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Summary

Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs
is shaped by their mutations, yet they lack a molecular view of the contribution of individual
genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment
(sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We
highlight the advantages of large-scale, unbiased screening by defining the contribution of each
of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate
signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121
gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an
expression signature characteristic of compensatory adaptive signaling regulated in a
MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed
promising combination therapies, including dual MEK and CDC7/CDK9 or NF-kB inhibitors, as
potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
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Introduction

The response of individual cancer cells to treatment with a drug depends on myriad factors,
including but not limited to their locations within a tumor, proximity to vessels, epigenetic
histories, and, of course, their genotypes. Defining the contribution of individual genetic
mutations to how a tumor will respond to a given drug regimen is critically important to
personalized therapy and for understanding cancer pathobiology. However, dissecting the
mechanisms by which each of the many genes frequently mutated in cancer confers drug
resistance is extremely challenging because the space of gene-drug interactions is enormous.
Addressing this requires a scalable, systematic approach for quantifying a drug’s effect on a cell
of a given genotype. Chemical genetics, the study of how exogenous compound exposures
interact with cells and alter gene-product function and phenotype 1, is a powerful means to
define the genetic dependencies on treatment response across genetically distinct samples.
The induction of genetic heterogeneity via targeted genetic perturbation 2–4 (e.g., CRISPR/Cas9)
has drastically increased the power of such screens allowing for the systematic determination of
how perturbed gene activity alters response. However, these screens are largely limited to
determining the effect of the genetic perturbation on gross phenotypic outcomes (viability, cell
growth) or very specific molecular readouts (reporter expression, enzymatic activity). Moreover,
CRISPR-based chemical genetic screens with simple phenotypic readouts are largely applied at
the population level. Therefore, they are unable to link genotype to cellular response in a
precise, mechanistic manner. There is therefore a need for novel methods by which to
systematically interrogate the genetic requirements of effective drug treatment.

Single-cell CRISPR screens 5–8 allow in-depth molecular insight into the effects of genetic
perturbation of genes associated with diverse biological processes, including those prioritized by
bulk CRISPR screens 9,10. Recently, single-cell CRISPR screens have been performed at
genome-scale, providing a rich map of the effect of perturbation of all expressed genes 11. To
further probe genetic dependencies to exposure using a single-cell genomic readout
necessitates incorporating additional strategies to multiplex at the level of exposure (drugs,
doses) within an experiment. This multiplexing allows the assay to scale to large combinatorial
spaces and minimizes batch effects due to sample processing. Recently, we developed
sci-Plex, a nuclear hashing approach that couples high-throughput chemical screens to
combinatorial indexing RNA-seq (sci-RNA-seq3) 12, allowing for the analysis of the molecular
effect of thousands of chemical perturbations in parallel 13. Here, we present sci-Plex
gene-by-environment or sci-Plex-GxE, which extends sci-Plex to pooled single-cell CRISPR
screens, markedly increasing the number of unique gene-exposure interactions tested within
one experiment and providing the opportunity to define how large cohorts of genes affect the
response of cells to many exposures.

As an initial proof-of-principle, we apply our approach to probe the relationship between
exposure to the standard-of-care alkylating agent temozolomide (TMZ) 14 and genetic
perturbation of the mismatch repair (MMR) pathway, a known genetic dependency to SN1
alkylating agent-induced damage 15,16. Using this system, we develop computational methods for
determining the extent to which a genetic perturbation interferes with or enhances the expected
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effects of a drug on the transcriptome. We then apply sci-Plex-GxE to determine the molecular
consequence of genetic perturbation of the 522 kinases in the human protein kinome 17 on the
response of 3 glioblastoma (GBM) cell lines to 4 small molecules inhibitors targeting the
receptor tyrosine kinase pathway, the most frequently over-activated pathway in GBM 18 and a
driver for glioma initiation 19 and maintenance 20. We find that drug exposure leads to the
induction of a transcriptional program characterized by the upregulation of genes capable of
eliciting an adaptive (i.e., drug-induced) resistance phenotype 21,22. Our single-cell genetic
screen prioritized kinases involved with the regulation of MAPK, replication, cell division, and
stress signaling that modulate the expression of this adaptive compensatory program.
Combinatorial chemical exposure targeting of a subset of these kinases confirmed their
involvement in regulating this transcriptional response and co-treatments that limit the ability of
a cell to mount an adaptive response to kinase therapy.

Results

sci-Plex-GxE combines nuclear hashing and CRISPR-based single-cell genetic screens

To determine the contribution of individual genes to the response to chemical exposure at scale,
we combined our single-cell chemical transcriptomics platform 13 with the CROP-seq system for
single-cell CRISPR/Cas9 genetic screens 8. We developed and optimized a method for the
enrichment of sgRNA containing transcripts 5,6,23 from within the context of sci-RNA-seq3. Our
enrichment strategy relies on targeted capture of the CROP-seq derived sgRNA containing
puromycin transcript in combination with standard poly-A mRNA capture during RT and
amplifying sgRNA containing transcripts from the final sci-RNA-seq3 mRNA library (Fig. 1A &
Methods).

To determine the specificity and sensitivity of our assay, we performed a sgRNA cell mixing
experiment. We transduced A172 GBM cells expressing either dCas9-KRAB for gene
knockdown (CRISPRi) or dCas9-SunTag for gene overexpression (CRISPRa) 24 with
CROP-seq-OPTI libraries containing either optimized CRISPRi or CRISPRa sgRNAs 25 targeting
the HPRT1 locus, a modulator of cell sensitivity to the chemotherapeutic agent 6-thioguanine
(6-TG), and non-targeting controls (NTCs). We arrayed CRISPRi and CRISPRa perturbed cell
pools across columns of a 96-well plate and exposed cells to increasing concentrations of the
purine analog 6-TG or DMSO control. After 96 hours, cells in individual wells were harvested
and subjected to our sci-Plex GxE protocol (Fig. 1A and Methods). We captured 18,585
single-cell transcriptomes and used our sci-Plex hash labels to remove doublets and to
confidently assign one well/treatment condition to 17,549 cells (94.4%). We identified one or
more sgRNAs in 15,589 of these treatment-assigned singlet cells (88.8%) (Supp Fig. 1A), of
which 94.4% expressed 1 sgRNA at a high proportion (Supp Fig. 1B-C), consistent with the low
multiplicity of infection of our transduction. We next compared cell assignment according to
captured sgRNAs or sci-Plex hashes. As expected, cells containing hashes denoting CRISPRi
wells were largely assigned a CRISPRi sgRNA and vice-versa (Fig. 1B). Cells expressing
CRISPRi and CRISPRa sgRNAs against HPRT1 displayed a decrease and increase in HPRT1
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expression, respectively (Fig. 1C, 1D). Loss of HPRT1 activity leads to resistance to the nucleic
acid analog 6-thioguanine (6-TG) 26 by decreasing its incorporation into DNA (Fig. 1E). As
expected, HPRT1 knockdown cells had a high expression of genes associated with proliferation
in the presence of increasing doses of 6-TG compared to NTC controls (Fig. 1F). This
experiment confirms that sci-Plex-GxE can detect a genetic requirement for individual cells’
response to a drug exposure via global transcriptome analysis.

Figure 1: sci-Plex-GxE couples genetic and perturbation screens with high sensitivity
and specificity. A) Overview of sci-Plex-GxE workflow including targeted enrichment of
CROP-seq derived gRNA containing transcripts. B) Concordance between CRISPRi and
CRISPRa gRNA assignments derived from the hash added to individually labeled CRIPSRi and
CRIPSRa pools (hash CRISPR assignment) and by the sequence of captured gRNAs (gRNA
CRISPR assignment). C/D) Percent of cells expressing HPRT1 in cells expressing systems for
CRISPR-mediated knockdown (C) or overexpression (D) and gRNAs targeting HPRT1 or NTC
controls. F) Aggregate expression of genes associated with proliferation in NTC and HPRT1
knockdown cells after exposure to 6-thioguanine.

A chemical genomics approach to prioritize genotypes with strong effects on the response of
cells to exposure.
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The scalability and multiplexing ability of sci-Plex-GxE at the level of genotypes and exposures
allows profiling of the effects of gene-exposure interactions at scale. However, there are
additional considerations for its application in chemical genomic screening, namely a need for
analysis workflows that allow prioritization of genotypes within large-scale perturbation screens
and a way to summarize complex transcriptional effects compactly. To arrive at analytical
solutions to these challenges, we first applied our approach to a known genetic dependency to
alkylation damage.

Temozolomide (TMZ) is an oral alkylating agent and the standard-of-care for glioblastoma brain
cancer chemotherapy 14, whose toxicity is mediated by the formation of O6-meG lesions in the
DNA. A cytotoxic response to TMZ primarily depends on the expression of methyl guanine
methyltransferase (MGMT) and functional DNA mismatch repair (MMR) (Fig. 2A), with the
activity of these pathways mediating resistance and sensitivity, respectively 27. We profiled the
transcriptional consequence of exposing MMR-perturbed A172 CRISPRi cells to increasing
doses of TMZ for 96 hours. We targeted MMR pathway components that comprise the O6-meG
recognition complex (MutSɑ: MSH2 and MSH6), the MMR processing complex downstream of
lesion recognition (MutLɑ: MLH1 and PMS2) (Fig. 2A), and controls including targeting of an
MMR component not involved in the processing of O6-meG (MSH3), MGMT, which is
epigenetically silenced in A172 28 and non-targeting controls (Supp Fig. 2C-D).

Cells expressing sgRNAs against MGMT, MSH3, or NTC controls displayed a robust,
dose-dependent increase in the expression of the cell cycle inhibitor and p53 target CDKN1A
(Fig. 2B) that was accompanied by decreases in the expression of genes associated with
proliferation (Fig. 2C). Analysis of differentially expressed genes (DEGs, FDR < 10%) revealed
a strong correlation (Pearson’s rho 0.50-0.94) across genotypes expected to alter sensitivity to
TMZ at the highest doses of drug (Supp Fig. 2F). The magnitude of these changes was
decreased in cells expressing sgRNAs against MLH1 and PMS2 and largely abrogated in cells
expressing sgRNAs against MSH2 and MSH6 (Fig. 2B-C). Defining gene modules across the
union of DEGs recovered signatures that define genotypes sensitive to TMZ exposure (NTC,
MGMT, and MSH3) and further subdivided genotypes associated with mismatch recognition
(MSH2 and MSH6) and downstream processing (MLH1 and PMS2) (Fig. 2D). Of note, gene
modules associated with p53 signaling (module 2) varied depending on the perturbed MMR
complex consistent with activation of DNA damage signaling by lesion recognition before MutLɑ
processing 29.

