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ABSTRACT
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of
hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the
pancreatic 𝛽-cell is the main mechanism for reducing elevated plasma glucose. Here we present
a systematic modeling workflow for the development of kinetic pathway models using the Systems
Biology Markup Language (SBML). Steps include retrieval of information from databases, curation
of experimental and clinical data for model calibration and validation, integration of heterogeneous
data including absolute and relative measurements, unit normalization, data normalization, and
model annotation. An important factor was the reproducibility and exchangeability of the model,
which allowed the use of various existing tools. The workflow was applied to construct the first
consensus model of GSIS in the pancreatic 𝛽-cell based on experimental and clinical data from
39 studies spanning 50 years of pancreatic, islet, and 𝛽-cell research in humans, rats, mice, and
cell lines. The model consists of detailed glycolysis and equations for insulin secretion coupled
to cellular energy state (ATP/ADP ratio). Key findings of our work are that in GSIS there is a
glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic
metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One
of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results
in a large increase in ATP/ADP ratios in the 𝛽-cell with increasing glucose. Insulin secretion is
dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-
dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and
insulin secretion is a robust phenomenon observed across data sets, experimental systems and
species. Model predictions of the glucose-dependent response of glycolytic intermediates and
insulin secretion are in good agreement with experimental measurements. Our model predicts
that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and
ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have
developed and applied a systematic modeling workflow for pathway models that allowed us to
gain insight into key mechanisms in GSIS in the pancreatic 𝛽-cell.
Keywords: glucose-stimulated insulin secretion, GSIS, glycolysis, pancreas, kinetic model, systems biology

1 INTRODUCTION

The pancreas plays a vital role in maintaining1
glucose homeostasis (Woods et al., 2006) through2
the secretion of hormones from the islets of3

Langerhans. The most important hormones are 4
insulin, secreted by the pancreatic 𝛽-cells, and 5
glucagon, secreted by the 𝛼-cells, both of which play 6
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key roles in regulating glucose homeostasis (König7
et al., 2012a).8

Glucose-induced insulin secretion (GSIS) is9
a physiological process by which the pancreas10
releases insulin in response to an increase in blood11
glucose levels. When glucose enters the bloodstream12
after a meal, it is taken up by 𝛽-cells in the13
pancreas through glucose transporters, primarily14
GLUT2 (MacDonald et al., 2005). Once inside the15
𝛽-cells, glucose is metabolized via glycolysis, which16
produces energy in the form of ATP.17

The coupling of glycolysis with the insulin18
secretion mechanism in the 𝛽-cell is established by19
the regulatory effects of glycolytic intermediates20
on the levels of energy metabolites such as ATP21
and NADH (Newsholme et al., 2014; Prentki22
et al., 2013). The rise in ATP levels triggers23
a series of events that lead to the release of24
insulin. Specifically, the high ATP levels close25
ATP-sensitive potassium channels (Ashcroft, 2006),26
which leads to depolarization of the cell membrane27
and opening of voltage-gated calcium channels. The28
influx of calcium triggers the exocytosis of insulin-29
containing vesicles, leading to the release of insulin30
into the bloodstream (Rorsman and Braun, 2013;31
Guerrero-Hernandez and Verkhratsky, 2014). The32
𝐾𝐴𝑇𝑃∕𝐶𝑎2+ independent signaling mechanisms33
and the other metabolites besides glucose contribute34
to the amplification of the signaling events that35
trigger insulin secretion (Guay et al., 2013).36

GSIS by the pancreatic 𝛽-cell is the primary37
mechanism for lowering elevated plasma glucose38
levels. The amount of insulin released increases39
with the glucose in the bloodstream. This process40
is crucial for the regulation of blood glucose levels41
by promoting the uptake and use of glucose by cells42
throughout the body, such as muscle, fat tissue, and43
the liver (Di Camillo et al., 2014; Fritsche et al.,44
2008).45

Glycolysis is the primary metabolic pathway46
responsible for GSIS. It involves the uptake of47
glucose and its conversion to pyruvate, which is48
critical for ATP synthesis and maintenance of ATP49
levels. Experimental data from metabolic profiling50

studies in islet cells support the key role of glycolysis 51
in GSIS (Spégel et al., 2013, 2015; Taniguchi et al., 52
2000). As glucose levels increase, glycolytic flux 53
and most glycolytic intermediates increase in a dose- 54
dependent manner. Changes in adenine nucleotide 55
levels due to variations in glycolytic flux lead 56
to changes in nucleotide ratios, with increasing 57
glucose levels resulting in a positive correlation 58
between the ATP/ADP ratio and Ca2+ response 59
and insulin release. This trend is consistent across 60
several studies (Detimary et al., 1996; Malaisse 61
et al., 1978; Salvucci et al., 2013), including isolated 62
islets perfused with glucose, rat and mouse tissue 63
homogenates, and insulin-secreting cell lines. The 64
increase in ATP/ADP ratio ranges from 2 to 7 65
when glucose levels are increased from 2.8mM 66
to 30mM, indicating similar behavior in different 67
experimental systems studying insulin secretion by 68
the pancreas (Huang and Joseph, 2014). 69

Mathematical models have been developed 70
to investigate the metabolic and signaling 71
mechanisms that trigger and amplify insulin 72
secretion. Early models of 𝛽-cells focused on 73
examining the relationship between glycolytic 74
oscillations and pulsatile insulin release to 75
understand GSIS (Bertram et al., 2007; Tornheim, 76
1997). Merrins et al. analyzed the oscillations in 77
glycolytic intermediates (i.e. fructose-6-phosphate, 78
fructose-2,6-bisphosphate, and fructose-1,6- 79
bisphosphate) and their effect on pulsatile insulin 80
secretion (Merrins et al., 2012), while other models 81
integrated glycolytic flux with mitochondrial ATP 82
production to study the role of reducing equivalents 83
such as pyridine nucleotides in enhancing insulin 84
secretion (Westermark et al., 2007; Bertram et al., 85
2006). Jiang et al. further combined previously 86
developed models of glycolysis, citric acid cycle, 𝛽- 87
oxidation, pentose phosphate shunt, and respiratory 88
chain and studied the local and global dynamics 89
of the GSIS mechanism in response to parameter 90
perturbations. These models were coupled with the 91
calcium signaling pathway of Fridyland et al. to 92
create an integrated metabolic model (Fridlyand 93
and Philipson, 2010; McKenna et al., 2016). 94

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532028doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532028


Deepa Maheshvare et al. Model of 𝛽-cell GSIS

To investigate the synergistic insulinotropic effect95
of other nutrient sources, Salvucci et al. (Salvucci96
et al., 2013) developed a model by integrating97
alanine metabolism with glucose metabolism, the98
citric acid cycle, and the respiratory chain. Gelbach99
et al. developed a system of 65 reactions integrating100
glycolysis, glutaminolysis, the pentose phosphate101
pathway, the citric acid cycle, the polyol pathway,102
and the electron transport chain to study the kinetics103
of insulin secretion (Gelbach et al., 2022).104

However, the majority of these models are based105
on earlier models that were developed using kinetic106
data from organisms other then humans or non-107
pancreatic tissues, such as a glycolysis model that108
utilized kinetic data from experiments on yeast cell109
extract, or a glycolysis model based on kinetic data110
from mammalian muscle (Smolen, 1995). Often,111
the data used to build these models is limited and112
comes from a single experimental study. In most113
models specific to 𝛽-cells, reaction kinetics are114
described by simple mass-action rate laws. There115
exists no detailed kinetic model of the changes116
in glycolysis during GSIS that can effectively117
integrate the observed changes in glycolytic and118
energy intermediates from a wide range of GSIS119
experiments.120

In systems biology and systems medicine,121
ensuring the reproducibility of computational122
models and integrating diverse data from123
multiple sources into these models are critical124
challenges. Standards for model description,125
such as the Systems Biology Markup Language126
(SBML) (Hucka et al., 2015; Keating et al., 2020),127
have been developed to enable the reusability128
and reproducibility of existing models, but they129
have yet to be utilized in the field of pancreatic130
GSIS modeling. Furthermore, there is a need to131
address how to integrate heterogeneous data from132
different studies conducted in different organisms133
and experimental systems in the context of GSIS134
modeling.135

