CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

Isabelle Dupin,1,2 Pauline Henrot,1,2,3 Elise Maurat,1,2 Reshed Abohalaka,1,2 Sébastien Chaigne,1,2,3 Dounia El Hamrani,1,2, Edmée Eyraud,1,2, Renaud Prevel,1,2,3 Pauline Esteves,1,2 Maryline Campagnac,1,2 Marielle Dubreuil,1,2 Guillaume Cardouat,1,2 Clément Bouchet,1,2 Olga Ousova,1,2 Jean-William Dupuy,1,2 Thomas Trian,1,2 Matthieu Thumerel,1,2,3 Hugues Bégueret,1,2,3 Pierre-Olivier Girodet,1,2,3 Roger Marthan,1,2,3 Maeva Zysman,2,3 Véronique Freund-Michel,1,2, Patrick Berger,1,2,3

1 Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, IHU Liryc, CIC 1401, Proteomics Facility, F-33600 Pessac, France
2 INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33600 Pessac, France
3 CHU Bordeaux, Service d’exploration fonctionnelle respiratoire, Service de réanimation, Service de pneumologie, Service de chirurgie thoracique, Service de cardiologie-électrophysiologie et stimulation cardiaque, Service d’anatomopathologie, CIC-P 1401, F-33600 Pessac, France

Corresponding author: Prof. Isabelle Dupin
Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045
PTIB, Hôpital Xavier Arnozan. Avenue du Haut Lévêque. 33600 Pessac, FRANCE
Tel : +33 5 47 30 27 51
e-mail : isabelle.dupin@u-bordeaux.fr
ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease lacking effective treatment. Focusing on young COPD should help to discover disease modifying therapies. We aimed to examine the role of the CXCL12/CXCR4 axis in young COPD from both human samples and murine models.

Methods: Blood samples and lung tissues of young COPD patients and controls were obtained in order to analyse CXCL12 and CXCR4 levels. To generate a young COPD model, ten-week-old mice were exposed to cigarette smoke (CS) for 10 weeks and intranasal instillations of polyinosinic–polycytidylic acid (poly(I:C)) for the last 5 weeks to mimic exacerbations.

Results: CXCR4 expressing cells number was increased in the blood of patients with COPD, as well as in the blood of exposed mice. Lung CXCL12 expression was higher in both young COPD patients and exposed mice. Exposed mice presented mild airway obstruction, peri-bronchial fibrosis and right heart thickening. The density of fibrocytes expressing CXCR4 was increased in the bronchial submucosa of exposed mice. Conditional inactivation of CXCR4 at adult stage as well as pharmacological inhibition of CXCR4 with plerixafor injections improved lung function, reduced inflammation and protected against CS and poly-(I:C)-induced airway and cardiac remodelling. CXCR4−/− and plerixafor-treated mice also had less CXCR4-expressing circulating cells and a lower density of peri-bronchial fibrocytes.

Conclusion: We demonstrate that targeting CXCR4 has beneficial effects in an animal model of young COPD and provide a framework to translate these preclinical findings to clinical settings in a drug repurposing approach.

Abstract word count: 244 words /250
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

What is already known on this topic

Whereas the CXCL12/CXCR4 axis has already been identified in COPD pathophysiology, preclinical evidences supporting a beneficial role of CXCR4 antagonists for COPD treatment are lacking.

What this study adds

CXCL12 and CXCR4 are upregulated in the lung and in the blood of patients with young COPD, respectively. Genetic and pharmacological inhibition of CXCR4 in experimental young COPD mice model reduces the number of CXCR4-expressing cells in the peripheral circulation and fibrocyte recruitment into the lungs, along with a proteomic signature consistent with a decrease of inflammation. Overall, it improves lung function and cardiac tissue remodelling.

How this study might affect research, practice or policy

CXCR4 inhibitors may be therapeutically exploited to slow down the progression of young COPD.

Key words: fibrocytes, bronchial remodelling, inflammation, obstruction, animal model
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

Abbreviations

- **BAL**: Broncho-alveolar lavage
- **bFGF**: basic Fibroblast Growth Factor
- **BSM**: Bronchial smooth muscle
- **CS**: Cigarette smoke
- **CT**: Computed tomographic
- **ECG**: Electrocardiogram
- **FEV1**: Forced expiratory volume in 1 second
- **FEV0.05**: Forced expiratory volume in 0.05 second
- **FVC**: Forced vital capacity
- **IFN**: Interferon
- **LV + S**: Left ventricle plus septum
- **MRI**: Magnetic Resonance Imaging
- **Poly-(I:C)**: Polyinosinic–polycytidylic acid
- **RA**: Room air
- **RV**: Right ventricle
- **RVSP**: Right ventricular systolic pressure
- **VEGF**: Vascular Endothelial Growth Factor
INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a common disease, characterized by persistent respiratory symptoms and airflow limitation [1]. Major risk factors for COPD include chronic exposure to noxious particles, mainly cigarette smoke (CS), and airway infections [2]. Young COPD has been recently defined as patients aged <50 years, with a smoking exposure >10 pack-years, and a ratio between forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) less than 70% [1,3]. Therapeutic interventions in young COPD patients could help to tackle the disease before reaching irreversible tissue damage [3]. However, it is extremely difficult to enrol those patients into trials and collect their bronchial samples, since they are rarely diagnosed, demonstrating the urgent need to develop animal models of young COPD.

