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Abstract

We can now measure the connectivity of every neuron in a neural circuit, but we are still blind to other
biological details, including the dynamical characteristics of each neuron. The degree to which connec-
tivity measurements alone can inform understanding of neural computation is an open question. Here
we show that with only measurements of the connectivity of a biological neural network, we can predict
the neural activity underlying neural computation. We constructed a model neural network with the ex-
perimentally determined connectivity for 64 cell types in the motion pathways of the fruit fly optic lobe
but with unknown parameters for the single neuron and single synapse properties. We then optimized the
values of these unknown parameters using techniques from deep learning, to allow the model network to
detect visual motion. Our mechanistic model makes detailed experimentally testable predictions for each
neuron in the connectome. We found that model predictions agreed with experimental measurements of
neural activity across 24 studies. Our work demonstrates a strategy for generating detailed hypotheses
about the mechanisms of neural circuit function from connectivity measurements. We show that this
strategy is more likely to be successful when neurons are sparsely connected—a universally observed
feature of biological neural networks across species and brain regions.

Introduction1

Electrical signals propagating through networks of neurons in the nervous system form the basis of com-2

putations such as the visual detection of movement. The propagation of neural activity is shaped by both3

the functional properties of individual neurons and their synaptic connectivity. In addition, multiple addi-4

tional factors1, 2 including electrical synapses3, 4, neuromodulation5, and glia6 are known to further influence5

neural activity on multiple time-scales. Volume electron microscopy can now be used to comprehensively6

measure the connectivity of every neuron in a neural circuit, and even entire nervous systems7–24. However,7

we do not yet have the means to also comprehensively measure all other biological details, including the8

dynamical properties of every neuron and synapse in the same circuit2. For these reasons, there has been9

considerable debate about the utility of connectomic measurements for understanding brain function25. Is10

it possible to use measurements of only neural connectivity to generate accurate predictions about how the11

neural circuit functions? Even in the complete absence of direct measurements of neural activity from a12

living brain?13
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There is considerable evidence from computer science and neuroscience that there is not usually a strong14

link between the connectivity of a neural network and its computational function. Universal function ap-15

proximation theorems for artificial neural networks26–28 imply that the same computational task can be per-16

formed by many different networks with very different neural connectivity. Empirically, there exist many17

classes of general purpose artificial neural network architectures which can trained to perform the same18

large diversity of computational tasks29. Such differences in connectivity can correspond to qualitatively19

different computational mechanisms30, 31. Similarly in neuroscience, there have been competing proposals20

by theorists for example, for the neural circuit mechanisms of the computation of visual motion32, 33, and21

for the integration of eye velocity commands into eye position signals34, 35, with each proposal suggesting22

different neural connectivity. Further, circuits with the same connectivity can function differently5. Thus in23

general, neither the connectivity of a circuit alone, nor its computational task alone, can uniquely determine24

the mechanism of circuit function36–38.25

Here we show that the connectivity of a neural circuit, together with knowledge of its computational26

task, enables accurate predictions of the role played by individual neurons in the circuit in the computational27

task. We constructed a differentiable39, 40 model neural network with a close correspondence to the brain,28

whose connectivity was given by connectomic measurements and with unknown single neuron and single29

synapse parameters. We optimized the unknown parameters of the model network using techniques from30

deep learning41–43, to enable the model network to accomplish the computational task44–47. We call such31

models connectome-constrained and task-optimized deep mechanistic networks (DMNs; Fig. 1a).32

We applied this approach to model the motion pathways in the optic lobe of the Drosophila visual sys-33

tem. We constructed a DMN with experimentally measured connectivity48–50, and unknown parameters for34

the single neuron dynamics and the strength of a unitary synapse. We optimized the unknown model param-35

eters on the computer vision task of computing visual motion from dynamic visual stimuli. Visual motion36

computation in the fly visual system and its mechanistic underpinnings have been extensively studied51–56.37

Thus, we were able to compare the detailed predictions of our model with experimental measurements of38

neural activity in response to visual stimuli, on a neuron-by-neuron basis. We found that our connectome-39

constrained and task-optimized DMN accurately predicts the well-known segregation of the visual system40

into light increment (ON) and light decrement (OFF) channels46, 57–61, as well as the direction selectivity of41

the well-known T4 and T5 motion detector neurons53, 62–64. Our model further suggests that TmY3 might42

also detect motion, a prediction that has yet to be experimentally tested. We release our model as a resource43

for the community.144

Results45

A connectome-constrained deep mechanistic network of the fruit fly visual system46

The optic lobes of the fruit fly are involved in early visual processing. They comprise several layered neu-47

ropiles whose columnar arrangement has a one-to-one correspondence with the ommatidia, both possessing48

a remarkably crystalline organization in a hexagonal lattice. Visual input from the photoreceptors is re-49

ceived by the lamina, which sends projections to the medulla, lobula, and lobula plate (Fig. 1b65). Many50

components of the optic lobe are highly periodic, with columnar cell types appearing once per column, and51

multi-columnar neurons appearing with only small deviations from a well-defined periodicity in columnar52

space65, 66. A complete reconstruction of the optic lobe is yet unavailable, but several studies have reported53

on the local connectivity within the lamina50, primarily focused on the light increment (ON) and light decre-54

ment (OFF) selective components of the motion pathways of visual processing in the medulla67, 68, and in55

the medulla, lobula, and lobula plate48, 49, 69. We assembled these separate local reconstructions into a co-56

1https://github.com/TuragaLab/flyvis
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herent local connectome spanning the retina, lamina, medulla, lobula, and lobula plate (Fig. 1c, SI Fig.1).57

We approximated the circuitry across the entire visual field as perfectly periodic66, 68, and tiled this local58

connectivity architecture in hexagonal lattice across retinotopic space to construct a connectome for 64 cell59

types across the central visual field of the right eye (Fig. 1d; Methods).60

We built a recurrent neural network modeling these first stages of visual processing in the optic lobe61

based on the connectome for the right eye. Each neuron in this DMN corresponds to a real neuron in the62

fly visual system, belonging to an identified cell type, and is connected to other neurons only if they are63

connected by synapses in the connectome (Fig. 1e). Our goal was to investigate whether precise synaptic64

connectivity and task-constraints are sufficient to account for neural tuning across the fly visual system. We65

therefore constructed a model with detailed connectivity, but simplified models of single neurons and chem-66

ical synapses (Fig. 1f). As many neurons in the early visual system are non-spiking, we used passive leaky67

linear non-spiking voltage dynamics to model the time-varying activity of single neurons. We modeled neu-68

rons as point-neurons with a single electrical compartment, as this has been previously shown to be a good69

approximation given the small size of many neurons in the optic lobe54. As the exception, we modeled the70

CT1 neuron with multiple compartments since it is an exceptionally large single neuron spanning the entire71

optic lobe and is highly electrotonically compartmentalized70. We effectively modeled the neuron as two72

columnar “cell types”, with one CT1 compartment per column in the 10th layer of the medulla CT1(M10)73

and one per column in the 1st layer of the lobula CT1(Lo1) (SI Supplementary Note 2). We coupled neurons74

with chemical synapses whose connectivity was determined by the connectome. We developed a simplified75

model for a graded release chemical synapse between non-spiking neurons: A threshold-linear nonlinear76

function models the nonlinearity of the time-averaged concentration of synaptic release as a function of77

presynaptic voltage. The resulting network model follows well-known threshold-linear dynamics and is78

differentiable. Such dynamics are typically used to approximate the firing rates of a network of spiking79

neurons71, 72, whereas in our network, the threshold nonlinearity results from the nonlinear voltage-gated80

release of neuro-transmitter.81

We used the cell type structure of the connectome, and assumption of perfect translation invariance82

across retinotopic space to reduce the number of free parameters (Fig. 1f). We assumed that neurons of83

the same cell type shared the same neuron time constant and resting membrane potential. We modeled a84

synaptic weight as proportional to the number of discrete synapses measured experimentally between those85

two neurons73, with a scale factor representing the strength of a unitary synapse. The unitary synapse scaling86

and the sign of each synapse was the same across all pairs of neurons with the same pre- and postsynaptic87

cell type. Likewise, the synapse count between each pair of neurons was the same across all pairs of neurons88

with the same pre- and postsynaptic cell type, and their relative location in retinotopic space.89

In total, the connectome-constrained model comprises 45,669 neurons and 1,513,231 connections, across90