We next sought to summarize differential responses to exposure. Dimensionality reduction did
not identify unique cellular states induced by the interaction of genotypes and TMZ (Supp Fig.
3A-D), likely due to the fact that phenotypes perturbed by modulation of MMR activity (e.g.,
proliferation, cell cycle arrest) are available to non-perturbed cells. However, MMR perturbations
did alter the distribution of cells across these shared phenotypes (Supp Fig. 3E), which could
be summarized by dimensionality reduction techniques (Fig. 2E-F). Although this approach can
prioritize genotypes within the context of a screen, its reliance on defining cell states a priori is
limiting. Therefore, we sought an approach tailored to prioritizing genotypes in the context of the
response to drug exposure.
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We devised a strategy to describe how close a given cell is to the expected response to a given
drug, identifying gene-by-environment interactions in a given condition. We first identified a set
of genes that are dynamically regulated as a function of drug exposure in “wild-type” NTC cells
(Supp Fig. 3F). Second, for every dose, we calculated the pairwise transcriptome distance for
every cell relative to the averaged expression profile of NTC cells exposed to the highest dose
of drug based on this set of drug-responsive genes (Supp Fig. 3G). We then quantify the extent
to which a perturbation deviates from the change in pairwise transcriptome distance of
unperturbed cells as they converge on a drug-induced phenotype, in this case, a TMZ-induced
cell cycle arrest (Fig. 2G). TMZ exposure led to a decrease in pairwise transcriptome distance
across unperturbed NTC cells and our negative control knockdowns (MGMT and MSH3).
Whereas knockdown of PMS2, MLH1, MSH6, and MSH2 altered the dose-response relationship
in pairwise transcriptome distance to NTC as a function of dose (Fig. 2H & Supp. Fig. 3H-J).

We used this framework to define a transcriptional effective concentration 50 or “TC50” 13 to
determine, for each genotype, the concentration of drug necessary to arrive at 50% of the
transcriptional response observed in NTC cells. TC50s were similar for NTC, MGMT and MSH3
knockdowns, whereas loss of MLH1, PMS2, MSH6 or MSH2 renders cells largely less sensitive
to drug (Fig. 2I & Supp. Fig. 3K-L) as previously described 30. We find our transcriptome
distance approach to be robust to the number of cells per genotype (Supp. Fig. 3M), able to
detect a graded dose-dependent response to a drug, and able to quantify the progression of a
given cell along that response, characteristics necessary for identifying gene-by-environment
interactions within the context of large-scale single-cell chemical genomic screens.
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Figure 2: Defining the relationship between genotypes and summarizing the magnitude
of the perturbation after combined genetic and chemical perturbation. A) Mechanism of
TMZ-induced mismatch repair dependent O6-methyguanine toxicity. B) Heatmap depicting
CDKN1A expression levels as a function of perturbation via CRISPRi-mediated knockdown and
exposure to TMZ. C) Heatmap depicting the aggregate expression of genes associated with
proliferation as a function of perturbation via CRISPRi-mediated knockdown and exposure to
TMZ. D) Left: Heatmap depicting the aggregate expression of gene modules derived from
genes that are differentially expressed as a function of genotype in TMZ-exposed and
genetically perturbed cells. Expression was aggregated for cells exposed to high doses of TMZ
(10, 50, and 100 µM). Right: Enriched MSigDB Hallmarks gene sets for gene modules in the
experiment. E/F) UMAP embedding derived from the proportions of cells expressing individual
gRNAs (E) or gRNAs against the labeled target (F) across PCA clusters in our experiment. G)
Cartoon depicting the expected decrease in angular distance as cells enact a transcriptional
response and associated cell cycle arrest after TMZ exposure. H) Violin plots depicting the
pairwise angular distance of every cell to the mean expression of NTC cells exposed to 100 µM
TMZ for all genotypes after exposure to increasing doses of TMZ. I) Inferred transcriptional
effective concentration (TC50) is defined as the concentration of drug necessary to reach 50%
of the change in angular distance exhibited by TMZ-exposed NTC cells. Dashed line: maximum
molarity of an aqueous solution as a threshold for genotypes where the drug cannot induce 50%
of the effect observed in NTC. Insert excludes MSH2 and MSH6.

Defining the contribution of the human protein kinome to the transcriptional response induced by
kinase inhibition

Having demonstrated the ability of sci-Plex-GxE to detect the genetic requirements for exposure
to drugs, we sought to systematically characterize the genes that determine a tumor's response
to standard-of-care therapy at scale. Glioblastoma brain cancer is characterized by overactive
receptor tyrosine kinase (RTK) signaling, with ~90% of tumors presenting with an activating
mutation in the RTK pathway 18,31. Paradoxically, GBM patients display low response rates to
RTK-targeted therapy despite these prominent alterations in RTK signaling. Adaptive 32 (i.e.,
pharmacologically-induced) activation of pathways that rescue RTK signaling and/or induce
similar downstream effectors is suspected to be amongst the most common mechanisms by
which tumors evade therapy 21,22,33,34, including GBM 35,36. Mapping out how tumors shift their
gene expression programs to evade the detrimental effects of drug exposure could identify new
opportunities to improve therapy.

To determine the contribution of an entire class of genes to drug-induced transcriptional
adaptation 37,38 in GBM, we perturbed all members of the human protein kinome 17 in 3 GBM cell
lines expressing the dCas9-KRAB CRISPRi system. Heterogeneous cell pools were then
exposed to one of four compounds targeting the receptor tyrosine kinases EGFR (lapatinib) and
PDGFRɑ (nintedanib), and the MAPK and PI3K signaling pathway components MEK
(trametinib) and PI3K (zstk474) at two doses (1 and 10 µM) or vehicle control for 72 hours and
subjected to sci-Plex-GxE. Our screen contained 14,121 gene-by-environment combinations
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across two independent transductions for 28,242 unique conditions across 1,052,205 single-cell
transcriptomes (Fig. 3A, Supp. Fig. 4A). After excluding putative doublets, we assigned a
condition to 991,940 single-cell transcriptomes (94.3% of cells) and observed good agreement
in expression across replicates in our experiment (Supp. Fig. 4B). We identified a sgRNA in
988,276 cells and a median target knockdown of ~70% across our panel of targeted kinases
(Fig. 3B). We note that we observed low sgRNA assignment from our sgRNA PCR enrichment
strategy applied to a small amount of our final mRNA libraries (data not shown). The addition of
multiple rounds of sgRNA enrichment PCR increased our assignment rate suggesting the low
assignment from 1 or a few enrichment cycles is due to a bottleneck when amplifying from large,
complex libraries.

Examining the proportion of genotypes in vehicle-exposed cells to the starting plasmid
proportion revealed a depletion of gRNAs targeting kinases that are likely required by all three
cancer cell lines. We observed the strongest depletion for 16 kinases across one or more cell
lines (|z-score| > 2, Supp Fig 5A). These included kinases involved in mitosis (AURKA,
AURKB, BUB1B, PLK1) 39 and ribosome maturation (RIOK1 and RIOK2) 40,41. We did not
identify kinases that conferred a similarly strong growth advantage across the cell lines in our
study when knocked down.

sci-Plex-GxE reveals kinases required for the transcriptional response to inhibiting the RTK
pathway.

We next sought to define the transcriptional changes induced in NTC cells by targeting the RTK
pathway with small molecules. Exposure to compounds targeting the RTK pathway decreased
cell viability, with the strongest effect observed for cells exposed to trametinib and the weakest
effect for lapatinib (Supp Fig 5B). This decrease in cell viability was accompanied by a
decrease in the expression of genes associated with proliferation (NTC unperturbed genotype,
Fig 3C-F).

To identify kinases required for maintaining expression of the proliferation gene program, we
next modeled their expression as a function of drug, dose, genotype, and their interaction using
generalized linear models 12. These models included kinase-by-drug “interaction terms”, which
capture effects observed in drug-treated, genetically perturbed cells that are not observed in
vehicle-treated, genetically perturbed cells or NTC cells exposed to a drug. We identified 60
kinases involved in a significant interaction term for at least one exposure. We observed
concordance for interaction terms across treatments within each cell line (Fig 3) and high
similarity in proliferative expression profiles across our controls (Fig 3D).

Our analysis identified kinases that led to a significant decrease in proliferative gene expression
across multiple treatments. For example, in A172 cells, knockdown of the genotoxic stress
response PI3K-like kinase SMG1 42 or the positive regulator of hedgehog signaling STK36 43 led
to a significant decrease in proliferation in response to both nintedanib and trametinib (Fig 3E),
suggesting these kinases are required for proliferation in cells treated with these drugs. We also
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identified kinases whose knockdown led to increased proliferative gene expression. These
included the ACVR1B 44, ACVR2A 45, STK11 (LKB1) 46, and MAP2K4 47 tumor suppressors (Fig
3F). Knockdown of CDK18, recently described as a co-factor for ATR-driven homologous
recombination repair in GBM 48, led to a significant increase in proliferation in response to the
PI3K inhibitor zstk474 (Fig 3F). Zstk474, like other PI3K inhibitors, targets other DNA damage
response kinases such as DNA-PKc and ATM 49,50 and was shown to generate strand breaks in
GBM cells 50. Therefore, the effect of CDK18 loss on the proliferative response to zstk474
exposure may result from an additive increase in genotoxic stress. Our analysis demonstrates
that our multiplex chemical genomic screen identifies significant interactions between genotype
and exposure, including kinase perturbations that sensitize or resist the effect of RTK pathway
targeting inhibitors on proliferative gene expression. However, because sci-Plex-GxE profiles
the entire transcriptome, it is not limited to viability or proliferation phenotypes and in principle
could characterize the genetic requirements of other gene programs, including transcriptional
adaptation to targeted therapy.
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Figure 3: A single-cell kinome targeting genetic screen identifies subtle effects of
perturbation on proliferation-associated gene expression. A) Schematic depicting the
sci-Plex-GxE screen to determine the contribution of the kinome to the transcriptional response
of glioblastoma cells to RTK pathway targeted therapies. B) Median knockdown level across the
three cell lines in our screen as a function of sgRNA assignment (real) or a random permutation
of sgRNA assignment labels (random) (Wilcoxon rank sum test). C) Hierarchical clustering of β
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coefficients for the term from a generalized linear model describing the interaction between drug
treatment and kinase perturbation on the aggregate expression of proliferation-associated
genes across kinase perturbations with a significant interaction term in response to at least one
treatment in one cell line. D) Heatmap depicting the mean aggregate expression of
proliferation-associated genes for proliferation perturbing and controls genotypes. Values were
centered as in B/C. Only genotypes with more than 5 cells at top doses are shown. The red
annotation bar highlights non-targeting and random targeting control genotypes. E/F) Violin plots
depicting the aggregate expression of proliferation-associated genes for the cell lines,
treatment, and genotypes presented. For each genotype, values were centered on the mean of
untreated cells.

Single-cell RNA-seq identifies shared transcriptional responses to inhibition of receptor tyrosine
kinase signaling in glioblastoma cell lines.