Exposure of lung structural and immune cells to CS and infectious agents results in the release of various inflammatory substances, including chemokines [4]. The chemokine receptor CXCR4 and its associated ligand CXCL12 appear to be attractive therapeutic targets for young COPD since (i) they are implicated in the migration of inflammatory cells in COPD lungs [5], (ii) their expression and function are controlled by other cytokines [6], oxygen concentration [7] and microbial agents [8,9], which are disrupted in COPD, and (iii) pharmacological blockade of CXCR4 reduces emphysema development in a long-term COPD murine model [10]. CXCR4 is notably expressed by fibrocytes, a rare population of circulating fibroblast-like cells [11], that are assumed to play a crucial role in COPD [5,12].

In the present study, we thus hypothesized that the CXCL12/CXCR4 axis plays a role in the pathological processes leading to COPD development during early adulthood and, hence, that inhibiting CXCR4 would protect from CS-induced airflow limitation and tissue remodelling. In a young COPD patients’ samples, as well as in murine model of young COPD, both CXCR4-expressing cells in the blood and CXCL12 in the lung were upregulated. Using transgenic mice...
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

deficient for CXCR4 or the CXCR4 antagonist plerixafor, we showed that lungs were protected against CS-induced both lung function alteration and fibrocytes accumulation, and that the right heart was resistant to cardiac remodelling.

Some of these findings have been previously reported in abstract form [13,14].
MATERIALS AND METHODS

Detailed methods are described in the online supplementary material.

Study Population

Human lung tissues were obtained from both the “Fibrochir” study (NCT01692444) [12] and “TUBE” (i.e., TissUs Bronchiques et PulmonairEs, sponsored by the University hospital of Bordeaux) biological collection (table S1). According to the French law and the MR004 regulation, patients received an information form, allowing them to refuse the use of their surgical samples for research. Blood samples of COPD patients were obtained from the “COBRA” cohort (table S2). Research was conducted according to the principles of the World Medical Association Declaration of Helsinki. The studies received approval from the local and national ethics committees.

Mouse model of young COPD

All animal studies were performed according to European directives for the protection of vertebrate animals and to the Declaration of Helsinki conventions for the use and care of animals. Agreement was obtained from French authorities (number A33-063-907) and all the protocols were approved by the local ethics committee.

Ten-week-old mice were exposed for 10 weeks (whole-body) to either room air (RA) or CS, as described by Almolki et al. [15]. After 5 weeks of CS exposure, 50 μg of poly(I:C) or its vehicle control was administered twice per week for 5 weeks via nasal aspiration.

CXCR4 genetic deletion was induced by tamoxifen. CXCR4 pharmacological inhibition was induced by subcutaneous injection of 1 mg/kg plerixafor, 5 times/week during the last 5 weeks of the protocol.
Statistical Analysis

Statistical significance, defined as P < 0.05, was assessed by t-tests and ANOVA for variables with parametric distribution, and by Kruskal-Wallis with multiple comparison z tests, Mann-Whitney tests, Wilcoxon tests and Spearman correlation coefficients for variables with non-parametric distribution.
RESULTS

141 **CXCL12 and CXCR4 expression is increased in lung and blood, respectively, in patients with COPD**

142 First, we determined whether the expression of CXCL12 and CXCR4 was altered in patients with COPD by interrogating RNAseq data from lung of control subjects and COPD patients (GSE76925 data set, http://www.ncbi.nlm.nih.gov/geo/). We found that CXCL12 expression was significantly increased in the lung of patients with COPD (GSE76925 data set, figure 1A). In a separate cohort of patients with and without young COPD (table S1), CXCL12 was predominantly localized to bronchial epithelial cells and peri-bronchial infiltrating cells, which are likely immune cells (figure 1B). The CXCL12 surface immunostaining was significantly increased in lungs of patients with young COPD in comparison to control lungs (figure 1B-C). CXCR4 level was not significantly altered in the lungs of patients with COPD compared to those of control smokers at the mRNA level (GSE76925 data set, figure 1D), which was corroborated by a similar result at the protein level by quantification of immunostaining (figure 1E) in patients with and without young COPD. In the blood, CXCR4 was significantly increased, at the mRNA level, in patients with COPD compared to control subjects (figure S1A). In a separate cohort of moderate to mild COPD patients (GOLD I to II, as defined by [1], table S2), the percentage of CXCR4-expressing cells was also increased in the blood of moderate COPD patients in comparison with mild COPD patients (figure S1B-C).