65 cell types arranged in a hexagonal lattice consisting of 721 columns, modeling the central visual field of91

the roughly 700-900 ommatidia typically found in the fruit fly retina74, 75. Connectomic constraints, and our92

assumption of spatial homogeneity (i.e., the hexagonally convolutional structure of the network) result in a93

dramatic reduction to just 734 free parameters for this large network model. The only free parameters in94

our model are the single neuron time constants and resting membrane potentials (65 parameters each), and95

the unitary synapse strengths (604 parameters). In the absence of connectomic measurements, if we had to96

infer the type-to-type as well as spatial connectivity between all pairs of cell types, we would instead have97

needed to estimate well over a million parameters (Methods).98

We further constrained the parameters of the model by task-optimization, i.e. by training the model99

to perform a computational task which is thought to approximate the computations carried out by the sys-100

tem44, 76. We therefore implemented our recurrent DMN using the PyTorch library39, 40 (Methods) and used101

automatic differentiation to optimize the model using gradient based deep learning training methods41–43.102

As the functional task, we chose the computation of visual motion from naturalistic visual stimuli77.103

Visual motion computation in the fly visual system and its mechanistic underpinnings have been extensively104
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studied51–56. This challenging computation requires the neural circuit to compare visual stimuli across105

space and time, and thereby critically relies on temporal integration of visual information by the dynamics106

of the network. We hypothesized that training our network model to perform the computer vision task of107

optic flow computation77 could help us identify circuit elements involved in motion computation. Since our108

model contains many of the circuit elements which have been experimentally characterized and implicated109

in the computation of visual motion, we could then validate our model predictions.110

To decode optic flow from the DMN, we used a decoding network which maps its output to the computer111

vision representation of optic flow. This two-layer convolutional decoding network is allowed to use only112

the instantaneous neural activity of the medulla and downstream areas as input. Importantly, the decoding113

network cannot by itself detect motion, which requires the comparison of current and past visual stimuli,114

but must instead rely on the temporal dynamics of the connectome-constrained network to compute motion-115

selective visual features. The resulting combination of our recurrent connectome-constrained DMN model116

and the feedforward decoding network was then trained end-to-end: We rendered video sequences from117

the Sintel database77 as direct input to the photoreceptors of the connectome-constrained model (ignoring118

neuronal superposition78), and used gradient descent (backpropgation through time79) to minimize the task119

error in predicting optic flow (Fig. 1g, Methods).120

Ensembles of connectome-constrained and task-optimized DMNs robustly predict known121

tuning properties122

We used only connectome and task-constraints to construct our DMN, without any measurements of neural123

activity. We can therefore validate the model by computing predictions of neural selectivity for each of the124

64 identified cell types in the model, and comparing them to experimental measurements. Since it is possible125

that connectome and task-constraints might not uniquely constrain all model parameters80–82, we generated126

an ensemble of 50 models, all constrained with the same connectome, and optimized to perform the same127

task. Each model in the ensemble corresponds to a local optimum of task performance. Since the models128

achieved similar (but not identical) task performance, the ensemble reflects the diversity of possible models129

consistent with the connectome and task-constraints.130

The ensemble of models found a variety of parameter configurations (Extended Data Fig. 2), and models131

with random parameter configurations—but trained decoding networks—consistently performed worse on132

the task than task-optimized models (Extended Data Fig. 3). We focused on the 10 models which achieved133

the best task performance (Fig. 2a). We simulated neural responses to multiple experimentally characterized134

visual stimuli, and comprehensively compared model responses for each cell type to experimentally reported135

responses from 24 previous studies53–55, 58–60, 62, 64, 70, 83–97 (Overview in Supplemental Data).136

First, neural responses in the fly visual system are known to segregate into ON- and OFF-channels57, a137

hallmark of visual computation across species98, 99. We probed the contrast preference of each cell type using138

flash stimuli59 and found that the ensemble predicts the segregation into ON- and OFF-pathways with high139

accuracy: The median flash response index (FRI) across the ensemble predicts the correct ON- and OFF-140

preferred contrast selectivity for 31 of the 31 cell types for which contrast selectivity has been experimentally141

established (p = 4.7× 10−10, binomial test; note that in these analyses the M10 and Lo1 terminals of CT1142

are treated separately). This is also the case for the best-performing model, which correctly assigns 29143

out of 31 cells into the correct tuning category (Fig. 2b, p = 2.3× 10−7, binomial test). Furthermore, the144

ensemble provides predictions for the remaining 34 cell types, and consistency across the ensemble provides145

a measure of confidence in the predictions (Fig. 2b).146

Second, a major result in fly visual neuroscience has been the identification of the T4 and T5 neurons as147

directional selective neurons with cardinal direction tuning62, 64, 100. We characterised the motion selectivity148

of neurons by their responses to ON- or OFF-edges moving in 12 different directions. We found that the149

ensemble of models correctly predicts that T4 neurons are ON-motion selective, and T5 neurons are OFF-150
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motion selective (Fig. 2c). The ensemble also correctly predicts the lack of motion tuning in the input151

neurons to T4 and T5 motion detector neurons (Mi1, Tm3, Mi4, Mi9, Tm1, Tm2, Tm4, Tm9, CT1; see152

Methods, Supplemental Data).153

Our models also suggest the possibility that the transmedullary cell types, TmY3, TmY4, TmY5a,154

TmY13, and TmY18, might be tuned to ON-motion. We asked if our model predicted motion selectiv-155

ity for all cell types with asymmetric, multicolumnar inputs, as this is a necessary connectivity motif for156

motion computation. Based on their local spatial connectivity profiles, we estimated that 19 cell types157

receive asymmetric, multi-columnar inputs (Methods), but found that only 12 are predicted to be motion158

selective (p < 0.05, binomial test; Methods) by the ensemble (SI, Supplemental Data). This suggests that159

our model integrates connectivity across the entire network, rather than simply focusing on local connec-160

tivity to determine which neurons are most likely to be motion selective. Next, we asked how well these161

tunings are predicted by models with random parameter configurations in comparison. We found that task-162

optimized models predict the known direction selectivity indices and flash response indices more accurately163

than random models (p = 2× 10−11 and p = 5.3× 10−5 respectively, Mann-Whitney-U test, Extended164

Data Fig. 5a and b).165

Finally, we found that models which exhibited lower task error (Methods) also had more realistic tuning:166

Models with higher task performance predict the direction selectivity index of T4 and T5 cells and their167

inputs better (p = 5.6× 10−6, Wald test, Extended Data Fig. 4b and 6).168

Best task performing model accurately predicts tuning properties of T4 and T5 neurons and169

their inputs170

Our DMN modelling approach enables a large number of model-based analyses which can illuminate the171

mechanistic basis of computation in a circuit, as well as suggest novel visual stimuli for experimental char-172

acterization. We illustrate these analyses using a single model from the ensemble with the best task per-173

formance (Fig. 3), focusing on the well-studied T4 and T5 neurons. A more comprehensive set of these174

analyses for every cell type and every model in the ensemble can be found in the Supplement.175

First, we found that in the best task performing model, the four subtypes of the T4 respond strongly to176

dark edges, and the four subtypes of the T5 neurons to bright edges, moving in the four cardinal directions,177

in agreement with previous experimental findings54, 55, 62, 64 (Fig. 3a and Extended Data Fig. 8).178

Second, we probed the mechanism of direction selectivity in T4 neurons (Fig. 3b). Examining the179

input currents to a single T4c neuron, we found that edges of the preferred contrast moving in the preferred180

direction of T4c cells elicit large responses through fast excitation and delayed inhibition, in agreement with181

experimental findings54. Conversely, edges moving to the null direction of T4c cells elicit no (or very small)182

responses because inhibition cancels excitation.183

Third, we computed and compared the spatial and temporal receptive fields of the major columnar input184

neurons to T4 and T5 neurons. These input neurons have been the focus of multiple experimental studies185

of the motion detection pathways53, 60, 70, 91, 93, 94, 101 (Fig. 3c). We characterized these receptive fields in186

our model by computing the spatial (Fig. 3d) and temporal (Fig. 3e) impulse responses to brief single187

ommatidium flashes (5 ms duration, Methods). We find that the model correctly predicts the spatial scale188

of the spatial receptive field for all major inputs to T4 and T5 neurons, and correctly predicts the preferred189

contrast for all but one of the major inputs to T4 and T5 neurons.190

In agreement with experimental findings70, 93, we find that Tm3 and Tm4 have broad spatial receptive191

fields (two column radius, 11.6 ◦), while Mi1, Mi4, Mi9, Tm1, Tm2, Tm9, and CT1 compartments in both192

medulla and lobula have narrow spatial receptive fields (single column radius, 5.8 ◦). Further, the model193

accurately predicts the ON- vs OFF-contrast selectivity of neurons involved in motion detection, including194

lamina monopolar cells (L1-L5), which anatomically separate the ON- and OFF-pathways57, and the direct195

input neurons to T4 and T5. These cells either depolarize (ON-selective) or hyperpolarize (OFF-selective) in196
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response to light increment flashes. These temporal response properties are correctly predicted for all except197

the Tm4 cell in this model, which is incorrectly predicted to be ON-selective by its temporal receptive field.198

