterocytes, goblet cells and EECs exhibit heterogeneous
161	levels of radiosensitivity across their respective subtypes.

162	We next sought to identify the pathways activated by various cell types to
163	confront irradiation-induced apoptosis. We focused on the top four enriched major cell
164	types in our dataset, including the ISCs, enterocytes, myeloid cells and T cells. For
165	each cell type, we identified pathways significantly up-/down-regulated in surviving
166	cells at day 1 post-irradiation using the whole cells from non-irradiated samples as
167	background (Figures 2B, 2C and S3). Notably, a number of pathways, including
168	PI3K/AKT/mTOR signaling, MYC signaling, TGF- β signaling and cell cycle-related
169	pathways, were consistently downregulated in surviving cells of different cell types,
170	while KRAS-down signaling pathway were consistently upregulated in surviving cells.
171	We also investigate the genes that are upregulated in survived cells at day 1
172	post-irradiation as compared to non-irradiated cells for the stem cells, enterocytes,
173	myeloid cells and T cells, respectively. We identified 67 significantly upregulated
174	genes that were shared by all the major cell types (Figures 2D and 2E). Functional
175	annotation showed that the upregulated genes include several genes known to be
176	involved in the negative regulation of apoptotic process (Table S3).
177	Dynamics of three distinct ISC subpopulations during intestinal injury and
178	regeneration
179	ISCs are critical for epithelium regeneration after injury ^{6, 10} ; however, their
180	phenotypic heterogeneity and dynamics during intestinal injury and regeneration have
181	not been fully characterized. We identified a total of 2,411 ISCs that were divided into
182	five clusters (Figures 3A, 3B and S4). Cells in clusters C4, C9, and C16 highly
183	expressed Lgr5 ⁺ CBC signatures (Olfm4, Smoc2 and Prom1), suggesting they are

184	<i>Lgr5</i> ⁺ CBCs; stem cells in C35 expressed high levels of +4 RSC signatures (<i>Hopx</i> and
185	<i>Tert</i>), suggesting they are a set of +4 RSCs ^{21, 22} ; cluster C28 was enriched for stem
186	cells that highly expressed Clu, Cxadr and Anxal, which are signatures of recently
187	reported Clu^+ revSCs ¹⁰ . We found Clu^+ revSCs in C28 also showed high expression
188	levels of cell cycle-related genes. A closer examine of cells in cluster C28 reveals two
189	different subclusters (C28a and C28b). Cells in C28a expressed higher levels of Clu
190	and lower levels of cell cycle-related genes, indicating they are likely to be quiescent
191	Clu^+ revSCs. On the contrary, cells in C28b expressed lower levels of Clu and higher
192	levels of cell cycle-related genes, suggesting that a portion of Clu^+ revSCs may be in
193	actively proliferating status during RIII.
194	We then investigated the temporal dynamics of these ISC subpopulations. The
195	proportion of $Lgr5^+$ CBCs was drastically reduced at day 1 and day 3 and was
196	substantially recovered at day 14 post-irradiation (Figure 3C). In line with the
197	scRNA-seq data, the integral luminous density of in situ hybridization with probes
198	specific for <i>Olfm4</i> showed similar results (Figure 3D). By contrast, +4 RSCs in C35
199	were specifically enriched at day 1 post-irradiation, suggesting they are not only
200	radioresistant but can also be induced by irradiation (Figure 3C), in line with a
201	previous study that detected increased lineage tracing output of +4 RSCs after
202	irradiation exposure ²³ . Distinct from $Lgr5^+$ CBCs and +4 RSCs, Clu^+ revSCs in C28
203	were specifically enriched at day 3 post-irradiation (Figure 3C), in accordance with
204	the study that first reported the population of Clu^+ revSCs ¹⁰ . Collectively, these results
205	showed the distinct dynamic patterns of three ISCs subpopulations. Moreover, the

206	temporal sequential enrichment of +4 RSCs, Clu^+ revSCs and $Lgr5^+$ CBCs during this
207	process hints at a potential sequential differentiation relationship among them.
208	Differentiation trajectory analyses of intestinal stem cell subpopulations
209	We next sought to explore the differentiation trajectories among these heterogeneous
210	ISC subpopulations. RNA velocity has recently emerged as a powerful approach for
211	inferring the transition direction of a single cell to neighboring cells ²⁴ . Here, we
212	performed RNA velocity analysis on stem cell populations in a time-course manner.
213	Given that only +4 RSCs were enriched at day 1, we combined them with ISCs
214	presented under homeostatic conditions (Control-D1) or those presented at day 3
215	(D1-D3), respectively, to investigate the inter-subpopulation differentiation
216	trajectories. Notably, the Control-D1 RNA velocity map showed that there is a
217	velocity flow from Lgr5 ⁺ CBCs toward +4 RSCs (Figure 3E), in accordance with a
218	previous study that demonstrated the interconversion between $Lgr5^+$ CBCs and +4
219	RSCs ⁹ . This result may explain the specific enrichment of +4 RSCs at day 1
220	post-irradiation. We observed two clear velocity flows in the D1-D3 map (Figure 3F).
221	The first flow initiates from the +4 RSCs toward Clu^+ revSCs, suggesting +4 RSCs
222	may be able to differentiate to Clu^+ revSCs. This result is not only in accordance with
223	the specific enrichment of Clu^+ revSCs at day 3 post-irradiation rather than at day 1
224	(Figure 3B), but also consistent with the observation of a peak of CLU-tdTomato $^+$
225	clone frequency at the +4 position from the crypt bottom ¹⁰ , where +4 RSCs are
226	specifically enriched. The second flow is from the Clu^+ revSCs toward $Lgr5^+$ CBCs,
227	suggesting that Clu^+ revSCs could repopulate $Lgr5^+$ CBCs when the latter were

almost eliminated by irradiation, in line with the previous study¹⁰.

229	We then used SCENIC ²⁵ to investigate the potential key regulons along these
230	velocity flows. We found Myc and Hdac1 were among the top transcription factors
231	(TFs) that exhibit significantly increasing activities along the velocity flow from
232	Lgr5 ⁺ CBCs toward +4 RSCs (Figure 3G). Myc has been reported to be required for
233	intestinal formation and regeneration but dispensable for homeostasis of the adult
234	intestinal epithelium ^{26, 27} . Here, our result suggested Myc may facilitate intestinal
235	regeneration by promoting the conversion from $Lgr5^+$ CBCs to +4 RSCs upon
236	radiation-induced injury. Besides, Hdac1 was also reported to regulate intestinal stem
237	cell homeostasis ²⁸ . Among the top correlated TFs along the velocity flow from +4
238	RSCs toward Clu^+ revSCs (Figure 3H), Ybx1 is a stress-activated TF and has been
239	reported to be able to transcriptionally activate Clu expression by directly binds to the
240	promoter regions of Clu^{29} . Our data suggest Ybx1 may play important roles in the
241	induction of Clu^+ revSCs from +4 RSCs. Besides, another TF Hmga1 has been
242	reported to amplify the Wnt signaling and expand the intestinal stem cell
243	compartment and Paneth cell niche ³⁰ . For the velocity flow from Clu^+ revSCs toward
244	$Lgr5^+$ CBCs, we found Runx1 and Stat3 were among the top correlated TFs (Figure
245	3I). Stat3 has been shown to be indispensable for damage-induced crypt
246	regeneration ³¹ and the Runx1-Stat3 signaling pathway has been reported to regulate
247	the differentiation of $Lgr5^+$ CBC ³² . Taken together, our results revealed the possible
248	differentiation trajectories among $Lgr5^+$ CBCs, +4 RSCs and Clu^+ revSCs upon
249	intestinal injury, and identified the specific TF sets driving these differentiation paths.

