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Abstract: 20 

Single cell data analysis can infer dynamic changes in cell populations, for example across 21 
time, space or in response to perturbation. To compare these dynamics between two 22 
conditions, trajectory alignment via dynamic programming (DP) optimization is frequently 23 
used, but is limited by assumptions such as a definite existence of a match. Here we describe 24 
Genes2Genes, a Bayesian information-theoretic DP framework for aligning single-cell 25 
trajectories. Genes2Genes overcomes current limitations and is able to capture sequential 26 
matches and mismatches between a reference and a query at single gene resolution, 27 
highlighting distinct clusters of genes with varying patterns of gene expression dynamics. 28 
Across both real life and simulated datasets, Genes2Genes accurately captured different 29 
alignment patterns, and revealed that T cells differentiated in vitro matched to an immature in 30 
vivo state while lacking the final TNFɑ signaling. This use case demonstrates that precise 31 
trajectory alignment can pinpoint divergence from the in vivo system, thus providing an 32 
opportunity to optimize in vitro culture conditions.  33 
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Introduction 34 

Recent advances in single-cell genomics, the mainstay of which is single-cell RNA 35 
sequencing (scRNA-seq), have revolutionized our understanding of biology and opened up 36 
new avenues of research1. With their single-cell resolution and ability to observe thousands of 37 
genes simultaneously, these new technologies enable the identification of transition cell states 38 
and the study of dynamic cellular processes (e.g. cell differentiation/development; cellular 39 
response to perturbations). The computational task of deriving a ‘timeline’ for each dynamic 40 
process (e.g. based on transcriptomic similarity) is referred to as ‘pseudotime trajectory 41 
inference’2. The next challenge is to then compare and align two (or more) trajectories, as 42 
when exploring similarities between in vitro cell differentiation and in vivo cell development, 43 
or the perturbation responses in control groups versus drug treatment groups (Fig. 1a). The 44 
benefit is obvious; for instance, identifying genes that differ between in vitro and in vivo 45 
systems can guide us to refine in vitro cell differentiation. Trajectory comparison poses a 46 
time series alignment problem which is dynamic programmable3. The goal is to find an 47 
optimal set of pairwise sequential correspondences between two trajectories.  48 
 49 
Currently, dynamic time warping (DTW) is often used to align two single-cell trajectories. 50 
Several notable attempts4–9, such as CellAlign5, employ DTW to identify correspondences 51 
between two different profiles, allowing the detection of timing differences in biologically 52 
similar processes10. Current practice is to interpolate the gene expression time series prior to 53 
DTW, and then minimize the Euclidean distance of expression vectors between the matched 54 
time points to find an optimal alignment. While DTW is a powerful approach with numerous 55 
uses, we are motivated to overcome its main limitations, i.e., (1) requiring every time point in 56 
each trajectory to match with at least one time point in the other (capturing time-warps only); 57 
(2) disregarding missing data or substantial differences between two series, occurring in the 58 
form of insertions or deletions (indels); and (3) using a distance metric which relies only on 59 
the difference of mean expression, without considering their distributions. We specifically 60 
address these by developing a new DP framework that formally handles matches and 61 
mismatches in a principled way. It overcomes the need to impose any ad hoc thresholds5 62 
and/or post hoc processing of a DTW output11 to capture differential regions in gene 63 
expression.  64 
 65 
Warps and indels are fundamentally distinct (Fig. 1b,c). This is particularly highlighted in 66 
discussions about integrating DTW with the gap concept12,13 (as in the area of biological 67 
sequence alignment14,15). Both matches and mismatches inform our understanding of 68 
temporal gene expression dynamics. A mismatch could either imply missing data or 69 
differential expression, which could be interesting to investigate further. For instance, a 70 
sudden rise or drop in expression of one system relative to the other might indicate that it is 71 
transitioning through a different cell state. A mismatch also occurs when a considerable 72 
fraction of cells in one system have a significantly different expression for some genes 73 
compared to that of the other, causing distributional differences. This is particularly clear 74 
when iPSC-derived organoid trajectories are compared to in vivo references, due to the 75 
upregulation of pluripotency markers in early stages of organoid development. On the other 76 
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hand, warps occur due to the differences in the relative speeds of cell maturation in diverse 77 
contexts. Matching and mismatching can also inform divergence and convergence patterns in 78 
expression (e.g. Fig. 1d), allowing their computational separation for further downstream 79 
analysis.  80 
  81 
Here we present Genes2Genes (G2G; Fig. 2), a novel framework for aligning single-cell 82 
transcriptomic trajectories of a reference and query system at single-gene resolution. G2G 83 
utilizes a DP alignment algorithm that accounts for matches, warps and indels by combining 84 
the classical Gotoh’s biological sequence alignment algorithm15 and DTW16. It is inspired by 85 
the concepts discussed in the related literature17–19, and employs a new Bayesian information-86 
theoretic measure based on minimum message length inference20–22 to quantify the distance 87 
between two gene expression distributions assumed to be Gaussian. G2G facilitates: (1) 88 
generating descriptive pairwise alignments at gene-level, (2) identifying gene clusters of 89 
similar alignment patterns, (3) identifying genes with differential dynamic expression 90 
profiles, (4) exploring associated biological pathways, and (5) deriving an aggregate 91 
alignment across all or a subset of genes.  92 
 93 
We first validate G2G’s ability to accurately align and capture different patterns using 94 
simulated datasets. We further demonstrate how G2G captures mismatches and offers gene-95 
level alignment, through benchmarking against related methods on a published real dataset23 96 
and a simulated negative control11. We next show how G2G quantitatively assesses the 97 
progression of in vitro human T-cell differentiation in an in house cultured artificial thymic 98 
organoid (ATO) compared to an in vivo reference of human T cell development. We find that 99 
the TNFα signaling pathway in the final stage of in vivo T cell maturation is not recapitulated 100 
in vitro, and identify potential transcription factors for optimizing in vitro cell engineering.  101 
 102 
Results  103 