For the motion selective T4 and T5 neurons, the spatiotemporal receptive fields are not separable in199

space and time. We characterized the full spatiotemporal receptive field for T4c and T5c neurons (Fig. 3f).200

ON-impulses on the leading side of the receptive field of the ON-contrast, upwards direction selective T4c201

cell lead to its fast depolarization, whereas impulses on the trailing side of the receptive field lead to a de-202

layed hyperpolarization, again matching experimental findings54. ON-impulses on the leading side of the203

receptive field of the OFF-contrast, upwards direction selective T5c cell lead to its fast hyperpolarization,204

whereas impulses on the trailing side of its receptive field lead to a delayed depolarization. Because T5c205

is OFF-selective, its OFF-impulse responses are inverted, resembling the T4c spatiotemporal receptive field206

(Extended Data Fig. 7a). This suggests that in our model, T5c implements a similar motion tuning mecha-207

nism to OFF-edges as T4c to ON-edges. Again, this mechanism also agrees with experimental findings55.208

Finally, we show that the model can be used to design optimized stimuli: We used the model to screen209

for video sequences from the Sintel dataset that elicited the largest responses in the motion selective neurons210

(Fig. 3g; Methods). One might expect that pure ON- or OFF-stimuli would elicit the largest responses in211

T4 and T5, respectively. However, we find both ON-and OFF-elements in optimized stimuli, suggesting an212

interplay between ON- and OFF-pathways. We found that the stimulus that elicits the strongest response213

in the T4c cell is a central OFF-disc followed by an ON-edge moving upwards, matching the preferred214

direction of the cell. Similarly, for the T5c cell, the stimulus that elicits the strongest response is a central215

ON-disc followed by an OFF-edge moving upwards in the preferred direction of the cell (Extended Data216

Fig. 7b for corresponding full-field naturalistic stimuli, numerically optimized stimuli, and preferred moving217

edge stimuli). Taken together, this individual model predicts a large number of tuning properties for the T4218

and T5 cells and their inputs.219

Neural responses across the model ensemble cluster strongly for many cell types220

The predictions in the previous section were derived from a single model. How similar or dissimilar are221

the predictions of different task-optimized models constrained with the same connectome? To address this222

question, for each cell type, we simulated the neural activity of a single neuron, in response to naturalistic223

video sequences from the Sintel dataset. We then used UMAP102 to perform nonlinear dimensionality224

reduction on high-dimensional activity vectors of that neuron across the model ensemble, and clustered225

the models in the resulting 2D projections (Fig. 4a, see Methods, Supplement). For many cell types, we226

found that models predict strongly clustered neural responses. For T4c neurons for example, we found three227

clusters corresponding to qualitatively distinct responses of this cell type for naturalistic inputs: Two clusters228

contain models with direction selective T4c cells (Fig. 4b and c) with up- and down-selective cardinal tuning,229

respectively, whereas neurons in the third cluster are not direction tuned. The direction selective cluster with230

the (correct) upward preference has lowest average task error (circular marker, average task error 5.297)231

and contains the best task performing model analyzed previously (shown in Fig. 3), followed by the cluster232

with opposite preference (triangular marker, average task error 5.316). The non-selective cluster has the233

worst performance (square marker, average task error 5.357), suggesting that models with accurate tuning234

correlate with lower task error (see also Extended Data Fig. 6).235

What are the circuit mechanisms in the ON-motion detection pathway (Fig. 4d) underlying tuning com-236

putations in the different clusters? We found that direction selectivity in the two tuned clusters is associated237

with opposite preferred contrast tuning of Mi4 and Mi9 neurons which provide direct flanking inhibitory238

input to T4 neurons (Fig. 4e). Models with the correct direction selectivity for T4 neurons also predict the239

correct contrast selectivity for Mi4 and M9 neurons, and vice versa (Fig. 4f).240

This shows how the space of task-optimized and connectome-constrained models can be used to provide241

hypotheses about different circuit mechanisms which might underlie the tuning properties of individual242
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cells. Conversely, it shows that experimentally measuring the tuning of one neuron automatically translates243

to constraints on other neurons in the circuit. Here, ‘clamping’ the T4c neurons to their measured tuning244

properties (by only selecting models from the correct cluster) is sufficient to correctly constrain the tuning245

of both Mi4 and Mi9 neurons.246

Models predict motion tuning for TmY3247

Amongst models with the best task performance, TmY3, TmY4, and TmY18 are often ON-motion selective248

(Fig. 2c). As these neurons have yet to be experimentally characterized, we analyzed these prediction in our249

models. Since TmY3 neurons do not receive inputs from other known motion selective neurons, we were250

intrigued by the possibility that it might directly compute a motion signal and possibly constitute a parallel251

pathway to the well-known T4 and T5 neurons. In contrast, TmY4 and TmY18 cells receive inputs from T4252

cells, potentially inheriting their motion tuning.253

In the model ensemble, we found four distinct clusters for TmY3 (Fig. 5a). In the best-performing cluster254

(circular marker) TmY3 responds to ON-edges from front to back or downwards (Fig. 5b). In contrast, in255

the second cluster (triangular marker), TmY3 is not direction selective. In the third cluster (square marker)256

TmY3 is direction selective to ON-edges moving from the back to the front. In the fourth cluster (star257

marker), TmY3 is, again, not direction selective. Together, the ensemble suggests ON-motion sensitivity for258

TmY3, but different clusters disagree in their predictions for direction and contrast selectivity.259

In our connectome data, the strongest input elements of TmY3 by number of synapses are L4, L5, Tm2,260

Tm3, Mi1, Mi9, and Mi4 (Fig. 5c and d). While none of these input neurons are motion-selective, the261

asymmetries in their connectivity to TmY3 might allow it to detect motion. We asked if we could better262

constrain our predictions by asking which clusters also predicted the correct preferred contrast for these263

input neurons. We found that the first model cluster (Fig. 5a, circular marker), in which TmY3 is tuned to264

front-back or downards motion, most accurately captures the known contrast selectivity of all TmY3 input265

cells (Fig. 5e). In contrast, all three other clusters fail to consistently capture the OFF-selectivity of Mi9.266

Thus our model proposes TmY3 as a novel candidate motion detector independent of the well-known T4267

and T5 motion pathways.268

Sparse synaptic connectivity enables accurate prediction of neural responses from synthetic269

connectomes270

We sought to understand the conditions under which connectomic measurements might strongly constrain271

models of neural computation. Universal function approximation theorems for artificial neural networks26, 103
272

suggest that a single general-purpose connectivity can underlie many possible computations. Empirically,273

different deep neural network architectures trained to solve the same task have very different selectivity at274

the level of single units38, 82, 104–106, even when they share population-level representations30, 107, 108. We hy-275

pothesized that while general-purpose neural architectures used in machine learning have a many-to-many276

relationship between the computational task and neural connectivity, biological neural circuits might have277

a tighter relationship with their computational task due to their sparse structured connectivity, and there-278

fore connectomic measurements and task-constraints in such circuits would strongly constrain mechanistic279

computational models.280

We investigated this counter-factual using synthetic feedforward networks designed to perform a classic281

handwritten digit recognition network task. We constructed a variety of synthetic networks which perform282

the same task, but with different degrees of sparsity in their connectivity (Fig. 6). While the synthetic283

networks all perform the same task with near perfect accuracy, they use dramatically different connectivity,284

and so use different mechanisms to perform the same task. We then used connectomic measurements from285

each synthetic network to construct a corresponding connectome-constrained model optimized to perform286
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the same task (Fig. 6a). We then compared the neural responses of hidden neurons in each synthetic network287

to corresponding neurons in the corresponding task and connectome-constrained model. We considered two288

settings, one where the connectomic measurements only indicated whether a pair of neurons were connected289

but not their strength, and one where the measurements indicated both the connectivity and a noisy estimate290

of the strength of the connection. In our model of the fly visual system, we have connectomic measurements291

of the synapse count for each connection, which can inform the relative strength of a connection, but not the292

absolute strength. This constitutes an intermediate regime between known strength and unknown strength.293