This study aims to develop a detailed kinetic model136
of GSIS and the associated changes in glycolysis in137
the pancreatic 𝛽-cell. The novel contributions of this138

work include a systematic curation and integration 139
of changes in glycolytic metabolites from different 140
experimental studies across different species and 141
experimental systems. Based on this unique data 142
set, a detailed kinetic model of glycolysis and GSIS 143
was constructed using a systematic approach with a 144
focus on reproducibility. This approach allowed the 145
establishment of a consensus model of the changes 146
that occur in insulin secretion with varying glucose 147
concentrations. The overall goal was to provide a 148
better understanding of the mechanisms underlying 149
GSIS and to contribute to the development of 150
improved computational models of these processes. 151

2 RESULTS

Our study introduces a detailed kinetic model of 152
GSIS in the pancreatic 𝛽-cell, which has the ability 153
to simulate alterations in glycolytic intermediates 154
and ATP/ADP ratio due to glucose levels and the 155
effect of change in the energy state of the 𝛽-cell on 156
insulin secretion. 157

2.1 Systematic curation of data set of 158
changes in GSIS 159

In the course of this study, we compiled a 160
comprehensive data set (Tab. 1) of GSIS based 161
on experimental and clinical data from 39 studies 162
spanning half a century of research on pancreatic, 163
islet, and 𝛽-cell function in humans, rats, mice, 164
and cell lines. Specifically, we systematically 165
curated metabolomics data from studies conducted 166
between 1970 and 2020, comprising information 167
on the concentration of glycolytic intermediates 168
and cofactors in both time-course and steady- 169
state experiments, as well as the corresponding 170
glucose doses. The data set contains 17 metabolites, 171
comprising 359 data points from steady-state 172
experiments and 249 data points from time-course 173
studies. It includes both absolute and relative 174
measurements of metabolite changes, and an 175
overview of the available information for each 176
metabolite and study is presented in Fig. 1. 177

This data set represents the first open and 178
FAIR (findable, accessible, interoperable, and 179
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reusable) large-scale collection of data on changes in180
glycolysis and insulin secretion in the pancreatic 𝛽-181
cell during GSIS. We used the absolute and relative182
measurements of glycolysis metabolites and insulin183
secretion rates in this data set for model calibration184
and evaluation.185

The data set is available under a CC-BY4.0 license186
from https://github.com/matthiaskoenig/pancreas-187
model.188

2.2 Reproducible modeling workflow189

In this study, we describe a comprehensive190
modeling workflow for building small kinetic191
pathway models (Fig. 2) using SBML (Hucka et al.,192
2015; Keating et al., 2020).193

In our model-building workflow, we followed194
several steps to construct a kinetic SBML model195
of glycolysis. A) First, we built an SBML model196
based on glycolytic reactions and intermediates from197
existing models and pathway databases. B) We then198
annotated metabolites and reactions with metadata199
information which was extended by querying VMH200
and the BiGG database, resulting in mappings201
to additional resources such as HMDB, BioCyc,202
MetaNetX, ChEBI, and SEED. C) We collected203
and retrieved kinetic parameters such as 𝐾𝑀 , 𝐾𝐼 ,204
𝐾𝐴, and 𝐾𝑒𝑞 constants from databases and D)205
integrated them with synonyms associated with206
each queried metabolite using compound identifier207
mapping services. E) We integrated the resulting208
parameters and assigned median values to the209
model parameters. F) Next, we curated data from210
studies reporting metabolite concentrations and211
changes, and insulin secretion in pancreatic, islet,212
and 𝛽-cell lines through a literature search. G)213
Unit normalization was then performed to convert214
reported metabolite concentrations and insulin215
secretion to mmole/l (mM) and nmole/min/ml (𝛽-216
cell volume), respectively. H) Data normalization217
was performed to remove systematic differences218
between data reported in different studies and219
experimental systems. I) Next, values for kinetic220
parameters, initial concentrations, volumes, rate221
equations, and annotations were integrated into222

the stoichiometric model. J) We calibrated the 223
model by parameter optimization using time-course 224
and steady-state data and K) generated the final 225
SBML kinetic model using all the information. 226
L) Finally, we performed model predictions of 227
glycolytic intermediates and insulin response as a 228
function of varying glucose concentrations. Steps 229
were performed iteratively to fill gaps and extend 230
the data set and model. 231

2.3 Computational model 232

Using the established data set, we utilized 233
the aforementioned workflow to develop the first 234
consensus model of GSIS in the pancreatic 𝛽-cell. 235
The model is comprised of detailed glycolysis and 236
equations for insulin secretion which are coupled 237
to the cellular energy state (ATP/ADP ratio). The 238
metabolites and reactions incorporated into the 239
kinetic model are depicted in Fig. 3, and their 240
biochemical interactions are represented through 241
a system of ordinary differential equations. The 242
model consists of 21 enzyme-catalyzed reactions, 243
25 metabolites, and 91 parameters, and also includes 244
an empirical model that connects the energy state 245
of the 𝛽-cell to insulin secretion. 246

When glucose levels are high, GLUT transporter 247
allows glucose to enter the cell, and glucokinase 248
converts glucose to glucose-6-phosphate. The 249
upper glycolysis produces fructose-6-phosphate, 250
fructose-1,6-phosphate, and triose phosphates like 251
dihydroxyacetone phosphate and glyceraldehyde 252
phosphate. Lower glycolysis then leads to the 253
creation of 3-phosphoglycerate, 2-phosphoglycerate, 254
phosphoenolpyruvate, and pyruvate. Pyruvate can 255
be transformed into lactate or transported to the 256
mitochondria. For each glucose molecule, two ATP 257
molecules are produced. Changes in ATP/ADP ratio 258
trigger insulin secretion. 259

The SBML model is available 260
under a CC-BY4.0 license 261
from https://github.com/matthiaskoenig/pancreas- 262
model. 263

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532028doi: bioRxiv preprint 

https://github.com/matthiaskoenig/pancreas-model
https://github.com/matthiaskoenig/pancreas-model
https://github.com/matthiaskoenig/pancreas-model
https://github.com/matthiaskoenig/pancreas-model
https://github.com/matthiaskoenig/pancreas-model
https://github.com/matthiaskoenig/pancreas-model
https://doi.org/10.1101/2023.03.10.532028


Deepa Maheshvare et al. Model of 𝜷-cell GSIS

2.4 Normalization of data264

The aim of this study was to investigate265
variations in glycolysis, glycolytic intermediates,266
energy metabolites, and insulin secretion during267
GSIS using the established model. In order to268
integrate heterogeneous experimental data for each269
metabolite and insulin secretion rate, we conducted270
a two-step normalization process to standardize271
time course and dose-response measurements. The272
normalization process involved unit normalization273
(as discussed in Sec. 4.7) and data normalization (as274
discussed in Sec. 4.8) to normalize the diverse data275
and eliminate systematic deviations for individual276
studies. We present the case of glucose 6-phosphate277
as an example of the normalization process (see278
Fig. 4). The experimental curves were converted279
to relative (fold) and unit-normalized absolute280
measurements (Fig. 4A and Fig. 4B). To combine281
the fold data and absolute data, we multiplied282
the fold values by the basal concentration to283
obtain absolute values (Fig. 4C). If the basal284
metabolite concentration was not reported, we285
used the mean curve of the absolute data at the286
pre-incubation glucose dose of the experiment287
to determine the basal value. For metabolites288
consisting of only relative measurements, we used289
the half-saturation 𝐾𝑚 value of the metabolite as290
an estimate for the basal concentration. Using291
this strategy, we converted all fold-changes and292
time courses to absolute data with standardized293
units, which was then combined with the existing294
absolute data. However, the standard deviation of295
the combined data set measurements was high, and296
large systematic differences between studies could297
be observed. We determined scaling factors for298
every study to minimize the difference between299
all studies based on least-squares minimization (as300
discussed in Sec. 4.8.1). The resulting normalized301
data (Fig. 4D) was then used for model calibration.302
We applied this procedure to all metabolites in the303
model as well as the insulin secretion rate, reducing304
the variability in the data substantially.305

