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Abstract 
Single-cell multiomic analysis of the epigenome, transcriptome and proteome allows for 

comprehensive characterisation of the molecular circuitry that underpins cell identity and state. 

However, the holistic interpretation of such datasets presents a challenge given a paucity of 

approaches for systematic, joint evaluation of different modalities. Here, we present Panpipes, a 

set of computational workflows designed to automate multimodal single-cell and spatial 

transcriptomic analyses by incorporating widely-used Python-based tools to perform quality 

control, preprocessing, integration, clustering, and reference mapping at scale. Panpipes allows 

reliable and customisable analysis and evaluation of individual and integrated modalities, 

thereby empowering decision-making before downstream investigations. 

                 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 
 

Background 
 

Single-cell omics is a rapidly evolving field, with studies constantly expanding in size and scope 

to tackle increasingly complex biological and biomedical questions associated with development 

and ageing, health and disease, and vaccination and therapy [1-3]. Single-cell RNA sequencing 

(scRNA-seq) is now performed as a minimum, with a growing battery of methods becoming 

available to facilitate profiling of cell type-specific transcripts such as T- and B-cell receptor 

(TCR and BCR) repertoires (scV(D)J-seq) [4], as well as other molecular modalities, including 

chromatin states through single-cell sequencing Assay for Transposase-Accessible Chromatin 

(scATAC-seq) [5,6], and over 100 cell-surface protein markers using antibody-derived tags 

(ADT) for Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) [7]. 

Technological advances are also enabling experiments to move beyond the individual profiling 

of different molecular modalities and instead allow the simultaneous characterisation of the 

cellular genome, epigenome, transcriptome and/or proteome at a resolution that was previously 

inaccessible. To date, at least 25 different methods for the joint assaying of two or more 

modalities in single cells have been developed [3]. Single-cell multiomics are thus set to provide 

a fundamentally holistic understanding of cell and tissue circuitry and systems - surpassing 

insights that can be garnered from individual modalities alone.  

 

Best practices for multimodal analysis are now emerging [8], with a wide range of packages and 

tutorials from which users can develop custom scripts [9,10]. For an end user, a typical analysis 

workflow could consist of collections of notebooks, which are run interactively and customised 

for each individual project. At different stages, the user is required to make choices about 

filtering strategies, normalisation, dimensionality reduction, and clustering, for example, in order 

to obtain a biologically meaningful interpretation of their data. However, this scenario does not 

constitute an efficient application of best practices: relying only on custom scripts poses a risk 

due to a lack of methodological consistency, thus jeopardizing reproducibility [11]. This problem 

is particularly relevant for large-scale projects, where sequential analysis rounds are necessary, 

as the dataset increases in size. Therefore, fully harnessing the power of multiomic single-cell 

technologies is impeded by the absence of comprehensive pipelines which seamlessly integrate 

best practices by jointly analysing modalities in a reproducible, automated and computationally 

efficient fashion. 
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To meet this need, we have developed Panpipes, a set of automated, flexible and parallelised 

computational workflows for the processing of multimodal single-cell data. Panpipes is 

implemented in Python, and has at its core the scverse foundational tools for single-cell omics 

data analysis [12]. It leverages the efficient and flexible data handling structures AnnData [13] 

and MuData [14], complemented by a number of widely-used single-cell analysis tools including 

Scanpy [15], muon [14], scvi-tools [16] and scirpy [17]. These packages have been successfully 

applied in a variety of settings, including the building of large-scale atlases and deep learning 

computational tasks, for instance as part of the Human Cell Atlas reference building efforts [18], 

and they scale to millions of cells, whilst maintaining reasonable computation times.  

 

Single-cell analysis frameworks, such as Seurat [10] or Scanpy [15], have promoted the 

democratisation of access to single-cell data analysis. Seurat leverages R’s statistical 

capabilities, whilst Scanpy relies on Python’s machine learning libraries, and both use distinct 

data structures (SeuratObject and AnnData and MuData, respectively). Each framework has its 

own inherent strengths and they cater to different programming communities (largely R versus 

Python users). Interactively analysing single-cell data within a single framework can be useful 

for exploratory investigations and analysis of smaller datasets, but can pose challenges when 

testing multiple parameter combinations, especially for complex and large datasets. To meet 

these challenges, pipelines for single-cell analysis are emerging, which utilise Workflow 

Management Languages to orchestrate analysis with one or more frameworks. Such pipelines 

are designed for creating data processing workflows that automate and expedite complex 

processes involving multiple tasks and dependencies. Utilisation of pipelines can thus enable 

the parallel comparison of different algorithms and tools. This is critical as although 

benchmarking studies provide important guidance for algorithm or tool selection [19-24], no 

single method will necessarily generate the best results for all datasets, and benchmarking 

studies can also reach different conclusions [19,20]. 

 

Published pipelines for single-cell analyses such as scFlow [25], scrnaseq [26], bollito [27] and 

pipeComp [28] are restricted to single modality (RNA only) datasets, and typically use R-based 

packages such as Seurat [10] and Scater [29]. Other published pipelines are designed to run 

using cloud computing and employ web-based interfaces such as SCiAp [30], Granatum [31] or 

ASAP [32]. However, these web-based workflows can be restrictive in terms of analysis 

parameters and users may struggle with larger datasets. In contrast, Panpipes is designed to 

run on high-performance computing (HPC) clusters, but retains the capacity to be deployed 
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locally for small datasets, providing the user with added run flexibility. The pipeline is managed 

using the Computational Genomics Analysis Tools (CGAT)-core framework [33], which 

simplifies and parallelises job submission both on local computers or by interacting with 

common cluster workflow managers such as SLURM [34].  

 

Panpipes is the first set of open-source workflows for the analysis of multimodal single-cell and 

spatial transcriptomic datasets. Panpipes performs quality control, preprocessing, integration, 

clustering, reference mapping and spatial transcriptomics deconvolution at scale. The user’s 

interaction with Panpipes is highly customisable, enabling analysts to have fine control over 

their analyses, in a reproducible manner. Our pipeline is written in a modular way such that the 

workflows can be further developed in order to keep up with the fast-moving field of single-cell 

multiomics and spatial transcriptomics. As Panpipes leverages scverse tools which are 

interoperable between Python and R ecosystems, our choice of relying on scverse, which is a 

well-maintained community project, will ensure that Panpipes is future-proof. 