161 **Chronic CS and poly(I:C) exposure induces functional obstruction, lung inflammation and both lung and heart tissue remodelling in mice**

162 To model young COPD, we used mice at the beginning of adulthood (i.e., 10-week old) [16], which were exposed to a combination of CS exposure and intranasal instillations of poly(I:C) in
order to mirror the effects of smoking and exacerbations [17]. CS exposure for 5 weeks combined with 4 doses of poly(I:C) were not sufficient to trigger functional airway obstruction (figure S2A-D). In contrast, 10 weeks of CS exposure with 10 repeated instillations of poly(I:C) during the last 5 weeks, significantly decreased the FEV0.05/FVC ratio (figure 2A-C). Other lung function parameters, in particular respiratory system compliance and tissue elastance, were not modified by CS and poly(I:C) exposure (figure S2E-J). At the end of the protocol, the weight gain of the exposed mice was significantly different from that of the control mice (figure S3A-B). CS and poly(I:C) exposure increased total cell count in the BAL fluid, as well as the absolute neutrophil, lymphocyte and macrophage numbers, 1 day after the last poly(I:C) instillation (figure 2D-F). Although lower, the increase in neutrophils and lymphocytes persisted 4 days after the last poly(I:C) instillation (figure 2D-F). CS and poly(I:C) synergistically enhanced airflow obstruction and BAL inflammation (figure S4). We also analysed lung proteomics obtained 1 day after the last poly-IC instillation. Of the 137 pathways that were significantly different in young COPD vs control mice, largest upregulated genes were those of the hypercytokinemia/hyperchemokinemia box and of the pathogenesis of influenza and interferon (IFN) signalling (figure 2G-H). In contrast, inhibited pathways were the wound healing and the xenobiotic metabolism PXR signalling pathways (figure 2G-H). Exposed mice had a moderate but significant increase in peri-bronchial fibrosis compared to control mice (figure 2I-J), mimicking the thickening of distal airway tissue in COPD patients [18]. Then, we investigated the impact of CS and poly(I:C) exposure on cardiac function. There was no evidence of heart failure in our model (figure S5A-B). Moreover, there was no sign of heart rhythm disorder as assessed by ECG monitoring (figure S5C and figure S6A-F). Using MRI, we also found that CS and poly(I:C)-exposition did not alter RV or LV volumes (figure S5D-F). However, we detected a significant increase of RV wall thickness in exposed mice, indicating RV
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

hyptrophy (figure 2K-L). This finding was confirmed by the measurement of the Fulton index (figure 2M). Of note, the RV systolic pressure (RVSP) did not differ between young COPD and control mice (figure 2N).

CXCR4 and CXCL12 expression is increased in blood and lung, respectively, in experimental COPD

The percentage of CXCR4-expressing cells was significantly increased in the blood of CS and poly(I:C)-exposed mice compared to control mice, 1 day after the last poly(I:C) instillation (figure 3A-B), indicating that experimental COPD replicated the increased levels of CXCR4 in the blood of COPD patients. This effect appeared to be due to a synergy between CS and poly(I:C) (figure S7). The level of CXCR4+ circulating cells decreased and became similar between control and exposed mice 4 days after the last poly(I:C) instillation (figure 3B). No significant modification of CXCL12 plasma concentration was evidenced in mice (figure 3C). The percentage of CXCR4-expressing cells was not significantly altered in whole lung homogenates in experimental young COPD (figure 3D-E). In lung homogenates, CS and poly(I:C)-exposure significantly increased CXCL12 protein levels compared to control mice, 1 and 4 days after the last poly(I:C) instillation (figure 3F). In good agreement with our findings in patients’ lungs, CXCL12 was expressed by bronchial epithelial cells and peri-bronchial infiltrating cells (figure 3G), with a higher expression in lungs of animals exposed to CS and poly-(I:C) in comparison to control lungs (figure 3H).

Fibrocytes and CXCR4+ fibrocytes are increased in lungs of experimental young COPD

The percentage of fibrocytes, defined as cells expressing CD45 and a high level of FSP1 ("CD45+ FSP1^{high}") [19], was significantly increased in CS and poly(I:C)-exposed lungs, 1 day
after the last poly(I:C) instillation (figure 4A-C). The average percentage of leukocytes (CD45+ cells) in control and exposed lungs was 69.2 % and 74.0 %, respectively (p=0.07, figure 4D). In control and experimental young COPD, a vast majority of lung fibrocytes expressed CXCR4 (96.1 and 96.6 %, respectively, figure 4B) and the percentage of CXCR4+ fibrocytes was significantly increased in the lungs of exposed mice (figure 4C). Four days after the last poly(I:C) instillation, the total level of fibrocytes decreased and became similar between control and experimental young COPD lungs (figure 4C). Since the flow cytometry approach limits our analysis to the whole lung, we co-stained FSP1 with CD45 in murine lungs, 4 days after the last poly(I:C) instillation (figure 4F) using immunohistochemistry. Similarly to that previously reported in human lung [12], the density of peri-bronchial fibrocytes was higher in CS and poly(I:C)-exposed murine lungs than in control lungs (figure 4G). Moreover, we also observed in situ CXCR4-expressing fibrocytes in peri-bronchial areas of human lung samples (“Fibrochir” study [12], figure 4H). Of note, fibrocytes were found in right and left ventricles, but their densities were unchanged by CS and poly(I:C) exposure (figure S8).