Targeting over-activated oncogenic kinases induces drastic remodeling of gene expression
networks 21,22,33,34, enabling tumors to substitute an alternative pathway to restore signaling, a
process termed adaptive resistance 51. To quantify transcriptional adaptation in our GBM lines,
we performed regression analysis of the effects of each drug on each gene’s expression using
generalized linear models. We identified robust dose-dependent changes in expression with
4,553, 3,112, and 3,149 genes differentially expressed after exposure to 1 or more inhibitors in
A172, T98G, and U87MG cells, respectively (Fig. 4A-C & Supp. Fig. 6A-C). We observed
strong transcriptional effects upon trametinib exposure and modest changes in cells exposed to
lapatinib, consistent with their effects on cell viability (Supp Fig 4A). Comparing drug-induced
transcriptional responses revealed a large overlap in the genes altered in the three lines when
exposed to the FGFR/VEGFR/PDGFR family inhibitor nintedanib and trametinib or zstk474
(Supp Fig 6D-F), suggesting that RTKs of the FGFR/VEGFR/PDGFR families, are largely
responsible for driving MEK and PI3K activity in these cell lines.

We next sought kinases that were themselves altered at the RNA level in response to drug
exposure, as these might potentiate regulation of the broader adaptive response. Hierarchical
clustering of all differentially expressed genes identified modules of genes with similar
dose-dependent changes across our treatments (Fig. 4A-C), including 156, 121, and 126
kinases whose expression was significantly altered in response to exposure in a cell line- and
drug-specific manner. Exposure of A172 and U87MG cells to nintedanib led to a pronounced
increase in ERBB4 expression, whereas trametinib exposure led to a significant increase in
ERBB4 in A172 (Supp Fig. 6G). T98G did not display a significant increase in ERBB4
expression upon exposure to trametinib, but we did observe a strong increase in EPHA5 (Supp
Fig. 6G). Other kinases displayed similar responses to a given treatment across all cell lines.
For example, exposure of GBM cell lines to trametinib resulted in a significant decrease in the
expression ofWEE1, a kinase that negatively regulates the mitotic kinase CDK1/CDC2 52 (Supp
Fig. 6G).
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To identify genes with a response to each drug shared across cell lines, we calculated the
Jaccard index to investigate the number of genes shared between each drug-induced gene
module across every pairwise set of cell lines (Supp Fig. 6H-K). We identified two sets of genes
with similar dynamics as a function of drug exposure across the 3 cell lines, one of which
broadly increases with dose (“S1”), and another that decreases (“S2”) (Fig. 4A-C, Fig. 4D and
Supp Fig. 6L). The genes in these shared drug-induced modules also had largely concordant
responses to RTK pathway inhibition in a panel of 4 patient-derived GBM lines, indicating they
may constitute a core program of GBM transcriptional response to RTK pathway targeting 53–55

(Supp. Fig. 6M-N).

To assess the extent to which genes in the core adaptive program are known targets of
cancer-associated signaling pathways, we performed gene set enrichment analysis (GSA) (Fig
4E-F). The downregulated S2 gene module was enriched for genes associated with the
regulation of the cell cycle (Fig 4F), consistent with a decrease in pro-proliferative signaling
downstream of RTK pathway inhibition. However, S1 and S2 genes did not neatly map onto
gene sets known to be upregulated or downregulated in response to inhibiting the RTK pathway,
respectively. For example, the down-regulated S2 module was enriched for genes that report on
active KRAS and PI3K-AKT-MTOR signaling, with their decrease in expression suggesting a
block of these pathways. In contrast, the up-regulated S1 module was enriched for genes
associated with active mTORC1 signaling, which may report on the activation of a distinct
subset of the mTORC1 program (Fig. 4D-E). Similarly, mixed results were obtained using the
MSigDB oncogenic signatures gene set collection 56,57, where modules displayed enrichment for
gene sets that suggest activation and inactivation of different subsets of the RTK signaling
pathway (Fig 4D-E, right panels). To identify genes that may mediate an escape to RTK
pathway inhibition, we further examined the list of genes that make up the S1 upregulated
drug-induced module. This revealed inhibitor-induced increases in the expression of kinases
central to activation of the RTK pathway, including the receptor tyrosine kinase EGFR, the
cytoplasmic tyrosine kinase ABL1, the dual specificity kinase MAP2K1, which encodes the ERK
activator MEK1, and the PI3K catalytic subunits PIK3C2A and PIK3C2B. Together, these
observations are consistent with the induction of a complex drug and cell-line-specific adaptive,
compensatory program with a shared core component that may mediate survival in response to
RTK pathway inhibition.
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Figure 4: Exposure to small molecules targeting the RTK pathway drives changes in gene
expression, including dynamic alterations in kinase expression. A-C) Heatmaps depicting
the average expression of genes that are dynamic as a function of exposure to at least 1 of 4
small molecules targeting components of the RTK pathway in A172 (A), T98G (B) and
U87MG (C) cells (FDR < 5% & |βcoef| > 1). Right panels: Aggregate gene expression across
clusters for gene clusters to the left for A172 (A), T98G (B), and U87MG (C) cells. Colors
denote the individual treatments as in the top annotations in panels A-C. D) UMAP embeddings
of unperturbed A172 (top), T98G (middle), and U87MG (bottom) cells colored by treatment,
dose, proliferation index, or aggregate scores for the conserved upregulated S1 or
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downregulated S2 signatures. Arrows denote the dynamics of S1 and S2 signature expression
as a function of RTK pathway inhibition. E-F) Gene set enrichment analysis using the MSigDB
hallmark, and oncogenic signatures gene set collections of signatures that increase (E. S1) or
decrease (F. S2) in expression as a function of drug exposure with RTK targeted therapy.
Arrows as in D.

In order to identify kinases that are required for transcriptional adaptation in each cell line, we
quantified how perturbation of each kinase alters the expression of the core adaptive gene
modules. We used our pairwise transcriptome distance framework to identify kinases whose
loss leads to a deviation in the drug-induced expression of S1 and S2, finding a significant effect
due to perturbation of 55, 97, and 84 kinases in A172, T98G, and U87MG cells, respectively.
We identified a high overlap between kinases that regulate the S1 and S2 gene modules in the
absence of an interaction with drug (gene effects) or with a significant interaction between
genotype and drug (gene x environment effects). In all, we identified 156 kinases whose
perturbation altered compensatory program expression at the level of gene effect (Fig. 5A, FDR
< 5%) and 97 kinases that altered compensatory program expression with evidence of a gene x
environment effect (Fig. 5B, FDR < 5%). In contrast, comparing the list of kinase modulators
within a given gene module revealed low overlap between kinases with significant gene and
gene x environment effects (Fig. 5C-D).

Across our set of kinase hits, we identified 42 kinases with a significant gene effect (Fig. 5E)
and 23 with a significant gene x environment effect (Fig. 5F) in 2 or more GBM cell lines.
Amongst hits, only CDK2 and TIE1 significantly affected the compensatory program across all 3
GBM lines. CDK2 activity is critical for progression along the late-G1 and early-S phase of the
cell cycle, is frequently overactivated in various cancers due to the upregulation of its binding
partner cyclin E 58, and contributes to adaptation to CDK4/6 inhibition 59. TIE1 encodes an
orphan receptor tyrosine kinase most frequently associated with endothelial cells and the
regulation of angiogenesis by modulating the activity of the TIE2 RTK 60. In cancer, TIE2 protein
expression has been identified outside of the endothelial compartment and is positively
correlated with increased tumor grade in glioma 61. Moreover, TIE1 expression has been shown
to induce resistance to chemotherapy in ovarian cancer by modulation the expression of DNA
damage repair proteins through activation of the transcription factor KLF5 62.

Amongst kinases with a significant interaction effect is BRD4 (Fig. 5A), an epigenetic reader of
histone acetylation and atypical kinase that phosphorylates the c-terminal domain of RNA
polymerase II and serves as a master regulator of eukaryotic transcription 63. Previous studies
have shown that BRD4 activity mediates adaptive transcriptional resistance to MEK inhibition in
triple-negative breast cancer 21. Our results suggest that BRD4 serves a similar role in response
to RTK pathway targeting in GBM cells.

In all, the kinases required for compensation are involved in diverse cellular processes,
including cell cycle progression (AURKA, AURKB, BUB1, PLK3, PLK4, VRK1, VRK2), ribosome
maturation (RIOK2), cytoskeletal reorganization (CDC42BPA, CDC42BPB) and proliferative
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MAPK signaling (ALK, AKT2, BRAF, ERBB2, ERBB3, ERBB4, FGFR1, MAP4K1, MAPK3,
SRC). Given the enrichment for cell cycle processes, we explored whether transcriptional
changes upon targeting the RTK pathway are a consequence of accumulation at a particular cell
cycle stage as opposed to a response to cellular stress. We observed a correlation between
proliferation, G1/S, and G2/M scores in untreated cells and our signatures (Supp Fig. 7A-B).
However, exposing cells to RTK pathway inhibitors led to altered expression of these genes
regardless of proliferation or inferred cell cycle stage (Supp Fig. 7C-D), suggesting that the cell
cycle stage, baseline RTK pathway activity, and possibly their interaction, can affect this
adaptive compensatory program.
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Figure 5: Perturbation of individual kinases alters the global transcriptional response to
RTK pathway targeting small molecules. A-B. Venn diagram of the overlap between kinases
whose knockdown leads to a significant shift in the S1 or S2 signatures of the putative adaptive
program without (A) or with (B) a significant interaction effect. C-D. Venn diagram of the overlap
between kinases whose knockdown leads to a significant shift in the expression of the S1 (C) or
S2 (D) signatures of the putative adaptive program without or with a significant interaction effect.
E. Human protein kinome tree, adapted from CORAL64, highlighting kinases whose knockdown
leads to a significant shift in the expression of a putative adaptive program. The size and color
of each circle denote whether we identified a significant effect in 1, 2, or all GBM cell lines (FDR
< 5%). F. Kinome tree as in A highlighting kinases whose knockdown leads to a significant shift
in the expression of a putative adaptive program for which we identify a significant interaction
effect with drug exposure. The size and color of each circle denote whether we identified a
significant effect in 1, 2, or all GBM cell lines (FDR < 5%).

sci-Plex-GxE identifies kinases required for transcriptional adaptation to targeted therapy.

A major goal of our workflow is to define the genes required for escaping a therapy, which might
then suggest targets for new combinatorial therapies with better efficacy. Therefore, we sought
to recapitulate the effects of CRISPR-based knockdown on individual kinases using small
molecules. We exposed cells to one of 23 compounds (Supp Table 3) targeting the activity of 16
kinase hits from our screen (AKT, ALK, ATM, RAF, CDK, CHEK, DDR, EIF2AK, FGFR, IKK
[CHUK], MEK, PDGFR, PLK, RIPK, RPS6K families) prioritized from those that are hits in more
than one cell line or for which related kinases are hits in one cell line (CHEK1, CHEK2) as well
as those that are directly involved in RTK signaling (AKT). We also exposed cells to 3
compounds targeting kinases in closely related pathways (ATR, CDC7, CDK4/6, MTOR) and
small molecules that produce or are involved in response to genotoxic cell stress
(temozolomide, doxorubicin, p53 activator) alone or in combination with the MEK inhibitor and
potent inducer of the compensatory program trametinib (Fig. 5B). After 72 hours, cells were
harvested and unique conditions multiplexed using sci-Plex and subjected to sci3-RNA-seq
capturing 213,404 nuclei across single- and combinatorial- drug exposures.