250 Bidirectional differentiation of peripheral monocytes into pro-inflammatory

251 macrophages and resident macrophages

- 252 A total of 4,010 myeloid cells were identified in our dataset, which were divided into
- five clusters (C0, C22, C24, C36 and C38) (Figure 4A). Cells in cluster C0 expressed
- high levels of monocyte markers (*Cd14*, *Ccr2* and *Ly6c2*), indicating they are
- 255 peripheral $Ly6c^+$ monocytes. Cells in C22 highly expressed macrophage markers
- 256 (Cd80, Cd206, Cd64 and F4/80) and a set of pro-inflammatory genes (Il1a, Il1b, Il6
- and *Tnf*), suggesting they are a set of pro-inflammatory macrophages. C36 was
- 258 enriched for cells expressed high levels of resident macrophage markers (*Cx3cr1* and
- 259 *Fcgr1*), suggesting they are $Cx3cr1^+$ resident macrophages. Besides, we also
- 260 identified a cluster of neutrophils (C24) highly expressing neutrophil markers (*Ly6g*,
- 261 *Retnlg* and *S100a9*) (Figure 4B).

262 We then investigated the temporal distribution of these myeloid subpopulations.

We found that $Ly6c^+$ monocytes (C0), pro-inflammatory macrophages (C22) and the

- neutrophils (C24) were highly enriched at day 3 post-irradiation (Figure 4C). The
- 265 temporal distributions of pro-inflammatory macrophages after irradiation were
- 266 confirmed by flow cytometry, and their expression of pro-inflammatory cytokines
- 267 were measured (Figures 4D-4F). In contrast, $Cx3crI^+$ resident macrophages in C36

showed depletion at day 1 and day 3 post-irradiation and became abundant at day 7,

- 269 suggesting resident macrophages are radiosensitive and could rapidly recover after
- 270 irradiation.

Using RNA velocity analysis, we found that there are two differentiation paths

272	initiated from $Ly6c^+$ monocytes towards pro-inflammatory macrophages and $Cx3cr1^+$
273	resident macrophages, respectively (Figure 4G). Although the alternative outcomes of
274	$Ly6c^+$ monocytes to be resident and pro-inflammatory macrophages has been
275	previously reported in inflammatory bowel disease (IBD) ³³ , our result shows that this
276	bidirectional differentiation pattern may be import for RIII recovery. Further, SCENIC
277	analysis was performed to investigate the potential key regulons driving these two
278	differentiation paths, respectively. We found these two differentiation paths shared
279	several top correlated TFs, including Cebp, Maf, Mafb and Nr1h3 (Figure 4H and 4I).
280	CCAAT/enhancer-binding protein (Cebp), Maf and Mafb transcription factors has
281	been reported to be important for monocyte-to-macrophage differentiation ³⁴ . Nuclear
282	receptor Nr1h3 (LXR α) has also been reported to be a major regulator of macrophage
283	development ³⁵ . Besides the shared TFs, the two differentiation paths were also driven
284	by specific factors. Activities of Jun, Stat1, Irf1 and Irf2 were specifically upregulated
285	along the velocity flow from $Ly6c^+$ monocytes to pro-inflammatory macrophages
286	(Figure 4H), while Myc and Myc-associated zinc finger (Maz) were specifically
287	upregulated along the velocity flow from $Ly6c^+$ monocytes to resident macrophages
288	(Figure 4I), in accordance with the key role of Myc in the self-renewal activity of
289	macrophages ³⁶ . Together, these results suggested that peripheral monocytes could
290	differentiate into both pro-inflammatory macrophages and resident macrophages after
291	RIII, and these two differentiation paths may be driven by different key TFs.
292	A positive feedback loop between the macrophages and endothelial cells
293	amplifies inflammatory response upon RIII

294	To assess the roles of various cell types in the inflammatory response induced by
295	irradiation, we investigated the ligand-receptor (L-R) pairs that mediate cellular
296	interactions among the cell clusters. A total of 2,064 L-R interactions were identified
297	among all the cell clusters within the intestinal microenvironment. We found the
298	cellular interacting patterns varied greatly at different times during RIII and recovery
299	(Figure 5A). Especially, we observed massive interactions that occur between the
300	macrophages and endothelial cells at day 3 post irradiation, in contrast to other time
301	points and other cell types.
302	We found that the activated endothelial cells expressed high levels of adhesion
303	molecules such as <i>Vcam1</i> and <i>Icam1</i> , to recruit pro-inflammatory macrophages, in
304	accordance with previous studies ³⁷ . Besides the adhesion molecules, we found these
305	endothelial cells also expressed high levels of chemokine Cxcl12 to recruit
306	pro-inflammatory macrophages (Figure 5D). Interestingly, the pro-inflammatory
307	macrophages expressed high levels of vascular endothelial growth factor (Vegf),
308	which could, in turn, enhance the endothelial cell survival and proliferation ³⁸ (Figure
309	5D). The interactions between the activated endothelial cells and pro-inflammatory
310	macrophages could amplify the proliferation of both populations, which is consistent
311	with the specific enrichment of pro-inflammatory macrophages and endothelial cells
312	at day 3 post irradiation. We speculate the amplification effect is critical for the quick
313	induction of inflammation at early stage of intestinal injury.
314	We also sought to identify the pathways that are upregulated upon endothelial
315	cells activation during RIII. Compared to endothelial cells in homeostatic intestine,