CXCR4 deletion protects against functional airway obstruction, lung and heart tissue remodelling, and inhibits fibrocyte recruitment into the lungs in experimental young COPD

As mice genetically deficient for CXCR4 die perinatally [20], we generated conditional CXCR4 mutants using floxed allele [21] and a Cre2ERT2 strain [22], thereby obtaining mutants harbouring a specific inactivation of CXCR4 at young adulthood after tamoxifen treatment. Intraperitoneal tamoxifen administration, for 5 consecutive days, in CXCR4lox/lox/Ce2ERT2 mice was not sufficient to induce a large CXCR4 downregulation, in particular in the lungs (figure S9A-B). Therefore, we combined intraperitoneal tamoxifen administration and feeding mice with tamoxifen-containing food to obtain a more robust decrease in CXCR4 expression in the lung and
bone marrow (figure S9C-E). As tamoxifen-containing food reduced weight gain in mice (figure S3C-D), we used CXCR4lox/lox mice as control mice, and gave all transgenic mice tamoxifen-containing food.

CXCR4lox/lox/Cre2ERT2 and CXCR4lox/lox mice were exposed to CS and poly(I:C) for 10 weeks (figure 5A). As expected, CXCR4 expression decreases in the lung and blood of CXCR4lox/lox/Cre2ERT2 mice (figure S10). Moreover, FEV0.05/FVC ratio was higher in CXCR4-/- mice compared to CXCR4lox/lox mice, when exposed to CS and poly(I:C) (figure 5B).

In the BAL fluid, CXCR4 deletion induced a significant decrease of macrophage and increase of neutrophil percentages, 1 day after the last poly(I:C) instillation (figure 5C-E). CXCR4-/- mice had a significant reduction in collagen deposition around small airways, compared to CS and poly(I:C)-exposed CXCR4+/+ mice (figure 5F-G), confirming an important role of CXCR4 in CS-induced bronchial remodelling.

We then assessed the impact of CXCR4 deletion on right heart remodelling. CXCR4 deletion did not affect electrophysiological and hemodynamic (figure S6G-L and figure S11) but it significantly reduced the RV wall thickness as assessed by heart MRI \textit{in vivo} and the Fulton index \textit{ex vivo} in exposed mice (figure 5H-J). RVSP value was unchanged by CXCR4 deletion (figure 5K).

Moreover, we observed reduced flow cytometry levels of CXCR4+ fibrocytes in CS and poly(I:C)-exposed whole lungs of CXCR4-/- mice compared with CXCR4+/+ exposed mice, 1 day after the last poly(I:C) instillation (figure 6A-D). Four days after the last poly(I:C) instillation, the density of fibrocytes was also significantly decreased around the small airways (figure 6F-G).

Pharmacological inhibition of CXCR4 protects against functional obstruction and inhibits fibrocyte recruitment into the lungs in experimental COPD
We then assessed the efficacy of a CXCR4 antagonist (i.e. AMD3100, plerixafor) in the young COPD murine model (figure 7A). Mice weight was not affected by daily subcutaneous plerixafor treatment during the second half of the protocol (figure S3E-F). Plerixafor significantly reduced CXCR4 expression 1 day after the last poly(I:C) instillation in circulating cells, but not in lung cells (figure S12). In exposed-mice treated with plerixafor, the FEV0.05/FVC ratio was significantly higher than vehicle-treated exposed mice (figure 7B). The total number of cells in the BAL fluid and its composition was unchanged by plerixafor treatment (figure 7C-E). The peri-bronchial fibrosis was significantly decreased in the lungs of plerixafor-treated exposed mice (figure 7F-G). To identify pathways that were differentially regulated by the young COPD protocol and plerixafor treatment, we performed proteome analysis on lungs obtained 1 day after the last poly-IC instillation. Comparison analysis revealed a significant inhibition of pathways of inflammation, cell invasion, movement, adhesion and synthesis of reactive oxygen species (ROS) in relation to plerixafor treatment (figure 7H). These changes were driven by down-regulation of a core set of proteins such as thioredoxin interacting protein (TXNIP), matrix metalloproteinase-8 (MMP-8) and vimentin (figure S13).

Treatment with plerixafor also reduced the development of RV hypertrophy in exposed mice (figure 7I). The RVSP, as well as heart electrophysiological properties remained unchanged by CXCR4 inhibition (figure 7J, figure S6M-R).

Flow cytometry 1 day after the last poly(I:C) instillation showed a significant decrease of the numbers of both fibrocytes and CXCR4+ fibrocytes in the lungs of exposed mice by plerixafor (figure S14A-E). Four days after the last poly(I:C) instillation, the density of peri-bronchial fibrocytes identified by immunohistochemistry was significantly reduced by plerixafor (figure S14F-G).
DISCUSSION

Taken together, our data demonstrate that the CXCL12/CXCR4 axis plays a major role in the pathogenesis of lung and heart remodelling of young COPD. We showed that CXCR4⁺-cells were increased in the blood of patients with a mild COPD whereas CXCL12 was increased in the lung of young COPD patients. Both genetic silencing and pharmacological inhibition of CXCR4 in our experimental young COPD model reduced both the level of CXCR4-expressing cells in the peripheral circulation and fibrocyte recruitment into the lungs, along with a proteomic signature consistent with decreased inflammation. As a consequence, CXCR4 inhibition prevented airflow limitation and both lung and cardiac remodelling.