We first investigated the ability of each chemical in isolation to phenocopy the response to
trametinib exposure. We performed a correlation analysis of the expression of gene signatures
between cells treated with trametinib, the strongest inducer of these signatures, and compounds
that had a measurable effect on trametinib-regulated transcription as monotherapy (defined as
compounds with > 100 DEGs in two or more cell lines, FDR < 5%). Exposure to the CDK4/6
inhibitor palbociclib elicited the strongest “trametinib-like” response across all cell lines (Fig.
6A-B, p < 0.05 and Pearson's rho > +/-0.2 and Supp Fig. 8A). The next highest trametinib-like
responses were elicited by inhibition of the RTKs PDGFR (nintedanib) and FGFR (infigratinib)
and the inhibition of its upstream regulator RAF (AZ628), although this varied by cell line (Fig.
6A, Supp. Fig. 8B-D). Exposure to the dual CDC7/CDK9 inhibitor PHA767491 was strongly
anti-correlated to the effects of trametinib exposure (Fig. 6A-B). CDC7, or DBF4-dependent
kinase (DDK), promotes replication initiation by phosphorylating the minichromosome
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maintenance (MCM) helicase complex 65. CDK9 complexes with cyclin T to form the positive
transcriptional factor elongator (pTEFb) complex, a regulator of RNA polymerase II 66. The role
of CDK9 suggests the possibility that altered regulation of at least the subset of the program
upregulated by exposure is a result of a non-specific effect on global transcription. However, the
concomitant increase in the downregulated signature (Fig 6B) suggests that the observed effect
of PHA767491 on drug-induced transcription is not due to a non-specific effect and may be due
to additional roles for CDK9 in progression across the S phase of the cell cycle 67,68. Although
CDK9 is a hit in our screen, we cannot rule out that additional loss of CDC7 activity and its effect
on the cell cycle do not contribute to this drug-induced phenotype.

We next sought to identify combinatorial exposures of drugs that could block the adaptive
program induced by trametinib alone. We used generalized linear regression to model the
effects of co-exposure on each gene in the adaptive program. We then calculated the
correlation of gene-level effects across all co-exposures, grouped combinatorial treatments by
the similarity of transcriptional effects summarized across this correlation space, and visualized
the results with UMAP (Fig. 6C). We identified 4 groupings of combinatorial exposures,
including those that differed by the extent of induction of the trametinib induced signature as
defined as the correlation to trametinib exposure alone (Fig. 6D-E).

Response group 2 had the largest anti-correlated effect to trametinib exposure alone. Response
group 2 was composed of co-exposures with AZD7762 (CHKi), BMS345541 (NF-kBi),
doxorubicin (topoisomerase IIi), PHA767491 (CDC7/CDK9i), and volasertib (PLK1i) across all 3
cell lines and infigratinib (FGFRi) for 2 of the 3 cell lines and the group significantly attenuated
induction of the compensatory program (Fig. 6F, FDR < 1%). Response group 3, made up of
co-exposures with GSK690693 (AKTi), MK2206 (AKTi), temsirolimus (MTORi), nintedanib
(PDGFRi) in all 3 cell lines, and Nutlin3A (MDM2i) in 2 of 3 cell lines was also anti-correlated to
trametinib exposure alone. However, the average effect of the response group on the
aggregated expression of compensatory modules was not significantly different from trametinib
alone. AKT and mTOR have previously been identified to enact compensatory signaling 69, and
this group may reflect modest blocks to the compensatory program that are not evident across
the full signature. In A172 cells, we also found evidence that co-exposure with the RAF inhibitor
AZ628 and the CDK4/6i palbociclib exacerbated the compensatory program (Fig. 6G). This may
have implications for the emergence of resistance to BRAF-mutated tumors treated with
combinatorial MEK and RAF inhibition 70–72.

Interestingly, these differential responses to combinatorial inhibition could not be readily
explained based on differential effects on viability. For example, trametinib co-exposure with
palbociclib and PHA767491 had similar dose-dependent effects on viability despite opposing
effects on compensatory program expression (Supp. Fig. 9). Our combined chemical and
genetic perturbation screen defined a compensatory transcriptional response to MEK inhibition
and identified kinases that significantly regulate the two gene modules that compose this
program. Our chemical genomics approach validated the dependence of this program on
CDK4/6 activity and demonstrated that the inhibition of several kinases, including CHK,
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CDC7/CDK9, FGFR, IKK, AKT, and mTOR interfered with the ability of GBM cells to mount this
compensatory program (Fig. 6H).

Figure 6: Single and combinatorial kinase inhibition identifies chemical regulators of
MEK inhibition-dependent dynamic expression changes. A) Circos heatmap of the
correlation of specified single drug exposures to the compensatory program enacted by MEK
inhibition with trametinib. Only significant correlations (FDR < 0.05) over a cutoff of Pearson’s ⍴
±0.2 are shown. B) Density plots of upregulated and downregulated signature scores of T98G
cells treated with the MEK inhibitor trametinib (MEKi), the CDK4/6 inhibitor palbociclib (CDK4/6i)
or the CDC7 inhibitor PHA767491 (CDC7i) for the three glioblastoma cell lines. Red vertical
lines denote the mean signature expression of vehicle-exposed cells. *FDR < 0.05. C) UMAP
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embeddings summarizing the pair-wise correlation of all specified combinatorial trametinib
exposures across genes that compose the compensatory program enacted by RTK pathway
inhibition. Shapes refer to individual cell lines. D) UMAP as in C, colored by the correlation of
each combinatorial trametinib exposure to cells exposed to trametinib alone across genes that
compose the compensatory program enacted by RTK pathway inhibition. E) UMAP as in C
colored by response group clusters identified by Leiden-based community detection. F)
Boxplots of the expression of signatures that make up the compensatory program. Values for
each combinatorial exposure are centered on the response of cells to trametinib alone, such
that combinations that increase signature expression relative to trametinib are positive and
vice-versa for those that decrease signature expression relative to trametinib. G) Density plots
of upregulated signature scores of GBM cells treated with the MEK inhibitor trametinib (MEKi)
alone or in combination with the RAF inhibitor AZ628, the AKT inhibitor GSK690693, teh NF-kB
inhibitor BMS345541, and the dual CDC7/CDK9 inhibitor PHA767491. Plots are ordered from
top to bottom by the effect of treatment on the signature. H) Pathway summary of proteins
whose targeting alone (top) or in combination with MEK inhibition (bottom) blocks (blue) or
exacerbates (red) the compensatory program enacted by MEK kinase inhibition.

Discussion

Defining the molecular basis by which individual genes alter the response to therapy has
important implications for cancer treatment. The multiplexing ability afforded by single-cell
screens is particularly well-suited to probe the large combinatorial space of genetic
perturbations and drug treatments. Here we introduce sci-Plex-GxE, a workflow for high
throughput chemical genomic screens at single-cell resolution, and demonstrate its capability to
identify the genetic architecture that drives response to exposure by investigating the effect of
the human protein kinome on the response to RTK pathway inhibition in glioblastoma tumor
cells.

The rapid advance of cancer genomics has identified genetic variants and mutations that
provide cells with the capacity for malignant transformation and the acquisition of key
phenotypes that define a tumorigenic cell state 73. Genetic screens have arisen as a powerful
means to identify cancer dependencies 3,4,74 as well as regulators of toxicity in response to
therapeutic exposure 75. However, most of these screens report on a limited set of phenotypes
(e.g. proliferation or viability). They cannot discern, for example, whether dependencies that
similarly alter viability differentially induce unwanted secondary effects that can result in the
development of resistance.

Perturb-seq approaches that combine CRISPR-Cas gene editing with a single-cell
transcriptomic readout have been applied at genome-scale, defining the effect of genetic
perturbation of all expressed genes on transcriptional networks 11. Our recent development of
multiplexing approaches that allow single-cell technologies to be used in high-throughput
chemical transcriptomics screens and its combination with Perturb-seq methods provide an
opportunity to understand how cancer cells respond to therapy at scale. To meet this need, we
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developed sci-Plex-GxE, a platform for multiplex genetic and chemical perturbation screens at
single-cell resolution. We demonstrate that our method remains sensitive to capturing both
cell-expressing and exogenous tags that report on genetic perturbation (gRNA-containing
transcripts) and chemical exposure (cell hashing) while scaling to genome-wide contexts.
Further, we developed a computational workflow to prioritize genotypes that significantly shift
drug-induced gene expression changes efficiently.

To demonstrate the ability of our approach to identify the genetic requirements of the response
to exposure, we applied sci-Plex-GxE to define the contribution of all kinases in the human
protein kinome to the dynamic response of glioblastoma cells to the inhibition of 4 nodes in the
RTK pathway, all frequently overactivated in the disease. We identified diverse molecular
changes in response to RTK pathway inhibition with our genetic screen revealing many kinases
whose loss significantly alters proliferative gene expression, suggesting an increased sensitivity
to detect growth changes compared to bulk CRISPR screening. We also identified two
transcriptional modules whose expression changes are conserved across all three of the cell
lines screened, which we posit are part of one conserved transcriptional program. This program
is associated with changes in the expression of components of the RTK pathway, including
evidence of an adaptive resistance program characterized by increased expression of genes
that can activate or bypass RTK signaling. In all, our genetic screen identified 213 kinases
whose loss led to significant differences in the induction of this program. We used a chemical
genomic approach to validate the contribution of a subset of these kinases to the regulation of
this putative adaptive program. We identified compounds targeting cellular activities that can
positively (CDK4/6i, FGFRi, PDGFRi, RAFi) and negatively (AKTi, IKKi, CDK2, CDC7/CDK9i)
modulate this adaptive program in isolation (Fig. 6H, top panel). In addition, we identified
compounds that significantly modulate the induction of this adaptive program in the presence of
its activation via trametinib exposure. In particular, we find that combinatorial inhibition of MEK
kinase and either of AKT, CDK2, CDC7/CDK9, FGFR, MTOR, MDM2, NF-kB, and PLK signaling
can block the induction of the core adaptive transcriptional program in GBM cells (Fig. 6H,
bottom panel). These combinations may be promising combinatorial therapies that minimize the
induction of unwanted resistance-associated changes in response to MEKi monotherapy.
However, our study is limited to the prioritization of inhibitor combinations based on a desired
transcriptional effect. In-depth biochemical and in vivo functional characterization are necessary
to confirm the ability of combinatorial exposures to increase progression-free survival.