Genes2Genes (G2G) aligns single-cell trajectories with dynamic 104 
programming, employing a Bayesian information-theoretic measure  105 
Dynamic programming (DP) remains central to many sequence alignment algorithms. G2G is 106 
a new DP framework to infer and analyze gene trajectory alignments between a single-cell 107 
reference and query. Given a reference sequence 𝑅 (a time series with time points: 108 
𝑅!, 𝑅", . . . 𝑅# , . . . 	𝑅|%|) and query sequence 𝑄 (a time series with time points: 109 
𝑄!, 𝑄", . . . 𝑄# , . . . 𝑄|&|	), a computational alignment between them can inform us of the one-to-110 
one correspondences (matches), one-to-many/many-to-one correspondences 111 
(expansion/compression warps) and mismatches (insertions and deletions) between their time 112 
points in linear order (Fig. 1b). A general DP algorithm finds their optimal alignment by 113 
constructing a pairwise alignment cost matrix and generating the optimal path with the 114 
minimum cost (Fig. 1c). This relies on a scoring scheme to quantify correspondences 115 
between every pair of 𝑅 and 𝑄 time points.  116 
 117 
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Unlike the current DP alignment approaches (i.e. DTW and DNA/protein alignment), G2G 118 
implements a DP algorithm that handles both matches (including warps) and mismatches 119 
jointly, and runs it between the reference and query for each gene. This algorithm extends 120 
Gotoh’s three-state sequence alignment algorithm15 to five-states (Fig. 1b) for 121 
accommodating warps. Our DP scoring scheme incorporates a Bayesian information-122 
theoretic cost function based on the minimum message length (MML) inference20–22 (top left 123 
of Fig. 2, Supplementary Fig. 1), and the state transition probabilities from a five-state 124 
probabilistic finite state machine (Extended Data Fig. 1). The MML criterion allows us to 125 
compute a cost for matching any reference time point 𝑅# and query time point 𝑄' based on 126 
their corresponding gene expression distributions. It evaluates their distributional differences 127 
in terms of both mean and variance, acknowledging that one trajectory may be noisier than 128 
the other. The five-state machine allows us to compute a cost of assigning an alignment state 129 
for 𝑅# and 𝑄' out of the five possible states of alignment. 130 
 131 
Overview of the G2G framework 132 
The G2G framework is composed of several components to support single-cell trajectory 133 
comparison, which include input preprocessing, DP alignment algorithm, alignment 134 
clustering and downstream analysis (Fig. 2). It takes the input as log1p normalized single-cell 135 
gene expression matrices of a reference system and a query system, and their pseudotime 136 
estimates. G2G then performs interpolation to smoothen each gene expression trajectory. 137 
This first min-max normalizes the pseudotime axis over which we take a predefined number 138 
of equispaced interpolation points, similar to CellAlign5. For each interpolation time point, 139 
we estimate a Gaussian distribution of gene expression, taking into account all cells, kernel-140 
weighted5 by their pseudotime distance to this interpolation time point. Compared to the 141 
existing methods, our approach fits the entire distribution instead of only estimating the mean 142 
expression level at each interpolation point. The interpolated gene trajectories of the 143 
reference and query are then aligned using our DP algorithm. This generates optimal 144 
trajectory alignments for all input genes, described by five-state alignment strings (Fig. 1d 145 
and top right matrix of Fig. 2). These strings are then binary encoded to compute their 146 
pairwise Hamming distances, and genes displaying similar alignment patterns are clustered 147 
together using agglomerative hierarchical clustering. Alignments and their cluster 148 
memberships together allow us to proceed with further downstream analysis such as gene set 149 
overrepresentation analysis. (See Methods for details). The algorithmic novelties, definitions 150 
and descriptive level of the generated alignments altogether fundamentally distinguishes G2G 151 
from the current alignment approaches. 152 
 153 
G2G accurately identifies different patterns of alignment with simulated 154 
data experiments 155 
To benchmark how well G2G captures different alignment patterns, we performed two 156 
simulated data experiments on: (1) an artificial dataset (Fig. 3a,e, Extended Data Fig. 2, and 157 
Supplementary Table 2-3), and (2) a real biological dataset with artificial perturbations 158 
(Fig. 3f,g, Extended Data Fig. 3, and Supplementary Table 4-17). See Methods for details.  159 
 160 
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Experiment 1 161 
We simulated 3500 trajectory pairs under three main classes of pattern: (1) Matching (500 162 
genes), (2) Divergence (1500 genes), and (3) Convergence (1500 genes), using Gaussian 163 
Processes and suitable kernels24,25, to test how well G2G aligns and captures them. Each 164 
trajectory consists of 300 data points spread across the pseudotime range [0,1]. In the 165 
Divergence and Convergence group, we have an equal number of pairs bifurcating at three 166 
time points (approximately at bifurcation time point 𝑡( ∈ [0.25, 0.5, 0.75], indicating early, 167 
mid, and late bifurcation, respectively). We first examined G2G performance on each of the 168 
seven classes of pattern, in identifying matched and mismatched regions accurately (with 50 169 
interpolated time points – shortest possible alignment length 𝐿)'*= 50 and longest possible 170 
alignment length 𝐿)+,= 100), followed by clustering of all alignments.  171 
 172 
Statistics for expected match and mismatch regions: For Matching pairs (Fig. 3b), 86.4% 173 
alignments give 100% alignment, while the rest show at least one false mismatch with an 174 
average length of 4.74 (~9.4% 𝐿)'*). The mean matching percentage (the percentage of total 175 
matching, including one-to-one matches and warps, in the alignment string output, which we 176 
term ‘alignment similarity’) is 98.8%. For Divergence (Fig. 3c), we expect to see a full match 177 
at the beginning (start-match) followed by a full mismatch at the end (end-mismatch), where 178 
the match/mismatch length depends on the approximate location of bifurcation. Thus we 179 
report the distributions of start-match lengths (that follows a false mismatch if there is any), 180 
end-mismatch lengths, and start-mismatch lengths (detecting false mismatches) in all 181 
alignments across the three bifurcating locations. We observed no end matches, 182 
demonstrating that G2G accurately mismatches the differentially expressed region. However, 183 
33.13% of the divergent alignments give at least one false start-mismatch (30.4% for 𝑡( =184 
	0.25, 33.2% for 𝑡( = 	0.5, and 35.8% for 𝑡( = 	0.75). However, their median mismatch 185 
length is 1 (with mean 2.29 = ~4.6% 𝐿)'*). All distributions fall within their expected ranges 186 
of length with a few outliers. As the bifurcation point moves towards the maximum 187 
pseudotime, the number of matches increases while the number of mismatches decreases as 188 
expected. In contrast, Convergence alignments (Fig. 3d) (where we expect start regions to 189 
fully mismatch while end regions fully match) show only a 3.5% of all convergent 190 
alignments with false end-mismatches (2.8% for 𝑡( = 	0.25, 5.3% for 𝑡( = 	0.5, and 2.4% for 191 
𝑡( = 	0.75). Their median mismatch length is 4 (with mean 11.84 = ~23.7% 𝐿)'* , mainly 192 
due to just 4 outliers with complete mismatching alignments arising from 𝑡(=0.75 case). 193 
Again, the distributions of end-match lengths and start-mismatch lengths across all subgroups 194 
fall within the expected ranges. We also see no false start matches. Only one 0.5 195 
Convergence alignment (0.06%) showed a single mismatch within an expected match region. 196 
In conclusion, for Matching, Convergence and Divergence patterns, G2G is able to generate 197 
correct alignments with relatively high accuracy. 198 
 199 
Clustering alignments: Fig. 3e shows the pairwise alignment distance matrix, which 200 
demonstrates a clear separation of the seven pattern classes. Hierarchical agglomerative 201 
clustering of the alignments at 0.2 distance threshold results in 11 clusters, capturing all the 202 
distinct patterns with only 0.34% mis-clustering rate. 21 alignments of early Divergence and 203 
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late Convergence appear in 4 pure subclusters due to warps, confirming G2G’s ability to 204 
distinguish between usual and outlying patterns. (Further results in Extended Data Fig. 4).  205 
 206 
Overall, G2G has a good detection accuracy of the expected matches and mismatches across 207 
all the seven classes of trajectory alignment patterns we evaluated. Clustering results of their 208 
five-state alignment strings also confirm the utility of such descriptive outputs. 209 
 210 
Experiment 2 211 
To test the ability to detect matching patterns in real scRNA-seq data, we used a scRNA-seq 212 
dataset of E15.5 murine pancreatic development26 and considered gene expression profiles of 213 
769 genes varying in expression during beta-cell differentiation. We randomly split cells into 214 
query and reference, and simulated the presence of a mismatch in the form of a deleted 215 
portion (perturbation scenario 1) or changed portion (perturbation scenario 2) of increasing 216 
size (pseudotime was equally divided into 50 bins with an increasing number of bins being 217 
perturbed) at the beginning of the trajectory (Fig. 3f). We then performed alignments with 218 
G2G (under 50 interpolation time points) and calculated the percentage of match calling, i.e., 219 
alignment similarity (Fig. 3g). We found that on average, G2G recovered the matching region 220 
accurately across genes, with 91% mean alignment similarity when no perturbation was 221 
introduced, and 86% mean alignment similarity for mismatches smaller than 20% of 222 
pseudotime bins (10/50 bins) across the two different perturbation scenarios. For perturbation 223 
scenario 1, the alignment similarity decreases with increasing deletion sizes as expected 224 
across smaller perturbation sizes. However, the detected mismatch length is shorter than 225 
expected for deletions larger than 20%. This is due to the relative non-varying gene 226 
expression trends between pseudotime bin 10 to 20 (Extended Data Fig. 3a) and hence it 227 
causes warps instead of mismatches. For perturbation scenario 2, the alignment similarity has 228 
an expected maximum and minimum. For example, if the perturbation size = 5 in the query, 229 
the minimum mismatch segment to expect is: “IIIII”, whereas the maximum mismatch 230 
segment to expect is: “IIIIIDDDDD” (illustrated in Extended Data Fig. 3b). Accordingly, 231 
the observed trend generally follows the expected trends, falling within the expected ranges 232 
for larger perturbations sizes.  233 
 234 
In general, we observe that the alignment accuracy drops when the underlying assumption of 235 
a smooth trajectory breaks, and/or when there are significant inconsistencies in the cell 236 
densities across the trajectories. As apparent from this experiment, we also note that it is 237 
extremely challenging to simulate perturbations using real life datasets for trajectory 238 
benchmarking, as they may introduce warps instead of expected mismatches as shown in 239 
perturbation scenario 1. Consequently, it is difficult to guarantee a specific linear ordering of 240 
matches and mismatches. Overall, the results support that G2G has a good accuracy rate of 241 
match and mismatch detection.  242 
 243 
G2G captures mismatches and offers gene-level resolution alignment 244 
To benchmark our method against the widely-known DTW-based method, CellAlign5, we 245 
performed G2G alignment on the same dataset23 used by CellAlign (Fig. 4a), which includes 246 
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time-course data of murine bone marrow-derived dendritic cells stimulated with PAM3CSK 247 
(PAM) or lipopolysaccharide (LPS) to simulate responses to different pathogenic 248 
components. The main difference between CellAlign and G2G is that, CellAlign only 249 
considers matches and warps through DTW, while G2G’s algorithm unifies matches and 250 
mismatches through a single DP algorithm by imposing the notion of gaps on top of DTW via 251 
a probabilistic framework and Gotoh’s algorithm15. Further conceptual differences between 252 
G2G and CellAlign are summarized in Supplementary Table 1. Of note, G2G outputs both 253 
individual gene-level alignments and an aggregate (average) alignment path over all gene-254 
level alignments, unlike CellAlign which outputs only a single, high-dimensional alignment 255 
across all genes. This is particularly useful when there is heterogeneity in alignment patterns 256 
among different genes. 257 
 258 
G2G’s ability to capture mismatches is revealed in aligning genes from the “core antiviral 259 
module” of the PAM/LPS dataset (Supplementary Table 18-22). CellAlign demonstrated a 260 
‘lag’ in expression in PAM stimulation compared to LPS5. This is also captured by the G2G 261 
aggregate alignment whereby later PAM pseudotime points were mapped to earlier LPS 262 
pseudotime points (Fig. 4b). In addition, G2G identified mismatches in the early and late 263 
pseudotime points.  264 
 265 
In the early pseudotime points, the gene expression was consistently low in the PAM 266 
condition, whereas some of the cells stimulated by LPS were already showing elevated 267 
expression at early time points (Fig. 4c). These have also been noticed in the original paper 268 
and were described as “precocious expressers”23. The mismatch in the late pseudotime points 269 
of LPS stimulation was caused by the peaked expression, while the expression of the PAM-270 
stimulated cells was still on the rise and had not reached a peak yet (Fig. 4c).  271 
 272 
In the case of aligning genes from the “peaked inflammatory module” (Supplementary 273 
Table 23-30), Fig. 4d shows the main average path of alignment generated by G2G. In 274 
addition, genes were clustered based on their alignment patterns (method illustrated in Fig. 2; 275 
results in Extended Data Fig. 5-6), and the aggregate alignment path for each cluster was 276 
different from the main average path (Fig. 4d). Representative genes from different clusters 277 
are shown in Fig. 4e. Although they all had matches for some pseudotime points, there are 278 
subtle differences in the length and position of the time points that are matched.   279 
 280 
In addition, genes can be examined via the similarity between their expression profiles along 281 
the query and reference pseudotime trajectories. This can be computed through their 282 
percentage of alignment similarity. We identified genes with low alignment similarity and 283 
high log fold change between query and reference data, such as CCRL2 and C5AR1. CCRL2 284 
expression started at a much higher level and peaked early in the LPS condition, whereas 285 
following PAM stimulation it grew as a slow incline. This stark difference suggests that 286 
CCRL2 is a more LPS-specific response gene, consistent with previous reports in murine 287 
dendritic cells, macrophages, glial cells, astrocytes and microglia stimulated with LPS27,28. 288 
On the other hand, these data suggest that C5AR1 is a PAM-specific response gene. In the 289 
case of the TNF gene, although the differential expression log fold change is almost 290 
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negligible, the low alignment similarity revealed different expression dynamics. This 291 
difference would not be picked up by differential gene expression, hence highlighting the 292 
importance of such an alignment. For the genes that have high alignment similarity such as 293 
CD44, the log fold change should be small due to consistent matching across the pseudotime.  294 
 295 
The above results showcase the benefit of G2G alignments over DTW alignments, i.e., to 296 
capture mismatched regions in gene expression trajectories. While the DP matrix of DTW 297 
may reflect the time points of relative differences and similarities in gene expression between 298 
two trajectories, we need extra effort subjected to thresholding to perform local DTW 299 
alignment and extract mismatches. TrAGEDy11, the most recent extension on CellAlign5,11, 300 
performs such ad hoc processing of DTW outputs (See feature comparison in 301 
Supplementary Table 1). We next compared G2G with CellAlign and TrAGEDy on a 302 
simulated dataset containing two trajectories with no shared process11(referred to as a 303 
negative control dataset). G2G successfully quantifies that they are very dissimilar, with a 304 
low average of 34.5% alignment similarity across all the genes (Supplementary Fig. 2a, 305 
Supplementary Table 52). G2G also generates an aggregate alignment solely with insertions 306 
and deletions, which agrees with the expectation (Supplementary Fig. 2b). CellAlign is 307 
unable to produce a meaningful output for this dataset due to its DTW assumption of no 308 
mismatch. The alignment from TrAGEDy includes segments of one-to-one matches. This 309 
could be caused by the assumption of a definite match in between, in TrAGEDy post hoc 310 
thresholding. It is further validated by testing on three simulated genes with completely 311 
mismatched trajectories (Supplementary Fig. 2c). While TrAGEDy falsely generates 312 
matched subregions, G2G gives accurate outputs of 100% mismatch.  313 
 314 
Overall, the above results over a real biological dataset and a negative control validate that 315 
G2G can accurately detect mismatches.  316 
 317 
In vivo, in vitro human T cell development comparison using G2G reveals 318 
differences in TNFα signaling   319 
We next applied G2G to compare in vitro and in vivo human T cell development. Thymus is 320 
the key site for T cell development in humans, where lymphoid progenitors differentiate 321 
through stages of double negative (DN) and double positive (DP) T cells to acquire T cell 322 
receptor (TCR) (illustrated in Fig. 5a). If the TCR recognizes self antigen presented on MHC 323 
via the process of positive selection, the developing T cells further differentiate through 324 
abT(entry) cells and finally mature into single positive (SP) T cells. There are different 325 
subsets of SP T cells, including CD4+T, CD8+T and regulatory T (Treg) cells, as well as the 326 
newly recognized unconventional type 1 and type 3 innate T cells and CD8AA29,30. To 327 
investigate human T cell development in a model system, we differentiated induced 328 
pluripotent stem cells (iPSCs) into mature T cells using the artificial thymic organoid (ATO) 329 
system31. We previously harvested differentiated cells from week 3, 5, and 7 and reported 330 
that the mature T cells in ATO were most similar to the in vivo type 1 innate T cells. To 331 
explore this further, we performed scRNA-seq analysis of differentiated cells harvested at 332 
regular intervals throughout the differentiation, i.e., including the early time points as well 333 
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(Fig. 5b). Cell types were annotated (low-level annotation in Fig. 5c with more refined 334 
annotation in Extended Data Fig. 7a) using a combination of the logistic regression based 335 
predictions with CellTypist32 (Extended Data Fig. 7b) and marker gene analysis (Extended 336 
Data Fig. 8). The ATO system captures the differentiation from stem cells, through 337 
mesodermal progenitors, endothelium, to haematopoietic lineage, and then further down to T 338 
cell lineage (Fig. 5b).  339 
 340 
We then combined the in vitro ATO data with the relevant in vivo cell types from our 341 
developing human immune atlas30 (hereafter referred to as the pan fetal reference) and 342 
integrated using scVI33 onto a common latent embedding (Fig. 5d,e). For ATO data, the 343 
pseudotime was estimated using a Gaussian Process Latent Variable Model (GPLVM)34 with 344 
sampling times as priors (Fig. 5f). GPLVM has previously been successfully applied in 345 
single-cell trajectory inference to incorporate useful priors35–39. The pan fetal reference cells’ 346 
pseudotime was computed similarly by estimating their time priors from the nearby ATO 347 
cells (see Methods).  348 
 349 
Alignment between in vitro ATO data and in vivo pan fetal reference was performed with 350 
G2G (under 15 equispaced time points in [0,1] pseudotime range) using all transcription 351 
factor (TF) genes40 (Supplementary Table 31), as many TFs function as ‘master regulators’ 352 
of cell states and have been used to induce cell differentiation. The aggregate alignment result 353 
for all TFs showed a mismatch at the beginning and a mismatch at the end (Fig. 6a). We 354 
explored this further by performing gene set overrepresentation among the most mismatched 355 
genes (alignment similarity < 40%, Fig. 6b, Supplementary Table 32), and found that 356 
pluripotency and TNFɑ signaling pathways were the two most significant gene sets. Many of 357 
the genes in the pluripotency signaling pathway, such as the well-known pluripotent genes 358 
POU5F1, NANOG and SOX241, were expressed at the beginning of ATO development but 359 
missing from the reference (Fig. 6c). This is expected given that the in vitro differentiation 360 
started from iPSCs, whereas the earliest cells from the in vivo reference were haematopoietic 361 
stem cells (HSCs). On the other hand, HHEX, which is known to be expressed in HSC42,43 362 
and early DN T cells44 demonstrates another pattern: matching between in vivo and in vitro 363 
HSC and DN T cells as expected although the maximum HHEX expression in in vitro cells 364 
was lower than that of in vivo cells (Fig. 6c).  365 
 366 
With regard to the TNFɑ signaling via NFκB pathway, many of the genes such as FOSB, 367 
JUNB and NR4A2 show an increasing trend at the last stage of in vivo T cell development, 368 
and this increase is missing in the in vitro T cells (Fig. 6d). TNFɑ activation of NFκB 369 
pathway has been implicated in the final functional maturation of murine T cells within the 370 
thymus45,46 and indicates that, while the ATO system captures the single positive T cell 371 
development through positive selection, other in vivo signaling necessary for maturation, 372 
such as TNFɑ pathway, might be missing. By systematically comparing the in vivo data to in 373 
vitro data with G2G, it gives us potential targets for further in vitro optimization. There are 374 
exceptions to this overall pattern, such as KLF2, whose expression is higher in in vitro T cells 375 
than that in in vivo (Fig. 6d). This might be the result of each gene being regulated by more 376 
than one signaling pathway. We remark that although it is possible to recover the difference 377 
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between TNFɑ signaling by doing direct differential gene expression between cell subsets, 378 
e.g., end products of ATO vs in vivo T cells, a key advantage of using the trajectory 379 
alignment is that we could pinpoint where along the differentiation did the mismatch occur. 380 
This would in turn inform us when to introduce the TNFɑ in in vitro optimization.  381 
 382 
Using G2G, genes are also clustered based on their alignment patterns (Extended Data Fig. 383 
9, Supplementary Table 31,33-45). Cluster 4 captures the pluripotent genes, and the 384 
majority show a complete mismatch alignment pattern. Cluster 10 genes are enriched in the 385 
Hippo signaling pathway, and many of its genes show insertions at the beginning of the 386 
pseudotime. Hippo signaling has been implicated in stem cell biology and pluripotency 387 
regulation47, and the observed mismatch might again be explained by the stem cell stage 388 
present in the organoid but absent from the in vivo reference. Interestingly, cluster 0 genes 389 
show mismatches in the middle time points. This might represent a missing cell state, e.g., 390 
BATF2 is expressed sparsely in endothelial cells which are present in the in vitro but not in 391 
the in vivo system (Extended Data Fig. 10). 392 
 393 
We further repeated the analysis restricting to T cell lineages, i.e., DN T cells onwards 394 
(Extended Data Fig. 11a-d, Supplementary Table 46-47). TNFɑ signaling via NFκB 395 
pathway remains the most significantly enriched gene set among the mismatched genes.  396 
 397 
The above alignments were performed using in vivo type 1 innate T cells and the relevant 398 
precursors, as we previously found that the in vitro mature T cells were most similar to the in 399 
vivo type 1 innate T cells30. However, in vitro cell differentiation to conventional CD8+T 400 
cells might also provide promising routes for cell therapies. We therefore performed another 401 
G2G alignment using in vivo conventional CD8+T cells and the relevant T lineage precursors 402 
(DN T cells onwards), with the results shown in Extended Data Fig. 11e-h (and 403 
Supplementary Table 48-49). The most significantly enriched gene set among the 404 
mismatched genes is also TNFɑ signaling pathway. To further explore the differences in the 405 
two alignment results, we focused on genes that showed the most dissimilar alignment results 406 
(genes that had alignment similarity differences > 0.5 or < -0.5) (Fig. 6e). Three of the genes, 407 
SOX4, FOXP1 and ARID5B had large log2 fold change differences (absolute log2 fold change 408 
> 1) between type 1 innate T cells and CD8+T cells. For these three genes, the expression 409 
dynamics of in vitro T cell development are more similar to those of in vivo type 1 innate T 410 
cells, whereas in vivo CD8+T cells had higher SOX4, FOXP1 and lower ARID5B expression 411 
in the last stages of development (Fig. 6e). While the role of SOX4 in CD8+T cell 412 
development is unclear, FOXP1 has been shown to maintain a quiescent profile in naive 413 
CD8+T cells48,49 , and our results are in keeping with a more activated profile in type 1 innate 414 
T cells. ARID5B has been reported to regulate metabolic programming and promote IFNγ 415 
production in NK cells50. The higher expression in type 1 innate T cells might explain some 416 
of their NK-like features29,30. On the other hand, for BHLHE40, which is downstream of 417 
TNFɑ signaling and other pro-inflammatory cytokines51, its expression dynamic in in vitro T 418 
cell development is more similar to that in CD8+T cells, while the in vivo type 1 innate T 419 
cells have increased expression at the end.  420 
 421 
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Overall, G2G alignment between in vivo and in vitro human T cell development revealed 422 
potential targets for further optimization of in vitro T cell differentiation (illustrated in Fig. 423 
6f).  424 
  425 
Discussion  426 

Genes2Genes offers a structured alignment framework to compare single-cell pseudotime 427 
trajectories at single-gene resolution. We validated G2G’s accuracy in identifying 428 
mismatches and different alignment patterns through extensive simulation studies. We have 429 
also benchmarked against current state-of-art methods in trajectory alignment using a real-life 430 
dataset and a simulated negative control dataset from the literature. In addition, we 431 
demonstrated G2G’s potential in identifying genes and pathways that can guide the 432 
refinement of T cell differentiation in an organoid protocol.  433 
 434 
Given cell-by-gene matrices of reference and query systems along with their corresponding 435 
pseudotime estimates, G2G generates a five-state alignment string for each gene of interest 436 
by running a DP algorithm that handles both matches and mismatches. The gene sets to 437 
compare can be all expressed genes against each other, or restricted to gene sets of interest 438 
such as e.g. TFs, regulons, highly variable genes or genes associated with certain 439 
biological/signaling pathways of interest. Compared to existing alignment approaches, G2G 440 
outputs more descriptive and direct results highlighting both matched (including warps) and 441 
mismatched regions of a gene over time. G2G provides a powerful addition to the current 442 
repertoire of comparative analysis toolboxes for any pseudotime alignment task, e.g., in 443 
vivo/in vitro, treatment/control, cross-species etc.  444 
 445 
An important feature of G2G are the gene-specific alignments. Most existing methodologies 446 
produce a single alignment for all genes by computing high-dimensional Euclidean distances 447 
over their mean gene expression vectors. Such metrics suffer from ‘the curse of 448 
dimensionality’ by losing accuracy as the number of genes increases52. Importantly, in many 449 
contexts, an overall alignment across all genes masks gene heterogeneity along trajectories in 450 
the reference and query systems. Alpert et al (2018)5 discuss choosing the right alignment 451 
resolution, recommending alignment of the largest gene set that shows significant differential 452 
expression (DE genes) over time. This is to remove stably expressed genes which may add 453 
noise and skew the alignment results. Our method goes further and fully resolves all gene 454 
groups with distinct matching and mismatching patterns at different stages along trajectories 455 
(Fig. 4d, Extended Data Fig. 4-6).  456 
 457 
The gene-specific alignment of G2G also allows users to cluster genes based on their 458 
matching patterns to form groups with broadly similar alignments. We show that pathway 459 
overrepresentation analysis on each gene cluster can reveal specific biological signaling 460 
pathways that are driving the differences in pseudotime trajectories at different stages. These 461 
pathways and gene sets can be a starting point for protocol intervention strategies in the case 462 
of in vivo/in vitro alignments, and for mechanistic molecular interpretation of differences 463 
between trajectories in other cases.  464 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531713doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 465 
The reliability of a trajectory alignment depends on how trustworthy the given pseudotime 466 
estimates are2. Different pseudotime estimates can produce different alignment distributions. 467 
While our initial G2G framework provides proof-of-concept by demonstrating the power of 468 
gene-level DP alignment to discover differential genes along pseudotime trajectories, future 469 
work is needed to develop suitable methods to calibrate its input (i.e. pseudotime estimates 470 
and interpolation), and better parameter optimization strategies to ensure more reliable 471 
alignment distributions. For instance, an adaptive window size for the Gaussian kernel-based 472 
interpolation may optimize the method’s sensitivity to the variance of expression in the 473 
nearby cells. Furthermore, the current G2G version can only compare two linear trajectories 474 
without considering branching processes. We are aware of other efforts in aligning branched 475 
processes with DTW based tree alignment8. The output from such alignments, i.e., identified 476 
pairs of correspondences, could be further inputted into G2G for a comprehensive pairwise 477 
lineage alignment to capture mismatches. 478 
 479 
In summary, G2G provides a formal trajectory alignment for single-cell transcriptomic data 480 
and is able to capture matches and mismatches at single-gene level. It enables a deeper 481 
understanding of the diversity of gene-level trajectory alignments across single-cell datasets. 482 
The G2G package is easy-to-use and freely available online at 483 
https://github.com/Teichlab/Genes2Genes with a tutorial. We have demonstrated that 484 
regenerative medicine can specifically benefit from such trajectory comparisons by extracting 485 
cues to guide refinement of in vitro cell engineering to recapitulate in vivo development. We 486 
envision that the software will be useful to the community for exploring other biological 487 
scenarios such as cell activation/stimulation responses in control and disease, generating new 488 
insights to advance our understanding of cell development and function in health and disease. 489 
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Main Figures 490 

