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Abstract 32 

The breakthrough high-throughput measurement of the cis-regulatory activity of millions 33 

of randomly generated promoters provides an unprecedented opportunity to 34 

systematically decode the cis-regulatory logic that determines the expression values. 35 

We developed an end-to-end transformer encoder architecture named Proformer to 36 

predict the expression values from DNA sequences. Proformer used a Macaron-like 37 

Transformer encoder architecture, where two half-step feed forward (FFN) layers were 38 

placed at the beginning and the end of each encoder block, and a separable 1D 39 

convolution layer was inserted after the first FFN layer and in front of the multi-head 40 

attention layer. The sliding k-mers from one-hot encoded sequences were mapped onto 41 

a continuous embedding, combined with the learned positional embedding and strand 42 

embedding (forward strand vs. reverse complemented strand) as the sequence input. 43 

Moreover, Proformer introduced multiple expression heads with mask filling to prevent 44 

the transformer models from collapsing when training on relatively small amount of data. 45 

We empirically determined that this design had significantly better performance than the 46 

conventional design such as using the global pooling layer as the output layer for the 47 

regression task. These analyses support the notion that Proformer provides a novel 48 

method of learning and enhances our understanding of how cis-regulatory sequences 49 

determine the expression values.   50 
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Introduction 51 

 52 

Gene expression is a fundamental process and is essential for the coordinated function 53 

of all living organisms. Predicting the expression level of a gene based on its promoter 54 

or enhancer sequences is an important problem in molecular biology, with applications 55 

ranging from understanding the regulation of gene expression to engineering gene 56 

expression for biotechnological applications1,2. Recent progress and mechanistic 57 

insights have been obtained using large-scale and high-throughput massively parallel 58 

reporter assays (MPRAs), which enable the study of gene expression and regulatory 59 

elements in a high-throughput manner and the simultaneous testing of thousands to 60 

millions of enhancers or promoters in parallel3–24. MPRA protocols linked random or 61 

mutated sequences to unique barcodes, with each sequence-barcode pair represented 62 

in a different reporter assay vector. After delivery of the pooled vector library, barcode 63 

abundance could be subsequently quantified using next-generation sequencing (NGS) 64 

techniques25. MPARs enabled large scale studies of functional annotation of putative 65 

regulatory elements3,26, variant effect prediction22,23,27,28 and evolutionary 66 

reconstructions25,29,30. For example, STARR-seq (self-transcribing active regulatory 67 

region sequencing) was used to investigate the enhancer activities of tens of millions of 68 

independent fragments from the Drosophila genome3. Microarray-based or PCA-based 69 

(polymerase cycling assembly) synthesized DNA regulatory elements with unique 70 

sequence tags were used to evaluate hundreds of thousands of variants of mammalian 71 

promoters or enhancers4–6. Nguyen et al. systematically compared the promoter and 72 

enhancer potentials of many candidate sequences10. Using Gigantic Parallel Reporter 73 

Assay (GPRA), de Boer et al. measured the expression level associated with tens of 74 

millions of random promoter sequences and used these to learn cis-regulatory logic in 75 

the yeast grown in well-characterized carbon sources14.  76 

 77 

Machine learning methods have been developed to identify complex relationships and 78 

patterns in large scale DNA sequences (including MPRA data) that may not be apparent 79 

through conventional statistical methods. For example, convolutional neural networks 80 

(CNN) and recurrent neural networks (RNN) were used to capture the local 81 
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dependences in DNA sequences and/or genomic features and predict binding 82 

affinities1,31,32, chromatin features33,34, DNA methylation35,36, RBP (RNA-binding protein) 83 

binding37–39 and gene expression levels40.  In contrast, Transformers are a type of 84 

neural network architecture that has gained popularity in recent years for their ability to 85 

process sequential data, such as text and speech, more efficiently and effectively than 86 

traditional RNNs and CNNs41. Transformers used an attention mechanism to selectively 87 

focus on different aspects of the input sequence, which allowed them to capture long-88 

range dependencies more effectively than RNNs and CNNs that typically rely on fixed-89 

length windows or sliding windows.  90 

 91 

In this study, we developed an end-to-end transformer encoder architecture, Proformer, 92 

to predict the expression values from millions of DNA sequences. Our method 93 

introduces several innovative designs such as Macaron-like encoder structures, k-mer 94 

embedding, and multiple expression heads (MEH) to learn the relationships between a 95 