2.5 Changes in glycolytic metabolites and 306
insulin secretion in GSIS 307

Our work has uncovered several key findings 308
related to GSIS. First, we found that almost all 309
glycolytic intermediates increase in a glucose- 310
dependent manner across a wide range of glucose 311
concentrations, as illustrated in Figures 5, 6, and 312
7. This increase in glycolytic intermediates is 313
accompanied by a corresponding increase in energy 314
metabolites, especially ATP and NADH. However, 315
one notable exception is ADP, which decreases 316
with increasing glucose levels. As a result, there 317
is a significant increase in ATP/ADP ratios in 318
𝛽-cells with increasing glucose, a key factor in 319
insulin secretion. This phenomenon is robust across 320
different data sets, experimental systems, and 321
species. An important observation is that not only 322
ATP and NADH increase with increasing glucose, 323
but also the total ATP (ATP + ADP) and total 324
NADH (NAD + NADH). 325

Our model was able to predict the glucose- 326
dependent response of glycolytic intermediates 327
and insulin secretion with good agreement to 328
most experimental measurements, as summarized 329
in Table 1. We observed a dose-dependent 330
increase in glycolytic intermediates when glucose 331
concentrations were increased from 0.01 mM to 332
35 mM. The model predicts that steady states of 333
glycolytic metabolites under constant glucose are 334
reached after approximately 20 minutes, with only 5- 335
10 minutes required to reach steady state according 336
to our simulations. 337

Figure 8A illustrates the relationship between 338
glucose dose and insulin release, while Figure 8B 339
shows the effect of varying the ATP/ADP ratio 340
on the insulin response. Specifically, the ATP 341
and ADP concentrations of the 𝛽-cell increase and 342
decrease, respectively, with the external glucose 343
dose, resulting in an increased ATP/ADP ratio 344
that triggers insulin release. The model is able 345
to reproduce the steady-state insulin secretion 346
depending on glucose concentration, but fails to 347
describe the fast initial insulin release. 348
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2.6 Sensitivity analysis of parameters349
affecting GSIS350

To determine how the model parameters affect351
the rate of insulin release, we performed a local352
sensitivity analysis (Sauro, 2020). Figure 8C shows353
the sensitivity of insulin flux to a 10% change354
in model parameter values at different glucose355
concentrations. The rate of insulin secretion depends356
on the ATP/ADP ratio, so perturbing parameters357
that affect ATP formation and consumption has358
strong effects. Figure 8D shows the highly sensitive359
parameters that have positive and negative effects360
on insulin secretion, including factors affecting361
ATP consumption, ATP formation, hexokinase,362
phosphofructokinase, and ATP/ADP-dependent363
insulin secretion.364

In conclusion, our systematic pathway modeling365
workflow provides insights into the key mechanisms366
of GSIS in the pancreatic 𝛽-cell.367

3 DISCUSSION

We have developed a comprehensive kinetic368
model of GSIS in the pancreatic 𝛽-cell that can369
simulate glucose-dependent changes in glycolytic370
intermediates, ATP/ADP ratio, and their effect371
on insulin secretion. The main objective of this372
study was to establish a standardized workflow for373
data integration and normalization to construct a374
tissue-specific model of glycolysis and GSIS in the375
𝛽-cell. Although we did not model other important376
pathways related to ATP homeostasis, such as the377
citric acid cycle, the pentose phosphate pathway,378
and the respiratory chain, our workflow can be379
easily extended to include them. Incorporating380
these pathways into our model will enable us to381
explicitly model the regulatory effect of downstream382
metabolites on the ATP/ADP ratio and insulin383
secretion. Previous studies have shown that fatty384
acids and amino acids can also induce insulin385
secretion in addition to glucose. Therefore, linking386
glucose metabolism with fatty acid and amino387
acid metabolism could help in understanding the388
insulinotropic effects of other fuel sources.389

The increase in ATP levels triggers a cascade 390
of events that culminate in the release of 391
insulin from 𝛽- cells. Precisely, high ATP levels 392
prompt the closure of ATP-sensitive potassium 393
channels (Ashcroft, 2006). Consequently, the 394
cell membrane depolarizes, opening voltage-gated 395
calcium channels, which allows calcium influx. The 396
influx of calcium triggers exocytosis of insulin- 397
containing vesicles, leading to the release of insulin 398
into the bloodstream (Rorsman and Braun, 2013; 399
Guerrero-Hernandez and Verkhratsky, 2014). These 400
electrophysiological changes resulting in insulin 401
secretion were not modeled explicitly, but the 402
effect of the ATP/ADP ratio on insulin secretion 403
was modeled using a phenomenological (Hill-type) 404
expression. Consequently, the model’s predictive 405
capacity is limited to the steady-state glucose- 406
insulin secretion dynamics. Expanding the model 407
to explicitly describe these phenomena would 408
allow to study experimentally observed patterns 409
such as biphasic insulin secretion (Pedersen et al., 410
2008). Of note, the dynamics changing glycolytic 411
intermediates were correctly described by the 412
model. 413

Although our model has some limitations, it 414
represents the first data-driven approach to integrate 415
information from diverse sources and experimental 416
setups. Moreover, it provides the first systematic 417
analysis of the glycolytic changes that occur during 418
insulin secretion in response to different glucose 419
levels. Our study reveals that in GSIS, almost 420
all glycolytic intermediates increase in a glucose- 421
dependent manner as do total ATP and NADH, 422
which is a significant finding. 423

Our model was developed to address the 424
limitations of existing pancreatic 𝛽-cell models 425
of glucose-insulin kinetics. These models often 426
suffer from several drawbacks such as limited 427
evaluation to a single data set, non-standardized 428
formats of experimental data and kinetic parameters, 429
and non-reproducible formats. To overcome these 430
limitations, we have created open, free, and FAIR 431
assets that can be used for the study of pancreatic 432
physiology and GSIS. These assets include a fully 433
reproducible SBML model of pancreatic 𝛽-cell 434
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glycolysis, a data curation workflow, strategies for435
unit and data normalization, and a large database436
of metabolic data of the pancreatic 𝛽-cell. Our437
systematic model-building workflow can be used as438
a blueprint to construct reproducible kinetic models439
of cell metabolism.440

Computational modeling faces a significant441
challenge due to the substantial variation in data442
across different experimental systems, species, and443
cell lines. Often, relative data instead of absolute444
data is reported, further complicating the task445
of data integration. In this study, we developed446
a reliable data normalization workflow that was447
applied to experimental and clinical data from448
39 studies conducted over the past 50 years on449
pancreatic, islet, and 𝛽-cell function in various450
species and cell lines. Our approach substantially451
reduced data heterogeneity and revealed a highly452
consistent response in glycolytic metabolites and453
insulin secretion. The high degree of conservation454
in the system of GSIS may have contributed to455
the effectiveness of the normalization workflow, as456
similar mechanisms are at play in different species,457
and the general changes can be observed across458
various experimental systems.459

The study has laid a strong groundwork for460
enhancing our comprehension of the underlying461
reasons behind impaired insulin secretion. By462
mapping proteomics or transcriptomics data onto463
specific pathways, the developed model could be464
utilized to gain further insight into changes in GSIS,465
for instance in diabetic patients.466

Furthermore, this model can serve as a crucial467
component for physiological whole-body models468
of glucose homeostasis, allowing researchers to469
investigate the relationship between insulin release470
and glucose uptake by insulin-responsive tissues.471