 

Results 

 

Panpipes: a pipeline for single-cell multiomic and spatial transcriptomic 

analysis 

Panpipes comprises six workflows for the analysis of single-cell multiomic datasets: “Ingestion”, 

“Preprocessing”, “Integration”, “Clustering”, “Reference Mapping” and “Visualisation” (Fig. 1).  

Panpipes also includes four workflows dedicated to spatial transcriptomics, including: 

“Ingestion”, “Preprocessing”, “Clustering” and “Deconvolution” (Fig. 1). The unifying aim across 

these workflows is to guide the user through the key decision-making steps of the analytical 

process and to gather all the data necessary to annotate cell types and states.  

 

The single-cell multiomics “Ingestion” workflow leverages Scanpy and muon functionalities, 

together with custom functions, to ingest single-cell data from any combination of assays 

including gene expression, immune repertoire profiling, CITE-seq, and ATAC-seq. A variety of file 

formats can be used as input, namely count matrices, CellRanger outputs and h5 files. This 

flexibility simplifies the process of quickly analysing published datasets as well as novel data 

from any single-cell platform. Finally, the data are concatenated and saved as a MuData (h5mu) 
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file, which is a multimodal container [14]. Additionally, the workflows can incorporate metadata 

associated either with the sample, such as patient-level information or with the barcode, such as 

demultiplexing information or cell-level annotations in the case of preprocessed data. Standard 

and custom QC metrics are computed and visualised for each modality.  

 

The second stage of Panpipes, the "Preprocessing" workflow for the single-cell multiomic data 

is used to (i) filter the data based on previously computed quality control (QC) metrics, (ii) 

(optionally) downsample, (iii) normalise and (iv) scale the data, with different options available 

for each modality. After preprocessing, any of the following workflows can be run, depending on 

the analytical requirements: “Integration”, “Clustering”, and “Reference Mapping”. “Integration” is 

used to integrate and (optionally) batch correct via a choice of uni- and multimodal methods, 

which can be run in a parallel fashion. “Clustering” runs parallelised clustering over a wide range 

of parameters using dimension reductions from either “Preprocessing” or “Integration” as inputs. 

“Reference Mapping” utilises query-to-reference (Q2R) and label transfer (LT) functionalities 

from scvi-tools and single-cell architectural surgery (scArches) [35] to integrate and annotate 

query data with reference data.  

 

Finally, “Visualisation” is included as a separate overarching workflow as the outputs from any 

of the other workflows can be used as its inputs. It produces a range of plots, combining the 

experiment-specific metadata and the analysis outputs from the other workflows, to aid the 

inspection and interpretation of results. Users who have run multiple methods and parameter 

choices in parallel can evaluate their results at each step and can export the final objects to 

cellxgene [36] for user-friendly and interactive exploration. 

 

For spatial transcriptomics analyses, Panpipes’ “Ingestion” workflow leverages Scanpy and 

squidpy [37] functionalities to read data generated through the 10x Genomics’ Visium or 

Vizgen’s MERSCOPE platforms. After “Ingestion” the “Preprocessing” workflow is used to (i) 

filter the data, (ii) visualise and evaluate QC metrics post-filtering, and (iii) normalise and (iv) 

scale the data. Subsequently the data can be (optionally) concatenated and then “Clustering” is 

performed. For the 10x Genomics’ Visium data, whose resolution is dictated by the number of 

cells found over ‘spots’ containing spatially barcoded capture probes, a “Deconvolution” 

workflow can also be run after “Preprocessing”, which enables leveraging of single-cell 

references to computationally achieve a higher resolution of cell type identification within spots. 
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Evaluation of single-cell multiomic data quality with Panpipes  

To enable data QC and thus the identification and obtainment of high-quality cells, Panpipes 

generates a battery of metrics standard to the evaluation of scRNA-seq data [38,39], such as 

the total number of unique molecular identifiers (UMI) per cell-barcode and the percentage of 

UMIs assigned to mitochondrial transcripts. In addition, users can provide custom gene lists to 

score specific cellular phenotypes. This can facilitate the retention of cell types with more 

atypical properties such as plasma cells or neutrophils [40], that might otherwise be excluded. It 

also renders Panpipes compatible with any genome, thereby enabling analyses of cells from 

other species.  

 

In addition to RNA-associated metrics, Panpipes produces a number of QC visualisations which 

are specific to ATAC-seq assays (ATAC) or ADT assays (PROT), or are related to the joint QC 

of multiple modalities (Fig. 2). For ATAC, the fragment and barcode metrics are incorporated in 

the data object and the nucleosome signal is computed. With the inclusion of a peak annotation 

file which maps chromosome coordinates to gene IDs, transcription start site enrichment is also 

calculated. For PROT, comparing the UMI counts in the cell-containing foreground against the 

empty droplets in the background can give an indication of whether antibodies are binding 

specifically, or contributing to ambient contamination in the dataset (Fig. 2A). The level of the 

background staining in empty droplets on a per ADT basis in the PROT assay, correlates with 

the signal strength of the ADTs after normalisation, and thus is likely to influence downstream 

analysis. Panpipes provides two PROT normalisation options, centred log ratio transformation 

(CLR) [7] and denoised and scaled by background (dsb) normalisation [41]. CLR generates a 

natural log ratio of the count for a protein in a cell relative to other cells, hence enabling 

improved distinction of cell populations, but without endeavouring to account for background or 

technical noise [7]. The dsb normalisation aims to correct for ambient ADTs and unspecific 

binding of antibodies to cells [41]. Panpipes allows for the normalised PROT expression profile 

to be visually inspected for individual ADTs via histograms for each normalisation method (Fig. 

2B, C), whilst scatter plots facilitate head-to-head comparisons of the methods on a per ADT 

basis (Fig. 2D). In addition, Panpipes QC can profile the ambient fractions of RNA and PROT 

expression data, to provide insight into the variation of the background relative to the foreground 

across samples for both modalities (Fig. 2E). 
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The capacity to extensively inspect QC metrics for all modalities present in a single-cell dataset, 

is critical for subsequent clustering, annotation and downstream analyses [42], and can help 

inform decision-making with respect to multimodal integration. 