491 
Fig. 1 | Computational alignment of single-cell transcriptomic trajectories. a, Trajectory 492 
alignment is important for comparing different single-cell reference and query systems that 493 
dynamically change. This could be between in vivo cell development and in vitro cell 494 
differentiation, or between control and drug-treated cells in response to the same perturbation, 495 
or between the responses to vaccination or pathogen challenge in healthy versus diseased 496 
individuals. A complete alignment between them can capture matches and mismatches for 497 
further downstream analysis. b, Schematic illustration of the different states of alignment and 498 
their theoretical origins. Left: dynamic time warping and biological sequence alignment are 499 
complementary to each other14–16, where both address matches yet capture either warps or 500 
indels respectively. Right: between discrete time points in R (reference trajectory) and Q 501 
(query trajectory), there may exist 5 different states of alignment: matches (1-1 502 
correspondences), warps (1-to-many expansion or many-to-1 compression correspondences) 503 
and mismatches (insertions/deletions denoting a significant difference in one system 504 
compared to the other). c, Example alignment path across a pairwise time point matrix 505 
between R and Q trajectories. Diagonal lines (green) refer to matches (M); vertical lines refer 506 
to either insertions (I) (red) or expansion warps (V) (green); horizontal lines refer to deletions 507 
(D) (red) or compression warps (W) (green). Any matrix cell (𝑖, 𝑗)	denotes the pairing of a 508 
reference time point Rj and query time point Qi. d, Example gene alignment plot (left) and the 509 
corresponding five-state alignment string generated by G2G (right). Plots display interpolated 510 
log1p normalized expression (y-axis) between a reference (green) and query (blue) against 511 
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their pseudotime (x-axis) for the gene SERTAD2 in the PAM/LPS dataset from Shalek et al 512 
(2014)23. The bold lines represent mean expression trends, while the faded data points are 50 513 
random samples from the estimated expression distribution at each time point. The black 514 
dashed lines visualize matches and warps between time points. The boxed alignment string 515 
describes matches and mismatches for the gene (stars represent time points, and ^ represent a 516 
repeated time point from the left due to a warp).   517 
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 518 
Fig. 2 | Overview of the Genes2Genes (G2G) alignment framework for comparing 519 
single-cell transcriptomic trajectories. Schematic illustration of G2G workflow. Given 520 
log1p normalized cell by gene expression matrices of a reference (R) and query (Q) system 521 
and their pseudotime estimates, G2G infers individual alignments for a list of genes of 522 
interest. It first interpolates data by extending mean based interpolation in Alpert et al (2018)5 523 
to distributional interpolation, and then runs Gotoh’s dynamic programming (DP) algorithm15 524 
adapted for a five-state alignment machine (Extended Data Fig. 1a) defining a match (M), 525 
compression warp (W), expansion warp (V), insertion (I) and deletion (D). All reported 526 
alignments are then clustered and used to deliver statistics on the overall degree of alignment 527 
between R and Q, supporting further downstream analyses. Top left, the DP recurrence 528 
relations utilize a match cost function defined under minimum message length (MML)21 529 
statistical inductive inference. Given a hypothesis (a distribution model) and data, MML can 530 
define the total message length of encoding them for lossless compression along an 531 
imaginary message transmission. G2G defines two hypotheses: (1) 𝛷: 𝑅# and 𝑄' time points 532 
mismatch, and (2) A: 𝑅# and 𝑄' time points match. Under 𝛷, the message length is the sum of 533 
independent encoding lengths of their corresponding interpolated expression data and 534 
distributions. Under A, the message length is their joint encoding length of the corresponding 535 
interpolated expression data with a single Gaussian distribution (either of 𝑅#  or 𝑄'). The 536 
match cost is taken as the difference of A and 𝛷 per datum encoding lengths. Bottom left, 537 
G2G encodes the five-state alignment strings using a binary scheme and computes a pairwise 538 
Hamming distance matrix to cluster all gene-level alignments. Top right: example output of 539 
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five-state alignment strings for each gene. Bottom right, example clustermap showcasing the 540 
clustering result of alignment strings. The color represents the pairwise Hamming distance, 541 
and the clustering is performed using Agglomerative hierarchical clustering.   542 
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 543 
Fig. 3 | G2G accurately identifies different patterns of alignment with simulated data 544 
experiments. a, Experiment 1 uses a Gaussian Process based simulator to generate 3500 545 
simulated pairs of reference and query gene trajectories to test G2G on. These include three 546 
main classes of alignment pattern: (1) Matching, (2) Divergence and (3) Convergence. The 547 
Divergence and Convergence groups further sub-categorised based on their approximate 548 
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location of bifurcation (0.25, 0.5, and 0.75 within [0,1] pseudotime range), resulting in seven 549 
pattern classes (each with 500 alignments). b, Alignment frequency histogram of mismatch 550 
percentages observed in the 500 alignments for the simulated Matching class. c, Distributions 551 
of start match lengths (following a false mismatch if there is any), end mismatch lengths 552 
(prior to a false match if there is any), and start mismatch lengths (number of mismatches 553 
starting from time point 0) in the 1500 Divergence alignments across the three bifurcation 554 
subgroups. 50 equispaced time points on pseudotime [0,1] were used for distribution 555 
interpolation and alignment. In the case of early divergence, i.e., bifurcation at 0.25, there are 556 
2 cases showing complete mismatch, i.e., mismatch length of 100. d, Distributions of end 557 
match lengths (prior to a false mismatch if there is any), start mismatch lengths (following a 558 
false match if there is any), and end mismatch lengths (number of mismatches before time 559 
point 1) in the 1500 Convergence alignments across the three bifurcation subgroups. 50 560 
equispaced time points on pseudotime [0,1] were used for distribution interpolation and 561 
alignment. In the case of late convergence, i.e., bifurcation at 0.75, there are 4 cases showing 562 
complete mismatch, i.e., mismatch length of 100. e, The clustergram of the pairwise 563 
Hamming distance matrix across all alignments, which clearly shows the separate classes of 564 
pattern. f, Experiment 2 uses the mouse pancreas development dataset (Beta lineage) scRNA-565 
seq dataset 26 to generate perturbed pairs of alignment from the expected Matching 566 
alignments. Perturbation scenario 1 deletes the start region from the reference trajectory, 567 
whereas perturbation scenario 2 changes the start region from the reference trajectory. g, The 568 
alignment similarity distributions for varying sizes (percentage of 50 pseudotime bins) of 569 
perturbation under perturbation scenario 1 (left) and perturbation scenario 2 (right). Each 570 
point represents a gene (total number of genes n = 769). In each plot, the observed average 571 
alignment similarity across different perturbation sizes is shown by the green line. For 572 
perturbation scenario 1 (left), the blue line shows the expected alignment similarity across 573 
different perturbation sizes. For perturbation scenario 2 (right), there are two expected lines: 574 
maximum (in blue) and minimum (in red). The maximum mismatch length is expected when 575 
both reference and query time points form insertions and deletions, making the maximum 576 
expected length size*2. The minimum mismatch length is expected when only the changed 577 
reference time points are mismatched as insertions, while the corresponding query time 578 
points are matched to the non-perturbed reference time points (illustrated in Extended Data 579 
Fig. 3b).        580 
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Fig. 4 | G2G captures mismatches and offers gene-level resolution alignment. a, G2G 582 
alignment was performed on a time-course data23 of murine bone marrow-derived dendritic 583 
cells stimulated with PAM or LPS. Both the gene expression data and the inferred 584 
pseudotime were taken from Alpert et al. 20185. b, Top: schematic illustration of the 585 
aggregate alignment result for all the genes in the “core antiviral module”. The stacked bar 586 
plots represent the cell compositions at each time point (50 equispaced time points on 587 
pseudotime [0,1]), colored by the time of sampling post stimulation. Boxed segments 588 
represent mismatched time points. The black dashed lines represent matches and warps 589 
between time points. Bottom: pairwise time point matrix between PAM and LPS pseudotime. 590 
The color represents the number of genes showing match or warp for the given pair of a PAM 591 
time point and an LPS time point. The white line represents the main average alignment path. 592 
c, Gene expression plots for three representative genes (IRF7, STAT2 and IFIT1) from the 593 
“core antiviral module” in LPS-stimulated (blue) and PAM-stimulated (green) data along 594 
their pseudotime. Left column: the interpolated log1p normalized expression (y-axis) against 595 
pseudotime (x-axis). The bold lines represent mean expression trends, while the faded data 596 
points are 50 random samples from the estimated expression distribution at each time point. 597 
The black dashed lines represent matches and warps between time points. Right two columns: 598 
the actual log1p normalized expression (y-axis) against pseudotime (x-axis). Each point 599 
represents a cell. The five-state alignment string for each gene is shown below the expression 600 
plots. Red circles highlight the cells with high expression values at early time points, which 601 
are referred to as ‘precocious expressers’. d, The same plots as in b for genes in the “peaked 602 
inflammatory module”. In the pairwise time point matrix, the white line represents the main 603 
average alignment path. The genes are also clustered based on their alignment results 604 
(Extended Data Fig. 5), and dashed lines with different colors represent examples of cluster-605 
specific alignment paths. e, The same plots as in c for a representative gene from each cluster 606 
shown in d. f, Plot of alignment similarity (y-axis) against log2 fold change of mean 607 
expression (x-axis) for all genes in the “peaked inflammatory module” (middle). The color 608 
also represents the alignment similarity. The surrounding plots show the interpolated log1p 609 
normalized expression (y-axis) against pseudotime (x-axis) on the left, and the violin plot of 610 
total gene expression on the right for four selected genes (CD44, CCRL2, TNF, C5AR1).  611 
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 612 

Fig. 5 | in vivo, in vitro human T cell development data integration and pseudotime 613 
inference. a, Schematic illustration of T cell development in the human thymus. b, Top: 614 
schematic showing the experimental set-up of T cell differentiation from iPSCs in ATOs. 615 
Bottom: barplot of cell type composition in ATO at different time points during 616 
differentiation. c, UMAP visualization of different cell types in the ATO dataset (low-level 617 
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annotation, number of cells n = 31,483), with more refined annotation in Extended Data Fig. 618 
7a. d, Workflow of integrating in vitro (i.e. ATO) and in vivo (i.e. pan fetal reference from 619 
Suo et al. 202230) human T cell development data and pseudotime inference using GPLVM. 620 
e, Main: UMAP visualization of integrated in vivo and in vitro human T cell development 621 
data, colored by the cell types. Right insert: the same UMAP visualization colored by the data 622 
source. f, Stripplot of the inferred pseudotime (x-axis) against different cell types (y-axis), 623 
colored by the cell types, of in vivo pan fetal reference data (top) and in vitro organoid data 624 
(bottom).   625 
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Fig. 6 | in vivo, in vitro human T cell development alignment with G2G. a, Aggregate 627 
alignment result for all TFs between in vitro organoid (i.e. ATO) and in vivo reference (i.e. 628 
pan fetal reference from Suo et al. 202230) human T cell development data shown in the 629 
pairwise time point matrix between organoid and reference pseudotime. The color represents 630 
the number of genes showing match or warp for the given pair of an organoid time point and 631 
a reference time point. The white line represents the main average alignment path. The 632 
stacked bar plots represent the cell compositions at each time point (15 equispaced time 633 
points on pseudotime [0,1]), colored by the cell types, for reference (top) and organoid (left) 634 
separately. b, Gene set overrepresentation results of the most mismatched genes from 635 
alignment in a, with the gene set names in y-axis, and -log10(adjusted P-value) in x-axis. The 636 
size of the point represents the percentage of genes from that gene set being within the list of 637 
most mismatched genes. The color represents the -log10(adjusted P-value). Two most 638 
significant gene sets were boxed in red. c, Alignment results for all genes in the pluripotency 639 
signaling pathway. Top left: pairwise time point matrix between organoid and reference 640 
pseudotime. The color represents the number of genes showing match or warp for the given 641 
pair of an organoid time point and a reference time point. The white line represents the main 642 
average alignment path. Top right: schematic illustration of the aggregate alignment result. 643 
The stacked bar plots represent the cell compositions at each time point, colored by the cell 644 
types. The black dashed lines represent matches and warps between time points. Boxed 645 
segment represents the mismatched pluripotency stage in the organoid. Bottom left: the 646 
interpolated log1p normalized expression (y-axis) against pseudotime (x-axis) for selected 647 
genes. Bottom right: heatmap of the smoothened (interpolated) and z-normalized mean gene 648 
expression along the pseudotime. d, The same plots as in c for all genes in the TNFɑ 649 
signaling via NFκB pathway. The boxed segment in the right top plot represents the 650 
mismatched last stage in vivo T cell maturation. e, Plots showing the alignment differences 651 
between in vivo conventional CD8+T lineage versus in vitro organoid, and in vivo type 1 652 
innate T cell lineage versus in vitro organoid. Middle: plot of alignment similarity difference 653 
(y-axis) against log2 fold change of mean expression between CD8+T and type 1 innate T 654 
cells (x-axis). The color reflects the absolute value of alignment similarity difference. 655 
Surrounding plots: the interpolated log1p normalized expression (y-axis) against pseudotime 656 
(x-axis) showing the alignment between in vivo type 1 innate T cell lineage (green) and in 657 
vitro organoid (blue) (top), and the alignment between in vivo CD8+T lineage (orange) and in 658 
vitro organoid (blue) (bottom), for four selected genes. f, Schematic illustration of potential 659 
targets for further optimization of in vitro T cell differentiation towards either type 1 innate T 660 
cells or conventional CD8+T cells.  661 
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Methods 814 
 815 
Genes2Genes (G2G): A new alignment framework for single-cell trajectories 816 
As described in the main text, Genes2Genes performs dynamic programming (DP) alignment 817 
independently for all genes of interest, between a reference trajectory 𝑅 and a query trajectory 818 
𝑄. In other words, each gene-level (i.e. gene-specific) trajectory alignment is an independent 819 
DP task of pairwise time series alignment. The aim is to generate an optimal sequence of 820 
matched time point pairs and mismatched time point pairs between 𝑅 and 𝑄 for each gene. As 821 
illustrated in Fig. 1b, there are five different alignment states which denote these matches and 822 
mismatches between two time points. For each time point in any gene trajectory, there is a 823 
respective expression distribution, as explained by an observed dataset of single-cell (scRNA-824 
seq) measurements. G2G evaluates the similarities of these reference and query expression 825 
distributions over time, to determine a match or mismatch between their time points.  826 
 827 
The following sections introduce the problem of pairwise time series alignment, and describe 828 
the main components of our G2G framework (Fig. 2) which operate together to produce 829 
optimal gene-specific alignments.  830 
 831 
Pairwise time series alignment for trajectory comparison 832 
A trajectory is a continuous path of change through some feature space, along some axis of 833 
progression (such as time)53. In single-cell transcriptomics, this feature space is usually 834 
defined by genes, and a trajectory through a high-dimensional gene space can describe the 835 
transcriptomic state of a cell as a function of time. A temporal (e.g. pseudotime) ordering of a 836 
set of single cells represents a discretization of the respective cell state trajectory, and their 837 
entire gene expression dataset forms a multivariate time series. On the other hand, their 838 
expression of a single gene forms a univariate time series. In this work, we consider a 839 
pairwise alignment of univariate time series, which allows us to perform gene-specific 840 
trajectory alignment.  841 
 842 
Given two time series (sequences), reference 𝑅 and query 𝑄 of length (i.e. a finite number of 843 
time points) |𝑅| and |𝑄|, their pairwise alignment describes sequential correspondences 844 
between their time points. As an optimization problem, computational alignment has two key 845 
properties: (1) an optimal substructure, and (2) overlapping set of subproblems, which make 846 
it dynamic programmable (DP)3. Property (1) means, the optimal alignment of any two 847 
prefixes 𝑅!..# and 𝑄!..' depends on the optimality of three sub-alignments: (i) 𝑅!..#.! and 848 
𝑄!..'.! , (ii) 	𝑅!..#.! and 𝑄!..' , and (iii) 	𝑅!..# and 𝑄!..'.!. Property (2) means, there exists 849 
subproblems (prefix alignments) that are overlapping. DP begins optimizing the alignment of 850 
prefixes, starting from null (𝛷) sequences until it completes an alignment of the entire two 851 
sequences. During this process, it computes overlapping subproblems only once and reuses 852 
them through a memoization (history) matrix 𝐻. In the standard DP alignment algorithm, any 853 
cell (𝑖, 𝑗) in 𝐻 stores the optimal alignment cost of the two prefix sequences: 𝑅!:# and 𝑄!:', by 854 
optimizing an objective function which quantifies the alignment through a set of recurrence 855 
relations. Once all 𝐻 matrix cells are computed, the optimal alignment can be retrieved by 856 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531713doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