We designed the present dedicated murine model of young COPD to examine pathophysiological processes at the onset of the disease. Instead of deciphering the relative contribution of CS and poly-(I:C), this study aims at developing and using a young COPD model, based on the following: first, 10-week old mice exposed to CS for 10 weeks would correspond to young human adults chronically exposed to tobacco smoke for several years [16], and poly-(I:C) administration mimics exacerbations occurring in young COPD a frequency similar to the COPD population [17]. Second, as in humans, exposed mice exhibited limited but significant airflow limitation together with both neutrophilic/lymphocytic airway inflammation and distal airway remodelling, without obvious signs of alveolar destruction, allowing our design to model the bronchial component of COPD [23]. By contrast, the vast majority of murine COPD models are based on long-term CS exposure (up to 6 months) either mimicking emphysema, or reproducing severe airway obstruction together with emphysema-like changes [24]. Moreover, we used a combination of CS exposure with poly-(I:C) to mimic respiratory viral infections [25], which are more frequent in smokers [26] and young COPD [17]. The present model also includes features
of early RV hypertrophy [27], without established pulmonary hypertension, as previously identified in a long term murine model [28], thus confirming again the relevance of this animal model of young COPD. Cardiovascular diseases, are indeed frequently seen in current smokers [29] and patients with COPD [30], including young COPD [31].

A main result of the present study is the increase of CXCL12 expression in the lungs of young COPD mice and patients, along with an increase in CXCR4⁺-cells in the blood of young COPD mice as well as in COPD patients. Treating mice with the CXCR4 antagonist plerixafor prevented the increase of CXCR4⁺-cells, attenuated tissue fibrocytes recruitment and lung function degradation. Targeting CXCR4 with daily injections of plerixafor during the 5 last weeks of the protocol as well as genetic deletion of CXCR4 also decreased CS and poly-(I:C) induced-right heart remodelling. In this connection, neutralizing CXCL12 or antagonizing CXCR4 has been previously shown to attenuate RV hypertrophy in a rat model of severe pulmonary hypertension [32]. The beneficial effect of plerixafor on lung function and remodelling in exposed mice, exhibiting increased CXCR4 solely in the blood, was similar with that observed in CXCR4⁻/⁻ mice. This suggests that such beneficial effects occurred through CXCR4 reduction in the blood rather than in the lungs. These results are in agreement with findings obtained in mice treated with another CXCR4 antagonist or with CXCL12 neutralizing antibodies, in the context of pulmonary fibrosis, where reduction of fibrocytes accumulation concomitantly improved lung outcomes [11,33]. The reduction of tissue fibrocytes could thus contribute to lower chronic inflammation [34,35]. Finally, plerixafor-induced increased mobilization of hematopoietic progenitor cells from the bone marrow may also participate in the improvement of lung function and remodelling [10]. Several mechanisms of up-regulation of blood CXCR4⁺-cells may be proposed, including effects mediated by mild/intermittent hypoxia [7], the Vascular Endothelial
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

Growth Factor (VEGF) and the basic Fibroblast Growth Factor (bFGF), described in endothelial cells [36], or IL-33, described in fibrocytes [37,38].
ACKNOWLEDGMENTS

We thank the study participants and the staff of the Thoracic Surgery, Radiology, Pathology, Respiratory, Lung Function Testing departments from the University Hospital of Bordeaux (Bordeaux, France), Fabienne Estella for technical assistance with mice protocol, Isabelle Goasdoue, Isabelle Bernis, Natacha Robert, Virginie Niel, and Marine Servat from the clinical investigation center for technical assistance, and Atika Zouine and Vincent Pitard for technical assistance at the Flow cytometry facility (CNRS UMS 3427, INSERM US 005, Univ. Bordeaux, F-33000 Bordeaux, France), Anne-Aurélie Raymond for help with proteomic analysis at the Oncoprot Platform (TBMCore US005). Christel Poujol, Sébastien Marais and Fabrice Cordelières for help with imaging and image analysis et the Bordeaux Imaging Centre (BIC; Bordeaux, France). Microscopy was performed at BIC, a service unit of the CNRS-INSERM and Bordeaux University, a member of the national BioImaging infrastructure of France supported by the French National Research Agency (ANR-10-INBS-04).

Contributors

- conception and design (ID, PB)
- data acquisition (ID, PH, EM, RA, SC, DEH, EE, PE, MC, MD, GC, CB, OO, JWD, TT, VFM)
- data analysis (ID, PH, EM, RA, SC, DEH, RP, MD, GC, CB, JWD, VFM, PB)
- data interpretation (ID, PH, EM, RA, SC, DEH, EE, RP, PE, MD, GC, CB, TT, RM, MZ, VFM, PB)
- resources (PH, MC, MD, MT, HB, POG, MZ, PB)
- drafting the manuscript (ID, PH, PB)
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

• revision and final approval of the version to be published, agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved (All)

Funding

The project was supported by a grant from the “Fondation de l’Université de Bordeaux” (Fonds pour les maladies chroniques nécessitant une assistance médico-technique FGLMR/AVAD), a grant from « Aquitaine Science Transfert » (PB) and an unrestricted grant from AstraZeneca, the “Investments in the Future” program managed by the “Agence Nationale de la Recherche” (ANR, grant reference ANR-10-IAHU-04). The COBRA cohort was funded by AstraZeneca, Chiesi, Glaxo-SmithKline, Novartis, Chiesi, Roche and Legs Poix fondation.