 

Multimodal integration for unified cellular representation  

Following QC, Panpipes offers a parallelised framework to aid the user in choosing a reduced 

dimensionality representation of a given dataset based on a unimodal or multimodal integration, 

with the option to apply batch correction to individual modalities or in a joint fashion.  

 

To mimic a typical analysis scenario in which a user may wish to apply different processing 

choices simultaneously, we demonstrate Panpipes’ functionality on a trimodal dataset (TEA-

seq) [43] of three samples with joint single-cell measurements of RNA, PROT and ATAC. The 

workflow enables each individual modality to be projected onto a latent representation with or 

without a selection of batch correction methods [44,45] (e.g. BBKNN for RNA, Harmony for 

PROT, and BBKNN and Harmony for ATAC as shown in Fig. S1). The batch correction methods 

offered for the different modalities have been selected based on underlying statistical 

assumptions and published benchmarks [20]. Multimodal batch-aware integration methods can 

also be employed for two or more modalities, including MultiVI (used for RNA+ATAC with this 

dataset) [46], totalVI (for RNA+PROT) [47], and weighted nearest neighbour (WNN; for 

ATAC+RNA+PROT) [10] (Fig. 3A-E). MultiVI and totalVI perform multimodal integration whilst 

accounting for batch covariates while WNN affords the highest processing flexibility as it can 

perform multimodal integration after individual modalities are individually batch corrected. Users 

are provided with a choice of unimodal and multimodal integration tools as each integration 

approach may answer a different biological question, depending on the dataset. The variation in 

the performance of these tools for batch merging can be visualised through UMAP 

representations (Fig. 3A-E) and is also evaluated by the calculation of Local Inverse Simpson's 

Index (LISI) scores (Fig. 3F) [45]. 

 

After integration, each unimodal or multimodal embedding is clustered using the “Clustering” 

workflow (Fig. 3G) and further integration evaluation is carried out using a selection of single-

cell integration benchmarking (scIB) metrics [20] and custom visualisations (Fig. 3H-K). Average 

silhouette width (ASW) and graph connectivity [48] are applied on an integrated object with a 

choice of clustering labels and cell embeddings (Fig. 3H, I). These metrics estimate how well 
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similar cells cluster together by considering intra- and inter-cluster similarities and local 

connectivities, respectively, with higher scores signifying better performance. Since each 

clustering returns a cell partitioning from the embedding it was generated on, it may be 

anticipated that any single tested clustering would have the highest score for its original 

embedding; however, this is not always the case. For example, with the TEA-seq dataset, 

comparing the RNA clustering with the totalVI embedding and the PROT clustering with the 

WNN embedding yielded similarly high or higher ASW and graph connectivity scores (Fig. 3H, 

I). As specific multimodal integration metrics have not been developed yet, this demonstrates 

how Panpipes’ repurposed use of scIB metrics in the multimodal scenario is instrumental in 

identifying where individual modalities may have uneven contributions to the final cell 

classification. 

 

To further assess the concordance of clustering choices calculated from different modalities, 

Panpipes generates a cluster matching metric, the Adjusted Rand Index (ARI) [49], for global 

concordance evaluation (Fig. 3J). Panpipes also implements another clustering concordance 

visualisation on a per-cluster basis, whereby one clustering choice is selected as the reference 

(in the example, multimodal WNN clustering; Fig. 3K). For each of the clusters identified in the 

reference, the extent to which alternative approaches provide at least one cluster that groups 

together the same cells as the reference, is then scored. Higher scores indicate that a high 

percentage of the cells in the reference cluster are also grouped together in the alternative cell 

partitioning. With the TEA-seq dataset for instance, WNN cluster 6 is entirely recapitulated by all 

the alternative clustering choices, whilst cluster 9 is poorly represented by the alternatives (all 

scores <0.60; Fig. 3K).  

 

Thus, Panpipes provides the user with the capacity to efficiently run and thoroughly evaluate the 

correction of batch effects and the integration of individual and multiple modalities to facilitate 

the selection of the optimal integration method prior to downstream analyses. 

 

Reference mapping with Panpipes  

Leveraging the “Reference Mapping” workflow, Panpipes also has reference mapping 

capabilities. As large-scale single-cell multiomic datasets become increasingly available [1,50], 

users will wish to take advantage of such resources to expedite cell annotation of their own data 

and aid biological interpretation. However, learning from reference datasets can pose an 
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analytical challenge due to batch effects, computational resource limitations and data access 

restrictions [26]. Panpipes can aid building unimodal or multimodal references and enables the 

user to query multiple references simultaneously using scArches [16,35,51]. For example, a 

user can perform filtering of low-quality cells on the input dataset (via “QC” and “Preprocessing”) 

and can then immediately run the “Reference mapping” workflow without proceeding with the 

“Integration” and “Clustering” workflows. Alternatively, users can annotate their query dataset 

independently, then project it onto a reference and evaluate concordance with the reference 

labels. The concordance of the transferred labels with the original labels is evaluated in the 

query via a selection of scIB metrics. Furthermore, users can leverage Panpipes to query the 

same dataset on multiple references, allowing for comparison between them. 

 

To demonstrate the “Reference mapping” workflow we have performed Q2R and LT using as 

the query a unimodal scRNA-seq peripheral blood mononuclear cell (PBMC) dataset [52] and 

three PBMC references varying in size and in the granularity of cell type labels. These 

references include one RNA-specific unimodal dataset (PBMC_R1) [53] and two multimodal 

PBMC datasets (PBMC_R2 and PBMC_R3) [10]. Single-cell Annotation using Variational 

Inference (scANVI) [54] and totalVI were employed for the uni- and multimodal references, 

respectively (Fig. 4). 

 

Q2R integration is visually assessed by UMAP plots (Fig. 4A-C), whilst LT performance is 

evaluated by estimating the concordance of predicted and observed labels (Fig. 4D-F). Notably, 

for the datasets tested, there was variation in the cells present in the query relative to the 

reference data, and this was detectable by both the incomplete integrations by inspecting the 

UMAP generated on query and reference latent embeddings, and by the imperfect LT 

concordance (Fig. 4A-F). Interestingly, with reference dataset PBMC_R3 [10], a query cluster 

annotated as basophils (“BASO”) received three different proliferating lymphoid cell reference 

labels suggesting that the outputs generated by Panpipes can help to identify annotation 

inconsistencies for further investigation and thus obtain an optimal annotation. Finally, label 

conservation is scored using metrics that assess local neighbourhoods, (including graph cLISI 

and graph connectivity), global cluster matching, (including ARI and normalised mutual 

information (NMI) [55]), and relative distances as determined by cell-type ASW (Fig. 4G).    
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The capacity of Panpipes to employ and compare multiple reference datasets will be critical as 

single-cell omics atlases continue to expand in scale and complexity and users will likely want to 

draw upon all resources available to arrive at a high-confidence annotation of their own data. 

