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ABSTRACT 1 

The CRISPR-Cas9 system has successfully achieved site-specific gene editing in organisms 2 

ranging from humans to bacteria. The technology efficiently generates mutants, allowing for 3 

phenotypic analysis of the on-target gene. However, some conventional studies did not 4 

investigate whether deleterious off-target effects partially affect the phenotype. Herein, we 5 

present a novel phenotypic assessment of CRISPR-mediated gene editing: Deleterious and 6 

ANticipatable Guides Evaluated by RNA-sequencing (DANGER) analysis. Using RNA-seq data, 7 

this bioinformatics pipeline can elucidate genomic on/off-target sites on mRNA-transcribed 8 

regions related to expression changes and then quantify phenotypic risk at the gene 9 

ontology (GO) term level. We demonstrated the risk-averse on/off-target assessment in 10 

RNA-seq data from gene-edited samples of human cells and zebrafish brains. Our DANGER 11 

analysis successfully detected off-target sites, and it quantitatively evaluated the potential 12 

contribution of deleterious off-targets to the transcriptome phenotypes of the edited 13 

mutants. Notably, DANGER analysis harnessed de novo transcriptome assembly to perform 14 

risk-averse on/off-target assessments without a reference genome. Thus, our resources 15 

would help assess genome editing in non-model organisms, individual human genomes, and 16 

atypical genomes from diseases and viruses. In conclusion, DANGER analysis facilitates the 17 

safer design of genome editing in all organisms with a transcriptome. 18 

 19 
 20 

INTRODUCTION 21 

The CRISPR-Cas9 system was initially adapted as a bacterial immune system(1,2). Over the 22 

past decade, this system has been developed as a programmable nuclease that enables site-23 

specific modification of the genomes of various organisms, including humans)3–5), insects)6,7), 24 

microalgae(8,9), and bacteria(10). Engineered CRISPR-Cas9 undertakes genomic modification 25 

using two components: RNA-guided Cas9 nuclease and single-guide RNA (sgRNA)(11,12). The 26 

Cas9-sgRNA complex generates indels near the target site (on-target site), where the 19–20 27 

bases of the 5´ ends of sgRNA (protospacer) and the protospacer adjacent motif (PAM) of 28 

Cas9 protein bind(11–14). Recently, many CRISPR-Cas9 applications, such as Cas9 nickase 29 

(Cas9n)(12), dead Cas9 (dCas9)(15), base editors(16,17), and prime editors(18), have been 30 

developed. Furthermore, CRISPR-Cas9-mediated genome editing was found to be efficient, 31 
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with the editing efficiency exceeding 50% over time(19). Thus, CRISPR technology has 1 

dramatically facilitated a reverse genetics approach involving phenotypic analysis using 2 

CRISPR-Cas9-based mutants of a user-targeted gene(20–23). 3 

 4 

However, genome editing using CRISPR technology presents two challenges that have not 5 

been addressed in previous studies. First, phenotypic effects caused by unexpected CRISPR 6 

dynamics are not quantitively monitored. CRISPR-Cas9 is well known for unexpected 7 

sequence editing (off-target site) with mismatches when compared to protospacers and 8 

PAM5. Off-target gene editing results in incorrectly edited mRNA, unexpected phenotypes, 9 

and decreased expression of unrelated genes. Some reports predicted and detected off-10 

target editing using genomic PCR and DNA sequencing analysis(14,24–26), but most studies 11 

have not assessed the phenotypic effect of the detected off-targets. Second, CRISPR 12 

technology generally depends on basic genomic data, including the reference genome. 13 

CRISPR technology has potential applications in organisms with incompletely characterized 14 

genomes. However, the design of site-specific sgRNAs requires the factual genomic 15 

sequence of materials to be treated with CRISPR technology. This hindrance also emerges in 16 

the human genome, particularly in the genomes of patients and cancer genomes. These 17 

genomes are assumed to be completely distinct from the reference genome(27,28). The off-18 

target is always “unexpected.” Thus, we need a method to observe factual genomic 19 

sequences and reduce potential off-target effects. 20 

 21 

We devised a method to overcome the two challenges above: phenotypic risk and 22 

dependence on a reference genome. Phenotypic risk can be assessed by phenotype analysis 23 

using gene ontology (GO) annotation(29,30). GO has been widely used for several 24 

decades(20,23,31–34). Recently, many RNA sequencing (RNA-seq) data and mapped genes have 25 

been annotated with GO terms to characterize the transcriptome phenotype under a specific 26 

condition of the organism. This process is known as enrichment analysis(35). We expected 27 

that we could quantitatively assess the phenotypic risk of off-target genes if each off-target 28 

gene with decreased expression was annotated with GO terms. Moreover, de novo 29 

transcriptome assembly technology can address the dependency problem of reference 30 

genomes. The de novo transcriptome assembly can generate transcriptome sequences 31 

without the reference genome using RNA-seq data(36–40). We identified factual genomic 32 
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sequences in mRNA-transcribed regions using de novo transcriptome assembly from gene-1 

edited organisms and cells. 2 

 3 

In this study, we combined de novo transcriptome assembly and GO annotation analysis in 4 

CRISPR editing to establish a DNA on/off-target assessment, including phenotype risk 5 

analysis without a reference genome. We named it Deleterious and ANticipatable Guides 6 

Evaluated by RNA-sequencing (DANGER) analysis (Figure 1). This bioinformatics pipeline can 7 

elucidate genomic on/off-target sites based on de novo transcriptome assembly using RNA-8 

seq data. Then, it identifies the deleterious off-targets, defined as off-targets on the mRNA-9 

transcribed regions that represent the downregulation of expression in edited samples 10 

compared to wild-type (WT) ones. Furthermore, our pipeline can quantify phenotypic risk at 11 

the GO term level by calculating a newly defined indicator of phenotypic risk by the 12 

deleterious off-targets, named the D-index. 13 

 14 

MATERIAL AND METHODS 15 

Implementation of DANGER Analysis 16 

Our pipeline of DANGER analysis is composed of several processes: "Quality control & 17 

Adapter trimming," "rRNA Removal," "de novo transcriptome assembly," " Removal of 18 

redundancy," "Detection of on-target and potential off-target sites," "Expression 19 

quantification," "Search for deleterious off-target sites," "Identification of ORFs and Genes," 20 

"GO analysis," and "Validation for phenotypic risk" (Figure 2A).  21 

DANGER analysis examines paired-end RNA-seq data derived from wild-type (WT) and 22 

edited samples using the processes depicted in Figure 1. The pipeline generates a de novo 23 

transcriptome assembly, an expression profile of transcripts belonging to on/off-target sites, 24 

and an estimation of the phenotypic risk for off-target sites. The script has been uploaded to 25 

our GitHub repository (https://github.com/KazukiNakamae/DANGER_analysis). The analyses 26 

were performed on Docker with Ubuntu v. 22.04.1, LTS, and 235 GB of memory. The scripts 27 

for this processing pipeline were released as a Docker image 28 

(https://hub.docker.com/r/kazukinakamae/dangeranalysis), enabling operation on various 29 
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operating systems beyond Linux using this Docker image. Each process is explained in detail 1 

below.  2 

 3 

Quality Control & Adapter Trimming. Quality control and adapter trimming were performed 4 

using Cutadapt v. 1.18(41), which also removed low-quality reads. The adapter sequences 5 

used were "AGATCGGAAGAG." 6 

 7 

Ribosomal RNA (rRNA) Removal. The residual rRNA reads were filtered using bbduk v. 38.18 8 