316	the activated endothelial cells at day 3 post irradiation were shown to be upregulated
317	in inflammatory response, TNF- α signaling via NF- κ B, EMT and KRAS signaling
318	pathways (Figures 5B and 5C). NF- κ B has been reported to play a pivotal role in the
319	inducible expression of cytokines in inflammatory response induced by irradiation ³⁹ .
320	Besides, we found KRAS signaling pathway may also play an important role in
321	inflammatory cytokines induction. In addition, the upregulation of EMT pathway
322	indicates that irradiation could induce the epithelial-to-mesenchymal transition of
323	endothelial cells, which may be involved in intestinal fibrosis after radiation
324	exposure ⁴⁰ . Collectively, these results showed that the cellular interactions between
325	macrophages and endothelial cells could achieve a quick amplification of
326	inflammation upon the RIII.
327	DISCUSSION
327 328	DISCUSSION The dynamics of cellular microenvironment during the radiation-induced intestinal
328	The dynamics of cellular microenvironment during the radiation-induced intestinal
328 329	The dynamics of cellular microenvironment during the radiation-induced intestinal injury and regeneration remains largely uncharacterized. In this study, by combining
328 329 330	The dynamics of cellular microenvironment during the radiation-induced intestinal injury and regeneration remains largely uncharacterized. In this study, by combining the single-cell transcriptome profiling with temporal distribution analysis, lineage
328329330331	The dynamics of cellular microenvironment during the radiation-induced intestinal injury and regeneration remains largely uncharacterized. In this study, by combining the single-cell transcriptome profiling with temporal distribution analysis, lineage reconstruction, TF profiling and cellular interaction analyses, we provided a
 328 329 330 331 332 	The dynamics of cellular microenvironment during the radiation-induced intestinal injury and regeneration remains largely uncharacterized. In this study, by combining the single-cell transcriptome profiling with temporal distribution analysis, lineage reconstruction, TF profiling and cellular interaction analyses, we provided a comprehensive dynamic landscape of the cellular microenvironment during intestinal
 328 329 330 331 332 333 	The dynamics of cellular microenvironment during the radiation-induced intestinal injury and regeneration remains largely uncharacterized. In this study, by combining the single-cell transcriptome profiling with temporal distribution analysis, lineage reconstruction, TF profiling and cellular interaction analyses, we provided a comprehensive dynamic landscape of the cellular microenvironment during intestinal injury and regeneration.
 328 329 330 331 332 333 334 	The dynamics of cellular microenvironment during the radiation-induced intestinal injury and regeneration remains largely uncharacterized. In this study, by combining the single-cell transcriptome profiling with temporal distribution analysis, lineage reconstruction, TF profiling and cellular interaction analyses, we provided a comprehensive dynamic landscape of the cellular microenvironment during intestinal injury and regeneration. The radiosensitivity of cells varies greatly, mainly depending on the degree of

338	but these kinds of cells are composed with multiple subtypes with different biological
339	characteristics. In this study, based on scRNA-seq, we assessed the in vivo
340	radiosensitivity of different cell subtypes in the intestinal microenvironment. Our data
341	not only showed that diverse cell subtypes in the intestinal microenvironment
342	exhibited highly heterogeneous levels of radiosensitivity, but also revealed cross-cell
343	consistency of pathway activation for various cell types to confront the
344	radiation-induced apoptosis.
345	Much attention has been focused on ISC injury and regeneration post irradiation ^{6,}
346	^{10, 23, 42} . It is generally accepted that Lgr5+ stem cells were sensitive to irradiation
347	injury while +4 stem cells show relatively lower sensitivity ^{7, 9, 23} , we here reported a
348	comprehensive survey on the phenotype and dynamics of diverse ISC subsets in
349	different phases after high-dose irradiation. Generally, we identified three
350	subpopulations of ISCs, including $Lgr5^+$ CBCs, +4 ISCs as well as a cluster of Clu^+
351	revISCs reported recently ¹⁰ , with distinct dynamic characteristics. Additionally, our
352	data provides new insights into the interconversion relationships among the three ISC
353	subpopulations. Although a previous study has shown $Lgr5^+$ CBCs could give rise to
354	+4 RSCs in culture ⁹ , our data suggests this conversion could be induced <i>in vivo</i> by
355	intestinal injury. Besides, we also showed that Clu^+ revISCs may originate from $Lgr5^+$
356	CBCs and +4 revISCs, although further studies are still needed to test and verify the
357	transformation processes.
358	Exposure to irradiation could also strongly affect immune system responses in the
250	intesting which were assertial for maintaining mucosal homeostasis. In this study, we

359 intestine, which were essential for maintaining mucosal homeostasis. In this study, we

360	observed that $Cx3cr1^+$ resident macrophages are drastically reduced at 1 day
361	post-irradiation and were then followed by a massive influx of monocytes and
362	macrophages into the injured intestine. Our data suggested that the bidirectional
363	differentiation of peripheral $Ly6c^+$ monocytes to pro-inflammatory macrophages or
364	$Cx3cr1^+$ resident macrophages may be important for balancing the radiation-induced
365	inflammation and resident macrophages recovery. We also showed that different TFs
366	may contribute to the alternative fates of $Ly6c^+$ monocytes, which could be potential
367	intervention targets for modulating the early stage inflammation induced by radiation.
368	In addition, we found the cellular interacting patterns varied greatly at different
369	times during RIII and recovery; especially, the massive interactions between the
370	macrophages and endothelial cells at early inflammation stage aroused our attention.
371	Our results showed that the cross-talk between pro-inflammatory macrophages and
372	activated endothelial cells could achieve a quick amplification of inflammation upon
373	RIII. This finding suggested that intervention in the interaction between these two
374	cells might alleviate early inflammation.
375	In summary, based on scRNA-seq, our research refined the radiosensitivity of
376	small intestinal cells in the cell subtype level. Besides, our dataset revealed the
377	dynamic patterns of three ISC subpopulations and their interconversion relationships.
378	Additionally, we showed the bidirectional differentiation of peripheral monocytes into
379	pro-inflammatory macrophages and resident macrophages, and the amplifying
380	communicating relationships between macrophages and endothelial cells during the
381	inflammatory response upon RIII. These findings may provide new views on the

382 cellular and molecular mechanisms of RIII.

383 MATERIALS AND METHODS

384 **Ethics statement**

- 385 The study was approved by the institutional review board of Beijing Institute of
- Radiation Medicine (protocol ID: IACUC-DWZX-2020-623). The work submitted in
- this article was solely completed by the teams of Gangqiao Zhou, Yiming Lu and
- 388 Yang Li, and it is original. Excerpts from others' work have been clearly identified
- and acknowledged within the text and listed in the list of references.

390 Mice and groups

- 391 Wild-type male C57BL/6J mice (weight of $20 \pm 2g$) were purchased from Beijing
- 392 Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). All the mice
- 393 were bred in a specific pathogen-free environment under conditions of constant
- temperature of $22 \pm 1^{\circ}$ C, relative humidity of 60%, and regular dark-light schedule
- 395 (lights on from 7 a.m. to 7 p.m.) at the Experimental Animal Center of the Beijing
- 396 Institute of Radiation Medicine, China. A total of 97 mice were used in this study,
- 397 including 78 random mice receiving abdominal irradiation and 19 random mice as
- 398 negative controls. The irradiation exposed mice were then randomly divided into four
- 399 groups and intestinal samples were collected and used for experiments at day 1, 3, 7
- 400 and 14 post-irradiation, respectively. Specifically, 17 mice were used for scRNA-seq
- 401 (n = 3 or 4 for each group), 20 mice for flow cytometry (n = 3 for each group), with
- 402 additional 5 mice for flow cytometry cell sorting at day 3), 30 mice for
- 403 immunohistochemistry (n = 6 for each group), and 30 mice for *in situ* hybridization

404 analyses (n = 6 for each group).