large number of sequences and expression values. Proformer ranked in the 3rd place in 96 

the final standing of the DREAM challenge: predicting gene expression using millions of 97 

random promoter sequences42. We believe that our model provides a novel method of 98 

learning and characterizing how cis-regulatory sequences determine the expression 99 

values. Codes pertaining to important analyses in this study are available from GitHub 100 

webpage: https://github.com/gongx030/dream_PGE.  101 

 102 

 103 

  104 
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 6 

Results 105 

 106 

Proformer overview 107 

 108 

Proformer used a Macaron-like Transformer encoder architecture to predict the 109 

expression values from promoter sequences (Figure 1) 43–45.  Compared with the 110 

regular Transformer encoder, the Macaron-like encoder has two half-step feed forward 111 

(FFN) layers at the beginning and the end of each Transformer encoder block, which 112 

can be mathematically interpreted as a numerical Ordinary Differential Equation (ODE) 113 

solver for a convection-diffusion equation in a multi-particle dynamic system 46,47.  Given 114 

the stochastic nature of the input sequences, we hypothesized that this design may 115 

better recover the associations between nucleotide pattern and the expression values. 116 

We added a separable 1D convolution layer in the Macaron encoder block following the 117 

first FFN layer and in front of the multi-head attention layer.  This design has been used 118 

in other Transformer architectures such as Conformer47, and is shown to be critical for 119 

capturing the local signals.   120 

 121 

We extracted the sliding k-mers (k=10 in the final model) from one-hot encoded 122 

sequences and mapped them onto a continuous embedding platform. It has been 123 

previously shown that the k-mer embedding of nucleotide sequences had better 124 

performance than the convolution on tasks such as predicting transcription factor 125 

binding sites48.  The k-mer embedding was then combined with the learned positional 126 

embedding and strand embedding (forward strand vs reverse complemented strand) as 127 

one part of the input to the Macaron encoder. 128 

 129 

We added 𝐻 positions (𝐻 = 32 in our final model) as the expression heads (Figure 1). 130 

Proformer predicted one expression value for each expression head and used the mean 131 

of the prediction of all positions as the final predicted expression value.  The total 132 

training losses consisted of the mean squared error between predicted and observed 133 

expression values (𝑳!"#$), and the reconstruction loss (𝑳$!%&'), where we randomly 134 
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masked 5% of the nucleotides and had the model predict the masked nucleotides. In 135 

our final model, we set the weight for reconstruction loss 𝛽 = 1.   136 

 137 

The final Proformer model had approximately 47 million trainable parameters, 138 

implemented by TensorFlow 2 and trained on one machine with four A100 GPUs.  We 139 

varied the learning rate over the course of training according to the formula used in the 140 

original Transformer paper43. Warmup steps of 12,500 and a batch size of 512 were 141 

used in the training. We used the Adam optimizer with 𝛽( = 0.9, 𝛽) = 0.98 and 𝜖 = 10*+ 142 

for these studies. 143 

 144 

MEH with mask filling has improved performance using large over-parameterized 145 

models 146 

 147 

Global average pooling layer at the top of a neural network is commonly used for the 148 

regression and classification tasks49. However, we found that when applying the global 149 

average pooling layer at the top of a large transformer model, for example, with a 150 

dimension size of 256 and blocks size of 8, the whole model sometimes failed to 151 

converge on training on relatively small amount (~500k) of samples (Figure 2b). In order 152 

to address this issue, we proposed a new design, where the model predicted multiple 153 

expression values through multiple expression heads (MEH) and used the average of 154 

all predictions as the final predicted value (Figure 2a), while at the same time, the model 155 

also predicted the randomly masked DNA nucleotide. MEH with mask filling produced 156 

stable convergence when training the transformer model with the same size on ~500k 157 

samples (Figure 2b). In order to systematically compare the performance of two 158 

designs, we trained the models on 10% of the training sequence / expression value 159 

pairs then the performance was evaluated on 2% of the data as the Pearson's R 160 

between observed and predicted expression values. For MEH with mask filling, we also 161 

examined the performance over a different number of heads (𝐻 = 1,8,16,32,64). Overall, 162 

we found that MEH with mask filing gave significantly better than global average pooling 163 

when using 8 or more heads (Mann-Whitney U test p-values = 0.0715, 0.0102, 0.0142, 164 