We found that densely connected synthetic networks, where each neuron in a given layer connects to294

every neuron in the next layer, are essentially uncorrelated with their task- and connectome-constrained295

models constructed with known connectivity but unknown strength (Fig. 6b, Extended Data Fig. 9a). In296

contrast, sparsely connected synthetic networks, where each neuron only connects to a small percentage of297

neurons, are well correlated with their task and connectome-constrained models (median Pearson’s correla-298

tion of 0.856 for networks with 10% average connectivity). The correlation between synthetic networks and299

their simulations drops smoothly as the connection density increases. For connectome-constrained models300

constructed with known connectivity and a noisy estimate of connection strength, we found that connectiv-301

ity sparseness is not required for models to correlate with their corresponding synthetic network (Fig. 6b,302

Extended Data Fig. 9b).303

Discussion304

Here we constructed a neural network with neural connectivity measured at the microscopic scale. We also305

required that at the macroscopic scale, the collective neural activity dynamics across the entire network re-306

sult in an ethologically relevant computation. The combination of microscopic and macroscopic constraints307

enabled us to construct a large-scale computational model spanning many tens of cell types and tens of308

thousands of neurons. We showed that such large-scale mechanistic models could accurately make detailed309

predictions of the neural responses of individual neurons to dynamic visual stimuli, revealing the mecha-310

nisms by which computations are performed. Knowledge of the connectome played a critical role in this311

success, in part by leading to a massive reduction in the number of free model parameters.312

We have taken a reductionist modeling approach to emphasize the important role played by the connec-313

tivity of a neural network. We found that for the motion pathways of the fruit fly visual system, this model314

correctly predicts many aspects of visual selectivity. However our reductionist model cannot, for example,315

account for the role played in this circuit by electrical synapses109, complex chemical synapse dynamics96,316

and neuromodulation110. Richer models of neurons, synapses, and extra-synaptic modulation will be essen-317

tial to correctly predict these effects. Further, we only considered the role of this circuit in detecting motion,318

which is but one of many computations performed by the visual system14, 111–114.319

Our study provides a direct link between artificial neural networks and biological circuit models. In our320

task-optimized deep network, every model neuron and synapse corresponds to a real neuron and synapse321

in the brain. This correspondence enables detailed experimentally testable predictions for each neuron.322

In contrast, most previous studies using task-optimized deep neural networks have predominantly focused323

on modeling computations without such detailed connectomic measurements: in fly motion vision path-324

ways115, 116 and olfactory system36, in fish oculomotor system117 in mammalian visual pathways44, 76, 106, 118
325

and prefrontal cortex45. More recently, there has been tantalizing early evidence, in small scale models46
326

and larger models119 of the fly motion pathways, that our approach to combining connectome and task-327

constraints in a single model might prove successful.328

Our modeling approach provides a discovery tool, aimed at using connectomic measurements to generate329

detailed, experimentally testable hypotheses for the computational role of individual neurons. Measurements330

of neural activity are necessarily sparse and involve difficult trade-offs. Activity can frequently only be331
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measured in a limited number of contexts, and for either a limited number of neurons or for a larger number332

of neurons with poorer temporal resolution. Connectome-constrained DMN models generate meaningful333

predictions even in the complete absence of neural activity measurements, but can be further constrained334

by sparse measurements of neural activity as we showed (Fig. 4), or even be directly optimized to match335

measured neural activity120.336

Whole nervous system connectome projects are nearing completion for the adult fruit fly2, 13, and whole337

mouse brain connectome projects are now being discussed121. Large-scale whole nervous system models120
338

will be of critical importance for integrating connectomic, transcriptomic, neural activity and animal be-339

havior measurements across labs, scales, and the nervous system2. Further, with the recent development of340

detailed biomechanical body models for the fruit fly122 and rodent123, we can now contemplate constructing341

whole animal models spanning brain and body.342
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Figure 1: Task-optimizing connectome-constrained models of the fly visual system.
(a) The ‘deep mechanistic network model’ (DMN) aims to satisfy three constraints simultaneously: Its archiecture is
based on connectomic measurements (see b-e), single-neuron and synaptic dynamics are given by simple mechanistic
models (see f), and free parameters of this network model (see f, magenta) are optimized by training the model to
perform an optic flow estimation task (see g).
(b) Schematic of optic lobe of Drosophila melanogaster comprising several processing stages (neuropils) and cell types
(adapted from65). Our model includes retinal cells, lamina monopolar cells, medulla intrinsic cells, transmedullary
cells, and T-shaped cells, i.e., all columnar cell types.
(c) Identified connectivity between 64 cell types, represented by total number of input synapses from all neurons of a
given presynaptic cell type to a single postsynaptic of a given cell type. Blue color indicates putative hyperpolarizing
inputs, red putative depolarizing inputs as inferred from neurotransmitter and receptor profiling. Size of squares
indicates number of input synapses.
(d) Retinotopic hexagonal lattice columnar organization of the visual system model. Each lattice represents a cell
type, each hexagon an individual cell. Positions of photoreceptor columns are aligned with positions of downstream
columns. The model comprises synapses from all neuropils (SI Fig. 1) and downstream and upstream projecting
connections from the retina, lamina, and medulla. Convolutional filter between Mi9 cells and a T4d cell (see Panel d)
is highlighted in the final lattice of the medulla.
(e) Example of convolutional filter, representing Mi9 inputs onto T4d cells. Values represent the average number of
synapses projecting from presynaptic Mi9 cells in columns with indicated offset onto the postsynaptic dendrite of T4d
cells. Values indicate connection strength derived from electron microscopy data.
(f) Single-neuron and synaptic dynamics are given by simple mechanistic models. Free parameters of this network
model (magenta) are optimized by training the model to perform optic flow estimation task.
(g) Visualization of DMN performing optic flow estimation on a video clip rendered from the Sintel dataset. Given the
input to the photoreceptors (R1-R8), we simulated the response of each neuron in the system. Each hexagonal lattice
depicts a snapshot of the voltage levels of all cells from the corresponding cell type. Edges illustrate connectivity
between identified cell types. A decoding network receives the simulated neural activity of all output neurons (T-
shaped and transmedullary cells) to compute optic flow. Parameters of the recurrent network model and the decoding
network are optimized using optimization methods from deep learning.367
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368