405 Abdominal irradiation of mice

- 406 Mice were anaesthetized with an intraperitoneal injection of 0.5% pentobarbital (43
- 407 mg/kg body weight) and exposed to a single dose of 15 gray (Gy) abdominal
- 408 irradiation (from the xiphoid process to the pubic symphysis with lead bricks to cover
- 409 the other parts of the mice) using a Co^{60} irradiator to induce intestinal injury *in vivo*.
- 410 All experiments were repeated at least twice with n = 6 mice in each group, except for
- 411 the scRNA-seq, in which each group contain n = 3 or 4 mice. Mice were monitored
- 412 for up to 15 days, and the changes in small intestine lengths and weights were
- 413 recorded on day 0, 1, 3, 7, 14 post-irradiation.

414 Morphological analyses of mice villus and crypt

415 Mice were monitored for up to 15 days. The mice in control and irradiation groups

- 416 were sacrificed on day 1, 3, 7, 14 following irradiation, and the intestine tissues were
- 417 harvested and fixed in a 10 % neutral buffered formalin solution. The fixed samples
- 418 were dehydrated, cleared and permeated with paraffin in a tissue processor, and

419 subsequently embedded in paraffin blocks using an embedding system.

- 420 Paraffin-embedded samples were sectioned at a 5-mm thickness and stained with
- 421 hematoxylin & eosin (HE) staining. The slides were imaged at 50 \times , 100 \times and 400 \times
- 422 magnification, respectively, using an Olympus BX51 microscope (Japan). The villus
- length and width, crypt depth, thickness of muscular layer and number of crypts per
- 424 intestinal length were measured with ImageJ (NIH). The villus length was measured
- 425 from the top to the base of the villus at the entrance to the intestinal crypt. The villus

- 426 width was measured at half of its length. The crypt depth was measured from the
- 427 depth of the invagination to the adjacent villi. For each group, at least 30
- 428 well-oriented villi were measured and the mean value was calculated.
- 429 Single-cell sequencing library construction
- 430 To isolate single cells, duodenums were amputated (about 5 cm beyond the pylorus)
- and 10 cm jejunum segments following the incision of the mice on day 0, 1, 3, 7, 14
- 432 after irradiation were washed in cold PBS, cut longitudinally into roughly 2-mm-long
- 433 pieces and were isolated using the Liver Dissociation Kit (mouse) and GentleMACS
- 434 Dissociator (Miltenyi Biotec, Germany) according to the manufacturer's instructions.
- 435 Tissues were filtered through a 40-µm-mesh cell strainer on ice, pelleted by
- 436 centrifugation at 4 °C and washed twice with the ice-cold regular medium to remove
- the debris. An estimated 5,000 single cells per sample were then subjected to 10x
- 438 Genomics single-cell isolation and RNA sequencing following the manufacturer's
- 439 recommendations. Illumina HiSeq 3000 was used for deep sequencing. Two technical
- 440 replicates were generated per sorted cell suspension.
- 441 Analysis of scRNA-seq data
- 442 The Cell Ranger software (version 2.2.0) provided by 10x Genomics was used to
- 443 align the reads from droplet-based scRNA-seq to an indexed mouse genome (mm10,
- 444 NCBI Build 38), generating a digital gene expression matrix (UMI counts per gene
- 445 per cell) for each sample. Expression matrices for all samples were filtered,
- 446 normalized, integrated and clustered using the standard Seurat (version 2.3.4) package
- 447 procedures. More exactly, for the first quality-control (QC) step, we removed the

448	genes detected in less than three cells and cells with below 500 or over 8,000
449	expressed genes and over 10% UMIs derived from mitochondrial genome. After
450	applying these QC criteria, a total of 22,680 cells and 19,588 genes in total remained
451	and were included in the following analyses. Then the expression matrices were
452	log-normalized and scaled to remove the unwanted variation from the total cellular
453	read count and mitochondrial read count, as implemented in Seurat's NormalizeData
454	and ScaleData functions. To integrate datasets from different samples, we used a
455	subset of highly variably expressed genes to perform the canonical correlation
456	analysis (CCA). First, the top 1,000 genes with the largest dispersion in each dataset
457	were selected; then the genes from all 17 datasets were intersected to determine an
458	overlap-gene set. We used the overlap-gene set as variable genes to implement CCA
459	through Seurat's RunMultiCCA function, which returned an integrated Seurat objects
460	with canonical correlation vectors. Seurat's AlignSubspace function was employed to
461	align the top ten dimensions in CCA subspaces and generate the cca.aligned
462	dimensional reduction. With the first ten components of the dimensional reduction,
463	we then performed a shared nearest neighbor (SNN) modularity optimization
464	clustering method with the Louvain algorithm as implemented in the FindClusters
465	function, which finally identified 54 clusters of different cell types or subtypes, and
466	different clusters of cells were visualized using a further t-distributed Stochastic
467	Neighbor Embedding (tSNE) dimensionality reduction.
468	Immunohistochemistry assay

469 The 5 μ m thick sections from the paraffin-embedded small intestine sections were

470	deparaffinized and rehydrated using xylene and ethanol, and boiled for 15 minutes
471	(min) in 10 mM citrate buffer solution (pH 6.0) for antigen retrieval. The sections
472	were then immersed in a 3% hydrogen peroxide solution for 10 min to block the
473	endogenous peroxidase. Slides were incubated with goat serum for 10 min and then
474	with the primary antibody anti-Ki67 (#ab16667, 1:200; Abcam). A horse radish
475	peroxidase (HRP)-based signal amplification system was then hybridized to a goat
476	anti-rabbit IgG (H&L) secondary antibody (#PV9001; ZSBIO) followed by
477	colorimetric development with diaminobenzidine (DAB). Positive cells were counted
478	in the crypt and villi at 30 randomly selected position per group with ImageJ.
479	TUNEL assay
480	Apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated
481	dUTP nick end-labeling (TUNEL) staining using the In Situ Cell Death Detection Kit
482	(Roche) according to the manufacturer's protocol. Briefly, the paraffin-embedded
483	sections were prepared the same as hematoxylin & eosin (HE) staining. After drying
484	and deparaffinized, the section was treated by proteinase K (20 μ g/mL; Roche, Swiss)
485	for 10 min to make the cell membrane permeable, and then treated by the mixed
486	reaction solution for TUNEL reaction. After treatment with biotin-labeled HRP, DAB
487	chromogen was used to render the color. TUNEL-positive cells were identified and
488	their numbers were counted within a defined area (μ 2) using an Olympus BX51
489	microscope (Japan).
490	In situ hybridization