 

Orchestrating spatial transcriptomic analysis 

The rapid evolution of spatial transcriptomics technologies allows us to capture gene expression 

within the context of tissue architecture [56-59]. Similar to the Panpipes single-cell workflows, 

the spatial transcriptomics workflows also include “Ingestion”, “Preprocessing” and “Clustering”, 

and enable the parallel analysis of data derived from multiple spatial transcriptomics slides. 

Critically for the 10x Genomics Visium ‘spot’-based approach, whereby the data for each 

individual RNA capture area (‘spot’) will represent a mixture of transcriptomes from all the cells 

found in the area, a “Deconvolution” workflow is provided. This is based on the use of the 

cell2location Bayesian model that integrates single-cell and spatial transcriptomic data to 

effectively resolve the transcriptomes from each capture area into finer cell types [60]. The 

“Deconvolution” workflow can utilise external single-cell datasets, but also seamlessly integrates 

with the single-cell multiomics workflows to utilise single-cell data generated subsequent to the 

Panpipes single-cell “Integration” and “Clustering” (Fig. 1).  

 

Benchmarking 

To demonstrate Panpipes’ performance, we ran the “Integration” workflow on six datasets of 

different sizes, representing the full data and subsamples of a PBMC dataset [10] and the 

TAURUS study gut dataset [61], assessing runtime (Fig. 5A) and resource usage (Fig. 5B,C). 

Since Panpipes implements each integration method as an independent component, the main 

advantage of our pipeline is the management of data flow and the possibility to choose which 

method to run in a parallel fashion, allowing the independent processing of modalities across 

multiple methods (Fig. 5).  

 

Furthermore, Panpipes’ outputs provide a biological perspective for evaluation and 

interpretation of the data in any biological context. For example, taking the PBMC data [10] used 

for the time and resource benchmarking, for which cell type annotations are available, we ran 

the “Integration” workflow in a multimodal, integration batch-aware fashion, with the aim of 

assessing which of the multimodal integration methods included in Panpipes was able to 

recapitulate the ground truth annotation. Assessment of integrations generated by MOFA, 
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totalVI and WNN by the UMAP plot distribution of the cell type labels (Fig. S2) shows, a good 

separation of the cell types with every method, although with MOFA two batches of each cell 

type could be observed suggesting poor integration. However, with totalVI and WNN these 

batches were not discernible, but WNN (with harmony correction of RNA and PROT) resulted in 

the clearest separation of the CD4+ and CD8+ T and natural killer (NK) cell subsets, for 

example (Fig. S2).  

 

Discussion 
 

We have developed Panpipes, a highly flexible pipeline to perform finely-tuned analyses on both 

single modality and multiomic single-cell datasets. Panpipes is based on scverse [12], which 

includes the most popular Python-based single-cell packages, and thus readily scales up to 

millions of cells. Panpipes allows the ingestion, quality checking, filtering, integration, clustering, 

reference mapping and visualisation of complex single-cell datasets. Our workflow can process 

any single-cell dataset containing RNA, cell-surface proteins, ATAC and immune repertoire 

modalities, as well as spatial transcriptomics data generated through the 10x Genomics’ Visium 

or Vizgen’s MERSCOPE platforms. 

 

Panpipes is designed to help analysts run a comprehensive evaluation of their single-cell data. 

The pipeline does not stop at basic preprocessing but instead constitutes a flexible framework to 

explore more complex analytical choices including unimodal and multimodal integration with or 

without batch correction. Panpipes implements nine different integration methods, helping the 

user select the best parameterization for their specific analytical needs. The reference mapping 

functionality offered by Panpipes can expedite cell annotation and provides a powerful setting to 

evaluate the utility of multiple reference datasets. This may be particularly important given that 

individual references may not perfectly recapitulate the biological or biomedical context of the 

query dataset. Moreover, given the agility of Panpipes, the pipeline may be well suited to 

benchmarking studies, in particular in relation to multimodal integration and reference mapping, 

which are currently lacking in the field of single-cell multiomics.  

 

We have developed Panpipes with a wide range of users in mind. The pipeline is publicly 

available with extensive documentation and tutorials which allow users to efficiently go from raw 

data to clustering and annotation in a semi-automated fashion – regardless of whether they are 
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using unimodal, multimodal or spatial transcriptomic datasets. Being Python-based, Panpipes 

could represent an easy entry point for users with a Machine Learning background who have 

more limited single-cell analysis expertise. Our pipeline may also appeal to core computational 

facilities in academia or in the pharmaceutical industry that need a quick and flexible single-cell 

pipeline that readily allows for the assessment of common problems such as ambient molecular 

contamination and batch effects, and that facilitates the utilisation of external single-cell 

datasets to help inform target identification and evaluation.  

 

Panpipes is also FAIR principle [62] compliant, in line with the requirements of many funding 

agencies. The source code is easily finable and accessible on GitHub 

(https://github.com/DendrouLab/panpipes) and as a PyPi package, and further documentation 

and tutorials (https://panpipes-pipelines.readthedocs.io/en/latest/) are provided to encourage 

users to adapt the pipeline to their own needs.   

 

Conclusions 
 

The last few years have seen a continuous and rapid development of multimodal protocols that 

scale to millions of cells and thousands of analytes in the single-cell omics field. The collection 

of analytical methods that deal with the complexity of large single-cell datasets is likely to 

increase, with a marked interest in methods that allow integration of multiomic assays [63]. 