backtracking, starting from the right-most bottom cell (|𝑄| + 1, |𝑅| + 1) until reaching the 857 
matrix cell (0,0). The time complexity of this algorithm depends on how its alignment 858 
scoring scheme is designed. (The standard scheme has a quadratic complexity to find the best 859 
alignment out of the factorially growing all possible number of alignments).  860 
 861 
Preprocessing a trajectory time series by distributional interpolation 862 
Interpolation is a necessary preprocessing step that a time series has to undergo prior to 863 
taking part in an alignment. This is to ensure smoothly changing and uniformly distributed 864 
data that are in phase (i.e. having the same rate of sampling) at least approximately; otherwise 865 
a reliable alignment cannot be guaranteed5,12. Here we chose to extend the mean gene 866 
expression based interpolation method used by CellAlign5 to a distributional interpolation, for 867 
preprocessing a reference and query time series of gene expression before their alignment.  868 
 869 
Given a pseudotime series 𝑡 of (log1p normalized) expression in some gene 𝑔# of a single-870 
cell dataset, our distributional interpolation method first min-max-normalizes the pseudotime 871 
of 𝑡 as to be in the range of [0,1]. Then, 𝑚	equally spaced artificial (interpolated) time points 872 
are determined within [0,1], where for each artificial time point 𝑡′, we estimate a Gaussian 873 
distribution (of mean 𝑔#(𝑡′))0+*	 and standard deviation 𝑔#(𝑡′)123) by using the Gaussian 874 
kernel-based weighted approach. For each cell 𝑖 annotated with pseudotime 𝑡' , an associated 875 
weight is computed w.r.t each artificial time point 𝑡′ as:  876 

𝑤' = 𝑒𝑥𝑝(−
(𝑡' − 𝑡′)"

𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒") 877 

, where default 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒	= 0.1. The below equations are then used to compute the 878 
Gaussian distribution parameters 𝑔#(𝑡′))0+* and 𝑔#(𝑡′)123 	:  879 

𝑔#(𝑡′))0+* =
1
𝛴𝑤'

H𝑤' 	𝑔#(𝑡')	
*

'4!

	 880 

𝑔#(𝑡′)123 = 𝑐25J𝑛
∑ 𝑤'	[𝑔#_)0+* − 𝑔#(𝑡')]"*
'4!

(𝑛 − 1)𝛴𝑤'
 881 

where 𝑔#_)0+* =
∑ 9!(2")
#
"$%

*
, 882 

 883 
, 𝑛 is the total number of cells, and 𝑐25 is the weighted cell density (abundance of cells) at the 884 
interpolated time point 𝑡′. The weighted cell density computed as: 885 

𝑐25 =
∑ <"
#
"$%
*

, 886 

is the expected weight of a cell at 𝑡′. A higher expected weight is indicative of a higher cell 887 
density. This way, we account for cell abundance when deciding the variance for the 888 
interpolated point (otherwise with a very low number of cells, we may get a very high 889 
variance). Next, we generate 𝑘 = 50 random data points from the Gaussian distribution 890 
𝑁(𝑔#(𝑡′))0+*	, 𝑔#(𝑡′)123 	) for each interpolated time 𝑡′, representing the interpolated 891 
distribution of single-cell gene expression. Note: In this work, we use a fixed number of 892 
interpolated time points 𝑚 for both reference and query. As 𝑚 controls the resolution of the 893 
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alignment, it should suffice to represent the entire trajectory. This interpolation also adds an 894 
O(𝑛𝑚) time complexity due to taking a weighted contribution from all cells at each 𝑡′. To 895 
overcome this, a general solution is to subsample datasets before the analysis and/or to reduce 896 
the number of contributing cells by considering only the nearest neighborhood.  897 
 898 
The reference pseudotime series and query pseudotime series of each gene is preprocessed 899 
using the above described distributional interpolation method. The interpolated time series 900 
are then input to our G2G dynamic programming algorithm as detailed in the next section.  901 
 902 
A new dynamic programming algorithm for time series alignment of a single 903 
gene  904 
Here we describe a new dynamic programming (DP) algorithm to generate an alignment 905 
between a reference time series 𝑅 and query time series 𝑄 of log-normalized expression of a 906 
specified gene. This algorithm jointly adapts Gotoh's sequence alignment15 with classical 907 
dynamic time warping (DTW)16 to accommodate five states of alignment (Fig. 1b), i.e., one-908 
to-one match (m), many-to-one warp (wd), one-to-many warp (wi), insertion (i), and deletion 909 
(d) between time points in the two time series. We denote the five-state space as 𝛺 = [m, wd, 910 
wi, d, i]. Our approach unifies matches and mismatches within a single DP algorithm unlike 911 
DTW which only handles matches (including warps).  912 
 913 
The DTW algorithm originated from the speech recognition domain16 under the family of 914 
dynamic programming algorithms for optimization3. It has been extensively used to align 915 
time series with shifts (warps). Sankoff and Kruskal (1983)12 had previously discussed how 916 
to capture warps and indels both from a single alignment algorithm. They provided a DP 917 
recurrence relation involving evaluations of the five alignment states to decide the optimal 918 
state for each pair of 𝑅 and 𝑄	time points when aligning two time series. Extending this idea 919 
further, we implemented the Gotoh's O(|𝑅||𝑄|)	DP algorithm to generate an optimal five-920 
state alignment hypothesis for 𝑅 and 𝑄 time series by: 921 

● Defining a Bayesian information-theoretic measure of distance between two gene 922 
expression distributions using the minimum message length statistical inductive 923 
inference framework12,21.  924 

● Defining a five-state machine that models state transitions in the alignment hypothesis 925 
across the five different matching and mismatching states, defining one-to-one 926 
matches, warps (i.e. many-to-one compression matches and one-to-many expansion 927 
matches), and insertions-deletions (indels). 928 

 929 
The scoring scheme of the DP algorithm evaluates every pair of reference time point 𝑗 and 930 
query time point 𝑖 to generate an optimal alignment across all time points. This involves 931 
computing two types of cost: (1) the cost of matching the two time points, 𝑗 and 𝑖 (denoted by 932 
𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗)) based on their respective (interpolated) gene expression distributions, and 933 
(2) the cost of assigning an alignment state 𝑥 ∈ 𝛺 for the two time points 𝑗 and 𝑖. The 934 
following sections first detail on how we compute these costs, and then describe how our DP 935 
optimization works using this scoring scheme.  936 
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 937 
Note: The reference time point 𝑗 and query time point 𝑖 are also denoted by 𝑅# and 𝑄' in the 938 
main text. 939 
 940 
The DP scoring scheme  941 
 942 
The cost of match between the reference time point 𝑗 and query time point 𝑖 943 
We expect a match between the reference time point 𝑗 and query time point 𝑖 if they have 944 
similar distributions of gene expression. Thus, to score the likelihood of a match, we define a 945 
distance measure between the two gene expression distributions corresponding to the 𝑗 and 𝑖 946 
time points, respectively. To compute this distance, we first take the interpolated single-cell 947 
expression datasets at time point 𝑗 of 𝑅 (denoted by 𝑅(𝑗)) and time point 𝑖 of 𝑄 (denoted by 948 
𝑄(𝑖)). We already know the mean (𝜇) and standard deviation (𝜎) statistics for 𝑅(𝑗) and 𝑄(𝑖) 949 
separately, as they were estimated during the time series interpolation step. Thus we define 950 
the Gaussian distribution 𝑁(𝜇%(#), 𝜎%(#)) for 𝑅(𝑗), and the Gaussian distribution 951 
𝑁(𝜇&('), 𝜎&(')) for 𝑄(𝑖) using their respective 𝜇 and 𝜎 statistics. Accordingly, if 𝐷%(#) =952 
[𝑑!, 𝑑", . . . , 𝑑|%(#)|] and 𝐷&(') = [𝑑!, 𝑑", . . . , 𝑑|&(')|] are the expression data vectors of the 𝑅(𝑗) 953 
and 𝑄(𝑖) datasets, respectively, then: 954 

 𝑑?~	𝑁(𝜇%(#), 𝜎%(#))  ∀	𝑑? 	 ∈ 𝐷%(#) 955 
𝑑?~	𝑁(𝜇&('), 𝜎&('))	∀	𝑑? 	 ∈ 𝐷&(')  956 

To be brief, we denote 𝑁(𝜇%(#), 𝜎%(#)) distribution by 𝑁%(#) , and 𝑁(𝜇&('), 𝜎&(')) by 𝑁&(').  957 
 958 
Next, we implement the cost function, 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗), to consider both:  959 

1. Data: 𝐷%(#) and 𝐷&(') expression vectors of the 𝑅(𝑗) and 𝑄(𝑖) datasets, respectively, 960 
2. Models: Gaussian distributions, 𝑁%(#) and 𝑁&('), 961 

when computing the distance between 𝑅(𝑗) and 𝑄(𝑖). To do so, we use the minimum 962 
message length (MML) criterion21,22 and define a Bayesian information-theoretic distance 963 
measure. Fig. 2 (top left) illustrates an abstract overview of our MML framework and its 964 
place in the overall G2G alignment framework. Supplementary Fig. 1a further expands this 965 
illustration to explain how the 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) computation works for a pair of reference time 966 
point 𝑗 and query time point 𝑖, as detailed by the following sections.  967 
 968 
Primer on minimum message length inference (MML) 969 
MML20-22 is an inductive inference paradigm for model comparison and selection, grounded 970 
on Bayesian statistics, information and coding theory. It facilitates designing hypothesis test 971 
schemes specific to a problem domain. Given a hypothesis (model) 𝐻 and some data 𝐷, it 972 
lays an imaginary message transmission from a sender who jointly encodes 𝐻 and 𝐷, aiming 973 
for their lossless decoding at a recipients’ side. Bayes theorem defines their joint probability 974 
as:  975 

𝑃𝑟(𝐻, 𝐷) = 𝑃𝑟(𝐻) ⋅ 𝑃𝑟(𝐷|𝐻) = 𝑃𝑟(𝐷) ⋅ 	𝑃𝑟(𝐻|𝐷).  976 
Separately, Shannon information defines the optimal length of a message that encodes some 977 
event 𝐸 with a probability 𝑃𝑟(𝐸) as:  978 
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𝐼(𝐸) = 	−𝑙𝑜𝑔0(𝑃𝑟(𝐸))  979 
measured in nits, where 𝐼 denotes information. By applying the Shannon information54 to 980 
Bayes theorem, we can map the respective probability elements in 𝑃𝑟(𝐻, 𝐷) = 𝑃𝑟(𝐻) ⋅981 
𝑃𝑟(𝐷|𝐻) onto the information space, describing the amount of Shannon information needed 982 
to encode 𝐻 and 𝐷 jointly as: 983 

𝐼(𝐻, 𝐷) = 𝐼(𝐻) + 𝐼(𝐷|𝐻)  – Equation (1)  984 
This gives a two-part total message length of encoding 𝐻 and 𝐷 jointly. The first part 𝐼(𝐻) 985 
refers to the message length of encoding the hypothesis 𝐻 itself, whereas the second part 986 
𝐼(𝐷|𝐻) refers to the message length of encoding the data points in 𝐷 using 𝐻.  987 
 988 
When there are two hypotheses, 𝐻! and 𝐻", that describe the same data 𝐷, MML enables us 989 
to select the best hypothesis that gives a model-complexity vs. model-fit tradeoff, by 990 
evaluating a compression statistic 𝛥 = 𝐼(𝐻!, 𝐷) − 𝐼(𝐻", 𝐷). Here, 𝛥 is also the log odds 991 
posterior ratio between the two hypotheses.  992 

𝛥 = 𝑙𝑜𝑔(@A(B&,D)
@A(B%,D)

) = 𝑙𝑜𝑔(@A(D)@A(B&|D)
@A(D)@A(B%|D)

) = 𝑙𝑜𝑔(@A(B&|D)
@A(B%|D)

) – Equation (2)  993 

If 𝛥>0, this implies that the hypothesis 𝐻" is 𝑒E times more likely than 𝐻!, and vice versa.  994 
 995 
Casting the cost of matching between reference time point 𝑗 and query time point 𝑖 under 996 
MML 997 
Given the expression data 𝐷 (containing both 𝐷%(#) and 𝐷&(')) and their estimated Gaussian 998 
distributions (𝑁(𝜇%(#), 𝜎%(#)) and 𝑁(𝜇&('), 𝜎&(')) denoted by 𝑁%(#) and 𝑁&('), respectively), 999 
we formulate two different hypotheses:  1000 

1. Hypothesis A: assumes that the two time points match, and thus explains data 𝐷 with 1001 
a single, representative Gaussian distribution 𝑁(𝜇∗, 𝜎∗) denoted by 𝑁∗ (which is either 1002 
	𝑁%(#) or 𝑁&(')). 1003 

2. Hypothesis 𝛷: assumes that the two time points mismatch, and thus explains data 1004 
𝐷%(#) with 	𝑁%(#) , and data 𝐷&(') with 𝑁&('), independently.  1005 

We then compute the two message lengths: 𝐼(𝐴, 𝐷) and 𝐼(𝛷, 𝐷) according to Equation 1 in 1006 
the above described MML formulation:  1007 

𝐼(𝐴, 𝐷) = 𝐼(𝐴) + 𝐼(𝐷|𝐴) – Equation (3)  1008 
𝐼(𝛷, 𝐷) = 𝐼(𝛷) + 𝐼(𝐷|𝛷) – Equation (4)  1009 

where, 𝐴 = 	[𝑁∗] and 𝛷 = [	𝑁%(#)	, 𝑁&(')]. 𝐼(𝐴, 𝐷) is the total message length of encoding 𝐴 1010 
and 𝐷 jointly, where 𝐼(𝐴) refers to the encoding length of the parameters 𝜇∗, 𝜎∗ of 1011 
𝑁∗distribution. 𝐼(𝐷|𝐴) refers to the encoding length of all data points in 𝐷 based on their 1012 
likelihood under 𝑁(𝜇∗, 𝜎∗). Accordingly, we can re-write and expand Equation 3 to:  1013 

𝐼(𝐴, 𝐷) = 𝐼(𝑁∗) + 𝐼(𝐷|𝑁∗)	1014 
                        = 𝐼(𝜇∗, 𝜎∗	) + 𝐼(𝐷|𝜇∗, 𝜎∗	) 1015 

On the other hand, 𝐼(𝛷, 𝐷) is the total message length of encoding 𝛷 and 𝐷 jointly, where 1016 
𝐼(𝛷) refers to the sum of the independent encoding lengths of parameters 𝜇%(#), 𝜎%(#) of 𝑁%(#) 1017 
and 𝜇&('), 𝜎&(') of 𝑁&(') . 𝐼(𝐷|𝛷) refers to the sum of the independent encoding lengths of  1018 
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all data points in 𝐷%(#) and all data points in 𝐷&(') based on their likelihood under their 1019 
respective Gaussian distributions: 𝑁(𝜇%(#), 𝜎%(#)) and 𝑁(𝜇&('), 𝜎&(')). Accordingly, we can 1020 
re-write and expand Equation 4 to:  1021 