491 In situ hybridization (ISH) assays for Olfm4 were performed with the RNAscope kit

492	(Advanced Cell Diagnostics, California, USA) according to the manufacturer's
493	instructions. Five μm formalin-fixed, paraffin embedded tissue sections or 8 μm OCT
494	frozen were pretreated with heat and protease digestion prior to hybridization with
495	target probes (Advanced Cell Diagnostics). An HRP-based signal amplification
496	system was then hybridized to the target probes followed by colorimetric development
497	with DAB or Fite, and Cy3. The housekeeping gene <i>ubiquitin C (UBC)</i> was served as
498	a positive control and the <i>dapB</i> gene, which is derived from a bacterial gene sequence,
499	was used as a negative control.
500	Identification of marker genes
501	To identify the marker genes for each of the 54 clusters of different cell types or
502	subtypes, we contrasted the cells from each cluster to cells from all the other clusters
503	using the Seurat's <i>FindMarkers</i> function. The marker genes were required to: (1) have
504	an averaged expression in the current cluster that is at least 0.25-fold (log-scale) larger
505	than that in all other clusters; and (2) show expression in at least 10% of cells in either
506	of the two comparative populations.
507	Flow cytometry
508	Single cells prepared as above were resuspended in phosphate buffered saline (PBS).
509	For macrophages, the antibodies used were against Cd45, F4/80, Cd11b and Cd14,
510	and cells were stained with 7-AAD to differentiate live cells. Antibody staining was

- 511 performed at RT for 30 min before washing cells twice with PBS. The 7-AAD was
- added to the final FACS medium for 10 min before flow cytometry analyses and/or
- 513 isolation of required single-cell populations. These cells were gated on live cells

(those that were 7-AAD negative) and CD45 positivity. Subsequent determinations

515	included the presence of F4/80 and Cd11b followed by the presence or absence of
516	Cd14. The cells were analyzed on a BD FACSCanto II flow cytometer (BD, New
517	Jersey, USA) utilizing FACS Diva Software (BD).
518	RNA velocity analyses
519	RNA velocity of single cells was estimated as previously reported. More exactly, the
520	spliced and unspliced transcript reads were calculated based on the CellRanger output
521	using the velocyto command line tool with run10x subcommand. Transcript counts
522	from different samples were merged together and genes with an average expression
523	magnitude < 0.5 (for spliced transcripts) or < 0.05 (for unspliced transcripts) in at
524	least one of the clusters of each cell type were then removed. Cell-to-cell distance was
525	calculated using Euclidean distance based on the correlation matrix of the <i>cca.aligned</i>
526	dimensional reduction from Seurat. RNA velocity was estimated using gene-relative
527	models, with k-nearest neighbor cells pooling of 20 and fit quantile of 0.02. Velocity
528	fields were then visualized in the tSNE dimensionality reduction from Seurat.
529	Gene set variation analysis (GSVA)
530	To assess the relative pathway activity on the level of individual cells, we conducted
531	the gene set variation analysis (GSVA) with the GSVA package (version $1.32.0$) ⁴³ .
532	The 50 hallmark gene sets (version 6.2) representing specific well-defined biological
533	states or processes were obtained from the Molecular Signatures Database
534	(MSigDB) ⁴⁴ , and genes in each set were converted to orthologous genes in mouse
535	with g:Profiler ⁴⁵ . GSVA was performed in the gsva function with standard settings.

536	We then fit a linear model to the output gene set-by-cell pathway enrichment matrix,
537	implemented in the <i>lmFit</i> function of limma package (version 3.40.6), to detect the
538	differentially enriched pathways.
539	SCENIC analysis
540	The pySCENIC (version 0.9.11) ⁴⁶ analysis was run as described for the stem cells and
541	myeloid cells. The normalized expression matrix exported from Seurat was set as the
542	input of pySCENIC pipeline. In addition, the genes with less than 200 UMI counts or
543	detected in less than 1% of the cells in the corresponding cell types were removed as
544	noise. Two transcription factor ranking databases, namely the TSS+/-10kb and
545	500bpUp100Dw databases, were used for inference of co-expression modules and
546	identification of direct targets. A regulon-by-cell matrix was then calculated to
547	measure the enrichment of each regulon as the area under the recovery curve (AUC)
548	of genes defining the regulon. To identify the key regulons driving the differentiation
549	trajectories among the stem or myeloid cell subpopupation, cells along each RNA
550	velocity flow were selected and their tSNE coordinates were converted using
551	principal components analysis (PCA) to capture the differentiation process on the first
552	principal component (PC1). Differential enrichment was calculated on the SCENIC
553	AUC matrix along the PC1 coordinates for each trajectory with a general additive
554	model implemented in the gam package (version 1.16.1).
555	Ligand-receptor interaction analysis
556	The ligand-receptor (LR) cellular interaction analysis was performed using the LR

pairs downloaded from Fantom5 (Ref. ⁴⁷) and CellPhone⁴⁸ databases. Ligand and

558 receptor genes were first converted to orthology genes from homo sapiens to mus *musculus* by g:Profiler⁴⁵. For genes corresponding to multiple orthology genes, we 559 560 selected the orthology gene with the highest mean expression across all cells. One ligand or receptor was considered to be a marker ligand or receptor in one cluster if it 561 was identified as a marker gene with an average log-transformed fold-change (logFC) > 562 563 0.5 and an adjust *P*-value < 0.05. Two clusters were considered to interact with each other if one of them was endowed with a marker ligand and the other one was 564 endowed with the corresponding marker receptor in a LR pair. For interaction analysis 565 at a specific time, only the clusters with a proportion of cells at that time > 10% were 566 included and the weighted interaction intensity between two clusters were estimated 567 by the product of the number of interacting LR pairs and the proportions of cells at 568 that time of the two. The weighted interaction intensity between two major cell types 569 was measured by summing up the pairwise weighted interaction intensity between 570 571 clusters from the two major cell types. The weighted interaction intensity of one specific LR pair was estimated by the product of the proportions in the corresponding 572 time of the two clusters and the average logFC of the ligand and receptor in two 573 clusters. 574

575 Statistical analyses

GraphPad Prism 5 and R (version 3.6.0) were used to perform the statistical analyses.
The Kaplan-Meier method was used to analyze the animal survival curves. The
Chi-square test was applied to analysis the distribution of cells at different times
before and after irradiation. *P*-values of multiple testing were corrected by Bonferroni

- 580 correction method and an adjusted P-value < 0.05 was considered to be statistically
- 581 significant.
- 582

583 Data availability

- 584 The scRNA-seq dataset generated in this study are available at the National Center of
- 585 Biotechnology Information's Gene Expression Omniobus database under the
- 586 following accession number: GSE165318.