0.0224 and 0.00605 for 𝐻 = 1,8,16,32,64, respectively), and the best performance was 165 
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achieved at a dimension size of 128 and macaron block size of 8 (Figure 2c). As the 166 

model size became larger and deeper, the global average pooling became difficult to 167 

converge, while in comparison, MEH with masking filing could still provide stable 168 

results.  169 

 170 

MEH with mask filling has better performance for the prediction of chromatin 171 

accessibility from DNA sequences 172 

 173 

To test whether our observations on these two head designs could apply to similar 174 

scenarios, we designed another task to use Proformer to predict ATAC-seq (Assay for 175 

Transposase-Accessible Chromatin with high-throughput sequencing) signals from DNA 176 

sequences. The ATAC-seq is a technique to measure the chromatin accessibility across 177 

the whole genome50. We sampled a total of 100k genomic sub-regions surrounding the 178 

~80,000 summits of ATAC-seq data of GM1287850, while each genomic sub-region 179 

included 100 nucleotides. Different models were built to predict the mean ATAC-seq 180 

signal of the central 20 bp from 100 nt DNA sequences (Figure 3a).  The global average 181 

pooling performed well when the model size was relatively small. As the model size 182 

became larger, we observed similar trends such that the global average pooling tended 183 

to fail on large over-parameterized models. The best performance was achieved by 184 

using MEH with mask filling with dimension size of 128 and block size of 4 (Figure 3b).  185 

 186 

MEH with mask filling is critical for improving the prediction performance on 187 

hold-out validation data 188 

 189 

We trained the final model for the DREAM challenge by using a dimension size of 512 190 

and a block size of 4 on 95% of the data provided by the organizers and evaluated on 191 

the remaining 5%. The checkpoint after the 6th epoch was used where the validation 192 

Pearson's R was maximized. As expected, MEH with mask filling produced improved 193 

Pearson's R than global average pooling on the validation data (Figure 4a).  The 194 

ablation study showed when using only one expression head (𝐻 = 1), the performance 195 

was similar to global average pooling. However, MEH with 𝐻 = 32 showed improvement 196 
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 9 

over hold-out validation data and produced the highest weighted scores. It is interesting 197 

that adding a GLU activation51 to expression heads produced even higher unweighted 198 

Pearson’s R and Spearman's Rho on the hold-out validation data, while the weighted 199 

score became worse than global average pooling (Figure 4b). Future studies will 200 

explore different designs of the expression heads.   201 
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Discussion 202 

 203 

Various machine learning techniques have been used to analyze and interpret the 204 

MPRA data and dissect the regulatory logics. Recently, over-parameterized deep 205 

networks or large models, with more parameters than the size of the training data, have 206 

dominated the performance in various machine learning areas52. The global average 207 

pooling layer was conventionally used to aggregate the information from multiple 208 

channels and to produce final predictions. However, we found that when training over-209 

parameterized models on the regression tasks such as predicting expression values 210 

from DNA sequences, the global average pooling often led to a convergence issue, 211 

most likely due to the loss of information that accumulated during the training and 212 

caused the model to perform poorly or failed to converge.  Here we presented a new 213 

architecture Proformer for prediction of expression values from DNA sequences. We 214 

introduced a new design named multiple expression heads (MEH) with mask filling to 215 

prevent the over-parameterized transformer models from collapsing when training on 216 

relatively small amount of data.  Applying the Proformer model to predictexpression 217 

values and to predict chromatin accessibility from DNA sequences showed that MEH 218 

with masking filling produced significantly better performance and stable convergence 219 

compared to the commonly used global average pooling. Based on our studies, we 220 

propose that MEH with mask filling will be a useful design for similar regression tasks 221 

that took advantage of large over-parameterized models.  222 

  223 
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Methods 224 

 225 

DREAM challenge dataset overview 226 

 227 

Rafi et al. conducted a high-throughput experiment to measure the regulatory effect of 228 

millions of random DNA sequences. They cloned 80 bp random DNA sequences into a 229 

promoter-like context upstream of a yellow fluorescent protein (YFP), transformed the 230 

resulting library into yeast, and measured expression by fluorescent activated cell 231 

sorting4,14,53. The training dataset includes 6,739,258 random promoter sequences and 232 

their corresponding mean expression values42.  233 

 234 

Rafi et al. also provided 71,103 sequences from several promoter sequence types as 235 

the hold-out "validation" dataset to evaluate the model performance in different ways. 236 