Interestingly, our validation experiment targeting FGFR activity had opposing effects as mono or
combination therapy, which may highlight context dependence of transcriptional adaptation in
GBM. We also observe a confounding response to the targeting of CHK and MDM2 activity.
CHK kinases are master regulators of the response to DNA damage and the p53 transcription
factor to enact cell cycle arrest or apoptosis cell fates. MDM2 is a negative regulator of p53
protein levels, and its inhibition stabilizes p53 levels in the cell. Despite CHK and MDM2
inhibition having opposing effects on p53 activity, both exposures led to a block in the induction
of trametinib-induced compensatory transcription. However, p53 is known to negatively regulate
CHK1 expression 76; therefore, our results may be explained by both exposures leading to a
decrease in CHK activity in the cell.
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The work presented here constitutes a new approach to prioritize combinatorial therapies based
on their induction of gene expression programs of interest. Approaches like sci-Plex-GxE have
the potential to complement existing drug discovery pipelines by prioritizing anti-tumor therapies
that not only lead to desired anti-proliferative or pro-apoptotic effects but also minimize the
possibility of therapeutic resistance. Scrutiny of transcriptional adaptation and its
context-dependent genetic requirements could also reveal modules of important genes (e.g.
immune checkpoint machinery) that are not sensitive to monotherapy and therefore constitute
an orthogonal strategy for treatment. Finally, sci-Plex-GxE reveals the extent to which different
modules of genes are coupled through regulation by overlapping signaling pathways, which may
shed light on why cells’ responses to drugs or other environmental factors can vary so
dramatically.
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Methods

Cell lines, cell culture, and expression of CRISPRi/a systems

A172, T98G, and U87MG glioblastoma cell lines were purchased from ATCC. Cells were
cultured in DMEM media (ThermoScientific) supplemented with 10% fetal bovine serum and
1% penicillin/streptomycin (P/S, ThermoScientific). GBM4, GBM8, GSC0131, and GSC0827
glioma stem cell (GSC) cultures have been previously described 53,77,78 and were provided by
Drs. Robert Rostomily and Andrei Mikheev, University of Washington and Houston Methodist
Hospital (GBM4 and GBM8) and Dr. Patrick Paddison, Fred Hutchinson Cancer Research
Center (GSC0131 and GSC0827). GSC cultures were maintained in a defined serum-free
medium at 37C and 5% O2 to mimic in vivo conditions. GBM4 and GBM8 were cultured in
Neurobasal medium (ThermoScientific) supplemented with B-27 and N2 (ThermoScientific), 20
ng/mL EGF (PeproTech), 20 ng/mL FGF (PeproTech) and 5 µg/mL heparin (Sigma). GSC0131
and GSC0827 were cultured in Neurocult medium (StemCell Technologies) supplemented with
20 ng/mL EGF (PeproTech), 20 ng/mL FGF (PeproTech), and 0.8 µg/mL heparin (Sigma). All
cultures were negative for Mycoplasma contamination.

For the generation of CRISPRi-mediated knockdown cells, lentiviral particles encoding
dCas9-BFP-KRAB were generated by transfecting HEK293T cells with plasmids encoding
dCas9-BFP-KRAB (pHR-SFFV-dCas9-BFP-KRAB, Addgene 46911) and the ViraPower lentiviral
packaging mix (ThermoScientific). Transfection was performed using lipofectamine 2000
(ThermoScientific) in OptiMEM (ThermoScientific) following the forward transfection protocol
provided by the manufacturer scaled up to 15 cm dishes. 72 hours post-transfection, media was
collected and filtered using a 50 mL 0.22 µm steriflip filtration system. A172, T98G, and U87MG
cells were then transduced by culturing for 48 hours with different amounts of the filtered
lentiviral supernatant. Cells were then expanded, analyzed and sorted using fluorescent
activated cell sorting (FACS) for cells with the highest amount of BFP fluorescence starting from
transductions with an MOI ~0.3. To arrive at pure populations of cells with similar levels of
dCas9-KRAB cells were expanded and sorted 4 times. For the generation of
CRISPRa-mediated overexpression cells we used the 2-component dCas9-SunTag system
[citation], a filtered lentiviral supernatant carrying a payload of dCas9-GCN4-BFP
(pHRdSV40-dCas9-10xGCN4_v4-P2A-BFP, Addgene 60903) or scFV-GCN4-GFP-VP64
(pHRdSV40-scFv-GCN4-sfGFP-VP64-GB1-NLS, Addgene 60904) were generated as
described above. Glioblastoma cells were simultaneously transduced with dCas9-GCN4-BFP at
an MOI ~0.3 and with scFV-GCN4-GFP-VP64 at an MOI ~1. Cells were expanded, and FACS
sorted a total of 4 times based on BFP and GFP fluorescence to ensure maximal and similar
expression across cells.

Generation of CROP-seq-OPTI gRNA libraries

Protospacer sequences targeting all of the perturbed genes in this study were obtained from the
genome-wide human CRISPRi and CRISPRa version 2 libraries designed by Horlbeck and
colleagues25. Oligonucleotides containing these sequences and flanked with adapters with
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homology to a CROP-seq vector that we have previously altered23 to contain a CRIPSRi
optimized guide RNA backbone79 (CROP-seq-OPTI, Addgene 106280) were synthesized
individually for experiments related to Fig. 1-2 (IDT) and pooled or as a pooled oligo array
(CustomArray Inc. Bothell, WA) for our kinome screen.

5‘ homology sequence:
5’-ATCTTGTGGAAAGGACGAAACACC-3’

3’ homology sequence:
5’-GGGTTTAAGAGCTATGCTGGAAACAGCATAGCAAGT-3’

Prior to Gibson assembly, pooled oligonucleotides were amplified via PCR using NEBNext 2X
Hi-Fi PCR Master Mix (NEB) and primers:

Forward primer:
5’-ATCTTGTGGAAAGGACGAAACACCG’3’

Reverse primer:
5’-GCTATGCTGTTTCCAGCATAGCTCTTAAAC-3’

Amplification was followed on a MiniOpticon real-time PCR system (BioRad) with the addition of
SYBR green (Invitrogen), and reactions stopped prior to saturation. Amplified oligonucleotides
were purified using the NucleoSpin PCR clean-up and gel extraction kit (Takara Bio).
CROP-seq-opti was linearized via digestion with BsmBI and alkaline phosphatase (NEB) with
PCR clean up in between both digestions, purified via gel extraction from a 1% agarose gel
followed by cleanup using the NucleoSpin PCR clean up and gel extraction kit (Takara Bio).
Linearized CROP-seq-optiI and amplified oligonucleotides were assembled using the NEBuilder
HiFi DNA assembly cloning kit (NEB) with the inserts at 2 fold molar excess followed by multiple
transformations into NEB stable competent E.Coli (NEB) to ensure at least 20x coverage of
colonies for every sgRNA, transformations combined and cultured in 50 mL of Luria broth
containing ampicillin at 30°C for 24 hours. Plasmid libraries were recovered using a Midi prep kit
(Qiagen). Lentiviral libraries were generated in HEK293T by transfection of plasmid libraries
using lipofectamine 2000 (ThermoScientific) in OptiMEM (ThermoScientific) following the
forward transfection protocol provided by the manufacturer scaled up to 15 cm dishes. 72 hours
post-transfection, media was collected and filtered using a 50 mL 0.22 µm steriflip filtration
system. Viral supernatant was titered for each cell line (A172, T98G, and U87MG) by
transduction with varying amounts of lentiviral supernatant for 72 hours in 6-well plates. After
this, cells were split 1:4 into media with and without 1 µg/mL of puromycin, cultured for 96 hours,
and the approximate MOI calculated. For our screens, 3 x 106 cells in 10 cm tissue culture
dishes were transduced with lentiviral libraries at an approximate MOI of 0.1 to ensure single
integrations. 72 hours post-transduction cells were transferred to two 15 cm tissue culture
dishes containing 1 µg/mL of puromycin and continuously cultured in puromycin. Cells were
seeded for chemical exposure between 10 to 14 days after transduction.
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Chemical exposure of genetically perturbed cell pools

Temozolomide (cat no. T2577) and 6-thioguanine (cat no. A4882) were purchased from Sigma
and resuspended in DMSO (VWR scientific) to a concentration of 100 mM. Lapatinib (cat no.
S2111), nintedanib (cat no. S1010), trametinib (cat no. S2673), and zstk474 (cat no. S1072)
were purchased from Selleck Chemicals at a concentration of 10 mM in DMSO. Genetically
perturbed pools of glioblastoma cells were seeded in 96-well plates at 2.5 x104 cells per well in
100 µL of DMEM containing 10% FBS, 1% P/S, and 1 µg/mL puromycin and allowed to attach
for 24 hours. Small molecules were diluted to 1000-fold the exposure concentration in DMSO,
followed by a 10-fold dilution into Dubelcco’s Phosphate buffered saline (DPBS, Life
Technologies) and 1 µL added of the appropriate drug and dose to wells of seeded cells and a
final concentration of 0.1% v/v DMSO. For temozolomide and 6-thioguanine exposure
experiments, cells were exposed for 96 hours. For lapatinib, nintedanib, trametinib and zstk474
experiments, cells were exposed for 72 hours.

sci-Plex cell harvest and hash labeling

Cell harvest and sci-Plex labeling were performed as previously described13. Briefly,
drug-containing media was removed from wells, wells were washed with 100 µL of DBPS, and
50 µL of TrypLE (Invitrogen) was added to every well. Cells were detached by incubation with
TrypLE at 37°C. Once cells were detached, 100 µL of ice-cold DMEM was added to every well,
cells resuspended, cells transferred to v-bottom 96 well plates, cells pelleted by centrifugation
and washed with ice-cold DPBS. Cells were lysed to nuclei by the addition of 50 µL of cold lysis
buffer (CLB: 10 mM Tris HCl ph 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGE-PAL) containing 1%
v/v Superase-In and 100 nM (final concentration) hashing oligos (each unique to each well) of
the form:

5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[10bp-barcode]-
BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’

Where B is G, C or T (IDT), lysis was carried out on ice for 3 minutes, followed by the addition of
200 µM of 5% paraformaldehyde (EM solutions) in 1.25x PBS and incubated on ice for 15
minutes. Nuclei were then pooled, pelleted by centrifugation, and washed twice with 2 mL of
CLB containing Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NEB). After the
final wash, nuclei were resuspended in 1 mL of CLB containing Superase-In and 1% v/v of 20
mg/mL molecular grade BSA and snap-frozen in liquid nitrogen. Labeled nuclei were stored at
-80°C until the preparation of sequencing libraries.

Preparation and sequencing of single-cell RNA-seq and CROP-seq-OPTI sgRNA enrichment
libraries

Flash-frozen nuclei were thawed at room temperature, nuclei pelleted by centrifugation at 500 x
g for 5 minutes, the supernatant removed, nuclei re-suspended in 1 mL of CLB containing 1%
v/v Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NSB) and nuclei from uniquely
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hashed samples were pooled. Pooled nuclei were then pelleted by centrifugation at 500 x g for
5 minutes. For a subset of experiments, the same hashes were used for different replicates
and/or cell lines. As such, these were not combined and distributed across unique wells of the
plate in which reverse transcription (RT) was performed (e.g. for cells exposed to inhibitors and
damaging agents that alter cell stress pathways each line was hashed separately and each cell
line arrayed across 4 columns of the 96-well RT plate). Prior to RT, nuclei were further
permeabilized by incubation in 0.2% tryton-X100 (Sigma) in NSB. Nuclei were pelleted,
resuspended in 400 µL of NSB, and sonicated for 12 seconds using the low setting on a
Bioruptor sonicator (Diagenode). Nuclei were then pelleted, resuspended in 500 µL NSB,
stained with trypan blue (Life Technologies), and counted on a hemocytometer. Nuclei
distributed into skirted lo-bind 96 well plates (Eppendorf) at 20,000 (related to figures 1 & 2) or
40,000 nuclei per well in 22 µL of NSB and 2 µL of 10 mM dNTP mix (NEB).