Given this fast evolution of the single-cell and also the spatial omics analysis landscape, 

Panpipes is in continuous development. Panpipes is modular by design to enable its extension 

to incorporate new methods that can deal with further omics modalities in the future. These 

could include single-cell genomic DNA sequencing and epigenome profiling beyond chromatin 

accessibility, and other technologies such as flow cytometry, mass spectrometry and 

hyperplexed imaging. Panpipes provides a platform for both customisation and reproducibility of 

single-cell multiomic and spatial transcriptomic analyses, ensuring a stable foundation for the 

consistency and continuity of scientific discovery.  
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Methods 

 

Implementation Details 

Panpipes comprises workflows implemented using the CGAT-core framework [33]. CGAT-core 

automates submission to and parallelisation of jobs across HPC clusters. Flexible environment 

control is implemented using conda. To interact with the pipeline, the user is required to simply 

edit a YAML file for each workflow to customise the parameters for their own analyses. Finer 

details of these options are listed below. We provide documentation on each workflow and how 

to run them in https://panpipes-pipelines.readthedocs.io. 

 

Ingestion  

Data from various sources is ingested to be combined and formatted as a MuData object. 

Specific QC metrics are computed for each modality, following guidelines defined in single-cell 

best practices [8]. Scrublet is used to compute doublet scores [64]. Cells are also scored based 

on custom gene lists (e.g. mitochondrial and ribosomal gene proportions). Gene lists compatible 

with human and mouse are provided and users can readily input features for alternative species 

or define their own QC metrics based on custom gene lists.  

 

Preprocessing 

The thresholds determined by the QC pipeline outputs are included as parameters in the YAML 

file, and the data are filtered accordingly. In the “Preprocessing” workflow, the user is able to 

specify custom filtering options on any set of metrics computed in the QC workflow. Next, for the 

RNA data, the data are normalised and scaled, and the highly variable genes are computed 

using Scanpy functionalities. In parallel, PROT data are normalised using either CLR [7] or dsb 

[41] using muon functionalities and functions implemented ad hoc. For example, users can 

specify which margin to normalize the PROT data to, namely by cell or within the features’ 

distribution. ATAC data are log normalised or normalised by term frequency-inverse document 

frequency, following the options offered by the muon package. 
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Integration 

“Integration” implements a range of algorithms in order to batch correct individual modalities, 

and to combine multiple modalities in a low-dimensional space. For each unimodal processing, 

the dimensionality reduction of choice (PCA and/or Latent Sematic Indexing (LSI) for ATAC) is 

applied and the data are batch corrected based on user-defined parameters. Four unimodal 

batch correction algorithms are included in Panpipes: BBKNN [44], Harmony [45], Scanorama 

[65], and scVI [16,51]. Panpipes supports both modality-specific multi-modal integration batch-

aware methods such as MultiVI for ATAC and gene expression, and totalVI [47] for PROT and 

gene expression, and modality-agnostic methods such as MOFA [66] and WNN [10]. The 

results of these integrations are compared with the aid of scIB metrics [20], inspection of LISI 

scores [45] and visual inspection of UMAP plots.  

 

Clustering 

“Clustering” implements both Leiden and Louvain clustering of a connectivity graph constructed 

on a reduced dimension computed in the “Integration” workflow. The reduced dimension data 

can be a single modality representation e.g. PCA or Harmony components, or a multi-modality 

representation e.g. MultiVI or totalVI reduced dimension. The clusters are then visualised on a 

UMAP computed from the same dimensionality reduction, or the user has the option to project 

clusters onto any of the computed UMAPs from alternative dimensionality reductions. The user 

can compute clustering for a wide range of resolutions, to quickly assess the cell type 

representation within their dataset. Cluster assignments across different resolutions are 

compared using clustree [67]. Finally, the workflow calculates the top multimodal markers for 

each computed clustering, offering a choice of different statistical tests for the scoring of the 

features based on Scanpy’s rank_genes_groups().  

 

Reference mapping 

The “Reference mapping” workflow implements Q2R and LT from scvi-tools and scArches 

supported models, namely scVI, scANVI and totalVI models. Code is implemented with the scvi-

tools package. Data for query and reference datasets can be supplied as individual AnnData 

[13] or MuData [14] objects, and reference models generated with any of the aforementioned 

methods. The user is required to specify a minimal set of mandatory parameters and can 
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specify additional covariates and define custom training parameters by customising the 

pipeline.yml. 

 

Visualisation 

The “Visualisation” workflow is implemented to aid inspection and interpretation of results. The 

visualisation workflow uses matplotlib, seaborn and ggplot to generate boxplots, histograms, 

scatterplots, and dimensionality reduction plots (such as PCA or UMAPs), using any 

combination of variables across the modalities, and experimental metadata. The “Visualisation” 

workflow is also used to export the data objects to cellxgene [36] for interactive visualisation. 

Importantly, this cellxgene object contains UMAP plots from multiple modalities so that the user 

can directly review gene, protein, peak expression and repertoire information on the same set of 

UMAPs. 

 

Ingestion (spatial) 

The “Ingestion_spatial” workflow is implemented to ingest data from various spatial 

transcriptomics platforms such as 10x Genomics’ Visium or Vizgen’s MERSCOPE. Multiple 

slides can be processed in parallel. Similar to the single-cell “Ingestion” workflow, the spatial 

data are quality controlled following best practices recommendations. This workflow produces a 

MuData object with a “spatial” layer and the newly generated QC values. 

 

Preprocessing and Clustering (spatial) 

Similar to the single-cell workflow, “Preprocessing” for the spatial data follows the “Ingestion” 

workflow to allow filtering and processing of the spatial data. Custom QC parameter thresholds 

are included in the YAML file, and the data are filtered accordingly. Next, the data are 

normalised and scaled, and the highly variable genes are computed using Scanpy 

functionalities. Finally, dimensionality reduction is run and saved to the MuData “spatial” object. 

The output of the spatial “Preprocessing” workflow can be run through the spatial “Clustering” 

which is as described for the single-cell multiomics workflow but with additional parameters for 

spatial transcriptomic data. 

 

Deconvolution 

The “Deconvolution” workflow allows the inference of cell type composition of ‘spot’-based 

spatial transcriptomic data, using a single-cell reference. “Deconvolution” implements 
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cell2location [60] and can be run on multiple individual slides with the same single-cell 

reference. 

 

Processing of data for figures 

Uni- and multimodal processing of the trimodal TEA-seq data 

Data for the trimodal TEA-seq dataset was obtained from [43]. Briefly, the three raw datasets for 

each individual modality were each concatenated into a unimodal AnnData object. ATAC 

fragment indexes were regenerated using Tabix [52], and the peaks of the three batches were 

merged following the signac tutorial [53]. The three objects were then partitioned to the cell 

barcodes in common across the modalities and fed to the “QC” pipeline as individual AnnData 

objects, which produced a unified MuData container for the three modalities. QC and filtering 

were performed independently on each modality and the intersection of the passing QC cells 

across the three modalities was chosen for further analysis. Cells were integrated using 

unimodal or multimodal integration methods as described (Fig. 4 and Fig. S1).  