These validation datasets included predicting the expression changes resulting from 237 

single nucleotide variants (SNVs), perturbation of specific transcription factor (TF) 238 

binding sites, tiling of TF binding sites across background sequences, sequences with 239 

high- and low-expression levels, native yeast genomic sequences, random DNA 240 

sequences, and challenging sequences designed to maximize differences between a 241 

convolutional model and a biochemical model trained on the same data42.  242 

 243 

Sequence trimming and padding 244 

 245 

We removed the leading 17 and trailing 13 nucleotides (nt) that were identical in both 246 

training and testing promoter sequences, since these nucleotides were not informative 247 

for the prediction of expression values and removal of the nucleotides would 248 

significantly reduce the training and inference time. The length of the resulting promoter 249 

sequences ranged from 48 to 112 nt for training data, while >99.97% training promoters 250 

were less than 100 nucleotides.  To further reduce the computational overhead, we 251 

used 6,737,568 promoter sequences shorter than 100 nt (after trimming) in the model 252 

training. For promoters that were less than 100 nt, the left and right sides were padded 253 

with the letter N.   254 
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 255 

Reverse complemented sequences 256 

 257 

We empirically found that including the reverse complemented promoter sequences 258 

would significantly improve the performance. Thus, the reverse complemented 259 

sequences were concatenated with the original sequences (after trimming and padding) 260 

and used as the input for model training. Thus, the total length of the input sequences 261 

was 200 nt.  262 

 263 

Standardization of the expression values 264 

 265 

The expression values were standardized to the mean of zero and standard deviation of 266 

one.  Our experiments found that when the mean squared error loss was used, 267 

standardizing the expression values gave better model generalization performance (in 268 

terms of Pearson's R and Spearman's Rho) and faster convergence.  269 

 270 

ATAC-seq data from GM12878 271 

 272 

The human EBV-transformed lymphoblastoid cell line (LCL) ATAC-seq data were 273 

downloaded from NCBI GEO database (GSE47753).  The sequence reads from three 274 

replicates of 50k cell sample (GSM1155957, GSM1155958 and GSM1155959) were 275 

pooled and used for the downstream analysis. The 86,004 peaks called by 276 

MACS2(v2.1.1)54,55 were used for the downstream analysis.  277 

  278 
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Figure 1. Proformer is a macaron-like transformer architecture that models the 286 

relationship between DNA sequences and expression values.  287 

  288 
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Figure 2. Multiple expression heads (MEH) with mask filling has better 289 

performance on large over-parameterized models. (a) Global average pooling layer 290 

and MEH with mask filling were used at the top the transformer blocks. (b) The training 291 

(left) and validation (left) performance of Proformer models using global average pooling 292 

(AP) or MEH with 32 heads (EH32) were compared. The performance was measured 293 

by the Pearson's R between observed and predicted expression values. (c) Systematic 294 

evaluation of global average pooling and MEH with mask filing on different model 295 

specifications such as dimension heads (2, 4, and 8), macaron blocks (1, 2, 4, and 8), 296 

and number of expression heads (1, 8, 16, 32, 64) was performed. The best 297 

performance of each model specification was highlighted.  298 

 299 

  300 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532129doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532129


 16 

Figure 3. Multiple expression heads (MEH) with mask filling has better 301 

performance on predicting chromatin accessibility from DNA sequences. (a) The 302 

task of predicting mean ATAC-seq signal of the central 20 bp from 100 nt surrounding 303 

DNA sequences was examined. (b) Systematic evaluation of global average pooling 304 

and MEH with mask filing on different model specifications such as dimension heads (2 305 

and 4), macaron blocks (1, 2, 4, and 8), and number of expression heads (1, 8, 16, 32, 306 

64). The best performance of each model specification was highlighted.  307 

 308 

 309 

  310 
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Figure 4. Multiple expression heads (MEH) with mask filling is critical for 311 

improving the prediction performance on hold-out validation data. (a) The training 312 

(left) and validation (left) performance of Proformer models on the full DREAM dataset 313 

using global average pooling (AP) or MEH with 32 heads (EH32). The performance was 314 

measured by the Pearson's R between observed and predicted expression values. The 315 

checkpoint after the 6th epoch was used as the final model where the validation 316 

Pearson's R was maximized (red dotted line). (b) The performance of Proformer model 317 

on the hold-out validation data. The performance is measured by weighted (score) or 318 

unweighted Pearson's R and Spearman's Rho between observed and predicted 319 

expression values.  320 

  321 
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