In conclusion, this study utilized a systematic472
modeling workflow to gain insight into the key473
mechanisms involved in glucose-stimulated insulin474
secretion (GSIS) in pancreatic 𝛽-cells. When475
extended for translational purposes in clinical476
settings, it can serve to create reference models to477
identify variations in subjects which can lead to478

useful inferences regarding underlying metabolic 479
conditions with therapeutic relevance. 480

4 METHODOLOGY

The workflow for building the kinetic model is 481
illustrated in Fig. 2, with the following sections 482
providing information on the individual steps. 483

4.1 Stoichiometric model 484

Chemical formulas and charges were assigned 485
to all metabolites, and reactions were examined 486
to ensure that they maintained mass and charge 487
balance. The kinetic model encompasses glycolytic 488
reactions and correlates the energy status of the 𝛽- 489
cell with insulin secretion. sbmlutils (König, 2022c) 490
was used to create and validate the model, while 491
cy3sbml (König et al., 2012b) was used to confirm 492
its coherence. The mass and charge balance of the 493
system was verified using cobrapy (Ebrahim et al., 494
2023). 495

4.2 Metadata integration 496

Adding semantic annotations to models 497
is an essential aspect of improving their 498
interoperability and reusability, as well as 499
facilitating data integration for model validation 500
and parameterization (Neal et al., 2019, 2020). 501
To describe the biological and computational 502
significance of models and data in a machine- 503
readable format, semantic annotations are encoded 504
as links to knowledge resource terms. Open 505
modeling and exchange (OMEX) metadata 506
specifications were employed to annotate model 507
compartments, species, and reactions with metadata 508
information (Fig. 2B). 509
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Case study: Phosphoglycerate kinase
The enzyme phosphoglycerate kinase
(PGK) catalyses the conversion of 1,3-
biphosphoglycerate (bpg13) and ADP to form
3-phosphoglycerate (pg3) and ATP.

𝑎𝑑𝑝 + 𝑏𝑝𝑔13 ⇌ 𝑎𝑡𝑝 + 𝑝𝑔3

In our model, PGK is described by the
following annotations:
SBO:0000176, vmhreaction/PGK,
bigg.reaction/PGK,
kegg.reaction/R01512, ec-code/2.7.2.3,
biocyc/META:PHOSGLYPHOS-RXN,
uniprot:P00558, uniprot:P07205.

510

The model components, including physical511
volumes, reactions, metabolites, and kinetic-rate512
laws, were annotated using Systems Biology513
Ontology (SBO) terms, which describe the514
computational or biological meaning of the model515
and data (Courtot et al., 2011). Biomedical516
ontology services such as Ontology Lookup Service517
(OLS) (Cote et al., 2010), VMH (Noronha et al.,518
2019), and BiGG (King et al., 2016) were used519
to collect these terms. Additional information for520
species and reactions were gathered from various521
databases such as HMDB, BioCyc, MetaNetX,522
ChEBI, and SEED. For instance, the model’s523
metabolites were annotated with identifiers from524
VMH, BiGG, KEGG, HMDB, BioCyc, ChEBI,525
MetaNetX, and SEED, while reactions were526
annotated with VMH, Rhea, MetaNetX, SEED,527
BiGG, BioCyc, and KEGG identifiers (Hari and528
Lobo, 2022). Enzymes catalyzing reactions were529
annotated with identifiers from enzyme commission530
(EC) numbers, UniProt (The UniProt Consortium,531
2017), and KEGG. Finally, the annotations532
were incorporated into the SBML file using533
sbmlutils (König, 2022c) and pymetadata (König,534
2022b).535

Case study: 1,3-biphosphoglycerate
There is currently a bottleneck in data
integration due to the use of multiple
synonyms to refer to a single compound in
data repositories. For instance, bpg13
is identified by different names in
SABIO-RK (Glycerate 1,3-bisphosphate,
3-phospho-D-glyceroyl phosphate) and
BRENDA (3-phospho-D-glyceroyl
phosphate). Additionally, the labeling
of 1,3-biphosphoglycerate, abbreviated as
DPG, varies across existing 𝛽-cell models
(e.g., 1,3-bisphospho-D-glycerate in (Jiang
et al., 2007) and 1,3-biphosphoglycerate
in (Salvucci et al., 2013)). Overall, bpg13
is associated with seven synonyms:
1,3-Bisphospho-D-glycerate, 13dpg, 3-
Phospho-D-glyceroylphosphate, Glycerate
1,3-bisphosphate, 3-phospho-d-glyceroyl-
phosphate, 1,3-diphosphoglyceric acid,
3-Phospho-D-glyceroyl phosphate. This
issue makes it difficult to integrate data
and information from different resources,
highlighting the need to link chemical entities
in the model to knowledge resource terms.
In our model, bpg13 is clearly described
by the following metadata annotations:
SBO:0000247, vmhmetabolite/13dpg,
bigg.metabolite/13dpg,
kegg.compound/C00236,
biocyc/META:DPG, CHEBI:16001,
inchikey:LJQLQCAXBUHEAZ-
UWTATZPHSA-N.
The formula and charge ofbpg13 are
C3H4O10P2 and -4, respectively.

536

4.3 Kinetic parameters 537

Kinetic parameters, such as half-saturation 538
constants (𝐾𝑀 ), inhibition constants (𝐾𝐼 ), 539
activation constants (𝐾𝐴), and equilibrium 540
constants (𝐾𝑒𝑞), were gathered from literature 541
and a variety of databases (see Fig. 2C). 542
Values were programmatically accessed 543
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from UniProt (The UniProt Consortium,544
2017), BRENDA (Placzek et al., 2017) using545
brendapy (König, 2022a), and SABIO-RK (Wittig546
et al., 2018). These databases were searched547
using an organism’s NCBI taxonomy identifier548
and reaction EC number as input search terms.549
Various parameters, including measurement type550
(𝐾𝑚, 𝐾𝑖, and 𝐾𝑎), experimental conditions (pH,551
temperature), KEGG reaction identifiers, enzyme552
type (wildtype or mutant), associated metabolite553
identifiers (SABIO compound name or BRENDA554
ligand id), UNIPROT identifiers associated with the555
isoforms of an enzyme, source tissue, and details556
of data source (PubMed identifier) were obtained.557
Since there is limited availability of kinetic data558
for Homo sapiens, we also searched for parameter559
values reported in studies of animal species that are560
closely related to humans and utilized them if no561
data were available for humans.562

4.4 Synonym mapping563

To map compound synonyms associated with564
each queried metabolite, we utilized compound565
identifier mapping services and available metadata566
annotations. First, we associated the name of each567
compound with internal database identifiers, such568
as the internal identifier of Glycerone-phosphate in569
SABIO, which is 28. Then, we linked the internal570
identifiers to external identifiers, such as those571
from ChEBI and KEGG. The external identifiers572
associated with the SABIO ligand identifier were573
obtained from cross-ontology mappings available574
in SABIO-RK. Similarly, we queried the REST575
API of UniChem to obtain the external identifiers576
associated with the BRENDA ligand identifier. By577
doing so, we were able to map most of the kinetic578
parameters to their respective compounds (Fig. 2D).579

4.5 Model parameters580

For each parameter in the model, the median581
value was calculated after synonym mapping582
and the values were assigned to the model583
parameters, see Fig. 2E. This was performed for584
initial concentrations, equilibrium 𝐾𝑒𝑞 constants,585

half-saturation constants 𝐾𝑚, inhibition 𝐾𝑖, and 586
activation 𝐾𝑎 constants. 587