Competing interests

ID has 2 patents delivered (i) (EP N°3050574 i.e., Use of plerixafor for treating and/or preventing acute exacerbations of chronic obstructive pulmonary disease); (ii) (EP N°20173595.8 i.e., New compositions and methods of treating COVID-19 Disease). ID report a grant from the “Fondation Bordeaux Université,” with funding from "Assistance Ventilatoire à Domicile" (AVAD) and "Fédération Girondine de Lutte contre les Maladies Respiratoires" (FGLMR).

PH reports non-financial support from AVAD, Chiesi and GlaxoSmithKline, outside the submitted work and a grant from the “Fondation Bordeaux Université,” with funding from AVAD and FGLMR.

POG reports grants, personal fees and non-financial support from AstraZeneca, personal fees and non-financial support from Chiesi, personal fees and non-financial support from GlaxoSmithKline, personal fees and non-financial support from Novartis, personal fees and non-
financial support from Sanofi, outside the submitted work. POG has 2 patents delivered (i) (EP N°3050574 *i.e.*, Use of plerixafor for treating and/or preventing acute exacerbations of chronic obstructive pulmonary disease); (ii) (EP N°20173595.8 *i.e.*, New compositions and methods of treating COVID-19 Disease).

MZ reports personal fees from AstraZeneca, Boehringer Ingelheim, CSL Behring, Novartis, Chiesi, GlaxoSmithKline and non-financial support Lilly outside the submitted work and a grant from the “Fondation Bordeaux Université,” with funding from AVAD and FGLMR.

PB is the medical coordinator of the French national cohort (*i.e.*, COBRA), which received grants from AstraZeneca, GlaxoSmithKline, and Chiesi. Moreover, PB reports grants and personal fees from Novartis, personal fees and non-financial support from Chiesi, grants, personal fees and non-financial support from Boehringer Ingelheim, grants, personal fees and non-financial support from AstraZeneca, personal fees and non-financial support from GSK, personal fees and non-financial support from Sanofi, personal fees from Menarini, personal fees from TEVA, outside the submitted work; in addition, PB has 4 patents delivered (i) (EP N°3050574 *i.e.*, Use of plerixafor for treating and/or preventing acute exacerbations of chronic obstructive pulmonary disease); (ii) (EP N°20173595.8 *i.e.*, New compositions and methods of treating COVID-19 Disease); (iii) (N° WO2017203064A1 *i.e.*, MRI Method for the geometrical characterization of pulmonary airways); (iv) (N° WO2021018439A1 *i.e.*, Method for generating a biomarker system). All other authors declare they have no competing interests.
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