 

Reference mapping  

We mapped the same query PBMC dataset [52] to three different PBMC references [10,53]. For 

the scANVI example, we produced the reference model using scVI and then updated the model 

to scANVI to leverage the label transfer functionality. The query was then mapped to the 

reference data using the “Reference mapping” workflow by specifying the batch covariate and 

the cell type label. For the TotalVI example, we used the data presented in https://docs.scvi-

tools.org/en/stable/tutorials/notebooks/totalVI_reference_mapping.html. The second reference 

dataset (PBMC_R2) was obtained by downloading the 10x Genomics PBMC 5k and 10k 

datasets presented in https://scarches.readthedocs.io/en/latest/totalvi_surgery_pipeline.html. 

The reference was generated using the “Integration” workflow calling the totalVI algorithm, and 

cells were labelled using the expression of the protein surface markers. We generated the third 

reference dataset (PBMC_R3) following the process described in the scvi-tools tutorial, 

downloading the data using the internal scVI function adata_reference = 

scvi.data.pbmc_seurat_v4_cite_seq(mask_protein_batches=5). To enable transferring the 

labels to the query from both PBMC_R2 and PBMC_R3, a Random Forest classifier was trained 

on the latent TotalVI embedding of the reference model. All query and reference datasets were 

provided to the “Reference mapping” workflow to perform Q2R and LT, specifying batch 
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covariates and cell type labels, training the query model with number of epochs = 200 and 

leaving all other default parameters.  

 

Benchmarking 

A PBMC CITE-seq dataset [10] and the TAURUS study gut scRNA-seq dataset [61] were used 

for benchmarking. For these analyses, both the full datasets and the downsampled datasets 

(10K, 50K, and 100K cells for the PBMCs and 500K cells for the gut cells) were utilised. The 

code used for the benchmarking is available at https://github.com/DendrouLab/panpipes-

benchmarks. 

 

 

Availability of data and materials 
 

Code Availability: Source code, full documentation and tutorials are available at 

https://github.com/DendrouLab/panpipes and https://panpipes-pipelines.readthedocs.io. 

Panpipes maintenance and updates are the responsibility of the co-senior authors Calliope A. 

Dendrou and Fabian J. Theis and co-first author Fabiola Curion.  

  

Single-cell Datasets: The data used in Fig. 2 to showcase the ADT-associated metrics were 

obtained from https://www.10xgenomics.com/resources/datasets/10-k-human-pbm-cs-with-total-

seq-b-human-tbnk-antibody-cocktail-3-v-3-1-3-1-standard-6-0-0. The trimodal TEA-seq dataset 

was downloaded using dbGAP accession number phs002316 [43]. For reference mapping 

analyses, the PBMC CITE-seq dataset used as the query was obtained from the Gene 

Expression Omnibus (GEO) under accession number GSE155673 [52]. The PBMC datasets 

used as references are available as follows: CITE-seq data from [10] available via GEO 

(accession number GSE164378) and dbGAP (accession number phs002315.v1.p1), and 

scRNA-seq data from [53] available via covid19cellatlas.org. The PBMC data (accession 

number GSE164378) were also used in Fig. 5 and the gut data for this figure were obtained 

from the TAURUS study [61]. 
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Figure legends 
 

Figure 1. The Panpipes workflows for single-cell multiomic and spatial transcriptomic 

analysis. 

Panpipes has a modular design and performs ingestion, preprocessing, integration and batch 

correction, clustering, reference mapping and spatial transcriptomics deconvolution with custom 

visualisation of outputs. The schematic demonstrates the flow of data within (solid arrows) and 

between (dashed arrows) workflows, and modality-specific steps are indicated. 

 

Figure 2. Cell-surface protein QC metric visualisations generated by Panpipes. 

A Expression (log2 of raw counts) of cell-surface protein markers in cells (foreground, red) 

versus empty droplets (background, blue). Dots represent mean expression and lines show the 

standard error of the mean. B Distribution of cell-surface protein marker expression after CLR 

normalisation. C Distribution of cell-surface protein marker expression after dsb normalisation. D 

Joint distribution plot of cell-surface protein marker expression normalised by CLR (x-axis) 

versus dsb (y-axis). E Joint distribution plot of RNA (x-axis) versus the cell-surface protein 

(encoded by the RNA; y-axis) in cells (red) versus empty droplets (blue). Expression of the RNA 

and protein is plotted as the log of the total counts (per cell barcode). 

 

Figure 3. Panpipes integration workflow enables evaluation of multimodal integration and 

batch correction.  

UMAPs showing individual batches (batch 1, blue; batch 2, ochre; batch 3, pink) after RNA and 

ATAC modality integration using MultiVI (A), RNA and ADT cell-surface protein (PROT) 

integration using totalVI (B), ATAC and PROT integration using WNN with no batch correction 

(C), RNA, ATAC and PROT integration with no batch correction (D) and with batch correction 

(E). F LISI score distribution for integrations depicted in A-E. G UMAP of Leiden clustering after 

trimodal WNN integration with batch correction. H ASW metric values for different clustering 

labels and cell embeddings. I Graph connectivity metric values for different clustering labels and 

cell embeddings. J ARI metric values for cluster matching with different clustering choices. K 

Per-cluster concordance of clustering choices relative to trimodal WNN Leiden clustering. 

 

Figure 4. Panpipes reference mapping allows evaluation of multiple reference datasets. 
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A UMAP of unimodal Q2R integration between the query dataset (orange) and the PBMC_R1 

reference dataset (blue) using scANVI. B UMAP of multimodal Q2R integration between the 

query dataset (orange) and the PBMC_R2 reference dataset (blue) using totalVI. C UMAP of 

multimodal Q2R integration between the query dataset (orange) and the PBMC_R3 reference 

dataset (blue) using totalVI. D Query to PBMC_R1 label transfer concordance with predicted 

(reference-derived) labels on the x-axis and observed (query-derived) labels on the y-axis. E 

Query to PBMC_R2 label transfer concordance with predicted (reference-derived) labels on the 

x-axis and observed (query-derived) labels on the y-axis. F Query to PBMC_R3 label transfer 

concordance with predicted (reference-derived) labels on the x-axis and observed (query-

derived) labels on the y-axis. G Label conservation scoring using scIB metrics for each Q2R 

integration. 