4.6 Data curation 588

The next step involved curating data from 589
studies that reported metabolite values, insulin 590
secretion, or maximal velocities of glycolytic 591
reactions 𝑉𝑚𝑎𝑥 in pancreatic, islet, and 𝛽-cell 592
lines (Fig. 2F). Relevant studies were identified 593
through a literature search in PubMed, with a 594
focus on time course and dose-response profiles 595
of metabolite concentrations for metabolites 596
and insulin secretion. Tissue homogenates were 597
prepared by isolating islets from rodents, humans, or 598
insulin-secreting cell lines (see Tab. 1). Assays were 599
performed by stimulating the medium with various 600
pre-incubation and incubation concentrations of 601
glucose. To curate the data, established curation 602
workflows from PK-DB (Grzegorzewski et al., 603
2021b), which were applied in a recent meta- 604
analysis (Grzegorzewski et al., 2021a), were used. 605
The numerical data was digitized by extracting 606
the data points from the figures and tables using 607
WebPlotDigitizer (Rohatgi, 2021). The incubation 608
time and glucose concentration of the stimulation 609
medium were recorded for all measurements, and 610
meta-information such as organism and tissue type 611
were documented. 612

The data is available under a CC-BY 4.0 license 613
from https://github.com/matthiaskoenig/pancreas- 614
model. In this study, version 0.9.5 of the data set is 615
used (Deepa Maheshvare and König, 2023). 616

4.7 Unit normalization 617

The data measured in different studies is 618
often reported in different units. Therefore, unit 619
normalization was performed to integrate the data 620
and convert metabolite concentrations and insulin 621
secretion to standardized units of mmole/l (mM) 622
and nmole/min/ml (𝛽-cell volume), respectively 623
(Fig. 2G). 624

Absolute measurements reported in metabolic 625
profiling studies were found in various units such 626
as per gram DNA, per gram wet weight or dry 627
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weight of the islet tissue, per cell, per islet,628
etc. To use these values for model calibration,629
both the absolute and relative measurements were630
first converted to concentration units in mM. The631
absolute values were converted to model units632
by multiplying the raw values with appropriate633
unit conversion factors. For instance, the islet634
content of glucose 6-phosphate, G6P, (pmol/islet)635
was converted to concentration units (mM) using636
the distribution volume of water in the islet637
(2nl/islet) (Ashcroft et al., 1970) as the conversion638
factor. Relative measurements were mainly reported639
with reference to a basal concentration. These640
relative measurements were converted to absolute641
quantity by multiplying the fold values with the642
respective metabolite concentration at the basal or643
pre-incubation concentration of glucose.644

4.8 Data normalization and integration645

Data collected from experiments performed in646
different laboratories, under different experimental647
conditions, and with different animal species648
showed significant variability after unit649
normalization. Therefore, data normalization was650
performed to eliminate systematic discrepancies651
between data reported in different studies (as652
shown in Fig. 2H). To achieve this, least squares653
optimization was used to minimize the distance654
between individual experimental curves and655
the weighted average of all curves for a given656
metabolite. The data normalization process involved657
a two-step procedure in which the steady-state658
data were first normalized for each metabolite.659
The resulting steady-state normalization was then660
used to normalize the time course data for that661
metabolite (see Fig. 4 for the example of glucose-6662
phosphate).663

4.8.1 Steady-state data normalization664

Steady-state (ss) experiments consisted of pre-665
incubation with one glucose dose followed666
by incubation with another glucose dose.667
The steady state data of the experiment 𝛼,668
(𝑐𝛼0 , 𝑐

𝛼
1 ,… , 𝑐𝛼𝑛 ) observed at n incubation glucose669

doses (𝑑𝛼0 , 𝑑
𝛼
1 ,… , 𝑑𝛼𝑛 ) is expressed by the piecewise670

linear-interpolation function 𝑠𝑠. Here, 𝛼 belongs 671
to the set of steady-state experiments 1 ≤ 𝛼𝛼𝑠𝑠 with 672
𝑁𝛼𝑠𝑠 being the number of steady-state experimental 673
curves of the metabolite s. 674

Mean curve. The mean steady-state curve 𝑠𝑠 675
of each metabolite s is calculated as the weighted 676
average of all experimental curves. The data points 677
of the mean curve were interpolated using a 678
piecewise smooth spline function. For data sets 679
consisting of 2 data points, a linear interpolation 680
was used. 681

We formulate a least-squares optimization 682
problem to minimize the distance between the 683
individual experimental curves and the mean 684
curve 𝑠𝑠. The cost function F of the optimization 685
problem is given by, 686

𝐹 (𝑓 𝛼) =
𝑛
∑

𝑖=1
(𝑓 𝛼 ⋅ 𝑠𝑠(𝑑𝛼𝑖 ) − 𝑠𝑠(𝑑𝛼𝑖 ))

2 (1)

In Eq. 1, 𝑠𝑠(𝑑𝛼𝑖 ) and 𝑠𝑠(𝑑𝛼𝑖 ) are the function 687
values of the individual and mean interpolation 688
function at the 𝑖𝑡ℎ value of the glucose dose. N is 689
the number of glucose values in the dose-response 690
curve of the experiment 𝛼. 691

For each experimental curve, the factor 𝑓 𝛼 was 692
determined so that the residual error in Eq. 1 is 693
minimized. The residual error is minimum at the 694
point where the derivative of the cost function F 695
is zero. Taking the partial derivative of Eq. 1 with 696
respect to the scale transformation parameter gives 697
factor 𝑓 𝛼 of the experimental curve 𝛼 (Eq. 2). 698

𝑓 𝛼 =
∑

𝑠𝑠(𝑑𝛼𝑖 )𝑠𝑠(𝑑𝛼𝑖 )
∑

(𝑠𝑠(𝑑𝛼𝑖 ))2
(2)

The scale factors of all steady state curves 699
(𝑓 1,… 𝑓𝑁𝛼𝑠𝑠 ) were determined by minimizing 700
the respective cost functions (𝐹 (𝑓 1),…𝐹 (𝑓𝑁𝛼𝑠𝑠 ). 701
Multiplying the experimental curve 𝛼 by the 702
scaling factor 𝑓 𝛼 shifts the experimental curve 703
towards the mean curve. A new mean curve can 704
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be calculated with the scaled data. The curves were705
scaled iteratively until all 𝑓 𝛼 converged.706

4.8.2 Time course data normalization707

Time course (tc) experiments consisted of pre-708
incubation with one glucose dose followed by709
incubation with another glucose dose. The time-710
dependent data of the time course experiment711
𝛽 (𝑐𝛽0 , 𝑐

𝛽
1 ,… , 𝑐𝛽𝑚) observed at m time points712

(𝑡𝛽0 , 𝑡
𝛽
1 ,… , 𝑡𝛽𝑚) is expressed by the piecewise linear-713

interpolation function 𝛽 . Here, 𝛽 belongs to the714
set of time course experiments 1 ≤ 𝛽 ≤ 𝑁𝛽𝑡𝑐 with715
𝑁𝛽𝑡𝑐 being the number of time course experimental716
curves of the metabolite s. For normalization, each717
time course was scaled by a factor 𝑓 𝛽 .718

For a given incubation glucose dose 𝑑𝛽 , the719
metabolite concentration at the last time point720
𝑡𝑐(𝑡𝑚) corresponds to the steady state value reached721
for the given 𝑑𝛽722

𝑓 𝛽 ⋅ 𝑡𝑐(𝑡𝑚) − 𝑠𝑠(𝑑𝛽) = 0 (3)

The scaling factor for the time course experiment723
follows as724

𝑓 𝛽 =
𝑠𝑠(𝑑𝛽)
𝑡𝑐(𝑡𝑚)

(4)

4.9 Model inputs725

The SBML model was generated by specifying726
initial concentrations, rate expressions, parameter727
values, and compartmental volumes as the model728
inputs, see Fig. 2I.729

Volume. The physical volume of the cytoplasmic730
compartment and the 𝛽-cell volume were obtained731
from the values reported in a morphometric study732
of 𝛽-cells (Dean, 1973).733

Initial concentrations. The initial concentrations734
of glycolytic intermediates were obtained from735
the mean curve 𝑠𝑠 (Sec. 2.1) at a basal glucose736
concentration of 3 mM. The initial value of glucose737
in the external/blood compartment is 3 mM.738

The initial concentrations of cofactors were 739
expressed as polynomial functions passing through 740
the data points of the mean curve, which is computed 741
as the weighted average of data normalized 742
experimental curves (Sec. 2.1). In the SBML model, 743
the polynomial expressions were defined using 744
assignment rules. 745