REFERENCES

Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

Figure legends

Figure 1: Characterization of CXCR4 and CXCL12 expression in lung in patients with or without COPD. (A, D) CXCL12 (A) and CXCR4 (D) mRNA expression in human lungs. Data are derived from a publicly available GSE-set (GSE76925). Control subjects n=40; patients with COPD n=111. (B) Representative staining of CXCL12 (magenta) and nucleus (white) in peri-bronchial areas of human lungs. Lower panels: higher magnification of the images surrounded by white squares in the upper panels. Images obtained in control vs young COPD lungs were acquired with the same exposure time and gain. The white arrowheads and arrows indicate respectively CXCL12-expressing bronchial cells and immune-type cells. (C, E) Quantification of the percentage of positive CXCL12 (C) or CXCR4 (E) surface (normalized by the total area) (n=5 control subjects, n=6 patients with young COPD). Medians are represented as horizontal lines. (A, C, D, E) *: P <0.05, ***: P<0.001, t-test or Mann-Whitney test.
Figure 2: Evaluation of lung function, inflammation, bronchial and heart remodelling in experimental COPD. (A) Mice are exposed either to room air (RA) and challenged with PBS, or exposed to cigarette smoke (CS) and challenged with poly(I:C), during 10 weeks. They are sacrificed at day 68 or 71 (i.e. 1 day or 4 days after the last poly(I:C) instillation). (B) Average expiratory flow-volume curves of RA+PBS-exposed mice (black curve) and CS+poly(I:C)-exposed mice (grey curve). Lower and upper error bars represent standard deviations for CS+poly(I:C) and RA+PBS-exposed mice, respectively. (C) FEV0.05/FVC (FEV0.05: Forced
Expiratory Volume during 0.05 s, FVC: Forced Vital Capacity) of RA+PBS-exposed mice (black circles) and CS+poly(I:C)-exposed mice (grey squares). Data represent individual mice. (D) Total cell count in bronchoalveolar lavage (BAL). Kruskal-Wallis test followed by Dunn’s post-tests. (E-F), BAL differential cell recovery 1 day (d+1) and 4 days (d+4) after the last poly(I:C) instillation. (G) Top Canonical Ingenuity Pathways significantly altered in CS+poly(I:C) (n=5) vs RA+PBS (n=5)-exposed lungs (n=5) obtained 1 day after the last poly-IC instillation, ranked by Z-score (negative and positive for the pathways represented respectively on the top and bottom part of the graph), obtained by Gene Set Enrichment Analysis. (H) Heatmaps of differentially regulated proteins in CS+poly(I:C) vs RA+PBS-exposed lungs, from the pathways “hyercytokinemia/hyperchemokinemia in the pathogenesis of influenza” (left), “wound healing signalling pathway” (middle) and “xenobiotic metabolism PXR signalling pathway” (right). The colour scale indicates the log2 fold changes of abundance for each protein. (I) Representative Masson’s trichrome stainings to assess peri-bronchial fibrosis. (J) Standardized fibrosis, defined as (peri-bronchial fibrosis (“PF”, %) - mean PFcontrol)/standard deviation PFcontrol). The peri-bronchial fibrosis (“PF”, percentage) is defined by the ratio between the area of segmented pixels in the area of analysis divided by the total peri-bronchial area. (K) Representative short-axis cine magnetic resonance images of heart at end-systolic stage (left panels) and end-diastolic stage (middle panels) in control mice (top panels) and CS and poly(I:C)-exposed mice (bottom panels). Right panels: higher magnification of RV wall. (L) Wall thickness. (M) Fulton index, defined as (right ventricle (RV)/ left ventricle plus septum (LV + S). (N) Right ventricular systolic pressure (RVSP). (C, E, F, I, L, M, N) Unpaired t test or Mann-Whitney test. *: P<0.05, **: P<0.01, ***: P<0.001.
Figure 3: Characterization of CXCR4 and CXCL12 expression in the blood and lung in experimental COPD. Mice are exposed either to room air (RA) and challenged with PBS, or exposed to cigarette smoke (CS) and challenged with poly(I:C), during 10 weeks. They are sacrificed at day 68 or 71 (i.e. 1 day or 4 days after the last poly(I:C) instillation). (A, D) Upper left panels: dot plots represent representative side scatter (SSC, y-axis)-forward scatter (FSC, x-axis) graphs of circulating (A) and lung (D) cells. DAPI cells, and DAPI CXCR4+ cells are shown respectively in grey and pink. Upper right panels and bottom panels: histograms represent representative cell count (y-axis) versus Phycoerythrin (PE) fluorescence (x-axis) in DAPI circulating (A) and lung (D) cells. Percentages of CXCR4+ cells in the DAPI cells are shown in pink. (B, E) Levels of circulating (B) and lung (E) CXCR4+ cells 1 day (d+1) and 4 days (d+4) after the last poly(I:C) instillation. (C, F) Plasma (C) and lung (F) CXCL12 concentration at d+1 and d+4. For lung CXCL12 concentration, the value is normalized to total protein concentration. (G) Representative stainings of CXCL12 (magenta) and nucleus (white) in peri-bronchial areas of mouse lungs. Lower panels: higher magnification of the images surrounded by white squares in.
the upper panels. Images obtained in RA and PBS vs CS and poly(I:C)-exposed have been acquired with the same exposure time and gain. The white arrowheads and arrows indicate respectively CXCL12-expressing bronchial cells and immune-type cells. (H) Quantification of the percentage of positive CXCL12 surface (normalized by the total area). (B, C, E, F, H) Medians are represented as horizontal lines. *: P <0.05, **: P<0.01, Mann-Whitney test.
Figure 4: Characterization of lung fibrocyte level and localization in experimental COPD and in patients with or without COPD. (A-G) Mice are exposed either to room air (RA) and challenged with PBS, or exposed to cigarette smoke (CS) and challenged with poly(I:C), during 10 weeks. They are sacrificed 1 day (“d+1”) or 4 days (“d+4”) after the last poly(I:C) instillation. a) Representative flow cytometry contour plots in each condition. The x-axis is for CD45-
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