588 **REFERENCES**

- Hauer-Jensen M, Wang J, Denham JW. Bowel injury: current and evolving management strategies. Semin Radiat Oncol. 2003;13:357-71.
- Wang J, Zheng H, Ou X, Albertson CM, Fink LM, Herbert JM, et al. Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. J Thromb Haemost. 2004;2:2027-35.
- 5953.Hauer-Jensen M, Denham JW, Andreyev HJ. Radiation enteropathy--pathogenesis, treatment596and prevention. Nat Rev Gastroenterol Hepatol. 2014;11:470-9.
- 597 4. Gorbunov NV, Kiang JG. Up-regulation of autophagy in small intestine Paneth cells in
 598 response to total-body gamma-irradiation. J Pathol. 2009;219:242-52.
- 5. Spit M, Koo BK, Maurice MM. Tales from the crypt: intestinal niche signals in tissue renewal,
 plasticity and cancer. Open Biol. 2018;8.
- 6. Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for
 radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149-59.
- Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, et
 al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal
 stem cells. Proc Natl Acad Sci U S A. 2011;108:179-84.
- 8. Sangiorgi E, Capecchi MR. Bmil is expressed in vivo in intestinal stem cells. Nat. Genet.
 2008;40:915-20.
- 608 9. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between
 609 intestinal stem cell populations in distinct niches. Science. 2011;334:1420-4.
- 610 10. Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, et al. Single-cell
 611 transcriptomes of the regenerating intestine reveal a revival stem cell. Nature.
 612 2019;569:121-125.
- 613 11. Nagashima R, Maeda K, Imai Y, Takahashi T. Lamina propria macrophages in the human
 614 gastrointestinal mucosa: their distribution, immunohistological phenotype, and function. J
 615 Histochem Cytochem. 1996;44:721-31.
- Muller AJ, Kaiser P, Dittmar KE, Weber TC, Haueter S, Endt K, et al. Salmonella gut invasion
 involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by
 epithelium-sampling lamina propria phagocytes. Cell Host Microbe. 2012;11:19-32.
- Rani R, Smulian AG, Greaves DR, Hogan SP, Herbert DR. TGF-beta limits IL-33 production
 and promotes the resolution of colitis through regulation of macrophage function. Eur J
 Immunol. 2011;41:2000-9.
- Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S, et al. Constant
 replenishment from circulating monocytes maintains the macrophage pool in the intestine of
 adult mice. Nat Immunol. 2014;15:929-937.
- 625 15. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell
 626 messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251-255.
- 627 16. Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of
 628 the small intestinal epithelium. Nature. 2017;551:333-339.
- 629 17. Glass LL, Calero-Nieto FJ, Jawaid W, Larraufie P, Kay RG, Göttgens B, et al. Single-cell
 630 RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the

631		mouse upper small intestine. Molecular metabolism. 2017;6:1296-1303.
632	18.	Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, et al. Intestinal
633	10.	Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity.
634		Cell Stem Cell. 2017;21:78-90 e6.
635	19.	Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J, Roland JT, et al. Unsupervised
636	19.	trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins
637		in the gut. Cell systems. 2018;6:37-51. e9.
638	20.	Heylmann D, Rodel F, Kindler T, Kaina B. Radiation sensitivity of human and murine
639	20.	
640		peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta. 2014;1846:121-9.
641	21.	
641 642	21.	Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between integring storm coll populations in distinct righes. Science, 2011;224:1420, 1424
643	22	intestinal stem cell populations in distinct niches. Science. 2011;334:1420-1424.
643 644	22.	Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal
645		stem cells. Proceedings of the National Academy of Sciences. 2011;108:179-184.
646	22	
646 647	23.	Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, et al. The intestinal stem cell markers Bmil
648		and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109:466-71.
648 649	24.	
	24.	La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity
650	25	of single cells. Nature. 2018;560:494-498.
651	25.	Aibar S, González-Blas CB, Moerman T, Imrichova H, Hulselmans G, Rambow F, et al.
652		SCENIC: single-cell regulatory network inference and clustering. Nature methods.
653	26	2017;14:1083-1086.
654 655	26.	Bettess MD, Dubois N, Murphy MJ, Dubey C, Roger C, Robine S, et al. c-Myc is required for
655		the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal
656 657	27.	epithelium. Mol Cell Biol. 2005;25:7868-78.
	27.	Kim MJ, Xia B, Suh HN, Lee SH, Jun S, Lien EM, et al. PAF-Myc-Controlled Cell Stemness
658 659	28.	Is Required for Intestinal Regeneration and Tumorigenesis. Dev Cell. 2018;44:582-596 e4. Zimberlin CD, Lancini C, Sno R, Rosekrans SL, McLean CM, Vlaming H, et al. HDAC1 and
660	20.	
661	29.	HDAC2 collectively regulate intestinal stem cell homeostasis. FASEB J. 2015;29:2070-80. Shiota M, Zoubeidi A, Kumano M, Beraldi E, Naito S, Nelson CC, et al. Clusterin is a critical
662	29.	downstream mediator of stress-induced YB-1 transactivation in prostate cancer. Mol Cancer
663		•
664	30.	Res. 2011;9:1755-66. Xian L, Georgess D, Huso T, Cope L, Belton A, Chang YT, et al. HMGA1 amplifies Wnt
665	50.	signalling and expands the intestinal stem cell compartment and Paneth cell niche. Nat
666		Commun. 2017;8:15008.
667	31.	Oshima H, Kok SY, Nakayama M, Murakami K, Voon DC, Kimura T, et al. Stat3 is
668	51.	indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal
669		tumorigenesis. FASEB J. 2019;33:1873-1886.
670	32.	Sarper SE, Inubushi T, Kurosaka H, Ono Minagi H, Kuremoto KI, Sakai T, et al. Runx1-Stat3
671	52.	signaling regulates the epithelial stem cells in continuously growing incisors. Sci Rep.
672		2018;8:10906.
673	33.	Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, et al. Resident and
674	55.	pro-inflammatory macrophages in the colon represent alternative context-dependent fates of
0/4		pro mnammatory macrophages in the colon represent anemative context-dependent fates of

 Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015;15:731-44. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086. Soucie FL, Weng Z, Geirsdottir L, Molawi K, Maurizio J, Fenouil R, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510. Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Minte E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warning S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:1417-425.<th>675</th><th></th><th>the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6:498-510.</th>	675		the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6:498-510.
 function in peripheral tissues. Nat Rev Immunol. 2015;15:731-44. Saeed S, Quintin J, Kerstens IIII, Rao NA, Aghajamirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086. Soucie EL, Weng Z, Geirsdottir L, Molawi K, Maurizio J, Fenouil R, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;531:aad5510. Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiamg JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Bichs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Kaudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene list		34.	
 Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086. Soucie EL, Weng Z, Geirsdottir L, Molawi K, Maurizio J, Fenouil R, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510. Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci: 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman			
 programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086. Soucie EL, Weng Z, Geirsdottir L, Molawi K, Maurizio J, Fenouil R, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510. Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Messenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Bichs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. giProfiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat		35.	
 Science. 2014;345:1251086. Soucie EL, Weng Z, Geirsdottir L, Molawi K, Maurizio J, Fenouil R, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510. Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Liberzon A, Birger C, Thorvaldsdottir, H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;14:17:425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. gi:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gouzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;67:866. Kett L, Soirg-Ce-II regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-			
 Soucie EL, Weng Z, Geirsdottir L, Molawi K, Maurizio J, Fenouil R, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510. Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut nuccsa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:250-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MsigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Vento-Tormo R, Efremova M, Botting RA, Turco MY, V	680		
 enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510. Francois A, Millat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013;123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Molla M, Panes J. Radiation-iransition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;67:866. Sento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface	681	36.	
 Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profile:: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Wento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-To	682		
 damage to the gut mucosa. Biomed Res Int. 2013;2013;123241. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;1:41083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Wento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	683		2016;351:aad5510.
 Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Wento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	684	37.	Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation
 endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002;8:47-54. 39. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. 40. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. 41. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. 42. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. 43. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. 44. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. 45. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	685		damage to the gut mucosa. Biomed Res Int. 2013;2013:123241.
 J. 2002;8:47-54. Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. H. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Kento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	686	38.	Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular
 Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol. 2007;13:3043-6. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	687		endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer
 690 2007;13:3043-6. 691 40. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. 694 41. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. 696 42. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. 698 43. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. 700 44. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. 702 45. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. 705 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 708 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 711 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early matemal-fetal interface in humans. Nature. 2018;563:347-353. 714 	688		J. 2002;8:47-54.
 40. Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. 41. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. 42. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. 43. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. 44. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. 45. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	689	39.	Molla M, Panes J. Radiation-induced intestinal inflammation. World J Gastroenterol.
 Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J Pathol. 2015;185:2550-62. 41. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. 42. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. 43. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. 44. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. 45. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	690		2007;13:3043-6.
 Pathol. 2015;185:2550-62. Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Wento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	691	40.	Mintet E, Rannou E, Buard V, West G, Guipaud O, Tarlet G, et al. Identification of
 Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	692		Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. Am J
 Biosci. 2019;9:25. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	693		Pathol. 2015;185:2550-62.
 Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	694	41.	Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell
 population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	695		Biosci. 2019;9:25.
 Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	696	42.	Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell
 RNA-seq data. BMC Bioinformatics. 2013;14:7. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	697		population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255-9.
 44. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. 45. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	698	43.	Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and
 Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	699		RNA-seq data. BMC Bioinformatics. 2013;14:7.
 Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	700	44.	Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular
 for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191-W198. 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	701		Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425.
 Res. 2019;47:W191-W198. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	702	45.	Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server
 46. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	703		for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids
 SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083-1086. 708 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 711 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 714 	704		Res. 2019;47:W191-W198.
 2017;14:1083-1086. 708 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 711 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 714 	705	46.	Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al.
 708 47. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 711 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 714 	706		SCENIC: single-cell regulatory network inference and clustering. Nat Methods.
 draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6:7866. 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 	707		2017;14:1083-1086.
 2015;6:7866. 2015;6:7866. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347-353. 		47.	
 711 48. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. 712 Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 713 2018;563:347-353. 714 	709		draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun.
 712 Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 713 2018;563:347-353. 714 			2015;6:7866.
713 2018;563:347-353. 714		48.	
714			
	713		2018;563:347-353.
	714		

716 Acknowledgements:

717	This work was funded by the General Program (32270714, 81573251 and 81672369)
718	of the Natural Science Foundation of China (www.nsfc.gov.cn), Beijing Nova
719	Program (20180059), National Key R&D Program of China (No. 2017YFA0504301),
720	Chinese Key Project for Infectious Diseases (No. 2018ZX10732202 and
721	2017ZX10203205) and Beijing Institute of Radiation Medicine (BIRM) Innovation
722	Fund (BIOX0201).
723	
724	Authors contributions:
725	G.Z., Y.Lu. and Y.Li was the principal investigators who conceived and designed the
726	study, obtained financial supports and approved the final version of the manuscript;
727	H.L., H.Y. and L.M. performed the data analyses; H.Y. conducted most of the cell
728	sorting and functional experiments; H.Y., Y.X., Y.Y., H.Z., Y.H. and C.Y. performed
729	abdominal irradiation of mice and collected intestinal samples; G.Z., Y.Lu. and Y.Li
730	drafted the manuscript. All the authors read and approved the final version of the
	1 11

732

733 Competing interests:

734 The authors disclose no conflicts.

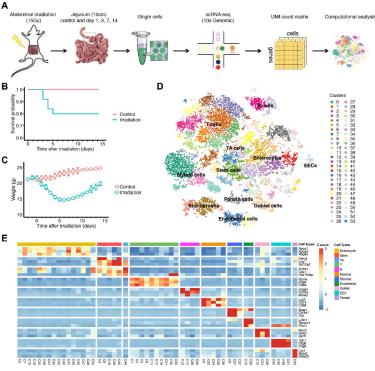
736 FIGURE LEGENDS

737 Figure 1. Identification of major intestinal cell types and their markers using

- 738 scRNA-seq. (A) Overview of single-cell RNA sequencing (scRNA-seq) analysis for
- the irradiation-induced intestinal injury (RIII). (B) Survival rates of the mice exposed
- to 15 Gy abdominal irradiation and in control group. (C) Body weights of the mice
- radiation and in control group. (D) tSNE projection of
- the 22,680 cells profiled, colored by major cell types (left), Seurat cluster (upper right)
- and experimental groups (lower right). (E) Heatmap displaying the z-score
- normalized mean expression of cell type-specific canonical marker genes across
- 745 clusters. (F) Pie chart of cell type fractions in all sequenced samples. (G) Area chart
- showing the dynamic changes of the proportions of major cell types in healthy
- 747 intestinal samples (Control) and exposed intestinal samples at different times after
- ⁷⁴⁸ irradiation. D1, day 1; D3, day 3; D7, day 7; and D14, day 14.
- 749

750 Figure 2. Characteristics of *in vivo* radiosensitivities of different cell types in

751	intestine. (A) Bar plots showing the fraction of cells originating from the control and
752	day 1 groups in each cluster. Only the clusters that had > 50 cells from the two groups
753	and that showed no inter-individual difference (clusters with no more than 70% of
754	cells from a single sample) were shown. Vertical dashed lines indicate the overall
755	fraction of cells originating from the control group in all shown clusters. (B)
756	Difference of hallmark pathway activities between stem cells from the control and day
757	1 (D1) groups. Shown are t values calculated in a linear modal comparing the
758	pathway scores estimated by gene set variation analysis (GSVA) between cells from
759	the two groups. (C) The same as (B) for macrophages from the control and day 1
760	groups. (D) Venn diagram showing the intersection of differentially expressed genes
761	between cells from the control and day 1 groups for stem cells, macrophages, T cells,
762	and enterocytes. (E) Top 10 significantly enriched gene ontology (GO) terms of 67
763	common differentially expressed genes for stem cells, macrophages, T cells, and
764	enterocytes.
765	