(https://sourceforge.net/projects/bbmap/). Each sample was filtered twice. In the first and 9 

second filters, we used SSU and LSU rRNA datasets from SILVA v. 119.1 (https://www.arb-10 

silva.de). The dataset was downloaded from the CRISPRroots 11 

(https://rth.dk/resources/crispr/crisprroots/). 12 

 13 

De novo Transcriptome Assembly. The de novo transcriptome assembly was performed using 14 

Trinity v. 2.12.0(38). The merged read files were composed of RNA-seq data derived from WT 15 

samples. Transcriptome completeness was assessed using BUSCO v. 5.2.2_cv1(42). The BUSCO 16 

evaluated the competence of assembly using estimation of similarity to gene database 17 

(BUSCO genes) and classified hit sequence into “complete” (including “single-copy” and 18 

“duplicated”), “fragmented,” and “missing.” The databases used for conserved mammalian 19 

BUSCO genes were "mammalia_odb10" and "actinopterygii_odb10" for human and zebrafish 20 

assemblies, respectively. 21 

 22 

Removal of redundancy. The expression of RNA-seq data derived from WT samples was 23 

quantified in advance to remove transcripts with low expression levels. Quantification was 24 

performed with align_and_estimate_abundance.pl of Trinity v. 2.12.0. The removal of 25 

transcripts was performed with filter_low_expr_transcripts.pl of Trinity v. 2.12.0. 26 

 27 
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Detection of on-target and potential off-target sites. Detection of on/off-target sites in de 1 

novo transcriptome assembly was performed with Crisflash v.1.2.0(43). Our off-target 2 

detection focused on up to 8 or up to 11nt mismatches and NGG or NRR PAM because the 3 

previous off-target reports indicated that off-target sites with ≥5 nt mismatches and 4 

NGG/NAG/NGA/NAA PAM exist24,44, although not with a high frequency. Specifically, we 5 

searched for potential off-target sites by executing the following command: 6 

“crisflash -g Result_denovo_transcriptome_ {de novo transcriptome assembly generated from 7 

WT RNA-seq data} -s {sequence of protospacer and PAM} -o {output file of Crisflash} -m {the 8 

maximum number of mismaches users consider} -p {PAM} -t {the number of thread} -C.“ 9 

The output file of Crisflash has on-/off-target locations, off-target sequences, and mismatch 10 

numbers included in the tab-delimited format (Cas-OFFinder format). The on-target 11 

locations were extracted using perfect matching with the expected genomic sequence of 12 

Cas9-sgRNA binding. The potential off-target sites were classified by the mismatch number 13 

in each text file.  14 

 15 

The detection of on/off-target sites uses one de novo transcriptome assembly generated by 16 

merging all replicates of RNA-seq data from WT samples to ensure the best quality of 17 

assembly. Thus, we did not obtain replicates of numerical data related to off-target sites or 18 

conduct statistical evaluations such as p-values using the replicated data. The analysis design 19 

is due to concerns that utilizing de novo transcriptome assembly generated from individual 20 

replicates might diminish the accuracy of the analysis. 21 

Expression quantification. Using filtered de novo transcriptome assembly, we quantified the 22 

expression of RNA-seq data derived from each sample. Quantification was performed using 23 

align_and_estimate_abundance.pl of Trinity v. 2.12.0. The transcripts per million (TPM) 24 

dataset was constructed from “RSEM.isoforms.results” of each output directory and was 25 

saved as a single CSV file. 26 

The ratio of TPM values on a transcript was calculated with the following formula: 27 

 28 
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A transcript with a TPM ratio of less than the user-defined value (t) was determined as 1 

downregulated TPM (dTPM). Furthermore, in place of TPM, it is compatible with profiling 2 

based on Differentially Expressed Genes (DEG). The DEG analysis was performed to compare 3 

different analysis methods. The read count data were extracted from the 4 

"RSEM.isoforms.results" of each output directory in the section "Implementation of DANGER 5 

analysis: Expression quantification.” The raw count data were normalized by the Tag Count 6 

Comparison (TCC) R package(45) with the parameter "norm.method="tmm," 7 

test.method="edger," iteration=30, FDR=0.1, floorPDEG=0.05" to detect DEG between RNA-8 

seq data derived from WT and Edited samples. The MA plot was constructed using an in-9 

house R script. If a DEG transcript had a negative log-ratio of normalized counts (M-value) 10 

and its p-value fell below the user-defined value (α), it was determined to be downregulated 11 

DE (dDE). It was saved as a single CSV file. 12 

 13 

Search for deleterious off-target sites. Our pipeline defined an off-target site where the 14 

transcript was annotated with dTPM or dDE as a deleterious off-target site, which could be 15 

also paraphrased as “actual off-target site.” We counted the number of deleterious off-target 16 

sites using an in-house Python script, which required the off-target site profile and the TPM 17 

ratio or DEG described above. 18 

 19 

Identification of ORFs and Genes. Our pipeline identifies open reading frames (ORFs) in the 20 

filtered de novo transcript sequences and predicts the corresponding amino acid sequences. 21 

If these predicted sequences exhibit significant homology with protein sequences in a 22 

database, we assign them as genes. The open reading frames (ORFs) and genes of the 23 

filtered de novo transcript were estimated with TransDecoder v. 5.5.0 and ggsearch v. 36.3.8g 24 

using a protein database. The process was based on the Systematic Analysis for 25 

Quantification of Everything (SAQE) pipeline (https://github.com/bonohu/SAQE)(33). In 26 

particular, "11TransDecoder.sh", "12GetRefProts.sh", "15ggsearch.sh", "15parseggsearch.sh", 27 

and "15mkannotbl.pl" were used with the supplemental script "00_prepare_faa_4Fanflow. sh" 28 

in the GitHub repository (https://github.com/RyoNozu/Sequence_editor). The referred 29 

protein databases were the Ensembl databases of all translations resulting from Ensembl 30 
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genes in humans and zebrafish. The DANGER analysis database can be manually customized 1 

with the organism from which the analyzed RNA-seq data was extracted. 2 

The above identification was based on one de novo transcriptome assembly generated by 3 

merging all replicates of RNA-seq data from WT samples to ensure the best quality of 4 

assembly. Thus, we did not obtain replicates of numerical data related to the identifications 5 

or conduct statistical evaluations such as p-values using the replicated data. The analysis 6 

design is due to concerns that utilizing de novo transcriptome assembly generated from 7 

individual replicates might diminish the accuracy of the analysis. 8 

GO enrichment analysis. GO annotations of gene ontologies were performed using an in-9 

house R script using the org.Hs.eg.db and org.Dr.eg.db R packages for humans and zebrafish, 10 

respectively. Enrichment analysis followed by GO annotations was performed using the 11 

topGO R package against genes whose off-target sites were determined to be deleterious 12 

off-target sites. Enrichment analyses were performed per off-target mismatch number. 13 