Allophycocyanin (APC) fluorescence and the y-axis, FSP1-Fluorescein-5-isothiocyanate (FITC) fluorescence. Percentages of CD45+ FSP1high cells are shown in green. (B) Representative cell count (y-axis) versus CXCR4-Phycoerythrin (PE) fluorescence (x-axis) in CD45+ FSP1high-cell subsets in mouse lungs. (C-E) Levels of lung CD45+ FSP1high cells (C), CD45+ cells (D), CD45+ FSP1high CXCR4+ cells (E), in RA+PBS-exposed mice (black circles) and CS+poly(I:C)-exposed mice (grey squares), at d+1 and d+4. (F) Representative stainings of CD45 (green) and FSP1 (red) in peri-bronchial areas (delimited in pink) of lung mice at d+4. The white arrows indicate fibrocytes, defined as CD45+ FSP1+ cells. (G) Quantification of fibrocyte density (normalized by peri-bronchial area). (H) Representative stainings of CD45 (green) and FSP1 (red) in peri-bronchial area. The white arrowheads indicate fibrocytes, defined as CD45+ FSP1+ cells. (F) Representative stainings of CD45 (green), FSP1 (red), nuclei (DAPI, blue) and CXCR4 (white) in peri-bronchial areas of lung samples of control subjects and patients with COPD. The white arrows indicate CXCR4-expressing fibrocytes, defined as CD45+ FSP1+ CXCR4+ cells. (F, H) Left and lower panels: higher magnification of the images surrounded by white squares in the right upper panels. (C-E, G) Medians are represented as horizontal lines. *: P <0.05, **: P<0.01, Mann-Whitney test.
Figure 5: Evaluation of lung function, inflammation and bronchial and heart remodelling upon conditional knockout of CXCR4 in experimental COPD. (A) CXCR4lox/lox (grey squares) and CXCR4lox/lox/Cre2ERT2 (pink squares) mice are exposed to cigarette smoke (CS) and challenged with poly(I:C). All the mice were administered with 1 mg intraperitoneal tamoxifen for 5 consecutive days at the beginning of the COPD protocol, and then fed by tamoxifen-containing food during the remaining protocol. They are sacrificed at day 68 or 71 (1 day and 4 days after the last poly(I:C) instillation). (B) FEV0.05/FVC in the different conditions. Data represent individual mice. (C) Total cell count in bronchoalveolar lavage (BAL).
Wallis test followed by Dunn’s post-tests. (D-E) BAL relative (D) and absolute (E) cell composition respectively 1 day and 4 days after the last poly(I:C) instillation. (F) Representative Masson’s trichrome stainings to assess peri-bronchial fibrosis. (G) Standardized fibrosis, defined as (peri-bronchial fibrosis (“PF”, %) - mean PFcontrol)/standard deviation PFcontrol). The peri-bronchial fibrosis (“PF”, percentage) is defined by the ratio between the area of segmented pixels in the area of analysis divided by the total peri-bronchial area. (H) Representative short-axis cine magnetic resonance images at end-systolic stage (left panels) and end-diastolic stage (middle panels) in CS and poly(IC)-exposed CXCR4^{lox/lox} mice (top panels) and CS and poly(IC)-exposed CXCR4^{lox/lox}/Cre2ERT2 mice (bottom panels). Right panels: higher magnification of RV wall. i) Wall thickness. (J) Fulton index, defined as (right ventricle (RV)/ left ventricle plus septum (LV + S). (K) Right ventricular systolic pressure (RVSP). (B, D, E, G, J, K) *: P<0.05, **: P<0.01, ***: P<0.001. Unpaired t test or Mann-Whitney test.
Figure 6: Characterization of fibrocyte level and peri-bronchial density in lung upon conditional knockout of CXCR4 in experimental COPD. CXCR4^{lox/lox} (grey squares) and CXCR4^{lox/lox}/Cre2ERT2 (pink squares) mice are exposed to cigarette smoke (CS) and challenged with poly(I:C). They are sacrificed at day 68 or 71 (1 day and 4 days after the last poly(I:C) instillation). (A) Representative flow cytometry contour plots in each condition. The x-axis is for CD45-Allophycocyanin (APC) fluorescence and the y-axis, FSP1-Fluorescein-5-isothiocyanate (FITC) fluorescence. Percentages of CD45{sup+} FSP1{suphigh} cells are shown in green. (B) Representative cell count (y-axis) versus CXCR4-Phycoerythrin (PE) fluorescence (x-axis) in CD45{sup+} FSP1{suphigh}-cell subsets in mouse lungs. (C-E) Levels of lung CD45{sup+} FSP1{suphigh} cells (C), CD45{sup+} FSP1^{high} CXCR4{sup+} cells (D), CD45{sup+} cells (E) 1 day after the last poly(I:C) instillation in each condition. (F)
Quantification of fibrocyte density (normalized by peri-bronchial area) 4 days after the last poly(I:C) instillation in each condition. (G) Representative stainings of CD45 (red) and FSP1 (green) in peri-bronchial area (delimited in pink) in each condition. The white arrows indicate fibrocytes, defined as CD45⁺ FSP1⁺ cells. (C-F) Medians are represented as horizontal lines. *: P <0.05, Unpaired t test or Mann-Whitney test.
Figure 7: Evaluation of lung function, inflammation and bronchial and heart remodelling upon pharmacological blockage of CXCR4 in experimental COPD. (A) Mice are exposed to cigarette smoke (CS), challenged with poly(I:C) and treated with plerixafor (“pleri”, 1 mg/kg, purple squares) or its vehicle (grey squares). They are sacrificed at day 68 or 71 (1 day and 4 days after the last poly(I:C) instillation). (B) FEV0.05/FVC in the different conditions. Data represent individual mice. (C) Total cell count in bronchoalveolar lavage (BAL). Kruskal-Wallis test followed by Dunn’s post-tests. (D-E) BAL relative (D) and absolute (E) cell composition respectively 1 day and 4 days after the last poly(I:C) instillation. (F) Representative Masson’s trichrome stainings to assess peri-bronchial fibrosis. (G) Standardized fibrosis, defined as (peri-
Dupin et al. CXCR4 blockade alleviates pulmonary and cardiac outcomes in young COPD

bronchial fibrosis (“PF”, %) - mean PFcontrol/standard deviation PFcontrol). The peri-bronchial fibrosis (“PF”, percentage) is defined by the ratio between the area of segmented pixels in the area of analysis divided by the total peri-bronchial area. (H) Heatmaps of significantly differentially regulated pathways identified by Ingenuity Pathway analysis (IPA; Qiagen), obtained by proteomics comparison of CS+poly(I:C) (n=5) vs RA+PBS (n=5)-exposed lungs (n=5) (all treated by vehicle), and plerixafor (n=5) vs vehicle (n=5)-treated lungs (all exposed to CS+poly(I:C)). The colour scale indicates the Z-score value. (I) Fulton index, defined as (right ventricle (RV)/ left ventricle plus septum (LV + S). (J) Right ventricular systolic pressure (RVSP). (B, D, E, G, I, J) *: P<0.05, **: P<0.01, ***: P<0.001. Unpaired t test or Mann-Whitney test.