Figure 2: Ensembles of connectome-constrained task-optimized DMNs predict tuning properties.
(a) We task-optimized 50 connectome-constrained DMNs, yielding different solutions for the biophysical parameters.
Inset: Distribution of task errors across the ensemble, 10 best models in blue. We characterized the responses and
tuning properties of model neurons from each cell type to experimentally characterized visual stimuli and compare
them to known tuning properties.
(b) ON- and OFF-contrast selectivity indices for each cell type based on peak transient responses for flash stimuli
(Methods, Equation 3) for 10 models with best task performance (10 worst-performing models in Extended Data
Fig. 4). Cell types with experimentally determined ON-/OFF-selectivity cell types are colored in yellow and violet
respectively. Bold labels indicate cell types which provided input to optic flow decoder during training. Cell type
names in black have not yet been experimentally characterized.
(c) Direction selectivity index (DSI) from neural responses to moving edges (Methods, Equation 4) for the same 10
best models as in (b).369
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Figure 3: DMN with the best task error largely recapitulates known mechanism of motion computation.
(a) Responses to moving edges in different directions for T4 and T5 subtypes from the DMN with best task per-
formance. Predictions of both direction and polarity of tuning agree with experimental measurements62, 64, 100 (Null-
contrasts in Extended Data Fig. 8).
(b) Fast excitation and delayed, offset inhibition enable T4c to detect motion, in agreement with experimental measure-
ments54. An edge moving in the preferred direction elicits fast excitatory input currents (red) and delayed inhibitory
input currents (blue) to T4c, leading to large depolarization (green). In contrast, an edge moving in the null direction
elicits simultaneous arrival of excitatory and inhibitory inputs to T4c, leading to a null response (magenta).
(c) Major cell types and connectivity in the ON- (T4) and OFF- (T5) motion detection pathways (simplified).
(d) Spatial receptive fields of major motion detector input neurons revealed by single-ommatidium flashes are in
agreement with experimental measurements70, 93. For major T4 inputs, the best-performing DMN correctly predicts
narrow spatial receptive fields for Mi1, Mi4, Mi9, and CT1(M10), and a wide receptive field for Tm3. Mi1, Tm3, Mi4,
and CT1(M10) respond with depolarization to the ON-impulses, Mi9 responds with hyperpolarization. For major T5
inputs, the DMN correctly predicts narrow spatial receptive fields for Tm1, Tm2, Tm9, and CT1(Lo1), and a wide
receptive field for Tm4. Tm1, Tm2, Tm4, Tm9, and CT1(Lo1) respond with hyperpolarization. Depending on the
input ommatidium, Tm4 also responds with depolarization.
(e) Temporal receptive fields for inputs also are in agreement with experimental measurements60, 93, with the exception
of Tm4 (red cross). For major T4 inputs, in this DMN, Mi1, Tm3, and Mi4 respond with transient depolarization. In
contrast, CT1(M10) responds with a longer sustained depolarization to a central ON-impulse. Mi9 hyperpolarizes. For
major T5 inputs, in the model, Tm2, Tm9, and CT1(Lo1) respond with transient hyperpolarization. Tm1 depolarizes
fast followed by strong hyperpolarization and Tm4 is incorrectly predicted to depolarize (red cross). For lamina cell
types, this DMN predicts hyperpolarization in L1, L2, L3, and L4 and depolarization in L5 in response to a central
ON-impulse.
(f) Spatiotemporal receptive fields for motion detector neurons agree with experimental measurements54. Receptive
field orientation of the motion detectors T4c and T5c align with their preferred motion axis. ON-impulses on the
leading side of the receptive field quickly cause the T4 cell to depolarize, while ON-impulses on the trailing side of the
receptive field cause slower hyperpolarization in the T4 cell. Conversely, for T5, ON-impulses on the leading side of
the receptive field quickly cause the T5 cell to hyperpolarize, while ON-impulses on the trailing side of the receptive
field cause slower depolarization in the T5 cell (Receptive fields for OFF-impulses in Extended Data Fig. 7a). (g)
Video sequence predicted to elicit the strongest responses in T4c and T5c cells. A central OFF-disc followed by an
ON-edge moving upwards elicits the strongest response in a T4c cell. A central ON-disc followed by an OFF-edge
moving upwards elicits the strongest response in the central column T5c cell. We regularized the full field naturalistic
stimuli to show only the content of the input that the cell is responsive to (Full field naturalistic and artificial maximally
excitatory stimuli in Extended Data Fig. 7b).371
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Figure 4: Cluster analysis of DMN ensembles enables hypotheses generation and suggests experimental tests.
(a) We clustered 50 DMNs after performing nonlinear dimensionality reduction of their predicted responses to natu-
ralistic scenes for each cell type (Inset: Distribution of task performance across models). We compared their tuning to
simple stimuli to identify whether clusters correspond to qualitatively different tuning mechanisms.
(b) Responses of T4c cells to naturalistic scenes reveal three distinct clusters. T4c cells in DMNs in the first and
second clusters (circular and triangular marker) are ON-motion direction selective, whereas those in the third cluster
(square marker) are not.
(c) The DMNs reveal three distinct solutions for the T4c cells (which are known to be tuned to upwards ON-motion):
(1) upwards tuning (cluster with lowest average task error of 5.297, circular marker in panel b), (2) downwards tuning
(5.316 average error, triangular marker), or (3) no motion tuning to ON-edges (5.357 average error, square marker).
(d) ON-motion detection pathway from Fig 3c.
(e) Connectivity of major input elements to T4c. Blue and red represent putative hyper- and depolarizing inputs.
Saturation represents average number of input synapses for each offset location in the T4c dendrite (see Fig. 1e).
(f) Tuning properties within each cluster reveal dependencies between T4 tuning and that of Mi4 and Mi9 cells in the
ensemble: Switching Mi4 (known ON-contrast selective) and Mi9 (known OFF-contrast selective) contrast preferences
results in directionally opposite motion tuning solutions in T4. Cluster 1 (T4c in DMN upwards tuned, circle) indicates
ON-selectivity for Mi1, Tm3, Mi4, and CT1(M10), and OFF-selectivity for Mi9. For ON-motion stimuli, in these
DMNs T4c receives central depolarizing input from Mi1 and Tm3 and dorsal hyperpolarizing input from Mi4 and
CT1(M10). For cluster 2 (T4c in DMN downwards tuned, triangle), Mi1, Tm3, Mi9, and CT1(M10) are ON-selective
and Mi4 is OFF-selective. For ON-motion stimuli, in these DMNs, T4c receives central depolarizing input from Mi1
and Tm3, ventral hyperpolarizing input from Mi9 and dorsal hyperpolarizing input from CT1(M10). For cluster 3
(T4c in DMN not tuned, square), all major input elements are ON-selective. For ON-motion stimuli, in these DMNs,
T4c receives central depolarizing input from Mi1 and Tm3, dorsal hyperpolarizing input from Mi4 and CT1(M10),
and ventral hyperpolarizing input from Mi9.373
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Figure 5: DMNs suggest that TmY3 neurons compute motion independently of T4 and T5 neurons.
(a) Dimensionality reduction on TmY3 responses to naturalistic stimuli reveals 4 clusters of DMNs with average task
errors 5.298 (circle), 5.317 (triangle), 5.328 (square) and 5.331 (star). Across clusters, TmY3 shows different strengths
of direction selectivity (evaluated with moving edge stimuli). ON-edge direction selectivity is strong in the first and
the third cluster.
(b) Normalized peak responses of TmY3 to moving edge stimuli in the DMNs of each cluster.
(c) Major cell types and synaptic connections in the pathway that projects onto TmY3 (simplified).
(d) The input elements of TmY3 with the highest amount of synapses are L4, L5, Tm2, Tm3, Mi1, Mi9, and Mi4. The
asymmetries of their projective fields could allow TmY3 to become motion selective.
(e) Dependencies between TmY3 tuning and the contrast preference of its input cells. For clusters in which TmY3
is motion selective, cluster 1 (TmY3 tuning to downwards/front-to-back motion, circular marker) indicates ON-
selectivity for Tm3, Mi1, and Mi4 cells, and OFF-selectivity for L4, Tm2, and Mi9 cells, in agreement to the known
selectivities. In contrast, cluster 3 (TmY3 tuning to upwards/back-to-front motion, square marker) indicates ON-
selectivity for Mi9 in contradiction to the known selectivities and hence ruling out the third TmY3 tuning solution.375
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Figure 6: Connectomic measurements can strongly constrain neural networks in circuits with sparse connec-
tivity.
(a) We constructed synthetic-connectome networks for classifying hand-written digits with varying degrees of sparse
connectivity. For each synthetic-connectome network, we simulated connectomic measurements and constructed a
connectome-constrained and task-optimized simulated DMN (Methods). We measured the correlation of the neural
responses across stimuli of the same neuron in the synthetic-connectome network (dark green) and the fitted neural
network (light green).
(b) Median neural response correlation coefficient from 100 randomly-sampled neuron pairs from each layer and
across 25 network pairs. Simulations constrained only with connectivity measurements only correlate well for low con-
nectivities (dark blue), while simulations constrained by measurements of both connectivity and connection strength
correlate well across all average connectivity percentages (orange). The fly visual system likely falls in the region
between the two curves, since measured synapse counts inform relative connection strengths between pairs of neurons
for the same pair of cell types, but not absolute connection strength.377
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Methods378

Construction of spatially invariant connectome from local reconstructions379

We built a computational model of the fly visual system which is consistent with available connectomic380

data48–50, 68, 124, 125, which has biophysically plausible neural dynamics, and which can be computationally381

trained to solve an ethiologically relevant behavioural task, namely estimation of optic flow. To achieve382

this, we developed algorithms to blend annotations from two separate data-sets by transforming, sanitizing,383

combining and pruning the raw data sets into a coherent connectome spanning all neuropils of the optic lobe384

(Supplementary Note 1).385

The original data stems from focused ion beam scanning EM datasets (FIBSEM) from the FlyEM project386

at Janelia Research Campus. The FIB-25 dataset volume comprises seven medulla columns and the FIB-19387

dataset volume comprises the entire optic lobe and, in particular, detailed connectivity information for inputs388

to both the T4 and T5 pathways48, 49, 68. The data available to us consisted of 1801 neurons, 702 neurons from389