 

Figure 5. Panpipes time and resource usage benchmarking. 

A Total runtimes (bar plot) and run times by integration method (dot plot) when using the 

“Integration” workflow on six different datasets representing the full data and subsamples of a 

PBMC CITE-seq dataset and the TAURUS study gut scRNA-seq dataset. B Resource usage as 

denoted by the number of central processing unit (CPU) cores or graphics processing units 

(GPUs) utilised for the six datasets. C Memory usage as denoted by the number of GB utilised 

for the six datasets. 

 

Supplementary figure legend 
 

Figure S1. Panpipes integration workflow enables evaluation of batch correction of 

different individual modalities.  

UMAPs showing individual batches (batch 1, blue; batch 2, ochre; batch 3, pink) with no 

correction or after unimodal Harmony or BBKNN batch correction for individual (A) RNA, (B) 

ADT cell-surface protein (PROT), and (C) ATAC modalities from the trimodal TEA-seq dataset. 

LISI score distribution for no batch correction (blue) or unimodal Harmony (green) or BBKNN 

(orange) batch correction for individual (D) RNA, (E) PROT, and (F) ATAC modalities from the 

trimodal TEA-seq dataset. 

 

Figure S2. Panpipes integration workflow enables visualisation and evaluation of 

integration and batch correction in a biological context.  
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UMAPs showing the integration of a previously annotated, available PBMC CITE-seq dataset 

after utilisation of MOFA, totalVI, and WNN. The distribution of the PBMC subsets in the UMAP 

plots can be visually inspected, taking into consideration the cell type labels. DCs: dendritic 

cells; NK: natural killer. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

Ingestion

Filtered MuData

Preprocessing

Spatial data inputs

Load
data

Calculate
QC metrics

Filtering

Visualise metrics
post-filtering

 

Unfiltered MuData

Visualise spatial
metrics

Normalise 
Scale

Concatenation
(optional)

MuData with
UMAP and Clustering

Clustering

Single-cell
reference dataset

Cell2location
MuData:

“Spatial”: cell type abundances
“Reference”: model posteriors

Deconvolution

Clustering

UMAP

 PROT
or ATAC

RNA

BBKNN 
Harmony 

Scanorama 
scVI

TotalVIHarmony

RNA & PROT

RNA & ATAC

MultiVI

Integration

Clustering

UMAPClusteringClustree

Find top
markers

Reference
mapping

Reference dataset

Transfer
labels Annotated dataset

MuData with
UMAP and Clustering

Single-cell data inputs

Load and
concatenate data

Calculate per-
modality QC metrics

Ingestion

Filtering

Normalise 
Scale

Unfiltered MuData

Filtered MuData

Visualisation

Any MuData

Make
cellxgene

Visualise
data

Preprocessing

Visualise metrics

 Integrated MuData
with kNN graph

RNA &
ATAC & PROT

 

A 
WNN
MOF

Batch correction /
Integration

Query to
reference

SINGLE-CELL MULTIOMICS WORKFLOWS

SPATIAL TRANSCRIPTOMICS WORKFLOWS

All modalities

Modality-specific stepxxx
All modalities (between 
workflows)

Data structure

Analysis step

KEYPanpipes

RNA
or

RNA & PROT

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

Foreground
Background

prot_CD3

prot_CD4

prot_CD14

prot_CD11c

prot_CD45

prot_CD16

prot_CD8

prot_CD19

prot_CD56

A
nt

ib
od

y

Log2 expression
2 4 6 8 10

A

prot_CD3

prot_CD4

prot_CD14

prot_CD11c

prot_CD45

prot_CD16

prot_CD8

prot_CD19

prot_CD56

CLR

0 6

B

1 2 3 4 5
Normalised expression

prot_CD3

prot_CD4

prot_CD14

prot_CD11c

prot_CD45

prot_CD16

prot_CD8

prot_CD19

prot_CD56

dsb

20

C

-5 0 5 10 15
Normalised expression

ds
b

CLR

D

0 1 2 3

0

5

10

prot_CD3 prot_CD4 prot_CD14 prot_CD11c prot_CD45

prot_CD16 prot_CD8 prot_CD19

0

5

10

15

0 1 2 3 4 0 1 2 3 4

0

10

20

0 2 4 6

0

10

20

0

10

15

5

0 1 2 3

0 2 4

0

4

8

12

0 1 2 3 4

0

5

10

15

0

5

10

15

20

0

10

20

0 2 4 6 0 2 4 6

prot_CD56

E

Lo
g 

of
 to

ta
l p

ro
te

in
 (A

D
T)

 c
ou

nt
s

Log of total RNA counts
2 4

Is cell
True
False

6 8 10 12

2

4

6

8

10

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

MultiVI (RNA+ATAC)

Batch 1 Batch 2 Batch 3

A B
totalVI (RNA+PROT)

Batch 1 Batch 2 Batch 3

WNN (ATAC+PROT) - No batch correction

Batch 1 Batch 2 Batch 3

C D
WNN (RNA+ATAC+PROT) - No batch correction

Batch 1 Batch 2 Batch 3

E
WNN (RNA+ATAC+PROT) - With batch correction

Batch 1 Batch 2 Batch 3

F

0.4

0.3

0.2

0.1

0.0

D
en

si
ty

1.0 1.5 2.0 2.5 3.0

LISI score

MultiVI (RNA+ATAC)

totalVI (RNA+PROT)

WNN (ATAC+PROT)
No batch correction

WNN (RNA+ATAC+PROT)
No batch correction

WNN (RNA+ATAC+PROT)
With batch correction

G
ASW Graph connectivity

C
lu

st
er

in
g

RNA Leiden

PROT Leiden

ATAC Leiden

totalVI Leiden

MultiVI Leiden

WNN Leiden

R
N

A 
U

M
A

P

P
R

O
T 

U
M

A
P

AT
A

C
 U

M
A

P

to
ta

lV
I U

M
A

P

M
ul

tiV
I U

M
A

P

W
N

N
 U

M
A

P

kNN graph

ATAC Leiden

MultiVI Leiden

PROT Leiden

RNA Leiden

totalVI Leiden

WNN Leiden

AT
A

C

M
ul

tiV
I

P
R

O
T

R
N

A

to
ta

lV
I

W
N

N

kNN graph

C
lu

st
er

in
g

H I
WNN (RNA+ATAC+PROT)

