Abstract
The nearly constant downward force of gravity has powerfully shaped the behaviors of many organisms [1]. Walking flies readily orient against gravity in a behavior termed negative gravitaxis. In Drosophila this behavior is studied by observing the position of flies in vials [2–4] or simple mazes [5–9]. These assays have been used to conduct forward-genetic screens [5, 6, 8] and as simple tests of locomotion deficits [10–12]. Despite this long history of investigation, the sensory basis of gravitaxis is largely unknown [1]. Recent studies have implicated the antennae as a major mechanosensory input [3, 4], but many details remain unclear. Fly orientation behavior is expected to depend on the direction and amplitude of the gravitational pull, but little is known about the sensitivity of flies to these features of the environment. Here we directly measure the gravity-dependent orientation behavior of flies walking on an adjustable tilted platform, that is inspired by previous insect studies [13–16]. In this arena, flies can freely orient with respect to gravity. Our findings indicate that flies are exquisitely sensitive to the direction of gravity’s pull. Surprisingly, this orientation behavior does not require antennal mechanosensory input, suggesting that other sensory structures must be involved.
Competing Interest Statement
The authors have declared no competing interest.