FIB-25 and 1099 neurons from FIB-19. For about 830 neurons the visual column was known from hand390

annotation. These served as reference positions. Of the 830 reference positions, 722 belong to neuron types391

selected for simulation. None of the T5 cells, whose directional selectivity we aimed to elucidate, were392

annotated. We therefore built an automated, probabilistic expectation maximization algorithm that takes393

synaptic connection statistics, projected synapse center-of-mass clusters and existing column annotations394

into account. We verified the quality of our reconstruction as described in Supplementary Note 1 Only395

the neurons consistently annotated with both 100% and 90% of reference positions used were counted to396

estimate the number of synapses between cell types and columns, in order to prune neuron offsets with low397

confidences.398

Synaptic signs for most cell types were predicted based on known expression of neurotransmitter mark-399

ers (primarily the cell type specific transcriptomics data from Davis et al 2020). For a minority of cell types400

included in the model, no experimental data on transmitter phenotypes were available. For these neurons,401

we used guesses of plausible transmitter phenotypes. To derive predicted synaptic signs from transmitter402

phenotypes, we assigned the output of histaminergic, GABAergic and glutamatergic neurons as hyperpo-403

larizing and the output of cholinergic neurons as depolarizing. In a few cases, we further modified these404

predictions based on distinct known patterns of neurotransmitter receptor expression (see Davis et al. for405

details). For example, output from R8 photoreceptor neurons, predicted to release both acetylcholine and406

histamine, was treated as hyperpolarizing or depolarizing, respectively, depending on whether a target cell407

type is known to express the histamine receptor ort (a histamine-gated chloride channel).408

Representing the model as a hexagonal convolutional neural network Our end-to-end differentiable126
409

DMN model of the fly visual system can be interpreted as a continuous-time neural ordinary differential410

equation (neural ODE)127 with a deep convolutional recurrent neural network (convRNN)128 architecture411

that is trained to perform a computer vision task using backpropagation through time (BPTT)41, 79. Our goal412

was to optimize a simulation of the fly visual system to perform a complex visual information processing413

task using optimization methods from deep learning. One hallmark of visual systems that has been widely414

exploited in such tasks are their convolutional nature129–132, i.e. the fact that the same computations are415

applied to each pixel of the visual input. To model the hexagonal arrangement of photoreceptors in the fly416

retina, we developed a hexagonal convolutational neural network in the widely used deep learning frame-417

work Pytorch40, which we used for simulation and optimization of the model.418
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Neuronal Dynamics419

In detail, we simulated point neurons with voltages Vi of a postsynaptic neuron i, belonging to cell type ti
using threshold-linear dynamics, mathematically equivalent to commonly used formulations of firing-rate
models133

τti V̇i = −Vi +
∑
j

sij + V rest
ti + ei (1)

Neurons of the same cell type share time constants, τti , and resting potentials, V rest
ti

. Dynamic visual stimuli
were delivered as external input currents ei to the photoreceptor (R1-R8), for all other cell types, ei = 0.
In our model, instantaneous graded synaptic release from presynaptic neuron j to postsynaptic neuron i is
described by

sij = wijf(Vj) = αtitjσtitjNtitj∆u∆vf(Vj), (2)

comprising the anatomical filters in terms of the synapse count from EM-reconstruction, Ntitj∆u∆v, at the420

offset location ∆u = ui − uj and ∆v = vi − vj in the hexagonal lattice between two types of cells, ti and421

tj , and further characterised by a sign, σtitj ∈ {−1,+1}, and a non-negative scaling factor, αtitj .422

The synapse model in Equation 2 entails a trainable non-negative scaling factor per filter that is initial-
ized as

αti,tj =
0.01

〈Nti,tj 〉∆u,∆v
,

with the denominator describing the average synapse count of the filter. Synapse counts, Ntitj∆u∆v, and423

signs, σtitj , from reconstruction and neurotransmitter and receptor profiling were kept fixed. The scaling424

factor was clamped during training to remain non-negative.425

Moreover, at initialization, the resting potentials were sampled from a Gaussian distribution

V rest
ti ∼ N (µV rest , σ2

V rest)

with mean µV rest = 0.5 (a.u.) and variance σ2
V rest = 0.05 (a.u.). The time constants were initialized at426

τti = 50ms. The 50 task-optimized DMNs were initialized with the same parameter values. During training,427

in Euler integration of the dynamics, we clamped the time constants as τi = max(τi,∆t), so that they428

remain above the integration time step ∆t at all times.429

In total, the model comprises 45669 neurons and 1513231 synapses, across two-dimensional hexago-430

nal arrays 31 columns across. Independently of the extent of the two-dimensional hexagonal arrays are431

the numbers of free parameters: 65 resting potentials, 65 membrane time constants, 604 scaling factors;432

and connectome determined parameters: 604 signs, and 2355 synapse counts. Thus, the number of free433

parameters in the visual system model is 734.434

In the absence of connectomic measurements, the number of parameters to be estimated is much larger.435

With T = 65 cell types (counting CT1 twice for the compartments in the medulla and lobula) and C = 721436

cells per type for simplicity, the number of cells in our model would be TC = 46, 865. Assuming an RNN437

with completely unconstrained connectivity and simple dynamics τiVi = −Vi +
∑

j wijf(Vj) + V rest
i we438

would have to find (TC)2 + 2(TC) = 2, 196, 421, 955 free parameters. Assuming a convolutional RNN439

with shared filters between cells of the same postsynaptic type, shared time constants, and resting potential,440

the amount of parameters reduces drastically to T 2C + 2T = 3, 046, 355. Further assuming the same441

convolutional RNN but additionally convolutional filters are constrained to F = 5 visual columns, i.e. the442

number of presynaptic input columns in hexagonal lattice is P = 3F (F + 1) + 1, the amount of parameters443

reduces to T 2P + 2T = 384, 605. Assuming as in our connectome only Q = 604 connections between cell444

types exist, this reduces the number of parameters further to QP + 2T = 55, 185. Instead of parametrizing445

each individual synapse strength, we assume that synapse strength is proportional to synapse count from446
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the connectome times a scalar for each filter, reducing the number of parameters to Q + 2T = 734 while447

providing enough capacity for the DMNs to yield realistic tuning to solve the task.448

Convolutions using scatter and gather operations For training the network, we compiled the convolu-449

tional architecture specified by the connectome and the sign constraints to a graph representation containing450

(1) a collection of parameter buffers shared across neurons and/or connections, (2) a collection of corre-451

sponding index buffers indicating where the parameters relevant to a given neuron or connection can be452

found in the parameter buffers, and (3) a list of pairs (presynaptic neuron index, postsynaptic neuron index)453

denoting connectivity. This allowed us to efficiently simulate the network dynamics via Euler integration454

using a small number of element-wise, scatter, and gather operations at each time step. We found that this455

is more efficient than using a single convolution operation, or performing a separate convolution for each456

cell type, since each cell type has its own receptive field - some much larger than others - and the number of457

cells per type is relatively small.458

Optic flow task459

Model training An optic flow field for a video sequence consists of a 2D vector field for each frame.460

The 2D vector at each pixel represents the magnitude and direction of the apparent local movement of the461

brightness pattern in an image.462

We frame the training objective as a regression task

Ŷ[n] = Decoder(DMN(X[0], ...,X[n− 1])),

with Ŷ the optic flow prediction, and X the visual stimulus sequence from the Sintel dataset, both sampled463

to a regular hexagonal lattice of 721 columns. With the objective to minimize the square error loss between464

predicted optic flow and target optic flow fields, we jointly optimized the parameters of both the decoder465

and the visual system network model described above.466

In detail, for training the network, we added randomly augmented grey-scaled video sequences from the467

Sintel dataset sampled to a regular hexagonal lattice of 721 columns to the voltage of the eight photoreceptor468

cell types (Fig. 1f, Equation 1). We denote a sample from a minibatch of video sequences as X ∈ RN,C469

with N the number of time steps, and C the number of photoreceptor columns. The dynamic range of470

the input lies between 0 and 1. Input sequences during training entailed 19 consecutive frames drawn471

randomly from the dataset and resampled to match the integration rate. The original framerate of 24 Hz and472

19 frames lead to a simulation of 792ms. We did not find that an integration time step smaller than 20 ms,473

i.e. a framerate of 50 Hz after resampling, yielded qualitatively superior task performance nor more realistic474

tuning predictions. We interpolated the target optic flow in time to 50 Hz temporal resolution, instead of475

resampling it. To increase the amount of training data for better generalization, we augmented input and476

target sequences as described further below. At the start of each epoch, we computed an initial state of the477

network’s voltages after 500ms of grey stimuli presentation to initialize the network at a steady state for478

each minibatch during that epoch. The network integration given input X results in simulated sequences479

of voltages V ∈ RN,TC with TC the total number of cells. The subset of voltages, Vout ∈ RN,D,C , of the480