With batch correction

Leiden clusters
3
4
5

0
1
2

6
7
8

9
Metric value

Low High

J
ARI

RNA Leiden

PROT Leiden

ATAC Leiden

totalVI Leiden

MultiVI Leiden

WNN Leiden

R
N

A 
Le

id
en

P
R

O
T 

Le
id

en

AT
A

C
 L

ei
de

n

to
ta

lV
I L

ei
de

n

M
ul

tiV
I L

ei
de

n

W
N

N
 L

ei
de

n

C
lu

st
er

in
g

Clustering

Metric value

Low High

Clustering concordance

ATAC

RNA

PROT

totalVI

MultiVI

K

0 1 2 3 4 5 6 7 8 9
Multimodal WNN Leiden clustering

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4

0.6180.476 0.631 0.9900.997

0.5740.482 0.622 0.9680.996

0.5700.560 0.739 0.9870.997

PBMC_R1
Cell type

PBMC_R2
Cell type

PBMC_R3
Cell type

ARI
NMI

ASW

Grap
h c

LIS
I

Grap
h c

on
ne

cti
vit

y

0.5

0.6

0.7

0.8

0.9

Metric
value

G

U
M

A
P

2

UMAP1

scANVI

U
M

A
P

2

U
M

A
P

2

UMAP1 UMAP1

PBMC_R1 PBMC_R2 PBMC_R3

Query
Reference

totalVI

A B C

CDC1
T

CMONO 3
Cl21

BASO
HSC

T IFN
RBC

CMONO 2
PB 2

PLATE 2
PB 1
EOS

CMONO IFN
PDC

GRAN
B

PLATE 1
CDC2

NC MONO
CMONO 1

CD8
NK

CD4

B
 c

el
l

C
D

4+
, a

lp
ha

-b
et

a 
T 

ce
ll

C
D

8+
, a

lp
ha

-b
et

a 
T 

ce
ll

al
ph

a-
be

ta
 T

 c
el

l

D
en

dr
iti

c 
ce

ll

M
on

oc
yt

e

N
at

ur
al

 k
ill

er
 c

el
l

CDC1
T

CMONO 3
Cl21

BASO
HSC

T IFN
RBC

CMONO 2
PB 2

PLATE 2
PB 1
EOS

CMONO IFN
PDC

GRAN
B

PLATE 1
CDC2

NC MONO
CMONO 1

CD8
NK

CD4

B

C
D

14
 m

on
oc

yt
es

C
D

16
 m

on
oc

yt
es

C
D

4 
T

C
D

8 
T

D
en

dr
iti

c

N
K

CDC1
T

CMONO 3
Cl21

BASO
HSC

T IFN
RBC

CMONO 2
PB 2

PLATE 2
PB 1
EOS

CMONO IFN
PDC

GRAN
B

PLATE 1
CDC2

NC MONO
CMONO 1

CD8
NK

CD4

A
S

D
C

B
 in

te
rm

ed
ia

te
B

 m
em

or
y

B
 n

ai
ve

C
D

14
 M

on
o

C
D

16
 M

on
o

C
D

4 
C

TL
C

D
4 

N
ai

ve
C

D
4 

P
ro

lif
er

at
in

g
C

D
4 

TC
M

C
D

4 
TE

M
C

D
8 

N
ai

ve
C

D
8 

P
ro

lif
er

at
in

g
C

D
8 

TC
M

C
D

8 
TE

M
E

ry
th

H
S

P
C

IL
C

M
A

IT N
K

N
K

 P
ro

lif
er

at
in

g
N

K
 C

D
56

br
ig

ht
P

la
sm

ab
la

st
P

la
te

le
t

Tr
eg

cD
C

1
cD

C
2

dn
T

gd
T

pD
C

D E F

O
bs

er
ve

d 
ce

ll 
ty

pe
 la

be
ls

Predicted cell type labels

0.0

0.5

1.0

Concordance 
metric

PBMC_R1 PBMC_R2 PBMC_R3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5

0

100

200

300

400

To
ta

l r
un

tim
e 

(m
in

ut
es

)

Harmony

scVI

BBKNN

Scanorama

TotalVI

WNN

MOFA

Time (minutes)

100

200

300

400

A

PBMC
RNA+PROT
(10K cells)

TAURUS
RNA

(1M cells)

PBMC
RNA+PROT
(50K cells)

PBMC
RNA+PROT
(100K cells)

PBMC
RNA+PROT
(152K cells)

TAURUS
RNA

(500K cells)

B

H
ig

h 
C

P
U

M
ed

iu
m

 C
P

U

Lo
w

 C
P

U

G
P

U

PBMC - RNA+PROT
(10K cells)

TAURUS - RNA
(1M cells)

PBMC - RNA+PROT
(50K cells)

PBMC - RNA+PROT
(100K cells)

PBMC - RNA+PROT
(152K cells)

TAURUS - RNA
(500K cells)

Number of CPU cores/GPUs used

6

12

6

12

12

12

4

8

4

4

4

8

2

4

2

2

2

4

1

4

1

2

2

4

6

32

6

8

8

32

H
ig

h 
C

P
U

M
ed

iu
m

 C
P

U

Lo
w

 C
P

U

G
P

U

PBMC - RNA+PROT
(10K cells)

TAURUS - RNA
(1M cells)

PBMC - RNA+PROT
(50K cells)

PBMC - RNA+PROT
(100K cells)

PBMC - RNA+PROT
(152K cells)

TAURUS - RNA
(500K cells)

91.2

182.4

91.2

182.4

182.4

182.4

60.8

121.6

60.8

60.8

60.8

121.6

30.4

60.8

30.4

30.4

30.4

60.8

16.0

64.0

16.0

32.0

32.0

64.0

To
ta

l C
P

U
 c

or
es

fo
r G

P
U

Memory usage (GB)
C

Metric
value

32

16

0

GB
200

100

0

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.03.11.532085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532085
http://creativecommons.org/licenses/by-nc-nd/4.0/