Finally, the enrichment tables were merged into a single table, named the DANGER table, 14 

with the mismatch number annotated. 15 

 16 

Validation for phenotypic risk. We defined the following value (D-index) to evaluate the 17 

phenotypic risk posed by deleterious off-target effects per GO term.  18 

�� � �����	 
 � ��	 � ����4 � 	   �2	
�
���

���

 

where m indicates the number of mismatches. The N(m) represents the total number of 19 

genes , which have m bases mismatches, included in a specific GO term. The mmax is the 20 

maximum number of mismatches that a user considers. The D-index considers both the 21 

phenotypic risk and the frequency of off-target effects. Based on previous reports, we used 22 

the exponential function to express the frequency of off-targets because the frequency of 23 

off-targets tends to decrease exponentially as the mismatch number of off-target sites 24 

increases(24,46). Based on a GUIDE-seq study24, most reported off-targets possess mismatches 25 

of four or fewer nucleotides (Supplementary Table S1). Therefore, the exponent value is 26 
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represented as a decreasing function by subtracting the number of mismatches from four, 1 

and by minimizing the impact of mismatches with five or more nucleotides, we have enabled 2 

the probabilistic risk assessment at an appropriate level. Calculations were performed using 3 

an in-house Python script. 4 

 5 

Validation of D-index 6 

We established a validation methodology of statistical significance for the D-index, 7 

determined as described above, for each set of GO terms using a permutation test. The 8 

permutation test involved random shuffling of the expression profile and off-target profile 9 

based on a given seed value, and the D-index was computed based on these randomly 10 

shuffled profile data. We will refer to this D-index as a pseudo-D-index. After repeating this 11 

process of creating pseudo-D-indexes 100 times, we made a distribution of pseudo-D-12 

indices for each set of GO terms. A D-index outside the (1 – L) ×100 % confidence interval of 13 

this distribution and higher than the mean value was defined as a “significant D-index.” 14 

Additionally, we implemented a script to measure the false positive rate of the permutation 15 

test. In false-positive detection, ten additional shuffled data sets were generated using seed 16 

values different from the ones used to create the shuffled expression and mismatch profiles, 17 

and the newly calculated pseudo-D indices from these data were calculated. If they met the 18 

criteria for a significant D-index in the above distribution, the pseudo-D-indices were defined 19 

as “significant pseudo-D-index” and counted. The ratio of the significant pseudo-D-indices 20 

to the total number of new pseudo-D-indices was defined as the false positive rate. 21 

Multiplying this false-positive rate by the total number of original D-indices allows us to 22 

estimate the number of expected false D-indices, and subtracting this from the total number 23 

of original D-indices enables us to count the number of expected true D-indices. 24 

The analyses were performed on Docker with Ubuntu v. 22.04.1, LTS, and 235 GB of memory. 25 

The scripts for this processing pipeline were released as a Docker image 26 

(https://hub.docker.com/r/kazukinakamae/dangertest), enabling operation on various 27 

operating systems beyond Linux by using this Docker image. 28 

 29 
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Datasets 1 

Two RNA-seq datasets were analyzed to evaluate our pipeline. First, we collected paired-end 2 

RNA-seq datasets, which had a total of >100 M reads for all WT samples and an average 3 

length of >100 nt, to ensure good quality, which indicated a percentage of complete 4 

benchmarking universal single-copy orthologs (BUSCO) genes of >70%, of transcriptome 5 

completeness after de novo transcriptome assembly. The datasets were downloaded from 6 

the Sequence Read Archive (SRA) (Table 1). 7 

 8 

GRIN2B. The dataset was extracted from human iPSC-derived cortical neurons with or 9 

without indels generated by paired Cas9 nickase (Cas9n)-single-guide RNA (sgRNA) 10 

(GRIN2B-FW and GRIN2B-REV sgRNAs) on the GRIN2B locus(23). Previous studies have 11 

established clones with indels resulting in loss-of-function (LOF) and reduced dosage (RD). 12 

However, we focused only on LOF samples that had been edited and analyzed using our 13 

pipeline. Gorodkin and Seemann have previously reported that off-target sites affect the 14 

expression profile of LOF samples using reference-based RNA-seq analysis. Our study used 15 

the GRIN2B dataset to benchmark de novo transcriptome assembly based and reference-16 

based RNA-seq analyses(44). Moreover, we profiled the on/off-target assessment of GRIN2B-17 

REV sgRNA. 18 

 19 

Park7. The dataset was extracted from the zebrafish brain with or without biallelic indels 20 

generated by a single Cas9-sgRNA at the park7 locus (which encodes DJ-1)(20). The analyzed 21 

F2 mutants were generated from a cross between two heterozygous F1 mutants. We used 22 

the dataset as an in vivo example of the DANGER analysis pipeline in a simple CRISPR-Cas9-23 

mediated knock-out experiment. 24 

 25 

Statistical analysis 26 

Plots were made using Microsoft Office and housemade Python scripts. The Exact Fisher’s 27 

test was performed for the p-value was calculated accordingly using fisher_exact() of the 28 

scipy package in Python. The 2-tailed Welch's t-test was performed for the p-value was 29 
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calculated accordingly using ttest_ind(equal_var=False) of the scipy package in Python. We 1 

used G power software for the statistical power (1-ß) calculation. The Venn diagrams were 2 

generated using web software (“Calculate and draw custom Venn diagrams”: 3 

https://bioinformatics.psb.ugent.be/webtools/Venn/). 4 

 5 

RESULTS & DISCUSSION 6 

Assessment of CRISPR-Cas9 off-targets using DANGER Analysis for RNA-seq Data from 7 

in vitro Differentiated Human iPSC 8 

We investigated whether our DANGER analysis pipelines could detect deleterious off-target 9 

sites without information on the reference genome. First, we applied DANGER analysis to the 10 

GRIN2B dataset, which was extracted from human iPSC-derived cortical neurons with or 11 

without in-frame deletions at the GRIN2B locus(23). The obtained de novo transcriptome 12 

assembly contained five isoforms in which on-target sequences of sgRNA (GRIN2B-REV) 13 

(Figure 2B) were located. The assembly comprised 342,910 contigs and exhibited BUSCO 14 

transcriptome completeness of 79.1% (Figure 2C). Previous studies on de novo transcriptome 15 

assembly using Trinity reported 64.7%, 77.1%, 80%, and 87% complete BUSCO genes in 16 

higher animals such as Homo sapiens(36), Castor fiber L.(37), Mirounga angustirostris(39), and 17 