To increase our rate of sgRNA assignment, we devised a sgRNA enrichment strategy specific to
combinatorial indexing sci-RNA-seq that relies on (1) the addition of a custom RT primer
targeting the sgRNA-containing puromycin transcript delivered by CROP-seq, (2) performing
combinatorial indexing solely on the i5 end of the mRNA molecule, and (3) addition of a sgRNA
enrichment PCR from the final mRNA library which targets the sgRNA-containing puromycin
transcript while maintaining the combinatorial i5 cell barcode on every molecule (Fig. 1A). We
designed the targeted RT primer to capture transcripts derived from CROP-seq-OPTI 23, a
modified version of CROP-seq incorporating an optimized single-guide RNA backbone 79 that
increases the stability of sgRNA association with dCas9.

For our sci-Plex-GxE protocol, RT was performed as previously described13 with the addition of
2 µL of 100 µM ligation-compatible indexed oligo-dT primer of the form:

5′-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3′,

Where N is any base (IDT) and 1 µL of 100 µM ligation compatible indexed CROP-seq-OPTI
targeting primer of the form

5’-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-ACTTTTTCAAGTTGATAACGGACTAGCCTT
ATTT-3’

Where N is any base (IDT) that were added to every well. The use of the OPTI-modified
backbone necessitated additional considerations for the design of the targeted RT primer to
ensure that the hairpin that mediates strong binding to dCas9 does not interfere with the
efficiency of reverse transcription. Primers were annealed by incubation at 55°C for 5 minutes,
followed quickly by incubation on ice. 14 µL of RT mix (8 µL of Superscript IV buffer, 2 µL of
Superscript IV enzyme, 2 µL of 100 mM DTT and 2 µL of RNAseOut rnase inhibitor, Invitrogen)
were added to each well, and RT performed as follows: 4°C - 2 min, 10°C - 2 min, 20°C for 2
minutes, 30°C for 2 minutes, 40°C for 2 minutes, 50°C for 2 minutes and 55°C for 15 minutes.
After RT, 60 µL of CLB containing 1% v/v of 20 mg/mL molecular grade BSA (NBB) were added
to every well, wells pooled, nuclei pelleted, resuspended in NSB and 10 µL of nuclei were
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redistributed into each well of a 96 well Lo-bind skirted plates. All experiments were done using
a single RT and ligation plate with the exception of the kinome screen where 4 RT and 4 ligation
plates were used. For the second round of combinatorial indexing, 8 µL of indexed ligation
primer of the form

5’-GCTCTG[9bp-or-10bp-barcode-A]/ideoxyU/ACGACGCTCTTCCGATCT[reverse-complement-
of barcode-A]-3’

(IDT) were added to each well, followed by the addition of 22 µL of ligation mix (20 µL quick
ligase buffer and 2 µL of quick ligase, NEB) and incubation at 25°C for 10 minutes. After ligation
60 µL of NBB were added to each well, wells pooled, nuclei pelleted by centrifugation at 700 x
g for 10 minutes, washed twice with NBB, nuclei counted, and redistributed into 96 well Lo-bind
skirted plates. The number of cells distributed was determined by the number of RT and ligation
barcodes in the experiment so as to minimize the number of total doublets in the experiment to
between 1-10% and the rate of doublets that cannot be filtered from sci-Plex hashes to 1% or
less according to birthday problem statistics80. Plates were stored at -80°C until further
processing. Second strand synthesis was performed after thawing by the addition of 5 µL of
second strand synthesis mix (3 µL of elution buffer [Qiagen], 1.33 µL mRNA second strand
synthesis buffer and 0.66 µL of second strand synthesis enzyme mix [NEB]) and incubated at
16°C for 3 hours. After second strand synthesis, DNA was tagmented by the addition of 10 µL
of tagmentation mix (0.01 µL of a custom TDE1 enzyme in 9.99 µL of 2x Nexterda TD buffer,
Illumina) and plates incubated at 55°C for 5 minutes. After tagmentation, 20 µL of DNA binding
buffer (Zymo) was added to each well and incubated at room temperature for 20 minutes, 40 µL
of Ampure XP beads (Beckman Coulter) was added to every well, and a cleanup was performed
according to manufacturer’s instructions with changes to the elution step. Prior to elution, beads
were incubated with 10 µL of USER mix (1 µL of 10X USER buffer and 1 µL of USER enzyme in
8 µL of nuclease-free water, NEB) and incubated at 37°C for 15 minutes. After incubation, 7 µL
of elution buffer was added to each well, beads were resuspended, plates were placed on a
magnetic stand and 16 µL of solution was transferred to 96 well Lo-bind skirted plates. For PCR,
20 µL of 2X NEBNext master mix, 2 µL of 10 µM indexed P5 primer of the form:

5′-AATGATACGGCGACCACCGAGATCTACAC-[index5-]ACACTCTTTCCCTACACGACGCTCT
TCCGATCT-3′

and 2 µL of 10 µM indexed P7 primer of the form:

5′-CAAGCAGAAGACGGCATACGAGAT-[index7]-GTCTCGTGGGCTCGG-3′

were added to each well. To account for the loss of the P7 index during sgRNA enrichment
PCR, each PCR plate was labeled with 96 unique P5 indices, and the P7 index was used as a
plate identifier. Libraries were generated using the following PCR program: 72°C for 5 min, 98°C
for 30 sec, 15 cycles of (98°C for 10 sec, 66°C for 30 sec, 72°C for 30 sec), and a final
extension at 72C for 5 minutes. After PCR, uniquely labeled wells were pooled, and 1 mL of
PCR product was subjected to a 0.7X Ampure cleanup. After the initial incubation, the
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supernatant was transferred to a new tube, and additional beads were added to arrive at a 1X
Ampure cleanup which will be the hash-containing fraction. Both fractions were further
processed following the standard Ampure XP protocol and eluted in 100 µL of elution buffer.

For the enrichment of sgRNA containing library fragments, a separate sgRNA enrichment PCR
was performed via nested PCR using the final sci-RNA-seq3 libraries as starting material. For
each library, 10-20 unique reactions were performed each using 1:100th of the mRNA library in a
reaction containing 25 µL of 2X NEBNext master mix an up-stream U6 targeting forward primer
of the form 5′- CTTGTGGAAAGGACGAAACACCG-3′, a reverse primer targeting the P5 flow
cell binding sequence (5′- AATGATACGGCGACCACCGA-3′), 0.5 µL of SYBR green (Life
Technologies) and nuclease-free water. Amplification was monitored by real-time PCR (BioRad),
PCR terminated during the extension phase just prior to saturation, PCR was purified using a
1X Ampure XP cleanup, and eluted into 50 µL. A second PCR reaction was performed as
described above with the following forward primer targeting the sgRNA proximal U6 promoter
and containing an Illumina read 2 primers binding sequence (5′-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTGGAAAGGACGAAACACCG-3′)
and reverse primer targeting the P5 flow cell binding sequence followed by a 1X Ampure
cleanup. Finally a third PCR was performed using a P7 index as above that could be used to
link an mRNA library to its corresponding sgRNA enrichment library and the reverse primer
targeting the P5 flow cell binding sequence followed by a 1X Ampure cleanup.

Library fragment sizes were determined using an Agilent TapeStation high sensitivity screen
tape (Agilent) and library concentration determined using a Qubit fluorometer (Life
Technologies). Libraries were sequenced on the NextSeq 550 (R1: 34 bp, R2: 100 bp, I1: 10 bp,
I2: 10 bp), Nextseq 2000 (R1: 34 bp, R2: 70 bp, I1: 10 bp, I2: 10 bp) and Novaseq (R1: 34 bp,
R2: 100 bp, I1: 10 bp, I2: 10 bp) platforms.

Data processing and generation of count data matrix

Sequences were demultiplexed using bcl2fastq (Illumina) filtering for reads with RT and ligation
barcodes within an edit distance of 2 bp. PolyA tails were trimmed using trim-galore
(https://github.com/FelixKrueger/TrimGalore) and reads were mapped to the human hg-38
transcriptome using STAR81. After alignment, reads were filtered by alignment quality and
duplicates were removed if they mapped to the same gene, the same barcode and the same
unique molecular identifier (UMI) or if they met the first 2 criteria and the UMI was within an edit
distance of 1 bp. Reads were assigned to genes using bedtools82. 3’ UTRs were extended by
100 bp in the gene model to account for short 3’ UTR annotations to minimize genic reads
labeled as intergenic. A knee plot was used to set a threshold above which a combinatorial cell
barcode confidently corresponded to a cell. UMI counts for cell barcodes that pass this
threshold were aggregated into a sparse matrix format, followed by the creation of a cell data
set object using Monocle3. Mitochrondrially encoded genes were excluded in downstream
analyses.

Hash and sgRNA assignment
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sci-Plex hashes and sgRNA containing puromycin transcripts derived from CROP-seq were
isolated from demultiplexed reads. Hashes were assigned as previously described 13. Briefly,
reads were considered hashes if (1) the first 10 bp of read 2 matched a hash in a hash whitelist
within a hamming distance of 2 and (2) contained a poly A stratched spanning the 12-16 base
pair region of read 2. For sgRNA assignment, read were considered CROP-seq derived if the
bases spanning position 24-42 matched a sgRNA in a sgRNA whitelist within a hamming
distance of 2 and (2) a TGTGG sequence at position 3-7 of read 2. Duplicated reads were
collapsed by their UMIs arriving at hash and sgRNA UMI counts for each nucleus in our
experiment. Finally, we tested whether a particular nucleus was enriched for one or more
particular hash or sgRNA as described in 13 for sci-Plex hashes.

Data pre-processing

For our kinome screen, multiplets were removed from our experiments using 3 orthogonal
approaches. First, doublets were inferred using scrublet83 specifying an expected doublet rate of
0.05 as calculated using a formulation of the birthday problem. Cells with a doublet score of
larger or equal to 0.25 were removed from our dataset ( 0.88% of cells). Next cells where the
ratio between the UMI counts of the most abundant and next most abundant hash (i.e., the top
to second best ratio) was less than 2.5 or cells with less than 5 totals hash UMIs were removed
from our analysis ( 4.9% of cells). Lastly, all of the cells from our experiment were co-embedded
in a UMAP[1] projection. Data were pre-processed by performing an initial dimensionality
reduction using principal component analysis (PCA) using genes expressed in at least 5% of the
cells from each cell line as feature genes and the top 25 dimensions were used to build our
UMAP. We specified 20 nearest neighbors and a minimum distance of 0.1 as UMAP
hyperparameters. We next clustered cells in this co-embedding using Leiden community
detection84 specifying a resolution parameter of 1e-6. This resulted in 5 UMAP partitions that
could be readily assigned to the 3 cell lines in our experiment by visual inspection. This
approach identified a small proportion of cells[2] where there was a mismatch between hash
and transcriptome identity. For our GSC and chemical exposure experiments, multiplets were
described as above without scrublet pre-filtering. For our proof-of-concept experiments in A172
cells, multiplets were removed using the hash filters described above.