𝐼(𝛷, 𝐷) = 𝐼(𝑁%(#)) + 𝐼(𝑁&(')) + 𝐼(𝐷|𝑁%(#), 𝑁&('))	1022 
= 𝐼(𝜇%(#), 𝜎%(#)	) + 𝐼(𝜇&('), 𝜎&(')	) + 𝐼(𝐷%(#)|𝜇%(#), 𝜎%(#)) + 𝐼(𝐷&(')|𝜇&('), 𝜎&('))	1023 

Note: See the next section for the equations used to compute each term in Equation 3 and 1024 
Equation 4.  1025 
 1026 
Next, we normalize each total message length to compute a per datum message length (i.e. 1027 
entropy), by dividing them by the total number of datapoints (single-cells) in 𝐷.  1028 

𝐼(𝐴, 𝐷)0*2AGHI =
𝐼(𝐴, 𝐷)

|𝐷%(#)| + |𝐷&(')|
	1029 

𝐼(𝛷, 𝐷)0*2AGHI =
𝐼(𝛷, 𝐷)

|𝐷%(#)| + |𝐷&(')|
	1030 

Note: to make the 𝐼(𝐴, 𝐷)0*2AGHI measure symmetric, we take the average: 1031 

 𝐼(𝐴, 𝐷)0*2AGHI =
J(K'(!),D)*#+,-./LJ(K0("),D)*#+,-./		

"
	nits per datum 1032 

 1033 
Afterwards, we compute a compression statistic 𝛥, which is taken as our 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗):  1034 

𝛥 = 𝐼(𝐴, 𝐷)0*2AGHI 	− 	𝐼(𝛷, 𝐷)0*2AGHI	1035 
𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) = 𝛥	1036 

As in Equation 2, this reflects the log odds posterior ratio:  1037 
𝐼(𝐴, 𝐷) − 𝐼(𝛷, 𝐷) = 𝑙𝑜𝑔[@A(D)⋅@A(N|D)

@A(D)⋅@A(O|D)
] = 𝑙𝑜𝑔[@A(N|D)

@A(O|D)
]  1038 

When 𝑅(𝑗) and 𝑄(𝑖) are very dissimilar, the total encoding length under hypothesis A (i.e. 1039 
the time points match) results in a larger value compared to that of hypothesis 𝛷 (i.e. the time 1040 
points mismatch). Thus, 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) increases as the distributions deviate from each other 1041 
(Extended Data Fig. 1b, Supplementary Fig. 1b,c).  1042 
 1043 
Computing the total encoding message length for any Gaussian model 𝑁∗	and data 𝐷 of 1044 
size 𝑁 1045 
The above described 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) distance measure is computed using the standard MML 1046 
Wallace Freeman approximation21,54 defined for a Gaussian distribution22,55,56. As defined by 1047 
Equation 1, for any dataset 𝐷 and a hypothesis 𝐻 that describes 𝐷 = [𝑥!, 𝑥", . . . , 𝑥K] under a 1048 
Gaussian distribution 𝑁(𝜇, 𝜎) with parameters �⃗� = (𝜇, 𝜎), the total message length of 1049 
encoding 𝐻 and 𝐷 jointly is given by:  1050 

𝐼(𝐻, 𝐷) = 𝐼(�⃗�, 𝐷) = 𝐼(𝜃) + 𝐼(𝐷|𝜃)	1051 
MML Wallace Freeman approximation expands this to:  1052 

𝐼(𝜃, 𝐷) =
𝑑
2 𝑙𝑜𝑔(𝜅3) − 𝑙𝑜𝑔[ℎ(�⃗�)] 	+	

1
2 𝑙𝑜𝑔(𝑑𝑒𝑡[𝐹𝑖𝑠ℎ𝑒𝑟(�⃗�)]) + 𝐿(𝜃) +

𝑑
2	1053 

, where 𝑑 is the number of free parameters (𝑑 = 2 for a Gaussian), and 𝜅3 is the Conway 1054 
lattice constant57 ( 𝜅3 is P

QR√Q
 for 𝑑 = 2). Here: ℎ(�⃗�) is the prior over the parameters. 𝜇 is 1055 
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defined with a uniform prior over a predefined range of length 𝑅T. 𝑙𝑜𝑔(𝜎) is defined with a 1056 
uniform prior over a predefined range of length 𝑅U. Accordingly,   1057 

ℎ(�⃗�) = ℎ(𝜇) ⋅ ℎ(𝜎) 	= 	 ( !
%1
)( !
U%2	

)    1058 

⇒ 𝐼[ℎ(�⃗�)] 	= −𝑙𝑜𝑔[ℎ(�⃗�)] 	= 	𝑙𝑜𝑔(𝜎) 	+ 𝑙𝑜𝑔(𝑅T𝑅U)		1059 
We use 𝑅T=15.0 and 𝑅U= 3.0 as reasonable for log normalized gene expression data.  1060 
𝐿(�⃗�) is the negative log likelihood:  1061 

𝐿(𝜃) = 𝑁	𝑙𝑜𝑔(𝜎) 	+
𝑁
2 𝑙𝑜𝑔(2𝜋) 	+

1
2𝜎"H(𝑥' − 𝜇)"

K

'4!

		−H𝑙𝑜𝑔(𝜖)
K

'4!

	1062 

where, 𝜖 is the precision of measurement for each data point (taken as 𝜖=0.001). 1063 
𝑑𝑒𝑡[𝐹𝑖𝑠ℎ𝑒𝑟(𝜃)] is the determinant of the expected Fisher matrix (i.e. the matrix of the 1064 
expected second derivatives of the negative log likelihood function). This determinant has the 1065 

closed form: "K
&

U3
.  1066 

 1067 
The cost of alignment state assignment for the reference time point 𝑗 and query time 1068 
point 𝑖 1069 
The DP scoring scheme also involves computing a cost of assigning a certain alignment state 1070 
𝑥 ∈ 𝛺 =[m, wd, wi, d, i] for the two time points 𝑗 and 𝑖. This state assignment cost is 1071 
computed as the amount of Shannon information54 required to encode state 𝑥 given the 1072 
assigned state 𝑦 for the preceding time points. As previously said, in information theory, 1073 
Shannon information defines the optimal length of a message that encodes some event 𝐸 with 1074 
a probability 𝑃𝑟(𝐸) as:  𝐼(𝐸) = 	−𝑙𝑜𝑔0(𝑃𝑟(𝐸)) measured in nits, where 𝐼 denotes 1075 
information. Accordingly, the cost of assigning state 𝑥 given a previous state 𝑦 is: 𝐼(𝑥|𝑦) =1076 
	−𝑙𝑜𝑔0(𝑃𝑟(𝑥|𝑦)). We define a five-state machine (Extended Data Fig. 1a) to explain these 1077 
conditional probabilities of state assignments (a.k.a state transitions). 1078 
 1079 
This finite state machine extends the general three-state alignment machine17,18 which has a 1080 
match (m) state, delete (d) state, and insert (i) state, by adding two new states: compression 1081 
warp (wd) state and expansion warp (wi) state (Fig. 1b). The warp states are equivalent to the 1082 
match state but are extensions to accommodate one-to-many and many-to-one matches 1083 
between the two series, respectively. As in the three-state alignment machine19, we enforce 1084 
symmetry, while prohibiting an invalid transition from an indel state to a warp state. That is, 1085 
we do not allow i→wd and d→wi, as they can be covered by a single m state in the first 1086 
place. On the other hand, we have the choice of allowing d→wd and i→wi, as there can be 1087 
a legitimate case of a warp match after an insertion or deletion. Note: all the outgoing 1088 
transitions of each state in this finite state machine add up to a probability of 1. It also treats 1089 
<i and d> and <wi and wd> equivalently. Consequently, there are 23 total number of state 1090 
transitions in this machine, yet there are only three free transition probability 1091 
parameters:	[𝑃𝑟(𝑚|𝑚), 𝑃𝑟(𝑖|𝑖), 𝑃𝑟(𝑚|𝑖)], due to the symmetry and characteristics of the 1092 
machine. These probabilities control the expected lengths of a match and a mismatch. In this 1093 
work, we have chosen reasonable values [𝑃𝑟(𝑚|𝑚)=0.99,	𝑃𝑟(𝑖|𝑖)=0.25, 𝑃𝑟(𝑚|𝑖)=0.4] based 1094 
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on manual tuning. However, we note that these parameters can be automatically inferred 1095 
using an added layer of optimization and time complexity on top of the main DP 1096 
optimization, which will be an interesting future direction to follow.  1097 
 1098 
Altogether, our G2G DP scoring scheme utilizes the 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) function, and the above 1099 
described state assignment costs (i.e. all possible state transition costs evaluated as 𝐼(𝑥|𝑦) for 1100 
all possible 𝑦 → 𝑥 state transitions under the five-state machine), are then used to define the 1101 
recurrence relations of our DP algorithm.  1102 
 1103 
Dynamic programming recurrence relations We formulate the DP problem using five 1104 
history matrices [𝐻𝑖𝑠𝑡), 𝐻𝑖𝑠𝑡<4 , 𝐻𝑖𝑠𝑡<" , 𝐻𝑖𝑠𝑡3 , 𝐻𝑖𝑠𝑡'], where each matrix corresponds to 1105 
each alignment state in 𝛺, respectively. Any history matrix, 𝐻𝑖𝑠𝑡,	 for state 𝑥 ∈ 	𝛺, has the 1106 
dimensions (|𝑄| + 1 × |𝑅| + 1). In other words, the columns correspond to the time points in 1107 
the reference series 𝑅, while the rows correspond to the time points in the query series 𝑄. 1108 
Each cell 𝐻𝑖𝑠𝑡,(𝑖, 𝑗) stores the optimal cost of aligning the prefix time series 𝑅[1. . 𝑗] and 1109 
𝑄[1. . 𝑖] ending in state 𝑥. The DP recurrence relations to compute each matrix cell (𝑖, 𝑗) of 1110 
each history matrix for 𝑖 > 0, 𝑗 > 0 are:  1111 

 1112 
 1113 

As previously described, 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) measures the distance between the two interpolated 1114 
gene expression distributions corresponding to the reference time point 𝑗 and query time point 1115 
𝑖. The cost term 𝐼(𝑥|𝑦)	∀	𝑥, 𝑦 ∈ 𝛺 refers to the Shannon information of a state transition 𝑦	 →1116 
𝑥 (e.g. 𝐼(𝑖|𝑚) is the cost of 𝑚 → 𝑖, computed as −𝑙𝑜𝑔0[𝑃𝑟(𝑖|𝑚)]), based on the five-state 1117 
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alignment machine as explained before. Prior to computing the above relations, the history 1118 
matrices are initialized as:  1119 

 1120 
Note: For the cases of <𝑖 = 1 and 𝑗 = 1> (i.e. before the first state transition), we assign a 1121 
uniform transition cost:  𝐼(𝑚) = 𝐼(𝑖) = 𝐼(𝑑) = −𝑙𝑜𝑔0(1/3). All the five history matrices are 1122 
computed by running the aforementioned DP algorithm. We then generate the optimal 1123 
alignment 𝑌∗ as a five-state string by backtracking, starting from the cell:  1124 

 1125 
Note: The optimal alignment cost landscape matrix 𝐿 can be visualized by constructing: 1126 

𝐿(𝑖, 𝑗) = 𝑚𝑖𝑛∀,	∈X{𝐻𝑖𝑠𝑡,(𝑖, 𝑗)}	1127 
 1128 

𝑌∗ is the optimal alignment between 𝑅 and 𝑄 time series that minimizes the total DP 1129 
alignment cost under our DP scoring scheme and recurrence relations. In other words,  1130 
𝑌∗ describes the optimal set of reference time point and query time point pairs that are 1131 
matched, as well as the optimal set of reference time points and query time points that are 1132 
mismatched. The 𝑘th character in 𝑌∗, i.e., 𝑌∗[𝑘], gives the alignment state for the 1133 
corresponding reference and query time points (𝑌∗[𝑘] ∈ 𝛺 =[m, wd, wi, i, d]). Let the set of 1134 
matched time point pairs (𝑖, 𝑗) in 𝑌∗ be denoted by 𝑇)+2=>03. Then, the total alignment cost of 1135 
𝑌∗ is the sum of the total match cost (𝐶)+2=>) and the total state assignment cost (𝐶12+20), 1136 
where: 1137 

𝐶)+2=>(𝑌∗) = H 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗)
∀(',#)∈Y56+78*4

		1138 

𝐶12+20(𝑌∗) = H𝐼(𝑌∗[𝑘]|𝑌∗[𝑘 − 1])
|Z∗|

?4!

	1139 

under our scoring scheme. 1140 
Overall, the optimal alignment 𝑌∗ is generated by optimizing the following objective 1141 
function: 1142 

𝑌∗= 𝑎𝑟𝑔𝑚𝑖𝑛	∀Y∈Y  {𝐶)+2=>(𝑌) + 𝐶12+20(𝑌)}	 1143 
where Y is the space of all possible five-state alignment hypotheses.  1144 
 1145 
Note on using a custom 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) function: Our MML-based 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) function 1146 
defines a distribution-based distance measure to compute the cost of matching the reference 1147 
time point 𝑗 and query time point 𝑖 based on their gene expression distributions (as explained 1148 
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in the previous sections). Considering expression distributions rather than just the mean 1149 
expression values allows us to make technical/batch variations implicit. However, we note 1150 
that this can be any cost function (e.g. KL-divergence) which can measure the distance 1151 
between two Gaussian distributions. However, our MML-based compression statistic 𝛥 1152 
enables us to define a complete description of each hypothesis, which considers both model-1153 
complexity and data-fit. On the other hand, KL-divergence is equivalent to the expected log-1154 
likelihood ratio, which does not take the complexity of model parameters into account. 1155 
 1156 
Reporting alignment statistics over gene-level alignments  1157 
 1158 
G2G generates individual alignments for all genes of interest by running the DP alignment 1159 
algorithm (detailed in the previous section) independently for each gene between the 1160 
reference and query. Each optimal alignment output is a five-state alignment string describing 1161 
the matches and mismatches. These gene-level alignments are further analyzed to generate 1162 
useful statistics and insights as below.  1163 
 1164 
Distribution of Alignment similarities The percentage of total matching (i.e. one-to-one 1165 
matches and warps) (termed as ‘alignment similarity’ percentage) in each five-state gene-1166 
alignment string, as well as its average across all genes, provide quantitative measures of the 1167 
degree of concordance between the reference and query. We also generate a single aggregate 1168 
alignment across all genes using each of their optimal alignment landscapes. Recall that any 1169 
matrix cell (𝑖, 𝑗) in the optimal alignment landscape (i.e. 𝐿(𝑖, 𝑗) = 𝑚𝑖𝑛∀,	∈X{𝐻𝑖𝑠𝑡,(𝑖, 𝑗)}) 1170 
refers to the optimal ending alignment state of the prefix time series 𝑅!..# and 𝑄!..'. Thus, 1171 
across such matrices of all genes, there is a five-state frequency distribution for each (𝑖, 𝑗). To 1172 
generate an average alignment, we start a traversal from the right-most bottom cell (|𝑄| +1173 
1, |𝑅| + 1), and choose the most probable alignment state 𝑥	 ∈ 𝛺 for 𝑅|%| and 𝑄|&| time points 1174 
as the most frequent state across all genes. According to this state, we traverse to the next 1175 
matrix cell (i.e. if it is 𝑚, we go to (𝑖 − 1, 𝑗 − 1); if it is 𝑑, we go to (𝑖, 𝑗 − 1) and so on). By 1176 
the time we reach the cell (0,0), we have a representative five-state alignment string. 1177 
 1178 
Clustering five-state alignment strings Given a set of five-state alignment strings (i.e. gene-1179 
specific alignments), we employ a string clustering approach to identify groups of genes that 1180 
show similar temporal matching and mismatching patterns. This requires the definition of a 1181 
distance measure between two alignment paths. While the polygonal area based distance 1182 
measure58 is ideal for three-state alignment strings, it is unable to distinguish between warps 1183 
and indels. Thus, we use a binary encoding scheme that transforms each five-state alignment 1184 
string into a binary vector of size |𝑅| + |𝑄|. This is done by traversing through the alignment 1185 
path, recording for each trajectory, the match/mismatch state of their respective pseudotime 1186 
points (i.e a match state 𝑥	 ∈ [𝑚,𝑤3 , 𝑤'] is encoded by 1; a mismatch state 𝑥	 ∈ [𝑖, 𝑑] is 1187 
encoded by 0). The resultant binary strings of 𝑅 and 𝑄 are then concatenated to numerically 1188 
represent their alignment path. Next, the binary representation of each gene-specific 1189 
alignment is used to compute a pairwise Hamming distance matrix between all pairs of 1190 
alignments, which is then input to standard agglomerative hierarchical clustering (under the 1191 
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average linkage method; using the Python sklearn.cluster package). The threshold parameter 1192 
for linkage distance controls the level at which the cluster merge stops, allowing inspection of 1193 
the clusters at different levels of a clustering hierarchy.   1194 
 1195 
Pathway overrepresentation analysis The alignment similarity percentage of each gene-1196 
specific alignment allows us to rank all the genes, from which we select the top 𝑘 1197 
mismatching genes to analyze their pathway overrepresentation. The identified clusters of 1198 
genes are also analyzed. We use the GSEApy Enrichr58–60 wrapper against the 1199 
MSigDB_Hallmark_202061 and KEGG_2021_Human pathway genesets61,62. For all analyses, 1200 
a 0.05 significance threshold of the adjusted P-value (with the default FDR correction method 1201 
used by GSEApy) was applied.  1202 
 1203 
Datasets 1204 
 1205 
Datasets for simulated experiments  1206 
 1207 
Simulating pairwise datasets with different alignment patterns using Gaussian 1208 
Processes 1209 
We modeled log-normalized expression of a gene 𝑥 as a function 𝑓 of time 𝑡 using a 1210 
Gaussian Process (GP), a stochastic process where any finite instantiation of it follows a 1211 
multivariate Gaussian distribution. In other words, it is a distribution of functions, from 1212 
which we can sample an 𝑓(𝑡):  1213 