Dromiciops gliroides(40), respectively. We successfully obtained a de novo transcriptome with 18 

standard quality. Consequently, the pipeline performed an exhaustive search using Crisflash, 19 

yielding 33,878 potential off-target sites with up to 8 bases mismatches (MM) and NGG PAM, 20 

using transcriptome assembly. 21 

Next, we quantified the transcriptome-wide expression of each of the four RNA-seq samples 22 

from the WT and Edited GRIN2B loci. Our pipeline examines whether the potential off-target 23 

site, which is output of Crisflash, is in the transcript and whether it also reduces the 24 

expression value. The pipeline considers those potential off-targets that have confirmed 25 

down-expression as deleterious off-targets, in other words, actual off-targets. The reduction 26 

of expression may occur because nonsense-mediated mRNA decay (NMD)47 destroys 27 

incomplete transcript sequences resulting from off-targeting, or alignment software fails to 28 

map the incomplete transcript sequences to the untreated transcript sequence48. The 29 

DANGER analysis screens transcripts with lower expression levels in edited samples 30 
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compared to WT samples. In general, there are several criteria for estimating expression 1 

using RNA-seq. We implemented two criteria, "downregulated different expression (dDE)" 2 

and “dTPM," for the detection of downregulated transcripts (Figure 3A; two callouts). Our 3 

dDE criterion uses DEG analysis with TCC normalization (see Materials and Methods). In the 4 

case of DEs in a transcript with a negative M-value and a p-value that was less than the 5 

threshold value (α) in the MA plot (Figure 3A; right callout), we defined the transcript as 6 

"dDE." On the other hand, the “TPM" criterion uses the normalized value, named TPM, as first 7 

defined by (49) and calculates the ratio of TPM between WT and the edited samples. When 8 

the ratio of a transcript is less than the threshold value (t), we defined the transcript as 9 

"dTPM" (Figure 3A; left callout). We confirmed the number of transcripts with dDE (α = 0.001) 10 

or dTPM (t = 0.4) annotation that contained off-target sites (Figure 3A; Venn diagram). There 11 

were 730 transcripts with dDE off-targets. A total of 12,747 transcripts with dTPM off-targets 12 

were detected, which was approximately 17-fold more than those with dDE off-targets. Our 13 

DANGER analysis aims to serve as a screening tool that emphasizes maximizing the 14 

estimation of potential risks by capturing as many sites suspected of phenomena as 15 

knockout or knockdown of off-target genes. From this perspective, the dTPM approach can 16 

estimate the deleterious off-target effects to the greatest extent, more so than the dDE 17 

approach. Furthermore, we focused on the off-targets detected in common by dTPM and 18 

dDE. We observed their mismatch count (Supplementary Figure S1A). As a result, we 19 

confirmed that the off-targets seen in common were distributed at an even ratio for each 20 

mismatch count compared to the off-targets detected only by dTPM (Supplementary Figure 21 

S1B). Given that the number of mismatches affects the likelihood of off-target occurrences, 22 

there is no correlation between the common off-targets and their occurrence rate. While 23 

there are differences in the number and types of transcripts detected by dTPM and dDE, no 24 

evidence suggests that these differences result from a flaw in either approach. Therefore, our 25 

pipeline has adopted both methods. 26 

The Gorodkin and Seemann group previously established the on/off-target assessment 27 

pipeline (CRISPRroots)(44). They then used STAR(50) to perform expression analysis on the 28 

same RNA-seq data of GRIN2B using reference-based mapping. They suggested that two 29 

off-target sites (ALK: gcAgaCTGGtTGGAAGCaCCNGG, GBA2: cccTTCcGGccGGAAGCGCCNGG) 30 

were binding with the Cas9-GRIN2B-REV sgRNA (AGATTCTGGGTGGAAGCGCCNGG)-DNA 31 
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seed and were linked to downregulated expression (namely, “RISK: CRITICAL”). The definition 1 

of off-targets in their study was similar to our idea of deleterious off-targets. Thus, we 2 

compared our list of deleterious off-targets in dTPM and dDE with the two off-targets 3 

detected using CRISPRroots. As a result, in the DANGER analysis, the off-target of 4 

CRISPRroots in the ALK locus was detected by both dTPM (t = 0.4) and dDE (α = 0.001) 5 

criteria considering up to eight base mismatches with NGG PAM, whereas the off-target of 6 

CRISPRroots in GBA2 was not detected by any criteria (Figure 3B). The absence of GBA2 was 7 

understandable because the off-target site on the GBA2 locus was in the promoter region 8 

rather than the GBA2 transcript. Additionally, more stringent expression analyses were 9 

conducted using dTPM (t = 0.2) and dDE (α = 0.0001). As a result, although 125 off-target 10 

genes were detected, neither dTPM nor dDE could identify ALK as an off-target gene 11 

(Supplementary Figure S2). This result suggested the possibility of an increase in false 12 

negatives when the threshold for detection of expression decreases resulting from off-target 13 

effects is overly strict. It is therefore considered appropriate to set t = 0.4 in dTPM and α = 14 

0.001 in dDE. Our de novo transcriptome approach focuses solely on the potential off-target 15 

genes in the transcribed region of the genome. Additionally, unlike traditional reference-16 

based RNA-seq analysis, this approach can provide novel insights. For example, the off-17 

target search of DANGER analysis detected a transcript with an off-target site downstream 18 

GALR2 locus (Figure 3C). The genome database annotation was not the off-target site of the 19 

transcribed region (XM_047436984.1). However, the de novo transcriptome assembly 20 

included the site in the transcript (TRINITY_DN86617_c0_g1_i1). This result indicates that our 21 

DANGER analysis pipeline can detect bona fide transcripts, which have never been annotated 22 

in the reference genome database because of cell-specific transcription, personal genomic 23 

variants, and inadequate genomic locus study. Additionally, the de novo transcriptome 24 

assembly had 260,770 transcript annotations (contigs), which may include transcript variants 25 

that partially came from allelic heterogeneity. The annotation size of DANGER analysis is 26 

about ten times larger than that of CRISPRroots, whose gene annotations were about 25k. 27 

DANGER Analysis was expected to make a larger off-target dataset of transcribed regions 28 

using the transcript-aware annotations compared to reference-based analysis. Although the 29 

detection range of our DANGER analysis is limited to the transcribed region, our pipeline 30 

using dTPM and dDE detected 13,237 and 813 off-target sites with zero to eight mismatches 31 

in identified and unidentified transcripts, respectively. 2,236 and 407 gene-annotated off-32 
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target sites with four to eight mismatches, respectively. In contrast, genome-wide and 1 

reference-based RNA-seq analysis (CRISPRroots) features only two off-target sites in genes 2 

with six mismatches. There was a large discrepancy in the detection number of off-targets 3 

between DANGER Analysis and CRISPRroots. We demonstrated that the DANGER analysis 4 

could generate a comprehensive and factual record of off-target sites (Figure 3D). 5 