Differential gene expression analysis

Differential gene expression analysis was performed using the fit_models function in Monocle3.
For defining the effect of drug exposure on the gene expression profiles of unperturbed cells, we
created subsets of our dataset for every exposure and set of NTC cells. For every gene
expressed in at least 5% of cells, we fit a generalized linear model of the form expression ~
log(dose + pseudocount) specifying “~ log(dose + 0.001)” for the model_formula_str parameter
in fit_models. We then combined all tests for all genotypes and doses and corrected for multiple
hypothesis testing using the Benjamini-Hochberg false discovery rate method. We chose a
pseudocount of 0.001 to preserve the relationship to a dose with minimal effect on cells based
on preliminary experiments (data not shown).
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For differential gene expression analyses, gene expression was log transformed after addition of
a pseudocount of 1. For experiments where we exposed perturbed A172 cells to temozolomide,
we created subsets of our dataset for every dose of temozolomide and every pairwise
combination of a target and NTC cells. For all expressed genes, we fit a generalized linear
model of the form expression ~ genotype specifying “~ gene_id” for the model_formula_str
parameter in fit_models. We then combined all tests for all genotypes and doses and corrected
for multiple hypothesis testing using the Benjamini-Hochberg false discovery rate method. To
determine differential kinase expression as a function of kinase perturbation, we created
subsets of our data for every pairwise combination of target and NTC cells. We next fit a
generalized linear model of the form expression ~ genotype + log(UMI counts) + replicate
specifying “~ gene_id + replicate + log(n.umi)” for the model_formula_str parameter in
fit_models and performed multiple hypothesis testing as above. To determine differential kinase
expression as a function of kinase perturbation and drug exposure, we created subsets of our
data for every exposure and every pairwise combination of target and NTC cells. We next fit a
generalized linear model of the form expression ~ genotype + log(dose + pseudocount) +
replicate specifying “~ gene_id + replicate + log(dose + 0.001)” for the model_formula_str
parameter in fit_models and performed multiple hypothesis testing as above. Aggregation of
gene expression counts and scoring cells by levels of expression signatures

Gene set analysis

Gene set enrichment analysis was performed using the piano R package85. The hallmarks and
oncogenic signatures57,86 gene sets were obtained from the Broad Institute’s Molecular
Signatures Database56. Hypergeometric testing was performed using feature genes as the
foreground and all genes as the background.

UMAP embedding of knockdown proportions

We used UMAP to visualize the relationship between genotypes and the proportion of
temozolomide and perturbation-induced cellular states. We performed an initial dimensionality
reduction using PCA returning the top 25 principal components using the union of all
differentially expressed genes as a function of genotype as feature genes. Genes that were
differentially expressed between negative controls and NTC cells were removed from the
analysis. We then performed dimensionality reduction using UMAP, specifying 20 nearest
neighbors and a minimum distance of 0.1 as hyper-parameters. We clustered cells within the
UMAP embedding using Leiden community detection84. We next calculated the frequency of
cells for each gRNA or genotype across clusters and used these matrices to initialize a UMAP
embedding.

Calculation of pairwise angular distance

To detect the effect of a genetic perturbation on a drug-induced transcriptional program we
calculated the pairwise angular distance of every cell to the average profile of non-targethe ting
cells exposed to the highest dose of each drug. The angular distance between two cells was
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calculated as the arc cosine transcriptome distance between the norm of the expression vector
for each cell over a set of feature genes such that
if is the expression vector of a cell across gene expression values, then the norm of the𝑉 𝑥
vector is defined as,

||𝑉|| = Σ𝑥2

and the angular distance between the vector norms for two cells is,

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  2/π *  𝑎𝑟𝑐𝑐𝑜𝑠𝑖𝑛𝑒[(𝑉𝑐𝑒𝑙𝑙1 ×  𝑉𝑐𝑒𝑙𝑙2) ÷ (||𝑉𝑐𝑒𝑙𝑙1|| ×  ||𝑉𝑐𝑒𝑙𝑙2||)] 

For all angular distance calculations in perturbed cells the comparisons were made between
every cell (perturbed and unperturbed) vs. the mean profile of NTC cells exposed to the highest
dose of each drug. We compared this approach to the use of the more common
Jensen-Shannon distance metric, observing good agreement between both distance metrics
(Supp Fig. 3G). Therefore, we chose to continue with angular distance, which is a less
expensive calculation, for our measure of similarity to unperturbed cells.

Inference of the relative transcriptional effective concentration 50 (TC50)

First, we fit a 4-parameter log-logistic dose-response model to the relationship between the
mean pairwise angular distance and dose of temozolomide for NTC control cells using the drc R
package87. We specified a formula of mean angular distance ~ dose and the function as LL.4 in
the drm function. We then estimated the effective dose 50, which we term our transcriptional
effective concentration 50 (TC50) using the ED function of the drc package. For each genotype,
we fit a line to the relationship between the log of the mean angular distance to NTC vs the log
of the dose of temozolomide. We then used those fits to determine the concentration at which
cells reached the mean angular distance to NTC that NTC cells achieved at their TC50.

Median kinase knockdown

We assessed the quality of our gRNA assignments in our kinome screen by examining the
median knockdown level across all perturbed kinases in our experiment. We calculated the
mean expression levels for each kinase in NTC cells and their respective perturbed target cells
at varying gRNA read cutoffs (i.e. 1-10 gRNA reads per cell). We ensured that our knockdown
estimates were not biased due to the zero inflation of sc-RNA-seq data and the larger proportion
of NTC cells in our experiment by permuting the gRNA-defined target labels and re-calculating
mean kinase knockdown. We then compared the distribution of knockdown levels between our
gRNA assigned and permuted data using the non-parametric two-sample Wilcoxon test.

Enrichment and depletion of knockdowns
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We assessed the relative enrichment and depletion of kinases in our experiment by comparing
the frequency of gRNAs targeting a particular kinase in our final dataset to its frequency in the
plasmid library used to create gRNA-delivering lentiviral particles. We defined the relative
proportion of gRNA against a kinase target as the mean-centered log of the ratio of the two
frequencies.

Identifying conserved responses to RTK pathway inhibition

We determined conservation in response to RTK pathway inhibition by comparing the dynamics
of differential gene expression of unperturbed A172, T98G, and U87MG cells. The mean
expression in NTC cells of differentially expressed genes as a function of lapatinib, nintedanib,
trametinib, and zstk474 exposure was clustered for each cell line individually by hierarchical
clustering. We chose k = 6 as the number of clusters for each cell line by visual inspection of
dendrograms across all cell lines. We then calculated the Jaccard coefficient for every pairwise
comparison of clusters across all 3 cell lines. Clusters with a Jaccard coefficient over 0.1 were
collapsed into conserved super-clusters by taking the union of the genes across similar clusters.

Estimation of the cell cycle stage of single-cells

Estimates for the cell cycle stage of individual cells was inferred as in13. Briefly, the expression
of genes associated with the G1/S and G2/M cell cycle stages was size-factor normalized 88,
and their expressions aggregated and log-transformed. We define a proliferation index as the
sum of the logged G1/S and G2/M scores.

Chemical genomic validation of kinases whose loss leads to changes in the induction of the
compensatory adaptive program

To validate the contribution of kinase hits to the induction of the compensatory adaptive
program, we exposed A172, T98G and U87MG to one of 23 compounds in the absence or
presence of trametinib, the strongest inducer of the adaptive compensatory program. Cells were
exposed to 0.01, 0.1, 1, and 10 µM doses of each compound, the absence or presence of 0.01,
0.1, 1 and 10 µM of trametinib or DMSO vehicle control. For trametinib co-exposure conditions,
the concentrations were matched for each compound and trametinib (e.g, 1 µM of compound +
1 µM trametinib). The concentration of DMSO control was set to 0.2% v/v across all single and
combinatorial exposures. Cells were exposed to compounds for 72 hours, harvested,
multiplexed using our previous sci-Plex protocol 13, and nuclear mRNA libraries were generated
and sequenced as described above.

Correlation of single and combinatorial chemical targeting to the effect induced by trametinib
exposure
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For our validation chemical genomic experiment, we performed differential expression analysis
using quasipoisson regression for the effect of each compound alone or in combination with
trametinib on the set of genes that compose the compensatory adaptive program. For each cell
line, we fit a generalized linear model of the form expression ~ log(dose + 0.001) + replicate.

For single chemical exposures, we focused on treatments that led to significant changes in the
expression of at least 100 genes of the program (FDR < 5% and a normalized beta coefficient
for the dose term of |βcoef| > 0.05) across two or more cell lines. We calculated the pairwise
Pearson’s correlation across all exposures on a matrix of the normalized β coefficients for the
dose term across all feature genes. We defined compound exposures with a significant
correlation to the effect induced by trametinib exposure as those with a Pearson’s ⍴ > ± 0.2 at
an FDR < 0.05.

For both single and combinatorial exposures, we also broadly examined the correlation
structure across exposures. We regressed the effect of cell line background for each correlation
matrix using the monocle3 function align_cds specifying a residual_model_formula_str of
“cell_line”. We used Leiden-based community detection as implemented in the cluster_cells
function of monocle3 on this corrected correlation matrix to identify groups of exposures that
lead to similar transcriptional changes across genes that make up the compensatory adaptive
transcriptional program. To visualize our results, we used this corrected correlation matrix to
initialize a UMAP embedding using the reduce_dimension function of monocle3 specifying
umap.n_neighbors of 5 and a umap.min_dist of 0.15.
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Supplementary Figures