𝑓(𝑡)	~	𝐺𝑃(𝜇(𝑡), 𝐾(𝑡, 𝑡′)) 1214 
 1215 

where, 𝜇 is the mean vector, and 𝐾(𝑡, 𝑡′) is a kernel function which evaluates a covariance 1216 
matrix covering every pair of finite time points where the 𝑓(t) is evaluated. The 1217 
characteristics of this function are controlled by the class of the kernel being used (e.g. a 1218 
Radial Basis Function (RBF) kernel for generating smooth, non branching functions; a 1219 
change point kernel for generating branching functions). Therefore, a GP with an appropriate 1220 
kernel is ideal to simulate different trajectory patterns in single-cell gene expression across 1221 
pseudotime. Following the standard textbook and kernels discussed in literature24,25, we 1222 
implemented a simulator for three different types of pairwise trajectory patterns: (1) 1223 
Matching, (2) Divergence, and (3) Convergence, across a pseudotime range [0,1] with 300 1224 
total number of simulated cells for each trajectory.  1225 
 1226 
Generating a Matching pair of reference and query gene trajectories We used a GP with 1227 
a constant 𝑐 mean vector 𝜇=ssss⃗  (𝑐 ∈ [0.5,9.0] uniform random sampled) and RBF kernel 𝐾 to 1228 
first sample a function 𝜇(𝑡) that describes an average expression value for each time point. 1229 
Next, we sampled two gene expression trajectories: 𝐺𝐸𝑋A0[(𝑡) and 𝐺𝐸𝑋\]0AI(𝑡), from a GP 1230 
where the mean is 𝜇(𝑡) and the covariance matrix is 𝜎"𝐼 (𝜎 ∈ [0.05,1.0] uniform random 1231 
sampled, and 𝐼= identity matrix).  1232 

𝜇(𝑡)	~	𝑁(�⃗�= , 𝐾) 1233 
	𝐺𝐸𝑋A0[(𝑡)		~	𝑁(𝜇(𝑡), 𝜎"𝐼	) 1234 
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	𝐺𝐸𝑋\]0AI(𝑡)		~	𝑁(𝜇(𝑡), 𝜎"𝐼	) 1235 
  1236 
Generating a Divergence pair of reference and query gene trajectories Here we use a 1237 
Change Point (CP) kernel which imposes a bifurcation in the trajectory as it reaches an 1238 
approximate time point 𝑡^@ (a.k.a. change point). The idea is to activate one covariance 1239 
function before 𝑡^@ and another covariance function after 𝑡^@. We used the below CP 1240 
kernel24,25 𝐾^@: 1241 

𝐾^@(𝑡, 𝑡′) 	= 	𝑎𝐾!(𝑡, 𝑡′) 	+ 	𝑎′𝐾"(𝑡, 𝑡′)  1242 
where, 1243 

𝑎 = 𝜎(𝑡)𝜎(𝑡′) 1244 
𝑎′ = [1 − 𝜎(𝑡)]	[1 − 𝜎(𝑡′)] 1245 

    𝜎(𝑥) 	= !
!L0,H(.1(,.2:;))

 (sigmoid function) 1246 

with 𝑠 acting as a steepness parameter, deciding how steep the change point is. Penfold et al 1247 
(2018)24 defines a branching process by enforcing a zero kernel (𝐾!) imposed before 𝑡^@ and 1248 
another suitable kernel (𝐾") afterwards. We used an RBF for 𝐾". Following is the generative 1249 
process starting with a base mean function 𝜇(𝑡) sampled from a separate GP with a constant 1250 
𝑐 mean vector 𝜇=ssss⃗  (𝑐 ∈ [0.5,9.0] uniform randomly sampled), and an RBF kernel 𝐾.  1251 

𝜇(𝑡)	~	𝑁(𝜇=ssss⃗ , 𝐾) 1252 
	𝑓!(𝑡)		~	𝑁(𝜇(𝑡), 𝐾^@	) 1253 
	𝑓"(𝑡)		~	𝑁(𝜇(𝑡), 𝐾^@	) 1254 