Finally, our pipeline evaluated the phenotypic risk of deleterious off-targets. Various studies 6 

have used Gene Ontology (GO) analysis to assess phenotypic effects(20,23,31–34). However, this 7 

study also considered off-target frequency because deleterious off-targets with many 8 

mismatches were expected to occur(5,46). Thus, our pipeline counted off-target genes 9 

associated with specific GO terms per mismatch number (Figure 4A) and then combined the 10 

results with the mismatch effect by calculating the D-index per GO term (Figure 4B; see 11 

Materials and methods). The D-index is calculated by multiplying the number of genes 12 

containing a GO term for each mismatch number by a decreasing exponential function with 13 

the mismatch number as the exponent. This approach allows us to consider the number of 14 

genes hit by the GO terms and the number of mismatches. Moreover, it can suppress the 15 

influence of the number of genes hit when the mismatch number is large. The formula can 16 

prioritize evaluating the number of genes hit when the mismatch number is small. With these 17 

two characteristics, the D-index represents a unique off-target metric that considers the 18 

impact on phenotype. The sum of the D-index value (total D-index) in detected GO terms 19 

was 6,228 (N= 9,896) (Figure 4C, Supplementary Table S2) in the GRIN2B dataset. The 20 

DANGER analysis was used to evaluate the phenotypic risk at the GO level using RNA-seq of 21 

the human GRIN2B dataset data without any reference genomes. 22 

 23 

Evaluation of D-index and optimization of DANGER analysis 24 

Using the D-index, we quantified the phenotypic impact from off-targets at the GO term 25 

level. However, a different threshold must be set for each GO term when evaluating the 26 

statistical significance of the D-index values because GO is a loosely hierarchical annotation 27 

concept, and ‘parent’ terms appear as annotations of various genes even if there is less 28 

relationship with off-targets. To address this issue, we implemented a permutation test 29 

system to estimate the significance threshold for each GO term (Figure 5). In this system, 30 
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after randomly shuffling the expression profile and off-target profile, we repeat the process 1 

of calculating a meaningless D-index (named pseudo-D-index) by applying the D-index 2 

formula 100 times. We then create a null distribution from the 100 pseudo-D-index values 3 

for each GO term and define a Significant D-index as an originally obtained D-index value 4 

that exceeds the (1 – L) ×100 % confidence interval of the null distribution. The methodology 5 

and the threshold allow us to extract only the D-indices of the GO terms suspected of having 6 

an off-target-associated impact on the phenotype. 7 

Moreover, we devised a scheme to assess the validity of the permutation test system 8 

(Supplementary Figure S3). In the validation scheme, followed by generating several different 9 

pseudo-D indices, the number of the newly generated pseudo-D indices exceeding the 10 

threshold of the previous null distribution is counted. We defined the ratio of the count to 11 

the total number of D-indices as the false detection rate in the permutation test. We used 12 

the evaluation scheme to verify how the false detection rate changes under various 13 

conditions in DANGER Analysis. No significant influence was observed from the threshold of 14 

the expression analysis (t, α) or the conditions of off-target search (Supplementary Figure 15 

S4A-C). We confirmed L=1E-15 confidence interval threshold reduced the false detection 16 

rate by more than half in the case of L=5E-1. Here, we named the condition of dTPM with 17 

high false positives (up to 11-MM NRR PAM, t=0.4, L=5E-1) as 'Approximate dTPM,' the 18 

condition of dTPM with low false positives (up to 8-MM NGG PAM, t=0.4, L=1E-15) as 19 

'Optimized dTPM,' and the condition of dDE with low false positives (up to 8-MM NGG PAM, 20 

α = 0.001, L=1E-15) as 'Optimized dDE.' When comparing the three conditions, the 21 

optimized dDE showed the lowest false detection rate (Figure 6A). Next, we calculated the 22 

total number of D-indices, significant D-indices, and true significant D-indices (Expected True 23 

D-indices) estimated from the False Detection Rate for these three conditions. The total 24 

number of D-indices was more than twice as high for dTPM as for dDE, while the number of 25 

Expected True D-indices was less than half for dTPM compared to dDE (Figure 6B). The result 26 

indicates that the dTPM criterion is a 'sharply-narrowing-down' approach used for initial 27 

screening, while dDE is a 'meticulously trimming' approach used for a rigorous selection 28 

process. Generally, the dDE approach is recommended for use in human RNA-seq data 29 

because the criterion is expected to present fewer false detections in significant D-indices. 30 

However, in model organisms and non-model organisms with less comprehensive GO 31 
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annotations than humans, the dDE approach may not yield a sufficient D-index list for the 1 

evaluation. Thus, the dTPM approach, which can obtain more D-indices, is expected to be 2 

more effective in RNA-seq data from less characterized organisms than humans. We 3 

evaluated the consistency of D-indices and Significant D-indices detected by both optimized 4 

dTPM and optimized dDE. The concordance of each D-index and Significant D-index was 5 

approximately 52% and 1.3%, respectively (Figure 6C), which can be attributed to the fact 6 

that optimized dTPM considers more than five times the gene-annotated off-target sites 7 

compared to optimized dDE (Figure 3D). However, the significant D-indices commonly 8 

detected by optimized dTPM and optimized dDE corresponded to the top 16 significant D-9 

indices in dTPM (Figure 3C-D). The result suggested that the value of the D-index not only 10 

served as an indicator of the phenotypic impact from off-targets but could also be an 11 

indicator of the strength of its consistency. Thus, it is recommended to conduct follow-up 12 

analyses focusing mainly on the top-ranking D-indices in optimized dTPM. 13 

Assessment of CRISPR-Cas9 on/off-target using DANGER analysis for RNA-seq data 14 

from in vivo tissue of zebrafish 15 

We performed DANGER analysis using the RNA-seq data from human cells edited by one of 16 

the Cas9n-sgRNAs for benchmarking with the previous method (CRISPRroots) and optimized 17 

parameters for the DANGER analysis in the previous sections. Next, we investigated whether 18 

DANGER analysis could be used to analyze the RNA-seq data from the non-human tissue 19 

that had been in vivo edited with a single Cas9 nuclease-sgRNA, a more common 20 

experimental design for genome editing. Thus, we downloaded and analyzed RNA-seq data 21 

from the park7 dataset derived from the zebrafish brain, with and without indels at the park7 22 

locus(20). Our DANGER analysis successfully built a de novo transcriptome assembly with 90.9% 23 

complete BUSCO genes and detected on-target sequences in the two transcripts (Figure 7A). 24 

Moreover, DANGER analysis revealed a significant downregulation of the transcript with 25 

Cas9-sgRNA on-target sequence in the expression quantification (Figure 7B). The original 26 

report on the park7 dataset reported downregulated park7 mRNA in the park7 mutant using 27 

RNA-seq analysis(20). This result implied that de novo transcriptome assembly and the 28 

following expression quantification of our DANGER analysis could generate reliable data 29 

consistent with the outcome of standard RNA-seq analysis using a reference genome. 30 

Consequently, 19,314 potential off-target sites in all transcripts were detected by optimized 31 
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dTPM, which were then defined as deleterious off-targets considering the expression profile. 1 