D cell types in the black box in Fig. 1f was passed to a decoding network. For decoding, the voltage was481

rectified to avoid that the network finds biologically implausible solutions by encoding in negative dynamic482

ranges. Further, it was mapped to cartesian coordinates to apply Pytorch’s standard spatial convolution483

layers for decoding and on each timestep independently. In the decoding network, one layer implementing484

spatial convolution, batch normalization, softplus activation, and dropout, followed by one layer of spatial485

convolution, transformed the D feature maps into the two-dimensional representation of the estimated optic486

flow, Ŷ ∈ RN,2,C .487
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Using stochastic gradient descent with adaptive moment estimation (β1 = 0.9, β2 = 0.999, learning488

rate decreased from 5× 10−5 to 5× 10−6 in ten steps over iterations, batch size of four) and the automatic489

gradient calculation of the fully differentiable pipeline, we optimized the biophysical parameters through490

backpropagation through time such that they minimize the L2-norm between the predicted optic flow, Ŷ,491

and the groundtruth optic flow, Y:492

L(Y, Ŷ) = ||Y − Ŷ||

We additionally regularized the shared resting potentials for 150,000 iterations, using stochastic gradient493

descent without momentum, based on time-averaged responses to naturalistic stimuli of the central column494

cell of each cell type, tcentral, to encourage configurations of resting potentials that lead to nonzero and495

nonexploding activity in all neurons in the network. We weighted these terms independently with γ = 1,496

encouraging activity greater than a, and δ = 0.1, encouraging activity less than a. We chose λV = 0.1 and497

a = 5 in arbitrary units. With B being the batch size and T the number of all cell types, the regularizer is498

R(V ) =
λV
BT

∑
b

∑
tcentral

{
γ(V̄ − a)2, if V̄ = 1

N

∑
n Vbtcentral [n] ≤ a

δ(V̄ − a)2, if V̄ > a.

We regularly checkpointed the above error measure L(Y, Ŷ) averaged across a held out validation set499

of Sintel video clips. Models generalized on optic flow computation after round about 250,000 iterations,500

yielding functional candidates for our fruit fly visual system models that we analyzed with respect to their501

tuning properties.502

Task-optimization dataset We optimized the network on 23 sequences from the publicly available computer-503

animated movie Sintel134. The sequences have 20-50 frames, at a frame rate of 24 frames per second and504

a pixel resolution of 1024x436. The dataset provides optical flow in pixel space for each frame after the505

first of each sequence. Since the integration time steps we use are faster than the actual sampling rate of the506

sequences, we resample input frames accordingly over time and interpolate the optic flow.507

Fly-eye rendering We first transformed the RGB pixel values of the visual stimulus to normalized greyscale508

between 0 and 1. We translated cartesian frames into receptor activations by placing simulated photorecep-509

tors in a two-dimensional hexagonal array in pixel space, 31 columns across resulting in 721 columns in510

total, spaced 13 pixels apart. The transduced luminance at each photoreceptor is the greyscale mean value511

in the 13×13-pixel region surrounding it.512

Augmentation We used (1) random flips of input and target across one of the three principal axes of513

the hexagonal lattice, (2) random rotation of input and target around its six-fold rotation axis, (3) adding514

element-wise Gaussian noise with mean zero and variance σn = 0.08 to the input X (then clamped at 0) (4)515

random adjustments of contrasts, log c ∼ N (0, σ2
c = 0.04), and brightness, b ∼ N (0, σ2

b = 0.01), of the516

input with X ′ = c(X − 0.5) + 0.5 + cb.517

In addition, we strided fly-eye rendering across the rectangular raw frames in width, subsampling multi-518

ple scenes from one. We ensured that such subsamples from the same scene do not distribute across training519

and validation sets. Input sequences in chunks of 19 consecutive frames were drawn randomly in time from520

the full sequences.521
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Black-box decoding network The decoding network is feedforward, convolutional and has no temporal522

structure. Aspects of the architecture are explained in the paragraph Model training. The spatial convolutions523

have a filter size of 5×5. The first layer transforms theD = 34 feature maps to an eight-channel intermediate524

representation, that is further translated by an additional convolutional layer to a three-channel intermediate525

representation of optic flow. The third channel is used as shared normalization of each coordinate of the526

remaining two-dimensional flow prediction. The decoder uses Pytorch-native implementations for two-527

dimensional convolutions, batch normalization, softplus activation, and dropout. We initialized its filter528

weights homogeneously at 0.001.529

Model characterization530

Task error To rank models based on their task performance, we computed the standard optic flow metric
of average end-to-end point error (EPE)135 which calculates the average over all timesteps and pixels (i.e.
here columns) of the error

EPE(Y, Ŷ) =
1

NC

∑
n

∑
c

√
(y1c[n]− ŷ1c[n])2 + (y2c[n]− ŷ2c[n])2.

between predicted optic flow and groundtruth optic flow, and averaged across the held out validation set of531

Sintel sequences.532

Unconstrained CNN We trained unconstrained, fully convolutional neural networks on the same dataset
and task yielding a lower bound for the task error of the DMN. Optic flow was predicted by the CNN from
two consecutive frames

Ŷ [n] = CNN(X[n], X[n− 1]).

with the original frame rate of the Sintel movie. We chose 5 layers for the CNN with 32, 92, 136, 8, 2533

channels respectively and kernel size 5 for all but the first layer which kernel size is 1. Each layer performs534

a convolution, batch normalization, and ELU activation except the last layer which only performs a con-535

volution. We optimized an ensemble of 5 unconstrained CNNs with 414,666 free parameters each using536

the same loss function, L(Y, Ŷ ), as for the DMN. We used the same dataset, i.e. hexagonal sequences and537

augmentations from Sintel, for training and validating the CNN as for training and validating the DMN,538

allowed by two custom modules mapping from hexagonal lattice to cartesian map and back.539

Random DMNs We created 50 DMNs with random parameters (all sampled from Gaussians of different540

means and standard deviations), and task-optimized only their decoding network, yielding an upper bound541

for the task error of the task-optimized DMN and a lower bound for the accuracy of tuning predictions542

without task-optimization.543

Circular flash stimuli To evaluate the contrast selectivity of cell types in task-constraint model candidates,544

we simulated responses of each DMN to circular flashes. The networks were initialized at an approximate545

steady state after 1s of grey-screen stimulation. Afterwards the flashes were presented for 1s. The flashes546

with a radius of 6 columns were ON (intensity I = 1) or OFF (I = 0) on grey (I = 0.5) background. We547

integrated the network dynamics with an integration time step of 5 ms. We recorded the responses of the548

modeled cells in the central columns to compute the flash response index.549
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Flash response index To derive the contrast selectivity of a cell type, ti, we computed the flash response
index as

FRIti =
rpeak

tcentral
(I = 1)− rpeak

tcentral
(I = 0)

rpeak
tcentral

(I = 1) + rpeak
tcentral

(I = 0)
(3)

from the non-negative activity

rpeak
tcentral

(I) = max
n

Vtcentral [n](I) + |min
n,I

Vtcentral [n](I)|,

from voltage responses Vtcentral [n](I) to circular flash stimuli of intensities I ∈ {0, 1} lasting for 1s after 1s550

of grey stimulus. We note that our index quantifies whether the cell depolarizes to ON- or to OFF-stimuli.551

However, cells like R1-R8, L1, and L2 can be unrectified, i.e., sensitive to both light increments and light552

decrements, which is not captured by our index.553

For the p-values reported in the results, we performed a binomial test with probability of correct pre-554

diction 0.5 (H0) or greater (H1) to both test whether the median FRI from the DMN-ensemble and the555

best-performing model predict the contrast preferences significantly. Additionally, we found for each in-556

dividual cell type across 50 DMS that predictions for 29 out of 31 cell types are significant (P < 0.05,557

binomial).558

Moving edge stimuli To predict the motion sensitivity of each cell type in task-constrained559

DMNs, we simulated the response of each network, initialized at an approximate steady state560

after 1s of grey-screen stimulation, to custom generated edges moving to 12 different direc-561

tions, θ ∈ [0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦, 330◦]. We integrated the net-562

work dynamics with an integration time step of 5ms. ON-edges (I = 1) or OFF-edges563

(I = 0) moved on grey (I = 0.5) background. Their movement ranged from -13.5◦ to564

13.5◦ visual angle and we moved them at six different speeds, ranging from 13.92◦/s to 145◦/s565

(S ∈ [13.92◦/s, 27.84◦/s, 56.26◦/s, 75.4◦/s, 110.2◦/s, 145.0◦/s]).566

Direction selectivity index We computed a direction selectivity index of a particular type ti as

DSIti(I) =
1

|S|
∑
S∈S

|
∑

θ∈� r
peak
tcentral

(I,S, θ) exp iθ|
maxI∈I |

∑
θ r

peak
tcentral

(I,S, θ)|
(4)

from peak voltages

rpeak
tcentral

(I, S, θ) = max
n

Vtcentral [n](I, S, θ), (5)

elicited from moving edge stimuli. We parametrized movement angle θ ∈ �, intensities I ∈ I, and speeds567