Supplementary Figure 1. Sensitivity and specificity of sgRNA capture in the context of
combinatorial indexing RNA-seq with sci-Plex-GxE. (A) Plot of the log10 of the total number
of sgRNA reads for a given sgRNA in a given cell as a function of the ratio of that sgRNA to all
other sgRNAs in a cell (ratio). (B) Plot of the relationship between the proportions of the sgRNA
with the highest number of reads in a cell (ratio1) vs the second most prevalent sgRNA (ratio2).
(C) Density plot of the log10 of the top to second best ratio, the ratio between the proportion of
the top most prevalent sgRNA to the second most prevalent.
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Supplementary Figure 2. Effects of mismatch repair perturbation of gene expression
changes induced by exposure of glioblastoma cells to the chemotherapeutic agent
temozolomide. (A) Bar plots of the expression level of the mismatch repair components MSH2,
MSH3, MSH6, MLH1, PMS2 and the direct repair enzyme MGMT in A172 dCas9-KRAB cells
expressing individual sgRNAs against each gene or non targeting controls sgRNAs (NTC). Note
that MGMT is not expressed in A172 cells due to epigenetically silencing of the MGMT locus by
promoter methylation (citation). (B) Bar plots as in (A) across cells binned by their respective
target. (C) Volcano plots of the relationship between statistical significance and effect size for
the results of differential gene expression analysis of the effect of genetic perturbation of MSH2,
MSH3, MSH6, MLH1, PMS2, and MGMT on gene expression after exposure to various doses of
temozolomide. For each genotype, genetically perturbed and NTC cells were subsetted by
dose, expression was log-transformed and differentially expressed genes were identified by
fitting a generalized linear model of the form expression ~ genotype. All tests were then
combined and p-values corrected for multiple hypothesis testing using Benjamini-Hochberg.
Red indicates genes whose temozolomide-induced gene expression is significantly affected by
genetic perturbation at FDR < 0.05. (D-E) Upset plots of the overlap of differentially expressed
genes in the presence (D) or absence (E) of temozolomide exposure. (F) Correlation heatmap
of the normalized effect sizes across all perturbation-dependent differentially expressed genes
upon exposure to temozolomide. Rows and columns are labeled as “genotype_dose of
temozolomide”. Pearson’s correlation.
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Supplementary Figure 3. Summarizing state-level effects of temozolomide exposure as a
function of genetic perturbation. A-D) UMAP embedding of vehicle and temozolomide
exposed and genetically perturbed A172 dCas9-KRAB cells. Cells are colored as a function of
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PCA cluster (A), dose of temozolomide (B), aggregate expression of genes associated with
proliferation (C, proliferation index), or genotype (D). E) Density of cells across the UMAP
embedding from (A-D). F) Volcano plot the relationship between statistical significance and
effect size for the results of differential gene expression analysis of the exposure of NTC cells to
temozolomide using a model of expression ~ log(dose of temozolomide + 0.01). G) Correlation
of the pairwise distances calculated using cosine angular distance or Jensen-Shannon distance
between every cell and the mean expression of NTC cells exposed to 100 µM TMZ. H)
Heatmap depicting the log of the mean angular distance between between every cell and the
mean expression of NTC cells exposed to 100 µM TMZ for every genotype dose combination. I)
Distribution of pairwise angular distance to the mean expression of NTC cells exposed to 100
µM TMZ for genetically perturbed cells exposed to vehicle (left panel) or exposed to 10 µM
(middle panel) or 100 µM (right panel) temozolomide. Grey vertical lines refer to the median
angular distance of unperturbed NTC control cells for each dose of temozolomide. J) Violin plots
of the pairwise Jensen-Shannon distance between every cell and the mean expression of NTC
cells exposed to 100 µM TMZ as a function of dose of temozolomide to which cells for every
genotype were exposed to. K) Linear regression fits between dose and mean pairwise angular
distance for all genotypes in our experiment. EC50 denotes the concentration at which we
observed half of the shift in pairwise angular distance of temozolomide exposed NTC cells
obtained from a four parameter log-logistic regression. L) Linear regression fits as in K after
subsampling genetically perturbed cells (MSH2, MSH3, MSH6, MLH1, PMS2, and MGMT
perturbed) to 25 cells per genotype. Panels are ordered as in K. M) Inferred transcriptional
effective concentration (EC50) defined as the concentration of drug necessary to reach 50% of
the change in angular distance exhibited by TMZ-exposed NTC cells after subsampling from L.
Dashed line: maximum molarity of an aqueous solution as a threshold for genotypes where drug
cannot induce 50% of the effect observed in NTC.
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Supplementary Figure 4. Experimental design and QC. A) Schematic depicting the replicate
structure of our single-cell kinome screen. B) Correlation between replicate screens across the
three glioblastoma cell lines in our experiment.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.03.10.531983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.531983
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 5: Effect of kinase perturbation and RTK pathway inhibition on
GBM cell bulk viability. A. Proportion of cells expressing sgRNAs targeting individual kinases
in our screen relative to the starting proportion of sgRNAs in our CROP-seq kinome plasmid
library. Labels correspond to depleted kinases over a z-score of 1. B. Heatmap depicting
viability estimates derived from sci-Plex cell counts for unperturbed cells expressing
non-targeting or random targeting control sgRNAs.
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Supplementary Figure 6. Exposure to small molecule inhibitors targeting the RTK
pathway leads to dynamic rewiring of transcriptional networks in glioblastoma cells. A-C)
Volcano plots of the relationship between statistical significance and effect size of exposure to
small molecules targeting the RTK pathway (lapatinib, nintedanib, trametinib, zstk474) on gene
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expression for A172 (A), T98G (B), and U87MG (C) cells. A generalized linear model of the
form expression ~ log(dose) + replicate was fitted across log normalized expressions for every
subset containing cells exposed to one of the 4 agents and vehicle control. Red dots correspond
to genes whose expression is significantly altered by kinase perturbation at an FDR < 0.01. D-F)
UpsetR plots depicting the overlap in differentially expressed genes as a function of exposure to
RTK pathway targeting agents in A172 (D), T98G (E), and U87MG (F) GBM cells. G) Bar plots
depicting the percent of cells positive for the specified kinase transcripts differentially expressed
in at least 1 of 4 drug exposures across the 3 GBM lines in our study. H-J) Heatmaps depicting
the top overlap of genes between cell clusters for each pair-wise combination of teh 3 GBM cell
lines. Significant overlap is defined as having a Jaccard coefficient larger than 0.1 (details in K).
K) Distribution of Jaccard indices for the overlap between drug-responsive gene clusters from
Fig. 4A-C. Real vs. permutted refers to the Jaccard indices calculated between clusters without
and with perturbation of gene ids. Based on this test, we used a Jaccard index of 0.1 or larger to
collapse signature genes across cell types. L) Aggregate expression of conserved upregulated
(S1) and downregulated (S2) gene signatures as a function of each dose, exposure, and cell
type. M-N) Violin plots depicting the expression of conserved S1 (M) and S2 (N) signatures in
trametinib exposed glioma stem cell cultures.
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Supplementary Figure 7. Conserved drug-dependent signatures are correlated with the
cell cycle stage of a cell and by MEK kinase activity across all stages of the cell cycle.
A-B) Expression of conserved S1 (A) and S2 (B) signatures across NTC cells as a function of
the aggregate expression of genes associated with proliferation (top panels), G1/S (middle
panels), and G2/M (lower panels) phases of the cell cycle. C) Violin plots depicting the
expression of S1 (C) and S2 (D) signatures as a function of treatment across cells of varying
proliferation index quantiles (i.e. the x-axes of the top panel of A and B were divided into 4
equal-sized bins). Note that trametinib exposed cells have higher S1 expression and lower S2
expression across all bins compared to vehicle control.
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Supplementary Figure 8. Effect and similarity of CDK4/6, CDC7/CDK9 and additional
kinase inhibition on the trametinib induced compensatory program. A) Density plots of
upregulated and downregulated signature scores of cells treated with the MEK inhibitor
trametinib (MEKi), the CDK4/6 inhibitor palbociclib (CDK4/6i) or the CDC7 inhibitor PHA767491
(CDC7i) for the three glioblastoma cell lines. The 10 µM dose for PHA767491 exposed A172
and U87MG cells have been removed due to low recovery of cells for those exposures. Red
vertical lines denote the mean signature expression of vehicle exposed cells. *FDR < 0.05. B)
UMAP embeddings summarizing the pair-wise correlation of all specified single exposures
across genes that compose the compensatory program enacted by RTK pathway inhibition.
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Shapes refer to individual cell lines. C) UMAP as in B, colored by the correlation of each single
exposure to cells exposed to trametinib alone across genes that compose the compensatory
program enacted by RTK pathway inhibition. D) UMAP as in B colored by response group
clusters identified by Leiden-based community detection.
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Supplementary Figure 9. Summaries of the effect of single and combinatorial chemical
exposure on the expression of conserved S1 and S2 signature genes and cellular
viability. A-C) Cell count viability estimates derived from sci-Plex hash labels for each treatment
and dose across A172 (B), T98G (C), and U87MG (D) GBM cells. D-F) Cell count viability
estimates as in A-C for combinatorial trametinibn exposure across A172 (D), T98G (E), and
U87MG (F) GBM cells.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.03.10.531983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.531983
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Tables

Experiment Screen id Total
cells

Cells
with 1
hash

Cells
with
sgRNA

Cells
with 1
sgRNA

Median
UMIs per
cell

Duplication
rate

A172
CRISPRi
HPRT1/MMR

sciPlexGxE_1 18,585 17,599 15,589 14,716 6,120 20.4%

GBM
CRISPRi
Kinome
screen

sciPlexGxE_2 1,052,205 991,940 988,276 687,879 3140 (A172),
3065 (T98),
1833 (U87)

58.5%

Supplementary table 1: Summary of sci-Plex-GxE experiments in this study. Screen id
refers to the experiment identifier in the NCBI GEO submission of our dataset.
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Experiment Screen id Total
cells

Median UMIs
per cell

Duplication
rate

GSC RTK
inhibitor

sciPlex_3 135,710 531 (GBM4),
363 (GBM8),

281 (GSC0131),
341 (GSC0827)

21.3%

Combinatorial
chemical
genomics

sciPlex_4 213,404 851 (A172),
1044 (T98), 622

(U87)

28.9%

Supplementary table 2: Summary of sci-Plex chemical transcriptomics experiments in
this study. Screen id refers to the experiment identifier in the NCBI GEO submission of our
dataset.
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Compound Target(s) Known Off-Target(s) Selleckchem Cat. No.

Alectinib ALK S2762

AZ628 ARAF,BRAF,RAF1 S2746

AZD7762 CHK1,CHK2 S1532

BI-D1870 RSK1,RSK2,RSK3,RSK4 S2843

BMS345541 IKK1,IKK2 S8044

DDR1-IN-1 DDR1,DDR2 S7498

Doxorubicin TOP2A E2516

GSK690693 AKT1,AKT2,AKT3 ULK1,AMPK,STING S1113

Infigratinib FGFR1,FGFR2,FGFR3,FGFR4 S2183

KU-55933 ATM ULK1 S1092

MK-2206 AKT1,AKT2,AKT3 S1078

Nintedanib FGFR1,FGFFr2,FGFR3,PDGFRA,PDGFRB,
VEGFR1,VEGFR2,VEGFR3

S1010

Nutlin-3A MDM2 S8059

Palbociclib CDK4,CDK6 S4482

PHA-767491 CDC7,CDK9 CDK1,CDK2,GSK3B S2742

RIPA-56 RIPK1 S6511

Roscovitine CDK1,CDK2,CDK5 S1153

Salubrinal EIF2AK1,EIF2AK2,EIF2AK3,EIF2AK4 S2923

Temozolomide SN-1 alkylating agent S1237

Temsirolimus MTOR FKBP12 S1044

VE-821 ATR S8007

Volasertib PLK1,PLK2 PLK3 S2235

Supplementary table 3: Compounds used in our validation chemical genomics screen.
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Additional Supplementary Files

Supplementary File 1: Contains the results of differential gene expression testing as a function
of genotypes across TMZ exposed A172 cells.

Supplementary File 2: Contains the results of gene module analysis of the results from
differential gene expression testing as a function of genotypes across TMZ exposed A172 cells
(Supplementary File 1), the results from differential gene expression testing as a function of
TMZ dose in NTC cells and inferred TC50 calculations.

Supplementary File 3: Contains the results of differential gene expression testing as a function
of RTK pathway inhibitor dose in unperturbed cells.

Supplementary File 4: Contains the top kinase perturbations that modulate the adaptive
program across the 3 GBM lines used in this study.

Supplementary File 5: Contains the sgRNA protospacer sequences used in this study.
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