There were 4,668 and 70 deleterious off-target sites on all and gene-annotated transcripts, 2 

respectively (Figure 7C). The park7 result had no deleterious off-target effects with ≤ 4 3 

mismatches, which meant that frequent off-targeting was not expected in mRNA-transcribed 4 

regions. The detected rate of gene-annotated transcripts to all transcripts was more than ten 5 

times less than that of optimized dTPM using human GRIN2B (Figure 3D and Figure 7C). The 6 

fewer annotations resulted from the poor gene database of zebrafish in comparison with 7 

that of humans. Next, our pipeline estimated the D-index per GO term to quantify 8 

phenotypic risk. The total D-index was 51 (N=636) (Figure 7D and Supplementary Table S5), 9 

which was less than that of human GRIN2B due to fewer annotations and off-target genes. 10 

Finally, we validated the D-indices using the permutation test as the same procedure in the 11 

last section. Only five significant D-indices were detected (Figure 7E) because the analysis 12 

considered only 70 deleterious off-target sites in gene-annotated transcripts. As discussed in 13 

the previous section, the park7 analysis has empirically demonstrated that the initially 14 

considered number of genes and the total number of D-indices can be small in organisms 15 

other than humans. The screening approach of optimized dTPM allows for the acquisition of 16 

significant D-indices in poorly annotated data sets. 17 

 18 

Comparison of phenotypic risks in the GRIN2B and Park7 datasets 19 

In this study, we evaluated the phenotypic risks associated with off-target transcripts using 20 

the D-index. The number of significant D-indices of the GRIN2B result was approximately 32-21 

fold larger than that of the park7 result in the optimized dTPM. Furthermore, the DANGER 22 

analysis found off-target genes with four mismatches in the GRIN2B dataset, which is 23 

common in genome-wide off-target studies such as GUIDE-seq and Digenome-seq(24,26) and 24 

numerous deleterious off-target sites on transcript sequences annotated with genes. Thus, 25 

Cas9n-GRIN2B-REV sgRNA may have side effects on the phenotype of differentiated human 26 

iPSC. A follow-up study is required to assess the edited GRIN2B LOF clones using WGS or 27 

alternative genome-wide methods such as GUIDE-seq(24). Researchers can identify some 28 

clarified points in the future using the result table of the significant D-index (Supplementary 29 

Table S3-4). For example, the GO term “nucleoside monophosphate metabolic process” (GO 30 
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ID: GO:0009123) recorded a top significant D-index for the GRIN2B result of optimized dTPM 1 

(Supplementary Table S3). The GO terms of "cell differentiation“ (GO ID: GO:0030154), “cell 2 

population proliferation” (GO ID: GO:0008283), and “cell cycle” (GO ID: GO:0007049) were 3 

considered as the phenotype of GRIN2B knock-out in the previous study(23). However, these 4 

GO terms were listed in the significant D-indices of optimized dDE (Supplementary Table S4, 5 

Table 2). The previous study showed that the gene expression changes of these GO terms 6 

resulted from on-target editing of the GRIN2B locus(23). However, the results of the DANGER 7 

analysis suggested that off-target editing of additional genes belonging to GO:0030154, 8 

GO:0008283, and GO:0007049 partially contributed to expression changes. Follow-up studies 9 

should include off-target gene analysis of the associated off-targets with the GO terms. On 10 

the other hand, The GO terms of "central nervous system development “ (GO ID: 11 

GO:0007417), “brain development” (GO ID: GO:0007420), “cell division” (GO ID: GO:0051301), 12 

and “chromosome segregation” (GO ID: GO:0007059) were not listed in the significant D-13 

indices of optimized dTPM and optimized dDE, which suggested the GO terms were obvious 14 

phenotypes in the GRIN2B knock-out cells. Therefore, DANGER analysis would help reach a 15 

reasonable conclusion in genome editing studies. 16 

 17 

Limitations 18 

In this section, we discuss the major limitations of the proposed pipeline. First, our method 19 

depends on the quality of de novo transcriptome assembly using Trinity. Pair-end RNA-seq 20 

data with sufficient length and read number must be used to guarantee high-quality 21 

assembly (see Material and Methods). If we fail to build an exemplary assembly, producing 22 

reliable data for the following analyses, such as on/off-target analysis and expression profiles, 23 

becomes difficult. Second, the annotation analysis step in our pipeline may fail to annotate 24 

transcripts adequately due to limited information from databases on genes, transcripts, 25 

proteins, and gene function. When researchers apply our pipeline to RNA-seq data from 26 

organisms with limited genomic knowledge and evidence, we recommend using a database 27 

of a model organism with a strong genomic relationship with the organism being analyzed. 28 

DANGER analysis can analyze genome-edited samples without a reference genome, but 29 

studies of a related model organism with a well-annotated genome are still required. As a 30 
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third limitation, DANGER analysis cannot strictly distinguish the effects of modifications to 1 

on-target genes on other genes from the impacts of off-target gene modifications. Of course, 2 

an on-target gene is excluded from the DANGER analysis. Still, it is difficult to distinguish the 3 

influence by considering off-target genes whose expression is controlled by the on-target 4 

genes. Such an evaluation can only be elucidated through protein interaction and genome 5 

analysis conducted using more specialized knowledge by researchers in each field. Therefore, 6 

it is appropriate to complete the follow-up studies mentioned in the previous section using a 7 

comprehensive analysis. Traditional studies have discussed results based on RNA-seq 8 

analysis under the premise that they are solely derived from the effects of on-target gene 9 

modifications. However, our DANGER analysis contradicts this assumption, sounding an 10 

alarm about the necessity for more specialized investigations and providing the off-target 11 

gene information needed for such follow-up analyses. Additionally, gene network analyses 12 

using found off-target genes can help users exclude false detection if the target organism of 13 

DANGER Analysis is a model organism whose gene database is well established. 14 

 15 

Possibility of DANGER Analysis as a Simplified Screening Tool, Contributing to More 16 

Rigorous Reference-based Phenotypic Risk Assessment 17 

In this study, we developed DANGER analysis as an initial screening tool for maximizing the 18 

evaluation of risks to phenotypes. Meanwhile, it is conceivable that we will also need a more 19 

rigorous evaluation system for assessing risks to phenotypes. In constructing such an 20 

evaluation system, it is believed that a system utilizing information other than RNA-seq data, 21 

such as reanalysis of sample genomes by resequencing the genomic DNA rather than de 22 

novo transcriptome assembly, would be appropriate. Although our DANGER analysis is a tool 23 

that only takes RNA-seq data as input to ensure convenience, there is room to apply the 24 

partial algorithm (association between off-target genes and GO terms, phenotype risk 25 

calculations using the D-index) into such a rigorous reference-based evaluation system for 26 

phenotype risks. We believe there is a high possibility that DANGER analysis could become a 27 

foundational presence in this new field of phenotype risk assessment. 28 

 29 
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DANGER analysis Provides a New Perception of the Conventional Genome Editing 1 