	𝐺𝐸𝑋A0[(𝑡)		~	𝑁(𝑓!(𝑡), 𝜎"𝐼		) 1255 
	𝐺𝐸𝑋\]0AI(𝑡)		~	𝑁(𝑓"(𝑡), 𝜎"𝐼		) 1256 

 1257 
Next, two functions were sampled from a GP with base 𝜇(𝑡) and CP(t,t’), which were then 1258 
used as mean vectors to generate 𝐺𝐸𝑋A0[(𝑡) and 𝐺𝐸𝑋\]0AI(𝑡) with covariance matrix 𝜎"𝐼 1259 
(𝜎=0.3). This was run for [𝑡^@=0.25, 𝑡^@=0.5, 𝑡^@= 0.75] to obtain 3 different groups of 1260 
Divergence with varying bifurcation points. We use a constant 𝜎 which is not too low and not 1261 
too high, and also apply a filtering criteria to ensure that the final dataset includes pairs of 1262 
simple and clear divergence (a stable ground truth with no complex patterns). Pairs are 1263 
filtered through basic heuristics such as the difference between mean expression before 1264 
divergence and at the end terminals of reference and query.  1265 
 1266 
Extended Data Fig. 2 shows that the branching effect may start approximately before the 1267 
change point. Therefore, we expect the early non-divergent segment to continue at least until 1268 
time point 𝑖 < 𝑡^@ where we begin to see > 0.01 covariance in the change point kernel. 1269 
Accordingly, given our approx_bifurcation_start_point =  𝑖, we expect the range of match 1270 
lengths to fall between a lower limit = 𝑛_𝑡𝑜𝑡𝑎𝑙_𝑝𝑠𝑒𝑢𝑑𝑜𝑡𝑖𝑚𝑒_𝑝𝑜𝑖𝑛𝑡𝑠	 × 	𝑖  1271 
and upper limit = 𝑛_𝑡𝑜𝑡𝑎𝑙_𝑝𝑠𝑒𝑢𝑑𝑜𝑡𝑖𝑚𝑒_𝑝𝑜𝑖𝑛𝑡𝑠	 × 	𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑜𝑖𝑛𝑡.  1272 
Equivalently, we expect mismatch lengths to fall between 𝑛_𝑡𝑜𝑡𝑎𝑙_𝑝𝑠𝑒𝑢𝑑𝑜𝑡𝑖𝑚𝑒_𝑝𝑜𝑖𝑛𝑡𝑠	 ×1273 
	(1 − 𝑖)  1274 
and upper limit = 𝑛_𝑡𝑜𝑡𝑎𝑙_𝑝𝑠𝑒𝑢𝑑𝑜𝑡𝑖𝑚𝑒_𝑝𝑜𝑖𝑛𝑡𝑠	 ×	(1 − 𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑜𝑖𝑛𝑡).  1275 
 1276 
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Generating a Convergence pair of reference and query gene trajectories For 1277 
Convergence, we simply inverted the above generated divergent trajectory pairs, as the 1278 
Convergence and Divergence patterns are complementary to each other.  1279 
 1280 
Simulating mismatches on real scRNA-seq data 1281 
We downloaded the mouse pancreas development dataset26 from the CellRank python 1282 
package63. We subset the dataset to include only cells in the beta-cell lineage, using the 1283 
annotations from the original authors (selecting cells labeled as “Ngn3 low EP”, “Ngn3 high 1284 
EP”, “Fev+”, “Beta”), retaining 1845 cells. To select genes varying along beta-cell 1285 
differentiation, we ran the CellRank pipeline (v1.5.1) to compute lineage drivers, following 1286 
the package tutorials 1287 
(https://cellrank.readthedocs.io/en/stable/auto_examples/estimators/compute_lineage_drivers.html) and selected genes 1288 
significantly associated with differentiation potential to beta-cells (at 1% FDR we selected 1289 
769/2000 highly variable genes). For the pseudotime axis, we used the diffusion pseudotime 1290 
estimated by the CellRank authors. To simulate trajectories for alignment, we divided the 1291 
diffusion pseudotime (between 0 and 1) equally into 50 bins, assigned cells to the bins based 1292 
on their estimated pseudotime and randomly split cells into query and reference datasets in 1293 
each bin. To simulate deletions of n bins, we excluded query cells from the first n pseudotime 1294 
bins (i.e. cells where the pseudotime value was less or equal to the upper margin of the nth 1295 
bin). To simulate mismatches of n bins, we found the pseudotime bin with highest mean 1296 
expression for the gene of interest in the query cells, and calculated mean (max_mean) and 1297 
standard deviation (max_std) of expression of query cells for this bin; then, for each of the 1298 
first n pseudotime bins, we substitute expression values of the query cells with a sample from 1299 
a normal distribution with mean = max_mean + max_std and standard deviation = max_std . 1300 
Pseudotime values for the query cells were min-max normalized to [0,1] after perturbation. 1301 
We then ran the G2G alignment on each tested gene and calculated their alignment similarity 1302 
(match calling) percentages. 1303 
 1304 
Datasets for benchmarking G2G 1305 
 1306 
Dendritic cell stimulation dataset 1307 
The normalized single-cell expression datasets of PAM/LPS stimulation and their pseudotime 1308 
estimates were downloaded from the CellAlign5 github repository and converted into 1309 
Anndata objects. These contain two gene sets: ‘core antiviral module’ (99 genes) and ‘peaked 1310 
inflammatory module’ (89 genes), pre-selected from the original publication23 and referred to 1311 
as global and local modules, respectively by Alpert et al (2018)5. The datasets include 179 1312 
PAM-stimulated cells and 290 LPS-stimulated cells for which the pseudotime has been 1313 
estimated by CellAlign authors using Diffusion-maps. 1314 
 1315 
Simulated dataset containing trajectories with no shared process 1316 
This is a simulated, negative control dataset which was generated using the published script 1317 
by Laidlaw et al (2023) (in the TrAGEDy11 Git repository). Their script uses DynGen64, a 1318 
single-cell data simulator for dynamic processes. The resulting negative dataset contains two 1319 
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trajectories simulated under two different gene regulatory networks and TF activity, ensuring 1320 
that there is no shared process between them. The reference and query trajectories have 619 1321 
genes across 2000 and 1940 cells, respectively.  1322 
 1323 
We reproduced the high-dimensional alignments from CellAlign and TrAGEDy over the 619 1324 
genes in this dataset by re-running the scripts provided by Laidlaw et al (2023). Here, 1325 
CellAlign uses Euclidean distance, whereas TrAGEDy uses Spearman correlation. Note: For 1326 
gene-level alignment, TrAGEDy was run using the Euclidean distance as in CellAlign; this is 1327 
because Spearman correlation is mathematically undefined for a single gene dimension. We 1328 
input log normalized, scaled gene expression data to CellAlign, following its documentation.  1329 
 1330 
Dataset preparation for in vivo in vitro T cell development comparison 1331 
 1332 
Cell cultures for artificial thymic organoid (ATO) and single-cell RNA sequencing 1333 
experiment 1334 
MS5 line transduced with human DLL4 was obtained from G. Crooks (UCLA) as a gift. The 1335 
MS5-hDLL4 cells were cultured in DMEM (Gibco) with 10% FBS. Two iPSC lines were 1336 
used in this study. Cell lines HPSI0114i-kolf_2 (Kolf) and HPSI0514i-fiaj_1 (Fiaj) were 1337 
obtained from the Human Induced Pluripotent Stem Cell initiative (HipSci: www.hipsci.org) 1338 
collection. All iPSC lines were cultured on vitronectin (diluted 1:25 in PBS; Gibco) coated 1339 
plates, in TeSR-E8 media (Stemcell Technologies). 1340 
 1341 
We followed the PSC-ATO protocol as previously described31. iPSC cells were harvested as 1342 
a single-cell suspension and seeded (3×106 cells per well) in GFR reduced Matrigel (Corning) 1343 
- coated 6-well plates in X-VIVO 15 media (Lonza), supplemented with rhActivin A, 1344 
rhBMP4, rhVEGF, rhFGF (all from R&D Systems), and ROCK inhibitor (Y27632; LKT 1345 
Labs) on day −17, and only rhBMP4, rhVEGF and rhFGF on days −16 and −15. Cells were 1346 
harvested 3.5 days later (day−14) , and isolated by FACS for CD326–CD56+ (PE anti-human 1347 
CD326 antibody, Biolegend, 324205; APC anti-human CD56 antibody, Biolegend, 318309) 1348 
human embryonic mesodermal progenitors (hEMPs). 1349 
 1350 
Isolated hEMPs were combined with MS5-hDLL4 at a ratio of 1:50. Two or three cell-dense 1351 
droplets (5×105 cells in 6 μl hematopoietic induction medium) were deposited on top of an 1352 
insert in each well of a six-well plate. Hematopoietic induction medium composed of EGM2 1353 
(Lonza) supplemented with ROCK inhibitor and SB blocker (TGF-β receptor kinase inhibitor 1354 
SB- 431542; Abcam) was added into the wells outside the inserts so that the cells sat at the 1355 
air-liquid interface. The organoids were then cultured in EGM2 with SB blocker for 7 days 1356 
(days −14 to −7), before the addition of cytokines rhSCF, rhFLT3L, rhTPO (all from 1357 
Peprotech) between days −6 to 0. These 2 weeks formed the hematopoietic induction phase. 1358 
On day 1, media was changed again to RB27 (RPMI supplemented with B27 (Gibco), 1359 
ascorbic acid (Sigma-Aldrich), penicillin/streptomycin (Sigma-Aldrich) and glutamax 1360 
(Thermo Fisher Scientific)) with rhSCF, rhFLT3L and rhIL7. The organoids can be 1361 
maintained in culture for 7 more weeks in this medium. 1362 
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 1363 
For dissociation of organoids on day −7, they were removed from culture insert and 1364 
incubated in digestion buffer, which consisted of collagenase type IV solution (StemCell 1365 
Technologies) supplemented with 0.88mg/ml collagenase/dispase (Roche) and 50U DNase I 1366 
(Sigma), for 20 minutes at 37oC. Vigorous pipetting was performed in the middle of the 1367 
incubation and at the end. After complete disaggregation, single cell suspension was prepared 1368 
by passing through a 50-μm strainer. 1369 
 1370 
For dissociation of organoids from day 0 onwards, a cell scraper was used to detach ATOs 1371 
from cell culture insert membranes and detached ATOs were then submerged in cold flow 1372 
buffer (PBS (Gibco) containing 2% (v/v) fetal bovine serum (FBS; Gibco) and 2 mM EDTA 1373 
(Invitrogen)). Culture inserts were washed and detached ATOs were pipetted up and down to 1374 
form single-cell suspension before passing through a 50-μm strainer.  1375 
 1376 
Cells were then stained with designed panels of antibodies and analyzed by flow cytometry. 1377 
FACS was performed at the same time and live human DAPI–anti-mouse CD29– (APC/Cy7 1378 
anti-mouse CD29 antibody, Biolegend, 102225) cells were sorted for day −7, day 0 and week 1379 
3 samples, and live (DAPI–) cells were sorted for week 5 and week 7 samples before loading 1380 
onto each channel of the Chromium chip from Chromium single cell V(D)J kit (10X 1381 
Genomics). The metadata for all the ATO samples can be found in Supplementary Table 1382 
50. For the day −14 sample, some sorted (both hEMP and the rest of DAPI– fraction) and 1383 
unsorted cells were stained with hashtag antibodies (TotoalSeq-C antibodies from Biolegend, 1384 
see Supplementary Table 51, following 10X cell surface protein labeling protocol) before 1385 
being mixed together with some mouse stromal cells (MS5-hDLL4) for 10X loading. For 1386 
week 1 sample, hashtag antibodies were added in at the same time as the FACS antibodies 1387 
i.e., before sorting.  1388 
 1389 
Single-cell cDNA synthesis, amplification and gene expression (GEX) and cell surface 1390 
protein (CITE-seq) libraries were generated following the manufacturer’s instructions. 1391 
Sequencing was performed on the Illumina Novaseq 6000 system. The gene expression 1392 
libraries were sequenced at a target depth of 50,000 reads per cell using the following 1393 
parameters: Read1: 26 cycles, i7: 8 cycles, i5: 0 cycles; Read2: 91 cycles to generate 75-bp 1394 
paired-end reads.  1395 
 1396 
ATO data preprocessing and annotation  1397 
Raw scRNA-seq reads were mapped with cellranger 3.0.2 with combined human reference of 1398 
GRCh38.93 and mouse reference of mm10-3.1.0. Low quality cells were filtered out 1399 
(minimum number of reads = 2000, minimum number of genes = 500, maximum number of 1400 
genes = 7000, Scrublet65 (v0.2.3) doublet detection score < 0.15, mitochondrial reads fraction 1401 
< 0.2). Cells where the percentage of counts from human genes was < 90% were considered 1402 
as mouse cells and excluded from downstream analysis. Cells were assigned to different cell 1403 
lines (Kolf, Fiaj) using genotype prediction with Souporcell (v2.4.0)66. The mapping outputs 1404 
of the eight samples were merged, with the sample ID prepended to the barcode IDs in both 1405 
the BAM and barcodes.tsv to prevent erroneous cross-sample barcode overlap. Souporcell 1406 
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was run with --skip_remap True –-K 2 and the common variants file based on common 1407 
(>= 2% population allele frequency) SNPs from 1000 genomes data, as distributed in the 1408 
tool’s repository. We selected 2 clusters due to the already known 2 cell lines. Next the data 1409 
went through the standard pipeline of filtering out genes (cell cycle67 genes, genes detected in 1410 
less than 3 cells), and normalizing the per cell total count to 10,000 followed by log1p 1411 
transformation and scaling to zero mean and unit variance (with max_value = 10 to clip after 1412 
scaling), using SCANPY68. The final dataset had 31,483 ATO cells with 23,526 genes which 1413 
were input to CellTypist6 (for prediction using pre-trained logistic regression classifier – 1414 
Pan_Fetal_Human model under majority voting). We then obtained a Uniform Manifold 1415 
Approximation and Projection (UMAP) embedding for this dataset based on its scVI33 batch 1416 
corrected embedding (v0.14.5 with 10 latent dimensions (default), 2 hidden layers, 128 nodes 1417 
per hidden layer (default), and 0.2 dropout rate for the neural network), and subsetted cells to 1418 
non-hematopoietic lineage, T/ILC/NK lineage, and other hematopoietic lineage cells 1419 
(Extended data Fig. 8) using their Leiden clustering. By default, scVI models gene counts 1420 
with zero-inflated negative binomial distribution, defines a normal latent distribution, and 1421 
handles batch effects. For each lineage, scVI latent dimensions and UMAP embedding were 1422 
re-computed and cell types were annotated by inspecting both the CellTypist results and 1423 
marker gene expression.   1424 
 1425 
Joint Embedding of reference and organoid in preparation for pseudotime estimation 1426 
We downloaded the annotated human fetal atlas dataset from 1427 
https://developmental.cellatlas.io/fetal-immune and extracted the cell types (79,535 cells in 1428 
total) representing the T cell developmental trajectory starting from progenitor cells towards 1429 
Type 1 Innate T cells (T1 dataset), including Cycling MPP, HSC_MPP, LMPP_MLP, 1430 
DN(early) T, DN(P) T, DN(Q) T, DP(P) T, DP(Q) T, ABT(entry) and Type 1 innate T cells. 1431 
We then compiled a reduced representation (20,384 cells) that preserve their underlying cell 1432 
type composition. This was done by random subsampling from each cell type (with minimum 1433 
sample size = 500 cells, aiming ~20,000 total number of cells) based on their originally 1434 
published annotations. Such stratified-sampling approach is practical for dealing with 1435 
massive single-cell datasets to reduce computational resource requirements. Separately, we 1436 
extracted the cell types from the ATO dataset (19,013 cells) representing the trajectory 1437 
starting from iPSCs towards SP T cells, including iPSC, primitive streak, mesodermal 1438 
progenitor, endothelium, HSC_MPP, HSC_MPP/LMPP_MLP/DC2, DN(early) T, DN T, 1439 
DP(P) T, DP(Q) T, ABT(entry), SP T cells.  1440 
 1441 
Then the T1 and ATO datasets were merged and preprocessed together by filtering out cells 1442 
with more than 8% total mitochondrial UMI, cell cycle genes67 and genes expressed in less 1443 
than 3 cells (min_cells = 3). Next, the highly variable genes were selected after per cell 1444 
count normalization to 10,000 reads per cell and log1p normalization. The T1 pan fetal 1445 
reference had 33 batches (due to different 10X chemistry 3’ versus 5’ and different donors), 1446 
while the ATO had only 2 batches (due to 2 cell lines, Kolf and Fiaj). This merged dataset 1447 
was then input to constructing a joint latent embedding using the scVI (v0.14.5) variational 1448 
autoencoder implementation33 (with 10 latent dimensions (default), 2 hidden layers, 128 1449 
nodes per hidden layer (default) and 0.2 dropout rate for the neural network). The joint 1450 
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embedding was then taken to build the cell neighborhood graph and UMAP embedding using 1451 
SCANPY68. The final T1 and ATO datasets comprise 20,327 cells and 17,176 cells 1452 
respectively. 18,436 cells of T1 and 10,089 cells of ATO belong to T cell lineage, i.e., DN T 1453 
onwards.  1454 
 1455 
We followed a similar preprocessing for the pan fetal reference representing the trajectory 1456 
towards CD8+T (CD8 dataset) (including Cycling MPP, HSC_MPP, LMPP_MLP, DN(early) 1457 
T, DN(P) T, DN(Q) T, DP(P) T, DP(Q) T, ABT(entry) and CD8+T cells). The initially 1458 
extracted CD8 subset (83,177 cells) was reduced to 20,412 cells, which was then merged 1459 
with the 19,013 ATO cells and subjected to the same filtering and normalization as for the 1460 
T1+ATO merge prior to scVI integration. The final CD8 dataset comprises 20,324 cells of 1461 
which, 18,490 cells are DN T onwards. 1462 
 1463 
Pseudotime estimation using the Gaussian Process Latent Variable Model   1464 
The differentiation pseudotime was estimated separately for T1 reference, CD8 reference and 1465 
ATO by employing the Gaussian Process Latent Variable Model (GPLVM)34,37. GPLVM is a 1466 
probabilistic non-linear dimensionality reduction method which models observed gene 1467 
expression as a function 𝑓(𝑋) of a set of latent covariates X. It enables us to incorporate 1468 
Gaussian time priors when estimating pseudotime as a latent dimension. We used the Pyro69 1469 
GPLVM implementation (Pyro v1.8.0) with Sparse Gaussian Process inference (32 inducing 1470 
points) and Radial Basis Function kernel to obtain a 2D latent embedding, where the first 1471 
latent dimension corresponds to pseudotime and the second latent dimension corresponds to a 1472 
second level of latent effects (e.g. batch). The first dimension was assigned a Gaussian prior 1473 
with cell capture times as the mean. The second latent dimension was zero initialized to allow 1474 
for a second level of latent effects (e.g. batch). The model used Adam optimizer to infer the 1475 
optimal latent embedding with 2000 iterations (where the loss curve reasonably converged).  1476 
 1477 
For the ATO, the GPLVM was initialized with cell capture days as the prior. Since there was 1478 
no temporal data present in the pan fetal reference, we first approximated time prior for each 1479 
reference cell as the weighted average of their k-nearest organoid neighborhood (kNN) 1480 
capture time. A k=3 organoid neighborhood for a reference cell was obtained using the 1481 
cKDTree based search method implemented in BBKNN70 on their scVI based UMAP 1482 
embedding. Contribution of each organoid neighbor was weighted according to its distance. 1483 
(kNN distance vector was softmax transformed, and the normalized reciprocal of each 1484 
distance was taken as the associated weight, enforcing less contribution from distant 1485 
neighbors towards the weighted average). This approximation may introduce outliers due to 1486 
the spatial arrangement of different cell types in the UMAP. Thus, we leveraged the known 1487 
cell-type annotations to refine the approximation by assigning each reference cell with the 1488 
average approximated capture time of its cell type. These approximated capture times were 1489 
scaled to be in [0,1] range and input as the mean prior to the previously described GPLVM. 1490 
For T1 and CD8 GPLVMs, the input gene space was 2608 genes and 2616 genes respectively 1491 
(same as at scVI integration). To ensure no outliers, the GPLVM estimated pseudotime was 1492 
further refined by correcting outliers of each cell type using the cell-type specific average of 1493 
estimated pseudotime. Outliers were selected based on the Interquartile Range (IQR) rule (i.e. 1494 
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1.5 times IQR below the first quartile and above the third quartile of the cell-type specific 1495 
pseudotime distribution).  1496 
 1497 
Genes2Genes alignment  1498 
For the complete T1 vs ATO comparison using G2G, the total common gene space of 20,240 1499 
genes was considered upon filtering genes with less than 3 cells expressed, 10,000 total count 1500 
per cell normalization, and log1p normalization. For the DN T onwards comparison, there 1501 
were 17,718 genes for T1 vs. ATO, and 20,183 genes for CD8 vs. ATO. All pseudotime 1502 
estimates were min-max normalized to ensure [0,1] range. These total gene spaces were 1503 
subsetted to include only the transcription factors40 (1371 TFs) and relevant signaling 1504 
pathways focused in this work. G2G alignment was performed using 15 equispaced 1505 
pseudotime points. 1506 
 1507 
Software packages used in the work 1508 
Genes2Genes framework and all analysis related code (including plot generation) were 1509 
implemented using the standard Python libraries (Numpy, Pandas, Seaborn, scikit-learn), 1510 
GPyTorch, GSEApy. Illustrations were made using Adobe Illustrator 2023 and BioRender. 1511 

Code and data availability 1512 

Genes2Genes is implemented as an open-source package in Python 3 (v3.8) with tutorial 1513 
available at: https://github.com/Teichlab/Genes2Genes. Code and data used to generate 1514 
figures and perform analyses in the manuscript are available at: 1515 
https://github.com/Teichlab/G2G_notebooks and 1516 
https://drive.google.com/drive/folders/15LKmo3yRB-1517 
cR8Aq3aE59Taq2r0KtJSdX?usp=sharing. Raw sequencing data for newly generated 1518 
sequencing libraries have been deposited in ArrayExpress (accession number E-MTAB-1519 
12720). 1520 
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Extended Data Figures  1554 

 1555 
Extended Data Fig. 1 | The dynamic programming algorithm in G2G relies on a five-1556 
state machine and a Bayesian information-theoretic match cost function. a, This is a 1557 
(five-state) finite state machine which can generate a string over the alphabet, 𝛺 = [m, wd, wi, 1558 
d, i] that describes all the 5 possible states of alignment (Fig. 1b) between two time points. 1559 
Each arrow represents a state transition. Arrows with the same color tag implies equal 1560 
probability of state transition. b, Behavior of the minimum message length (MML) inference 1561 
based match cost function used by G2G. It plots the MML distance (i.e. match cost) between 1562 
the standard Gaussian distribution 𝑁(0,1) and 𝑁(𝜇, 1) Gaussian distribution for 𝜇 ∈ [0,9] at 1563 
50 equispaced points. 5000 data points have been randomly sampled from each 𝑁(𝜇, 1) 1564 
distribution to represent itself. More illustrative examples are shown in Supplementary Fig. 1565 
1b,c.  1566 
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 1567 
 1568 
Extended Data Fig. 2 | Simulating the bifurcation of reference and query trajectories 1569 
using change point kernels. a, Change point kernel heatmaps for each approximate 1570 
bifurcation point (change point) ∈ [0.25,0.5,0.75]. b, The same change point kernels 1571 
binarized based on the 0.01 covariance threshold (top), c, The average covariance plotted for 1572 
each 𝑖	 × 𝑖 sub square matrix from 𝑖 = 0 to 𝑖 = change point, showing that the branching 1573 
effect can approximately start before the specified change point. d, Expected bifurcation 1574 
region is taken from the point where we begin to see > 0.01 covariance in the change point 1575 
kernel, until the particular change point.  1576 
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 1577 
 1578 

Extended Data Fig. 3 | Simulation Experiment 2: simulating perturbations across 769 1579 
genes in the scRNA-seq dataset of E15.5 murine pancreatic development26. a, Overall 1580 
smoothened (interpolated) and z-normalized mean gene expression along the pseudotime 1581 
(equally divided into 50 bins) for all genes in the dataset. b, Example illustrations of the two 1582 
types of trajectory alignment that gives the minimum expected mismatch length and the 1583 
maximum expected mismatch under the perturbation scenario 2 (Fig. 3f,g), where a start 1584 
portion of a particular size in the query trajectory (in blue) is changed with respect to the 1585 
reference trajectory (in green).  1586 
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 1587 
 1588 
Extended Data Fig. 4 | Simulation Experiment 1: G2G alignments for different classes 1589 
of pattern give expected results. a, Example simulated divergent pairs of reference (green) 1590 
and query (blue) trajectories for approximate bifurcation point ∈ [0.25,0.5,0.75] (left) and 1591 
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their alignment cost landscapes with the optimal alignment path highlighted by the black 1592 
dashed line (right). b, Example simulated convergent pairs for approximate bifurcation point 1593 
∈ [0.25,0.5,0.75] (left) and their alignment cost landscapes with the optimal alignment path 1594 
highlighted by the black dashed line. (right). c, Example simulated matching pair (left) and its 1595 
alignment cost landscape with the optimal alignment path highlighted by the black dashed 1596 
line. d, Mean percentage of alignment similarity observed in the 7 classes of alignment 1597 
pattern. e, On the pairwise total time-point match count matrix between reference and query 1598 
trajectories, the main average alignment path across all the 1500 alignments (left), and the 1599 
individual, cluster-specific average alignment paths for the 7 representative clusters that 1600 
accurately capture the 7 classes of pattern (right). Note: the color codes for the paths follow 1601 
the same in d. f, The five-state alignment strings of the 7 cluster-specific average alignments 1602 
with their alignment similarity percentages.   1603 
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 1604 
Extended Data Fig. 5 | The PAM vs. LPS ‘peaked inflammatory module’ alignment 1605 
clustering outputs. a, The clustermap of the pairwise Hamming distance matrix of all 89 1606 
gene alignments. b, Density plot of the alignment similarity distribution (i.e. distribution of 1607 
the percentage of matches/warps across all the alignment outputs). c, Seven gene alignment 1608 
clusters were identified from hierarchical agglomerative clustering at a 0.3 distant threshold. 1609 
Each plot titled by “Cluster-x | n” is the pairwise matrix of reference and query time points, 1610 
visualizing alignment paths for all the genes (one alignment per gene and a total of n genes in 1611 
the cluster) in cluster x. C5AR1 (Cluster-3) and RCAN1 (Cluster-5) stand out as single-gene 1612 
clusters. 1613 
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  1614 
 1615 
Extended Data Fig. 6 | The PAM vs. LPS ‘core antiviral module’ alignment clustering 1616 
outputs. a, The clustermap of the pairwise Hamming distance matrix of all 99 gene 1617 
alignments. b, Density plot of the alignment similarity distribution (i.e. distribution of the 1618 
percentage of matches/warps across all the alignment outputs). c, Four gene alignment 1619 
clusters were identified from hierarchical agglomerative clustering at a 0.25 distant threshold. 1620 
Each plot titled by “Cluster-x | n” is the pairwise matrix of reference and query time points, 1621 
visualizing alignment paths for all the genes (one alignment per gene and a total of n genes in 1622 
the cluster) in a cluster x. CXCL10 (Cluster-2) and IFITM3 (Cluster-3) stand out as single-1623 
gene clusters.  1624 
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 1625 
 1626 
Extended Data Fig. 7 | Analysis of artificial thymic organoid scRNA-seq data. a, UMAP 1627 
visualization of different cell types in the ATO (refined annotation). iPSC: induced 1628 
pluripotent stem cell, HSC_MPP: hematopoietic stem cell, and multipotent progenitor, 1629 
LMPP_MLP: lymphoid-primed multipotent progenitor and multi lymphoid progenitor, DC: 1630 
dendritic cell, CMP: common myeloid progenitor, GMP: granulocyte and monocyte 1631 
progenitor, MK: megakaryocyte, MEP: megakaryocyte erythroid progenitor, YS_ERY: yolk 1632 
sac-like erythrocyte, EARLY_ERY: early erythrocyte, MID_ERY: mid-stage erythrocyte, 1633 
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DN(EARLY) T: early double negative T cell, DN T: double negative T cell, DP(P) T: 1634 
proliferating double positive T cell, DP(Q) T: quiescent double positive T cell, SP T: single 1635 
positive T cell, NK: natural killer cell, ILC: innate lymphoid cell. b, Predicted annotations 1636 
from logistic regression model with CellTypist using the developing human immune atlas30 1637 
as the training dataset, overlaid on the same UMAP plot as in a.  1638 
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Extended Data Fig. 8 | Annotation of artificial thymic organoid scRNA-seq data. For 1640 
each subset lineage embedding generated through scVI, we show UMAP embeddings of cells 1641 
colored by annotated cell populations and dot plots of mean expression (log-normalized 1642 
counts, dot color) and fraction of expressing cells (dot size) of marker genes (columns) used 1643 
for cell population annotation (rows). a, Annotation of non-hematopoietic cells. b, 1644 
Annotation of T/ILC/NK lineage cells. c, Annotation of other hematopoietic cells that are not 1645 
in b.   1646 
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 1647 