Kinetic constants. The median values of the 746
half-saturation or Michaelis-Menten constants 𝐾𝑚 747
(Sec. 4.5), were assigned to the model parameters. 748

Equilibrium constants. The values of the 749
equilibrium constants 𝐾𝑒𝑞 were collected 750
from NIST (Goldberg and Tewari, 2003) and 751
EQUILIBRATOR (Noor et al., 2013). 752

Model equations. For all the glycolytic reactions, 753
the biochemical interactions were expressed using 754
modular rate laws (Liebermeister et al., 2010) of the 755
form Eq. 5. 756

𝜈 =

𝑉𝑚𝑎𝑥
∏

𝑖
𝑎𝑖
(

1 − Γ
𝐾𝑒𝑞

)

∏

𝑖

(

1 + 𝑎𝑖
)

+
∏

𝑗

(

1 + 𝑏𝑗
)

− 1
(5)

Here, 𝑎𝑖 is 𝑆𝑖∕𝐾𝑚𝑠, 𝑏𝑖 is 𝑃𝑖∕𝐾𝑚𝑝, S refers to 757
the substrate and P refers to the product. 𝐾𝑒𝑞 is 758
the equilibrium constant and Γ is the mass-action 759
ratio (Liebermeister et al., 2010). 760

The use of detailed mechanistic rate laws was 761
avoided due to the challenges associated with 762
finding a large number of parameter values. 763

Insulin secretion was modeled via a 764
phenomenological equation depending on 765
ATP/ADP ratio. The insulin release flux given 766
by Eq. 6, is characterized by three parameters, 767
the maximal rate of insulin release 𝑉𝑚𝑎𝑥, the Hill 768
coefficient n, and 𝐾𝑚 the ratio of ATP/ADP that 769
results in half-maximal insulin release. 770

𝜈𝐼𝑅𝑆 = 𝑉 𝐼𝑅𝑆
𝑚𝑎𝑥

(𝐴𝑇𝑃
𝐴𝐷𝑃

)𝑛

(

𝐾𝑚
)𝑛 +

(𝐴𝑇𝑃
𝐴𝐷𝑃

)𝑛 (6)
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Boundary metabolites and reactions. Species771
in the external and mitochondrial compartments772
were assumed to be boundary species with773
constant concentrations, i.e. glucose and lactate774
in the external compartment and pyruvate in the775
mitochondrial compartment were held constant.776
Some boundary reactions were modeled as777
irreversible reactions, i.e. the export of lactate and778
the transport of pyruvate in the mitochondrion.779

Metabolites determined by rate rules. To account780
for glucose-dependent changes in the concentrations781
of phosphate, NAD, and NADH, polynomial782
functions were used to express the concentrations783
as rate rules. This approach ensured that the784
concentration of fixed metabolites in the system785
increased as a function of glucose dose.786

Changes in total adenine nucleotides. The sum787
of adenine nucleotides (𝐴𝑇𝑃 + 𝐴𝐷𝑃 = 𝐴𝑇𝑃𝑡𝑜𝑡)788
changes with glucose. To account for these changes,789
a reaction ΔATP was added that changes the total790
ATP according to the observed steady-state data for791
a given glucose value (Eq. 7).792

Δ𝐴𝑇𝑃 = 𝑓 (𝐴𝑇𝑃𝑡𝑜𝑡(𝑔𝑙𝑐) − (𝐴𝑇𝑃 + 𝐴𝐷𝑃 )) (7)

The 𝐴𝑇𝑃𝑡𝑜𝑡(𝑔𝑙𝑐) values are determined by the793
interpolating polynomial of the mean steady-state794
glucose dose response of the ATP+ADP data.795

4.10 Model calibration796

The normalized time-course and steady-state data was797
used for model calibration and parameter estimation798
(Fig. 2J). An overview of the subset of data used for799
model calibration is shown in Fig. 1. The following800
data were not used: NADH and NAD were fixed801
metabolites in the model, with NAD/NADH and802
NADH+NAD calculated from the metabolites. Total803
ATP was calculated by summing ATP and ADP, and804
ATP ratio was calculated by finding the ratio. The insulin805
secretion rate (IRS) was used to derive the parameters806
of the IRS function.807

A subset of the 𝑉𝑚𝑎𝑥 parameters was optimized to808
minimize the error between model predictions and809

experimental observations. The cost function is given by 810
the sum of squares of residuals 811

𝐹 (P) =
∑

𝛼,𝑠
(c𝛼𝑠 − c𝑠 (P))2 (8)

In Eq. 8, c𝛼𝑠 is the concentration of the metabolite 812
s in the experiment 𝛼 and c𝑠 is the concentration 813
of the metabolite s predicted by the model . P 814
is the set of 16 parameters of maximum reaction 815
rates 𝑉𝑚𝑎𝑥. The experimental data of all transient 816
metabolites in the model were stored in spreadsheets. 817
The parameter estimation simulation experiments were 818
set up using basiCO (Bergmann, 2023), the Python 819
interface of COPASI (Hoops et al., 2006). The incubation 820
glucose concentration and incubation time were mapped 821
to the independent variable (𝑔𝑙𝑐𝑒𝑥𝑡, glucose in the 822
external compartment) and model time, respectively. 823
The transient metabolites were assigned to the model 824
elements as dependent variables. The mean values of 825
𝑉𝑚𝑎𝑥 calculated from the curated values of the enzyme 826
activities were assigned as initial values. The lower 827
and upper bounds specified for the reaction rates 𝑉𝑚𝑎𝑥 828
were set to 0 and 10000, respectively. The calculations 829
were performed using Cloud-COPASI, the front-end to 830
a computer cluster at the Centre for Cell Analysis and 831
Modelling. Cloud-COPASI is an extension of Condor- 832
COPASI (Kent et al., 2012). 400 iterations of parameter 833
estimation were performed on Cloud-COPASI using the 834
SRES algorithm, a global optimization method. The 835
optimal values of the parameter set were obtained from 836
the iteration that yielded the minimum objective value 837
and updated in the model. 838

4.11 Kinetic model and model predictions 839

All information was written into the model, validation 840
was performed using sbmlutils, and model simulations 841
were performed, see Fig. 2K, L. 842

Finally, we performed model predictions of 843
glycolytic intermediates and insulin response as a 844
function of varying glucose concentrations. The set of 845
differential equations was numerically integrated using 846
basiCO (Bergmann, 2023) based on COPASI (Hoops 847
et al., 2006) and sbmlsim (König, 2021) based on 848
libroadrunner (Welsh et al., 2023; Somogyi et al., 849
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2015). For the glucose dose-response, glucose was850
varied as linspace(0.01, 35, num=11) and851
the model was simulated to steady-state. For the time852
course simulations, glucose was varied identically and853
simulations were run for 60 min. Simulations were854
performed either with COPASI or independently using855
libroadrunner to ensure reproducibility of key model856
results.857

The model is available in SBML (Hucka et al.,858
2019; Keating et al., 2020) under a CC-BY 4.0 license859
from https://github.com/matthiaskoenig/pancreas-860
model. In this study, version 0.9.5 of the model is861
presented (Deepa Maheshvare and König, 2023).862
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Table 1. Overview of studies reporting concentrations of metabolites used for model calibration.