Process in Medicine, Agriculture, and Biological Research 2 

We demonstrated our DANGER analysis pipeline, as it allows for (i) the detection of potential 3 

DNA on/off-target sites in the mRNA-transcribed region on the genome using RNA-seq data, 4 

(ii) evaluation of phenotypic effects by deleterious off-target sites based on the evidence 5 

provided by gene expression changes, and (iii) quantification of the phenotypic risk at the 6 

GO term level, without a reference genome. Thus, DANGER analysis can be performed on 7 

various organisms, personal human genomes, and atypical genomes created by diseases and 8 

viruses(28). The CRISPRroots is expected to be only effective in samples with high similarity to 9 

the well-characterized reference genome. In general, DANGER analysis holds superiority over 10 

CRISPRroots in terms of versatility. We believe that the perception resulting from our 11 

DANGER analysis has not been observed in the conventional scheme for genome editing. We 12 

illustrate a new scheme using DANGER analysis in organisms (I) with and (II) without a 13 

reference genome (Figure 8). For example, (I) model organisms such as humans have a 14 

reference genome whose information has been generally used for potential on/off-target 15 

searches and post-analysis. However, the reference genome is a representative genome and 16 

not the personal genome of the patient or cell lines. Reference-based genome editing does 17 

not consider unique single nucleotide polymorphisms (SNPs) or spontaneous genomic 18 

rearrangements. DANGER analysis can supply a personal transcriptome-based on/off-target 19 

profile to ensure the phenotypic risk of unexpected off-target mutations. The new workflow 20 

of genome editing would be helpful for ex vivo gene therapy and cancer research because 21 

the genome of a cancer cell is generally characterized by widespread somatic genomic 22 

rearrangements(28). (II) An organism whose genome has never been comprehensively 23 

sequenced and well characterized is not considered a reasonable subject for genome editing, 24 

as site-specific genome editing is guaranteed without a reference genome. Some groups, 25 

however, have used incomplete genomic information to construct mutants of non-model 26 

organisms(51,52) that have never been well-characterized in genomics. Such a conventional 27 

scheme is hit-or-miss due to the risk of erroneous knock-out phenotypes in combination 28 

with off-targeting of other genes. DANGER analysis can provide transcriptome phenotype-29 

aware on-/off-target profiles as well as sequence information of the expressed genes. This 30 

information can be used for the safer design of genome editing, which enables the 31 
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optimized design of CRISPR editing by repeatedly looping back through genome-editing 1 

experiments without a reference genome. Furthermore, the DANGER analysis devised in this 2 

study employs a simple algorithm based on mismatch count for identifying off-target 3 

candidates. The type of algorithm has also been utilized in off-target investigations for other 4 

programmable nucleases such as CRISPR-Cas12a, TALEN, and ZFN. DANGER analysis is 5 

open-source and freely adjustable. Thus, the algorithm of this pipeline could be repurposed 6 

for the analysis of various genome editing systems beyond the CRISPR-Cas9 system. 7 

Moreover, it is also possible to enhance the specificity of DANGER Analysis for CRISPR-Cas9 8 

by incorporating a CRISPR-Cas9 specific off-target scoring algorithms. We believe that the 9 

DANGER analysis pipeline will expand the scope of genomic studies and industrial 10 

applications using genome editing. 11 

 12 

DATA AVAILABILITY 13 

The datasets were derived from the following public domain resources: 14 

https://www.ncbi.nlm.nih.gov/geo. The analyses were performed using DANGER analysis 15 
version 1.0. The Script for the DANGER analysis pipeline is available at 16 

https://github.com/KazukiNakamae/DANGER_analysis. In addition, the software provides a 17 
tutorial on reproducing the results presented in this article on the Readme page. The Docker 18 
image of DANGER_analysis is also available at 19 

https://hub.docker.com/repository/docker/kazukinakamae/dangeranalysis/general. 20 
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Figures 1 

Figure 1. Scheme of CRISPR-Cas9 targeting, deleterious off-target editing, and DANGER 2 

analysis.  3 

Figure 2. Overview of DANGER analysis and on-target region constructed by de novo 4 

transcriptome assembly. A. Bioinformatic workflow of DANGER analysis. Our analysis requires 5 

RNA-seq data derived from WT and Edited (each n≥3). DANGER analysis has two steps in the 6 

workflow: (1) de novo transcriptome assembly (light green background color) and (2) 7 

annotation analysis (light yellow background color). The de novo transcriptome assembly 8 

step is processed with Trinity and preprocessing tools such as cutadapt and bbduk.sh. 9 

Crisflash performs the search of on/off-target sequences. The RSEM quantifies gene 10 

expression in Edited RNA-seq samples in comparison to the WT de novo transcriptome (dot 11 

allow). The step of annotation analysis was involved processing with TransDedoder, ggsearch, 12 

org.XX.eg.db (e.g., org.Hs.eg.db in the transcriptome related to humans), and topGO. We 13 

implemented specific modules, colored in pink, for considering the phenotypic effect of 14 

deleterious off-targets. B. Comparison between the hg38 reference genome and transcript 15 

sequence constructed by de novo assembly of RNA-seq samples derived from WT iPSC-16 

derived cortical neurons on the GRIN2B on-target region. The on-target region of the hg38 17 

reference genome is illustrated with annotations of the GRIN2B CDS, the protospacer, and 18 

the NGG PAM sequence of SpCas9. The detected GRIN2B isoforms (1–5) are lined up in 19 

green in the black box. The Cas9-sgRNA binding sites are highlighted in blue. C. Genome 20 

completeness of de novo transcriptome assembly RNA-seq data derived from WT iPSC-21 

derived cortical neurons was assessed using conserved mammal BUSCO genes 22 

(mammalia_odb10). The result was 79.1% of “complete,” 20.7% of “single-copy,” 58.4% of 23 

“duplicated,” 3.2% of “fragmented,” and 17.7% of “missing” (n = 9226). 24 

Figure 3. The benchmark for expression analysis methods compared with reference-based 25 

RNA-seq analysis using RNA-seq data derived from WT and GRIN2B edited iPSC-derived 26 

cortical neurons. A. Comparison of different expression analyses. A Venn diagram comparing 27 

the de novo transcripts (duplicate counts on a predicted ORF basis), which had potential off-28 

target sites with up to 8 nt mismatches, was detected by the dTPM and dDE approaches. 29 

dTPM indicates that the expression is decreased based on the ratio of TPM counts between 30 
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WT and Edited samples (left callout). dDE means the expression is reduced based on DEG 1 

analysis between WT and Edited samples (right callout). B. Comparison of de novo 2 

transcriptome assembly-based and reference-based analysis on the deleterious off-target 3 

detection. A Venn diagram comparing the off-target genes identified from de novo 4 

transcriptome analysis (dTPM (t = 0.4) and dDE (α = 0.001) approaches) and reference-based 5 