 1648 
 1649 
Extended Data Fig. 9 | Pan fetal reference vs artificial thymic organoid alignment 1650 
clustering outputs. a, The clustermap of the pairwise Hamming distance matrix of all 1371 1651 
transcription factor alignments. b, Density plot of the alignment similarity distribution (i.e. 1652 
distribution of the percentage of matches/warps across all the alignment outputs). c, Fifteen 1653 
gene alignment clusters were identified from hierarchical agglomerative clustering at a 0.3 1654 
distant threshold. Each plot titled by “Cluster-x | n” is the pairwise matrix of reference and 1655 
query time points, visualizing alignment paths for all the genes (one alignment per gene and a 1656 
total of n genes in the cluster) in a cluster x.    1657 
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 1658 
 1659 
Extended Data Fig. 10 | BATF2 expression in in vitro ATO and in vivo pan fetal 1660 
reference. a, Left panel: the interpolated log1p normalized expression (y-axis) against 1661 
pseudotime (x-axis) for BATF2. Right two panels: the actual log1p normalized expression (y-1662 
axis) against pseudotime (x-axis). Each point represents a cell. b, The same UMAP 1663 
visualization as in Fig. 5e, subsetted to in vitro cells from ATO, colored by the BATF2 gene 1664 
expression value (left) or the cell types (right). 1665 
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 1666 
 1667 
Extended Data Fig. 11 | Analysis of the pan fetal reference vs artificial thymic organoid 1668 
(ATO) alignment from DN T cells onwards. a, Aggregate alignment between Type 1 1669 
Innate T cell reference and ATO across 1220 human transcription factors. b, Gene set 1670 
overrepresentation results of the most mismatched genes from alignment in a. c, Twelve gene 1671 
alignment clusters were identified for a from hierarchical agglomerative clustering at a 0.3 1672 
distant threshold. Each plot titled by “Cluster-x | n” is the pairwise matrix of reference and 1673 
query time points, visualizing alignment paths for all the genes (one alignment per gene and a 1674 
total of n genes in the cluster) in a cluster x. d, The clustermap of the pairwise Hamming 1675 
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distance matrix of all TF alignments in a. e, Aggregate alignment between CD8+ Reference 1676 
and ATO across 1219 human transcription factors. f, Gene set overrepresentation results of 1677 
the most mismatched genes from alignment in e. g, Fourteen gene alignment clusters were 1678 
identified for e from hierarchical agglomerative clustering at a 0.3 distant threshold. Each 1679 
plot titled by “Cluster-x | n” is the pairwise matrix of reference and query time points, 1680 
visualizing alignment paths for all the genes (one alignment per gene and a total of n genes in 1681 
the cluster) in a cluster x. h, The clustermap of the pairwise Hamming distance matrix of all 1682 
TF alignments in e. 1683 
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Supplementary Figures 1684 
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Supplementary Fig. 1 | Minimum message length (MML) inference based distance 1686 
function to compute the cost 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) of matching a reference time point 𝑗 and 1687 
query time point 𝑖. a, The top right plot gives the interpolated log-normalized expression (y-1688 
axis) of a particular gene X in the observed single-cell data of a reference 𝑅 and query 𝑄, 1689 
against their pseudotime estimates (x-axis). The bold lines represent mean expression trends. 1690 
The faded data points represent the interpolated data (i.e. 50 random samples from the 1691 
estimated Gaussian distribution at each time point). As detailed in the Methods of the main 1692 
text, the scoring scheme of the G2G DP algorithm computes the cost of matching every pair 1693 
of time points between 𝑅 and 𝑄 based on their corresponding interpolated expression 1694 
distributions. Here we consider an example reference time point 𝑗 and query time point 𝑖, and 1695 
their respective single-cell expression datasets, 𝑅(𝑗) and 𝑄(𝑖), as circled in the plot. Their 1696 
interpolated expression distributions are 𝑁(𝜇%(#), 𝜎%(#)) and 𝑁(𝜇&('), 𝜎&(')), denoted by 𝑁%(#) 1697 
and 𝑁&('), respectively. Their interpolated expression data vectors are 𝐷%(#) and 𝐷&('). The 1698 
top left is the schematic illustration of our MML framework, extending the overview 1699 
schematic Fig. 2 (top left) in the main text. Under the MML framework, we define two 1700 
hypotheses: Hypothesis A: the (𝑖, 𝑗) time points match, and Hypothesis 𝛷: the (𝑖, 𝑗) time 1701 
points mismatch. Next we compute: (1) the total (per datum) message length of encoding A 1702 
and 𝐷 jointly, and (2) the total (per-datum) message length of encoding 𝛷 and 𝐷 jointly. 1703 
Then we define 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) to be the difference between those two message lengths, 1704 
measured in nits (a unit of information). b, Example cases of distributional differences 1705 
(caused by the difference in means, the difference in variance, the difference in both mean 1706 
and variance) between 𝑅(𝑗) and 𝑄(𝑖), and their 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) values measured in nits. 1707 
When the mean and variance is the same, 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗)~0. c, Behavior of 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) 1708 
as the difference between the distributions increases. Left plot: 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗) between the 1709 
standard Gaussian distribution 𝑁(0,1) and 𝑁(𝜇, 1) Gaussian distribution for 𝜇 ∈ [0,9] at 50 1710 
equispaced points. 5000 data points have been randomly sampled from each 𝑁(𝜇, 1) 1711 
distribution to represent itself. Right plot: 𝐶𝑜𝑠𝑡)+2=>(𝑖, 𝑗)  between the standard Gaussian 1712 
distribution 𝑁(0,1) and 𝑁(0, 𝜎) Gaussian distribution for 𝜎 ∈ [0.1,3] at 50 equispaced 1713 
points. 5000 data points have been randomly sampled from each 𝑁(0, 𝜎) distribution to 1714 
represent itself. 1715 
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 1716 
Supplementary Fig. 2 | Benchmarking G2G against the DTW based approach: 1717 
CellAlign5 and its most recent extension, TrAGEDy11, over a simulated negative control 1718 
dataset from literature11. a, Density plot of the G2G alignment similarity distribution (i.e. 1719 
distribution of the percentage of matches/warps across all the G2G gene-level alignment 1720 
outputs inferred for the 619 genes in the negative control dataset). b, The single alignments 1721 
produced by CellAlign, TrAGEDy and G2G for all the 619 simulated genes. CellAlign and 1722 
TrAGEDy generate a high dimensional alignment, whereas G2G generates an average 1723 
alignment across all the gene-specific alignments. The alignment paths are drawn (in black) 1724 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531713doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

on the pairwise time point matrix between the reference and query trajectories. The color of 1725 
the CellAlign and TrAGEDy matrices represent their cost of aligning the corresponding pair 1726 
of reference and query time points. In the G2G matrix, the color represents the number of 1727 
genes showing match or warp for the corresponding pair of time points. In CellAlign and 1728 
TrAGEDy alignment plots, the vertical and horizontal lines represent warps, whereas 1729 
diagonal lines represent one-to-one matches. In the G2G alignment plots here, the full 1730 
vertical line joined by the full horizontal line denotes an alignment path with all insertions 1731 
followed by all deletions. c, CellAlign, TrAGEDy, and G2G outputs for three simulated 1732 
genes (with IDs: HK118, HK110, HK45) that have completely mismatched trajectories. Each 1733 
row gives the gene-specific alignment paths (highlighted in black) on the pairwise time point 1734 
matrices produced by each method for the corresponding gene. The matrix color represents 1735 
each methods’ cost of aligning the corresponding pair of reference and query time points. For 1736 
G2G, this is the log10 normalized nits compression (i.e. the difference between the match cost 1737 
and the mismatch cost as described in the Methods and Supplementary Fig. 1). The right-1738 
most column (“Gene trajectories”) shows the reference and query trajectories of the 1739 
corresponding gene in each row. For each gene row, the top panel shows the interpolated 1740 
log1p normalized expression (y-axis) against pseudotime (x-axis). The bold lines represent 1741 
mean expression trends, while the faded data points are 50 random samples from the 1742 
estimated expression distribution at each time point. The bottom panels show the actual log1p 1743 
normalized expression (y-axis) against pseudotime (x-axis) for reference (right) and query 1744 
(left). Each point represents a cell.  1745 
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Supplementary Tables 1746 

Framework 
component 

CellAlign5 TrAGEDy11 Genes2Genes 

Input (1) Log-normalized single-cell gene expression data  
(2) Pseudotime estimates of the cells inferred using any available method of choice 

Algorithm Uses Dynamic Time 
Warping (DTW) 
algorithm. 

Builds on top of 
CellAlign, and performs 
post-hoc changes to the 
DTW alignment to 
capture mismatches.  

Combines DTW and 
Gotoh’s biological 
sequence alignment15 
through a new dynamic 
programming algorithm. 

Alignment 
states 

Handles matches and 
warps only, subjected to 
a weight scheme with 
constant weight for warp 
open/extension  

Identifies optimal start 
and end time points of 
the trajectories for DTW 
alignment to exclude 
regions of mismatch at 
the beginning and end. It 
further filters the DTW 
aligned regions based on 
alignment cost 
thresholding to identify 
mismatches. 

Handles matches, warps 
and mismatches jointly, 
subjected to a five-state 
machine with state 
transition probabilities, 
handling gap/warp 
open/extension.  

Trajectory 
Interpolation 

Interpolates data using a 
Gaussian kernel-based 
weighted mean 
expression.  

Extends CellAlign 
interpolation to use a 
cell density weighted 
window size.  

Extends CellAlign 
interpolation to 
distributional 
interpolation using 
weighted variance. 

Distance 
measure 
between a pair 
of reference and 
query time 
points 

Uses min-max 
normalized, mean gene 
expression based 
Euclidean distance 
measure, to identify 
similar trends of 
expression dynamics 
across two conditions. 

Uses Spearman 
correlation, which does 
not require gene 
expression scaling as 
done in CellAlign, but 
does not support gene-
level alignment. 

Uses a minimum message 
length inference based 
distributional distance 
measure, aiming to 
compare the gene 
expression distributions 
between two conditions.  

Alignment 
output 

Outputs only a single, 
high-dimensional 
alignment (across a 
given gene list). A 
single, gene-level 
alignment can be 
obtained by giving a 
single gene input. 

Modified, high-
dimensional DTW 
alignment after pruning 
the matches.  

Outputs gene-specific 
alignments with an 
explicit alignment state 
description via a five-state 
alignment string for all 
the given genes. Can 
output an aggregate 
alignment for any given 
set of genes. 

Alignment 
clustering 

Can cluster genes only 
based on the pseudotime 
shifts in their 

Does not explicitly 
discuss clustering. 

Can cluster genes based 
on their five-state 
alignment strings, 
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alignments. covering both matches 
and mismatches. 

Differential 
expression 
capture  

Requires additional 
downstream tasks to 
extract differential genes 
and regions (e.g. local 
DTW alignment with 
user-defined similarity 
threshold). 

Sliding window soft 
clustering approach to 
extract DE using t-
test/Mann-Whitney U 
test. 

A gene-specific alignment 
output itself is a direct 
description of the 
differential expression 
status along the time axis. 
Provides a ranked list of 
genes based on their 
alignment similarity 
percentage.  

 1747 
Supplementary Table 1 | List of features included in trajectory alignment frameworks. 1748 
A table outlining and comparing the features of CellAlign5, TrAGEDy11 and G2G. 1749 
 1750 
Supplementary Table 2  1751 
Gaussian Process based simulated gene alignments  1752 
GP_based_simulations_gene_alignments.csv 1753 
 1754 
Supplementary Table 3  1755 
Gaussian Process based simulated gene alignment cluster statistics  1756 
GP_based_simulations_cluster_statistics.csv  1757 
 1758 
Supplementary Table 4-17  1759 
Real data based simulations alignment statistics  1760 
pancreas_simulations_<perturbation_type>_size<perturbation_size>gene_alignments.csv 1761 
 1762 
Supplementary Table 18  1763 
PAM vs. LPS ‘core antiviral module’ alignments  1764 
PAM_LPS_global_gene_alignments.csv  1765 
 1766 
Supplementary Table 19-22  1767 
Overrepresentation analysis results of PAM vs. LPS ‘core antiviral module’ alignment clusters 1768 
PAM_LPS_global_cluster_<CLUSTER_ID>_pathways.csv  1769 
 1770 
Supplementary Table 23  1771 
PAM vs. LPS ‘peaked inflammatory module’ alignments 1772 
PAM_LPS_local_gene_alignments.csv  1773 
 1774 
Supplementary Table 24-30  1775 
Overrepresentation analysis results of PAM vs. LPS ‘peaked inflammatory module’ alignment 1776 
clusters 1777 
PAM_LPS_locall_cluster_<CLUSTER_ID>_pathways.csv 1778 
 1779 
Supplementary Table 31  1780 
T1 vs. ATO all alignments  1781 
SPT_all_gene_alignments.csv  1782 
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 1783 
Supplementary Table 32  1784 
Overrepresentation analysis results of T1 vs. ATO top 165 genes (under <40% alignment similarity 1785 
threshold) 1786 
SPT_all_overrep_results_top_k_DE_threshold_0.4sim_165genes.csv 1787 
 1788 
Supplementary Table 33-45  1789 
Overrepresentation analysis results of T1 vs. ATO alignment clusters 1790 
SPT_all_cluster_<CLUSTER_ID>_pathways.csv 1791 
 1792 
Supplementary Table 46  1793 
T1 vs. ATO DN onwards all alignments  1794 
SPT_DN_gene_alignments.csv  1795 
 1796 
Supplementary Table 47  1797 
Overrepresentation analysis results of T1 vs. ATO DN onwards top 130 genes (under <40% alignment 1798 
similarity threshold) 1799 
SPT_dn_overrep_results_top_k_DE_threshold_0.4sim_130genes.csv 1800 
 1801 
Supplementary Table 48  1802 
CD8+T vs. ATO DN onwards all alignments  1803 
CD8_DN_gene_alignments.csv  1804 
 1805 
Supplementary Table 49 1806 
Overrepresentation analysis results of CD8+T vs. ATO DN onwards top 120 genes (under <40% 1807 
alignment similarity threshold) 1808 
CD8_dn_overrep_results_top_k_DE_threshold_0.4sim_120genes.csv 1809 
 1810 
Supplementary Table 50  1811 
ATO metadata 1812 
ATO_WT_manifest.csv  1813 
 1814 
Supplementary Table 51  1815 
ATO CITE-seq metadata 1816 
ATO_hashtagging.csv  1817 
 1818 
Supplementary Table 52 1819 
Negative control alignments 1820 
negative_control_gene_alignments.csv 1821 
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