766	Figure 3. Dynamics and differentiation trajectories of intestinal stem cell (ISC)
767	subsets in irradiation-induced intestinal injury and regeneration. (A) tSNE
768	projection of 2,411 ISCs identified, colored by Seurat cluster identities. (B) Heatmap
769	of the average expression of the selected ISC function-related marker genes in five
770	ISC clusters. (C) Dot plots showing the ratio of observed to expected cell numbers
771	$(R_{O/E})$ of each ISC cluster in the indicated samples, with log-transformed
772	Bonferroni-corrected P values in Chi-square tests. (D) Line charts showing the
773	average luminous density of Olfm4 in immunostaining (blue) and the fraction of
774	Olfm4 ⁺ CBCs (clusters 4, 9 and 16; red) in the indicated groups. (E) RNA velocities
775	of ISCs from the control and day 1 groups visualized on the tSNE projection. (F) The
776	same as (E) for ISCs from the day 1 and day 3 groups. (G) Heatmap depicting the
777	estimated activity of top 15 regulons showing differential activation in ISCs along the
778	velocity flow from the control and day 1 groups, which is depicted by a black dashed
779	line in (E). Shown are normalized mean area under the curve (AUC) scores of
780	expression regulation by each transcription factor estimated in SCENIC. Cells are
781	ordered according to first principal component (PC1) coordinate to grasp the primary
782	velocity orientation. (H, I) The same as (G) for ISCs along the velocity flow from the
783	day 1 and day 3 groups, which is depicted by black dashed lines in the left (H) and
784	right (I) panel in (F).
785	

786	Figure 4. The characteristics and roles of macrophage subsets in the
787	irradiation-induced intestinal inflammation. (A) tSNE projection of 2,926 myeloid
788	cells identified, colored by Seurat cluster identities. (B) Heatmap of the average
789	expression of the selected myeloid cell function-related marker genes in five myeloid
790	cell clusters. (C) Dot plots showing the ratio of observed to expected cell numbers of
791	each myeloid cell cluster in the indicated samples, with Bonferroni-corrected P values
792	by Chi-square tests. (D) Flow cytometry analyses showing the percentages of $Cd14^+$
793	inflammatory macrophages at control and 3 days post-irradiation groups. (E)
794	Dynamic change of the percentages of Cd14+ macrophages at control, 1, 3, 7 and 14
795	days post-irradiation groups. (F) Expression levels of inflammatory cytokines by
796	Cd14 ⁺ and Cd14 ⁻ macrophages in intestine 3 day post-irradiation. (G) RNA velocities
797	of four macrophage clusters visualized on the tSNE projection. (H, I) Heatmap
798	depicting the estimated activities of top 15 differentially activated regulons along the
799	velocity flow, which was depicted by black dashed lines in the right (H) and left (I)
800	panel in (G). Shown are normalized mean area under the curve (AUC) scores of
801	expression regulation of each transcription factor estimated by SCENIC. Cells are
802	ordered according to first principal component (PC1) coordinate to grasp the primary
803	velocity orientation.
201	

Figure 5. Ligand-receptor interaction between the myeloid and endothelial cells.

- 806 (A) The weighted interaction numbers of ligand-receptor pairs between the pairwise
- 807 interactions of different cell types in control (top) and day 3 group (bottom). (B)
- 808 Difference of hallmark pathway activities between the C12-Endothelial cells from
- 809 control and day 3 groups. Shown are *t* values calculated in a linear modal comparing
- 810 the pathway scores estimated by gene set variation analysis (GSVA) between cells
- from the two groups. (C) The same as (B) for C25-Endothelial cells from the control
- and day 3 groups. (D) The weighted interaction intensity of inflammatory-related and
- 813 pro-proliferative ligand-receptor pairs between pairwise interactions of myeloid and
- 814 endothelial cells in control and day 3 groups.

Figure 1

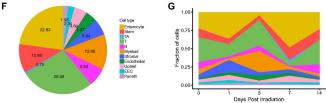


Figure 2

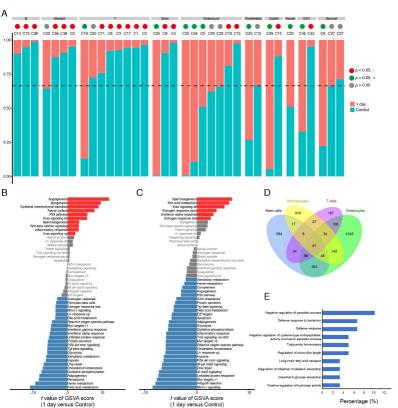
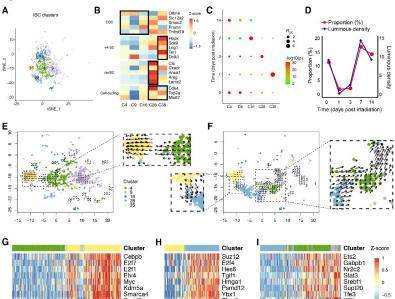
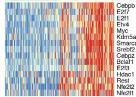
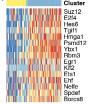





Figure 3

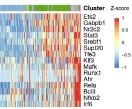
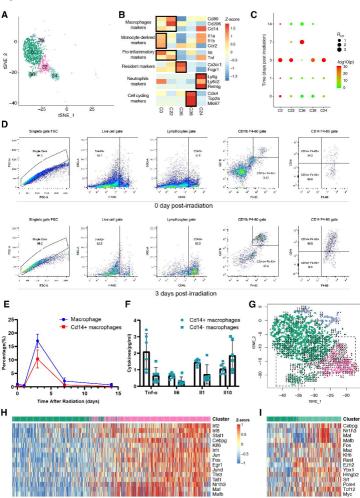
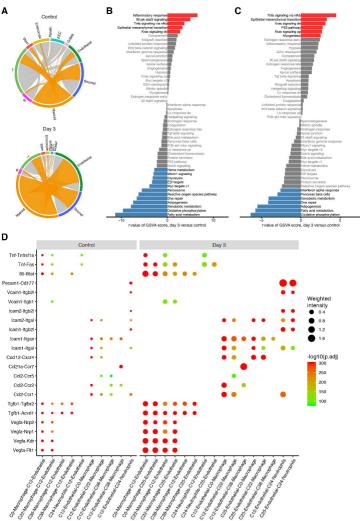




Figure 4

Figure 5