RNA-seq analysis (CRISPRroots, "RISK: CRITICAL"). C. Genomic sequence map of off-target 6 

located outside of GALR2 mRNA. The sequence is a part of the hg38 reference genome with 7 

annotations of GALR2 mRNA (XM_047436984.1) and the de novo transcript 8 

(TRINITY_DN86617_c0_g1_i1) and an off-target site with three mismatches compared to the 9 

on-target sequence. D. Summary of deleterious off-target sites detected by de novo 10 

transcriptome analysis (dTPM) and reference-based RNA-seq analysis (CRISPRroots, "RISK: 11 

CRITICAL"). D. The counts of off-target sites are annotated with genes and classified by 12 

mismatch number related to the on-target sequence. The brackets indicate the number of 13 

transcripts, including those with and without identified gene annotations. The number of 14 

genes and transcripts with ≤4 nt mismatches is colored red. 15 

Figure 4. The result of risk assessment in DANGER analysis using RNA-seq data derived from 16 

WT and GRIN2B edited iPSC-derived cortical neurons. A. An example of the annotation table 17 

for DANGER analysis. The table includes GO ID, GO term, number of mismatches (n), and the 18 

counts of n-MM off-target genes belonging to a specific GO term. B. The formula for 19 

phenotypic off-target risk (D-index). An example of the calculation is shown on a yellow 20 

background. C. Distribution of the D-index of each GO term (orange). The sum of all D-21 

indexes and the number of D-indices (N) were labeled on the top right. 22 

Figure 5. A scheme for permutation testing to evaluate the validity of the D-index. The thin 23 

black arrow indicates the manipulation of rearranging values from the original expression 24 

and off-target profile to the permutation data. The black cross represents the computation 25 

for applying the D-index formula to the above expression profile and the below off-target 26 

profile data. The workflow is shown as the orange allows. 27 

Figure 6. Evaluation of permutation test for DANGER analysis and comparison between 28 

dTPM and dDE. A. Comparison of false detection rates among approximate dTPM (up to 11-29 

MM NRR PAM, t=0.4, L=5E-1), optimized dTPM (up to 8-MM NGG PAM, t=0.4, L=1E-15), 30 
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and optimized dDE (up to 8-MM NGG PAM, α = 0.001, L=1E-15) in GO categories. BP, CC, 1 

and MF indicate GO categories of Biological Process, Cellular Component, and Molecular 2 

Function, respectively. Error bars represent SEM; asterisk indicates the statistical significance 3 

of two-sided Welch’s t-test; cross indicates statistical power (1-ß) >0.8. Mean ± s.d. of n = 10 4 

permutation data set. B. Comparison of amount of GO terms of all D-index, significant D-5 

index, and expected true D-index among approximate dTPM (up to 11-MM NRR PAM, t=0.4, 6 

L=5E-1), optimized dTPM (up to 8-MM NGG PAM, t=0.4, L=1E-15), and optimized dDE (up 7 

to 8-MM NGG PAM, α = 0.001, L=1E-15), respectively. C. Comparison of D-index and 8 

significant D-index between optimized dTPM and optimized dDE. A Venn diagram 9 

comparing the counts of D-index and significant D-index between optimized dTPM and 10 

optimized dDE. D. The list of the top 16 significant D-indices in the optimized dTPM. The D-11 

index values are indicated by bar graphs adjacent to the GO terms. 12 

Figure 7. DANGER analysis result using RNA-seq data derived from WT and park7 (dj1) 13 

Edited brains of Danio rerio. A. Comparison between the GRCz11 reference genome and 14 

transcript sequence constructed by de novo assembly of RNA-seq samples derived from WT 15 

brain on park7 on-target region. The on-target region of the GRCz11 reference genome is 16 

illustrated with annotations of the park7 CDS, the protospacer, and the NGG PAM sequence 17 

of SpCas9. The detected park7 isoforms (1-2) are lined up in green in the black box. The 18 

Cas9-sgRNA binding sites are highlighted in blue. B. Comparison of TPM values of park7. The 19 

TPM was measured from WT and Edited RNA-seq samples (Each n=3); data were expressed 20 

as the means±SEM. *** p-value < 0.001 of two-sided Welch’s t-test. C. The gene counts are 21 

classified by mismatch number related to the on-target sequence. The brackets indicate the 22 

number of transcripts, including those with and without identified gene annotations. The 23 

number of genes and transcripts with ≤4 nt mismatches is colored red. D. Distribution of the 24 

D-index of each GO term associated with Biological Process (orange). The sum of all D-25 

indices and the number of D-indices (N) is labeled on the top right. E. The list of all 26 

significant D-indices in the optimized dTPM. The D-index values are indicated by bar graphs 27 

adjacent to the GO terms. The colors of the bar indicate GO categories belonging to the GO 28 

terms. 29 

Figure 8. Our proposal for the usage of DANGER-analysis in organisms with and without a 30 

reference genome. The workflow is shown as black arrows. The dotted black arrows indicate 31 
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the front of the arrow and refer to the arrow base information. The image of the book is 1 

from TogoTV (© 2016 DBCLS TogoTV, CC-BY-4.0, 2 

https://creativecommons.org/licenses/by/4.0/). 3 
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Table1. 1 
Dataset Layout Length of 

raw reads 

[nt] 

Total raw 

reads 

(Spots) 

The 

average 

length of 

raw reads 

[nt] 

Run WT/Edited Ref 

GRIN2B paired-

end 

125 44,621,372 125 SRR7187518 WT (
23

) 

125 39,290,710 SRR7187519 WT 

125 42,356,322 SRR7187520 WT 

125 37,725,951 SRR7187521 WT 

125 40,423,942 125 SRR7187524 Edited 

125 43,003,607 SRR7187525 Edited 

125 35,134,095 SRR7187526 Edited 

125 39,725,694 SRR7187527 Edited 

park7 

(dj1) 

paired-

end 

151 55,801,577 151 SRR9886606 WT (
20

) 
151 58,680,708 SRR9886607 WT 

151 52,584,965 SRR9886608 WT 

151 57,060,988 151 SRR9886609 Edited 

151 48,882,852 SRR9886610 Edited 

151 53,633,192 SRR9886611 Edited 
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Table2. 1 
 Optimized dTPM in GRIN2B Optimized dDE in GRIN2B 

GO term Significant 

D-index 

Rank %Rank Significant 

D-index 

Rank %Rank 

cell 

differentiation 

- - - 4.507514299 54 4.9046  

cell population 

proliferation 

(cell 

proliferation) 

-  - - 1.204410358  245 22.2525 

cell cycle -  - - 1.140013876  264  23.9782  

central nervous 

system 

development 

- - - - - - 

brain 

development 

- - - - - - 

cell division - - - - - - 

chromosome 

segregation 

- - - - - - 
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Figure 1. 1 
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Figure 2. 1 
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Figure 3. 1 
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Figure 4. 1 

 2 

 3 

  4 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.03.11.531115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.531115
http://creativecommons.org/licenses/by/4.0/


 37

Figure 5. 1 
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Figure 6. 1 
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Figure 7. 1 
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Figure 8. 1 
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