Study PMID Metabolites Species Measurement Steady-
state

Time
course

Citation

Akhtar1977 19330 G6P Wistar rats Absolute ✓ Akhtar et al.
(1977)

Alcazar2019 31632354 IRS Human, C57BL6/J mice Absolute ✓ ✓ Alcazar and
Buchwald (2019)

Ammon1979 36318 NAD, NADH/NAD,
NADH+NAD, NADH

Wistar rats Absolute ✓ ✓ Ammon et al.
(1979)

Ammon1998 9582515 NAD, ATP/ADP, NADH,
NADH+NAD, IRS,
NADH/NAD

Wistar rats Absolute ✓ Ammon et al.
(1998)

Ashcroft1970 4919469 G6P Albino mice Absolute ✓ Ashcroft et al.
(1970)

Ashcroft1973 4148924 ATP, IRS White mice Absolute ✓ ✓ Ashcroft et al.
(1973a)

Ashcroft1973b 4199014 G6P Theillers original strain
mice, Wistar rats

Absolute ✓ ✓ Ashcroft et al.
(1973b)

Ashcroft1979 44196 PYR Wistar rats Absolute ✓ Ashcroft and
Christie (1979)

Brun1996 8549864 IRS HIT-T15 𝛽-cell line Absolute ✓ ✓ Brun et al. (1996)
Corkey1989 2689441 IRS HIT 𝛽-cell line Absolute ✓ Corkey et al.

(1989)
Detimary1996 8702800 ATP, ADP, ATP+ADP,

ATP/ADP, IRS
NMRI mice Absolute ✓ ✓ Detimary et al.

(1996)
Detimary1998 9852040 ATP, ADP, ATP+ADP,

ATP/ADP
Wistar rats Absolute ✓ Detimary et al.

(1998)
Ewart1983 6313455 PEP, IRS Sprague-Dawley rats Absolute ✓ Ewart et al.

(1983)
Giriox1984 6388570 PEP, IRS Albino rats Absolute ✓ Giroix et al.

(1984)
Guay2013 24130841 DHAP, ATP, PYR, LAC,

NADH/NAD, IRS
INS 832/13 𝛽-cell line Relative ✓ Guay et al. (2013)

Hedeskov1987 3551925 PYR, LAC,
NADH/NAD, IRS,

Theillers original strain
mice

Absolute ✓ Hedeskov et al.
(1987)

Huang2014 24564396 G6P, DHAP, PG3, PYR,
LAC

INS 832/13 𝛽-cell line Absolute ✓ ✓ Huang and
Joseph (2014)

Johnson2007 17360975 IRS Human, Sprague-Dawley
rats, C57BL6 mice, MIN6
𝛽-cell line

Absolute ✓ Johnson et al.
(2007)

Lamontagne2009 19406947 APT, IRS INS 832/13 𝛽-cell line Relative ✓ Lamontagne et al.
(2009)

Liu1998 9576750 G6P, IRS Sprague-Dawley rats Absolute ✓ Liu et al. (1998)
Liu2004 14660628 G6P, PYR, IRS Sprague-Dawley rats Absolute ✓ Liu et al. (2004)
Malaisse1977 27353 ATP, ADP, ATP+ADP,

ATP/ADP, NAD, NADH,
NADH+NAD,
NADH/NAD

Albino rats Absolute ✓ Malaisse et al.
(1978)

Malaisse1987 2434137 ATP, ADP, ATP+ADP,
ATP/ADP

Albino rats Absolute ✓ Malaisse and
Sener (1987)

Malinowski2020 32963286 PYR, LAC INS-1 𝛽-cell line Relative ✓ Malinowski et al.
(2020)

Malmgren2013 23476019 GLC, G6P, DHAP, PG3,
PYR, LAC

INS-1 832/13 𝛽-cell line Relative ✓ Malmgren et al.
(2013)

Matschinsky1968 4870741 GLC, G6P, FBP, ATP Mice Absolute ✓ Matschinsky and
Ellerman (1968)

Matschinsky1976 136453 GLC, ATP Sprague-Dawley rats Absolute ✓ Matschinsky et al.
(1976)

Meglasson1986 2943567 F26P Rats Absolute ✓ Meglasson and
Matschinsky
(1986)

Miwa2000 10919261 G6P, F6P, FBP, GRAP,
DHAP

Wistar rats Absolute ✓ Meglasson et al.
(1989)

Sener1978 29912 NAD, NADH,
NADH+NAD

Albino rats Absolute ✓ Sener et al.
(1978)

Sener1984 6383351 F26BP Albino rats Absolute ✓ ✓ Sener et al.
(1984)

Spegel2013 23282133 PG2, PG3, PEP, PYR,
LAC

INS-1 832/13 𝛽-cell line Relative ✓ ✓ Spégel et al.
(2013)

Spegel2015 25774549 G6P, ATP, PG2, PG3,
PEP, PYR, LAC, IRS

INS-1 832/13 𝛽-cell line Relative ✓ ✓ Spégel et al.
(2015)

Sugden1977 332570 PEP Albino Wistar rats Absolute ✓ Sugden and
Ashcroft (1977)

Taniguchi2000 10731696 G6P, F6P, FBP, GRAP,
DHAP, ATP

Wistar rats Absolute ✓ ✓ Taniguchi et al.
(2000)

Trus1979 220227 G6P, NADH, PHOS, IRS Rats Absolute ✓ ✓ Trus et al. (1979)
Trus1980 6991311 G6P, ATP, ADP,

ATP+ADP, NADH,
PHOS, IRS

Holtzman rats Absolute ✓ ✓ Trus et al. (1980)

Xu2008a 18769905 IRS Sprague-Dawley rats Absolute ✓ Xu et al. (2008a)
Xu2008b 18802677 IRS C57BL/6 mice,

Sprague-Dawley rats,
MIN-6 𝛽-cell line

Absolute ✓ Xu et al. (2008b)
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Figure 1. Curated data for model development and evaluation. The data description is detailed from the periphery to the
center of the Circos plot. 1. Model elements: The outermost layer provides an overview of the metabolites included in the data
set. GLC: glucose, G6P: glucose 6-phosphate, F6P: fructose 6-phosphate, FBP: fructose 1,6-bisphosphate, F26BP: fructose
2,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GRAP: glyceraldehyde 3-phosphate, BPG: 1,3-biphosphoglycerate, 3PG:
3-phosphoglycerate, 2PG: 2-phosphoglycerate, PEP: phosphoenolpyruvate, PYR: pyruvate, LAC: lactate, PHOS: phosphate,
NAD: nicotinamide adenine dinucleotide, NADH: reduced nicotinamide adenine dinucleotide, NADH total: NADH + NAD; NADH
ratio: NADH/NAD; ATP: adenosine triphosphate, ADP: adenosine diphosphate, ATP total: ATP + ADP, ATP ratio: ATP/ADP, IRS:
insulin secretion rate. The metabolites were grouped in the following categories: Color code: ∙ glycolytic intermediates, ∙ cofactors,
∙ cofactor ratio or sum, ∙ insulin secretion rate (IRS); 2. Studies: The second layer depicts the islet-cell specific metabolite profiling
studies curated from the literature; 3. Animal species: The third layer indicates the animal species or cell line from which the
data was curated. Color code: ∙ Rat, ∙ Human, ∙ Mouse, and ∙ Cell line data; 4. time course data: The fourth layer shows a bar
graph illustrating the number of data points collected from studies reporting time course data of metabolites. Color code: ∙ relative
(or fold), ∙ concentration, ∙ ratio, ∙ rate measurements; 5. Steady-state data: The fifth layer indicates the number of data points
collected from studies reporting steady-state/ dose-response data of metabolites. Color code: ∙ relative (or fold), ∙ concentration, ∙
ratio, ∙ rate measurements; 6. Data used for parameter estimation: The innermost layer indicates the subset of data used for
parameter fitting.
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Figure 2. Kinetic model development workflow. (A) Initial stoichiometric model in SBML. Glycolytic reactions were collected
from VMH database and existing models of glycolysis. (B) Metadata integration. VMH and BiGG database field identifiers were
used to retrieve additional metadata such as HMDB, BioCyc, MetaNetX, ChEBI, and SEED database field identifiers. (C) Synonym
mapping. The synonyms associated with each metabolite were queried using compound identifier mapping services. (D) Kinetic
parameters. EC number and KEGG reaction identifiers were used to query half-saturation/Michaelis-Menten 𝐾𝑀 , inhibition 𝐾𝐼 ,
activation 𝐾𝐴, and equilibrium 𝐾𝑒𝑞 constants (synonym mapping was applied for all compounds). (E) Model parameters. The
parameter values retrieved from different databases were merged and median values were assigned to the model parameters;
(F) Data curation. A systematic literature search was performed and metabolite concentrations from islet cell studies were
curated. (G) Unit normalization. Absolute and relative quantification of metabolite concentrations reported in heterogeneous
units were converted to mM. (H) Data normalization. Systematic bias observed in the unit-normalized data was removed by
performing least-squares minimization to minimize the distance between the mean curve of the unit-normalized data curves and
the experimental curves of the unit-normalized data. (I) Model inputs. Values of kinetic parameters, initial concentrations, volumes,
equations, and annotations have been assigned to the model entities. (J) Model calibration. Time course and steady-state data
were used for parameter estimation. (K) Kinetic SBML model. The final kinetic SBML model was generated. (L) Model prediction.
Glycolytic intermediates and insulin response were predicted as a function of varying glucose concentrations. Created with
BioRender.com. 21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532028doi: bioRxiv preprint 

BioRender.com
https://doi.org/10.1101/2023.03.10.532028


Figure 3. Computational model of glucose-stimulated insulin secretion (GSIS) in the pancreatic 𝛽-cell. The model consists
of glycolysis and insulin secretion coupled to the energy state (ATP/ADP ratio). The GLUT transporter facilitates the uptake of
glucose from the plasma into the cell. Glucose undergoes phosphorylation and the subsequent reactions lead to the production
of pyruvate. Pyruvate can either be converted to lactate and exported into blood or transported to the mitochondria where it
serves as a fuel source for the production of tricarboxylic acid cycle (TCA) intermediates (the TCA cycle has not been modeled).
Depending on the external glucose concentrations, glycolysis intermediates and energy metabolites such as ATP, ADP, NAD, and
NADH change. An increase in the ATP/ADP ratio as a result of changes in glucose triggers the cascade of signaling mechanisms
that promote insulin secretion by the pancreatic 𝛽-cell. Phosphate, water, and hydrogen ions have been omitted from the diagram
for clarity (but are included in the model for mass and charge balance). The network diagram was created using CySBML (König
et al., 2012b). Created with BioRender.com.
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Figure 4. Normalization of steady-state and time course data for glucose 6-phosphate (G6P). (A) Relative data. Experimental
curves from 𝛽-cell studies reporting relative levels of G6P, expressed as fold to baseline value; (B) Absolute data. Experimental
curves from 𝛽-cell studies reporting absolute concentrations of G6P, the plot displays the unit-normalized absolute data. (C)
Combined data. The relative (fold) measurements were converted to absolute units and combined with the unit-normalized
absolute data. (D) Normalized data. Systematic biases between different studies of the combined data were removed by data
normalization. Data normalization was performed by minimizing the offset (sum of squared residuals) between the mean curve
and the experimental curves. The mean curve was computed as the weighted average of the experimental curves and spline
curve is the piecewise-polynomial interpolation of the data points in the mean curve. For steady-state data, the legend indicates
studies associated with the experimental curves. For time course data, the legend indicates the pre-incubation glucose dose (⭐),
incubation glucose dose (□), experimental study, and the value of scale transformation parameter 𝑓 𝛼 (▭) of experiment 𝛼. (top
panel) and (bottom panel) show the data of dose-response and time course experiments, respectively. Data from (Akhtar et al.,
1977; Ashcroft et al., 1970, 1973b; Giroix et al., 1984; Huang and Joseph, 2014; Liu et al., 1998, 2004; Malmgren et al., 2013;
Matschinsky and Ellerman, 1968; Miwa et al., 2000; Spégel et al., 2015; Taniguchi et al., 2000; Trus et al., 1979, 1980). For more
details, please refer to Sec. 2.1.
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Figure 5. Effect of variations in blood glucose on glycolytic intermediates. (left column) Dose-response simulations. Glucose
scan was performed for the calculation of steady-state concentration of metabolites in the model. The steady-state concentrations
predicted by the model at various glucose doses were compared with the normalized values of experimental measurements;
(middle column) Time course experimental data. Time course values of glycolytic intermediates and cofactors from multiple
experimental studies carried out at different incubation doses of glucose; (⭐) in the legend indicates the pre-incubation glucose
dose. (right column) Time course simulations. The effect of variation in blood glucose dose on the transient concentration of
metabolites. GLC: glucose, G6P: glucose 6-phosphate, F6P: fructose 6-phosphate, FBP: fructose 1,6-bisphosphate, F26BP:
fructose 2,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GRAP: glyceraldehyde 3-phosphate. Data from (Akhtar et al.,
1977; Ashcroft et al., 1970, 1973b; Giroix et al., 1984; Huang and Joseph, 2014; Liu et al., 1998, 2004; Malmgren et al., 2013;
Matschinsky and Ellerman, 1968; Miwa et al., 2000; Spégel et al., 2015; Sener et al., 1984; Taniguchi et al., 2000; Trus et al.,
1979, 1980). 24
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Figure 6. Effect of variations in blood glucose on glycolytic intermediates. The plot is analogous to Fig. 5. BPG: 1,3-
biphosphoglycerate, 2PG: 2-phosphoglycerate, 3PG: 3-phosphoglycerate, PEP: phosphoenolpyruvate, PYR: pyruvate, LAC:
lactate, PHOS: phosphate. Data from (Ashcroft and Christie, 1979; Ewart et al., 1983; Guay et al., 2013; Hedeskov et al., 1987;
Huang and Joseph, 2014; Malinowski et al., 2020; Malmgren et al., 2013; Spégel et al., 2013, 2015; Sugden and Ashcroft, 1977;
Trus et al., 1979, 1980).
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Figure 7. Effect of variations in blood glucose on glycolytic cofactors. The plot is analogous to Fig. 5. NAD: nicotinamide
adenine dinucleotide, NADH: nicotinamide adenine dinucleotide reduced. ATP: adenosine triphosphate, ADP: adenosine
diphosphate Data from (Ammon et al., 1979, 1998; Ashcroft et al., 1970; Detimary et al., 1996, 1998; Guay et al., 2013; Hedeskov
et al., 1987; Lamontagne et al., 2009; Malaisse et al., 1978; Malaisse and Sener, 1987; Matschinsky and Ellerman, 1968;
Matschinsky et al., 1976; Sener et al., 1978; Spégel et al., 2015; Taniguchi et al., 2000; Trus et al., 1979, 1980).
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Figure 8. (A) Effect of variations in blood glucose on insulin secretion. The plot is analogous to Fig. 5. Data from (Alcazar
and Buchwald, 2019; Ammon et al., 1998; Ashcroft et al., 1973a; Brun et al., 1996; Corkey et al., 1989; Detimary et al., 1996,
1998; Ewart et al., 1983; Guay et al., 2013; Hedeskov et al., 1987; Huang and Joseph, 2014; Johnson et al., 2007; Lamontagne
et al., 2009; Liu et al., 1998, 2004; Meglasson and Matschinsky, 1986; Sener et al., 1978; Spégel et al., 2013, 2015; Trus et al.,
1979, 1980; Xu et al., 2008a,b). (B) Effect of change in energy state (ATP/ADP ratio) of the 𝛽-cell on insulin secretion. The
rate of insulin release in response to changes in ATP/ADP ratio is shown. (C) Sensitivity analysis indicating the effect of
perturbation in model parameters on insulin secretion. Heatmap illustrating the values of scaled local sensitivities illustrating
the effect of parameter perturbations on the amount of insulin secretion at varying glucose doses. Highly sensitive values are
colored in red and blue. The parameters which cause less than 1% change in insulin response for 10% perturbation were not
displayed for clarity. For more details, please refer to Sec. 2.6. (D) Effect of change in model parameters on insulin secretion
as a function of glucose dose. The rate of insulin secretion in response to perturbation in the values of ATPconsumption_Vm,
HEX1_Vm, IRS_Katp_ratio, IRS_hillKatp_ratio. The vertical line indicates the model value.
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