S ∈ S of moving edges. To take the response magnitudes into account for comparing DSI for on- and for568

off-edges, we normalized by the maximum over both intensities in the denominator. To take different speeds569

into account, we averaged over S.570

Determining whether a cell type with asymmetric inputs counts as direction selective We counted a571

cell type as direction selective if the DSIs from its synthetic measurements were larger than 99% of DSIs572

from non-motion selective cell types (i.e. those with symmetric filters). We note, however, that estimates of573

the spatial asymmetry of connectivity from existing connectomic reconstructions can be noisy.574
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For deriving the 99%-threshold, we first defined a distribution p(d∗|tsym) over the direction selectivity
index for non-direction selective cells, from peak responses to moving edges of cell types with symmetric
inputs, tsym. We computed that distribution numerically by sampling

d∗ =
|
∑

θ∗ r
peak
tcentral

(I,S, θ∗) exp iθ|
|
∑

θ r
peak
tcentral

(I, S, θ)|

for 100 independent permutations of the angle θ∗. We independently computed d∗ for all stimulus575

conditions, models, and cell types with symmetric inputs. From p(d∗|tsym), we derived the threshold576

dthresh = 0.357 as the 99% quantile of the random variable d∗, meaning that the probability that a realization577

of d∗ > dthresh is less than 1% for cell types with symmetric inputs. To determine whether an asymmetric578

cell type counts as direction selective, we tested whether synthetically measuring direction selectivity larger579

than dthresh in that cell type is binomial with probability 0.1 (H0) or greater (H1). We identified 12 cell580

types with asymmetric inputs (T4a, T4b, T4c, T4d, T5a, T5b, T5c, T5d, TmY3, TmY4, TmY5a, TmY18)581

as direction selective (P < 0.05) from our models, and seven cell types with asymmetric inputs to not count582

as direction selective (T2, T2a, T3, Tm3, Tm4, TmY14, TmY15). See Supplemental Data for reference of583

cell types with symmetric and asymmetric inputs in our model.584

UMAP and clustering We first simulated central column responses to naturalistic scenes (24Hz Sintel585

video clips from the full augmented dataset) with an integration time step of 10 ms. We clustered models in586

feature space of concatenated central column responses and sample dimension. Next, we computed a nonlin-587

ear dimensionality reduction to 2d (UMAP), and finally fitted Gaussian mixtures of 2 to 5 components to the588

embedding to label the clusters based on the Guassian mixture model with the number of components that589

minimize the Bayesian information criterion, using the python libraries umap-learn and scikit-learn102, 136.590

Single ommatidium impulse stimuli To derive spatio-temporal receptive fields, we simulated the re-591

sponse of each network to single ommatidium impulses. Impulses were ON (I = 1) on grey (I = 0.5)592

background and presented for 5 ms after 2 s of grey-screen stimulation and followed by 5 s of grey-screen593

stimulation.594

Spatio-temporal, spatial and temporal receptive fields We derived the spatio-temporal receptive field
(STRF) of a cell type ti as the baseline subtracted responses of the central column cell to single ommatidium
impulses J(u, v) at ommatidium locations (u, v):

STRFtcentral [n](u, v) = Vtcentral [n](J(u, v))− Vtcentral [n = 0](J(u, v)).

We derived spatial receptive fields, SRFs, from the responses to impulses J(u, v) at the point in time at
which the response to the central ommatidium impulse is at its extremum:

SRF(u, v) = STRF(n = arg max
n

|STRF[n](0, 0)|, u, v).

We derive temporal receptive fields, TRFs, from the response to an impulse J(0, 0) at the central om-595

matidium: TRF[n] = STRF[n](0, 0).596

Maximally excitatory naturalistic and artificial stimuli First, we found the naturalistic maximally ex-597

citatory stimulus, X∗, by identifying the Sintel video clip, X, from the full dataset with geometric augmen-598

tations that elicited the highest possible response in the central column cell of a particular cell type in our599

models.600
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X∗ = arg max
X∈Sintel

Vtcentral(X).

Next, we regularized the naturalistic maximally excitatory stimulus, to yield X′, capturing only the601

stimulus information within the receptive field of the cell, with the objective to minimize602

L(X′) =
∑
n

‖Vtcentral(X∗)[n]− Vtcentral(X′)[n]‖2 +
1

C

∑
c

‖X′[n, c]− 0.5‖2.

The first summand maintains the exact central response to X∗, while the second sets the redundant stimulus603

information outside of the receptive field to grey (I = 0.5).604

In addition, we computed artificial maximally excitatory stimuli137.605

Training synthetic connectomes606

Training feedforward synthetic-connectome networks Sparsified feedforward neural networks with 6
hidden layers (linear transformations sandwiched between rectifications) with equal number of neurons in
each hidden layer functioned as synthetic-connectome networks (SCN). The main results describe networks
with 128 neurons per hidden layer. We interpret the individual units in the SCN’s as neurons with voltage

Vi =
∑
j

sij + V rest
i =

∑
j

σjcijmijf(Vj) + V rest
i ,

with presynaptic inputs sij and resting potentials V rest
i . The connectome-constrained synapse strength, wij ,607

is characterized by the adjacency matrix cij , the signs, σj , and the non-negative weight magnitudes mij .608

cij = 1 if the connection exists, else cij = 0. To respect Dale’s law, the signs were tied to the presynaptic609

identity, j.610

We identified the SCN’s parameters σj , mij , and V rest
i by task-optimization on handwritten digit classi-611

fication (MNIST)138. We determined adjacency matrices, cij , for a given connectivity percentage using an612

iterative local pruning technique, the Lottery Ticket Hypothesis algorithm139. The algorithm decreases the613

connectivity percentage of the SCNs while maintaining high task accuracy.614

We optimized SCNs and all simulated networks described below in Pytorch with stochastic gradient615

descent with adaptive moment estimation (ADAM with AMSGrad), learning rate 0.001, batch size 500, and616

an exponentially decaying learning rate decay factor of 0.5 per epoch. To constrain the weight magnitudes to617

stay non-negative, we clamped the values at zero after each optimization step (projected gradient descent).618

The parameters after convergence minimize the cross-entropy loss between the predicted and the groundtruth619

classes of the handwritten digits.620

Simulated networks with known connectivity and unknown strength Simulated networks inherited621

connectivity, cij , and synapse signs, σj , from their respective SCN. In simulated networks, signs and con-622

nectivity were held fixed. Weight magnitudes, mij , and resting potentials, V rest
i , were initialized randomly623

and task-optimized. Just like SCNs, simulated networks were trained on the MNIST handwritten digit clas-624

sification task until convergence.625

Simulated networks with known connectivity and known strength Alternatively, we imitate measure-
ments of synaptic counts from the SCN’s weight magnitudes:

m̃ij = mijεij with εij ∼ U(1− σ, 1 + σ),
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with multiplicative noise to imitate spurious measurements. We used σ = 0.5 for the main results. Weight626

magnitudes were initialized at the measurement, m̃ij , and task-optimized on MNIST with the additional627

objective to minimize the squared distance between optimized and measured weight magnitudes, m̃ij (L2628

constraint, Gaussian weight magnitude prior centered around the simulated network’s initialization). We629

weighted the L2 constraint ten times higher than the cross-entropy objective to keep weight magnitudes of630

the simulated networks close to the noisy connectomic measurements. Resting potentials, V rest
i , were again631

initialized randomly and task-optimized.632

Measuring SCN-simulated network similarity SCN-simulated network similarity was measured by cal-633

culating the median Pearson’s correlation of tuning responses (rectified voltages) of corresponding neurons634

in the SCN-simulated network pair. In each of the 6 hidden layers, N = 100 randomly-sampled neurons635

were used for comparison. Response tuning was measured over input stimuli from the MNIST test-set636

(N = 10, 000 images). Results are medians over all hidden layers and over 25 SCN-simulated network637

pairs.638

References639

1 Bargmann, C. I. & Marder, E. From the connectome to brain function. Nature methods 10, 483–490640

(2013).641

2 Scheffer, L. K. & Meinertzhagen, I. A. A connectome is not enough–what is still needed to understand642

the brain of drosophila? Journal of Experimental Biology 224, jeb242740 (2021).643

3 Ammer, G., Vieira, R. M., Fendl, S. & Borst, A. Anatomical distribution and functional roles of electrical644

synapses in drosophila. Current Biology 32 (2022).645

4 Marder, E., Gutierrez, G. J. & Nusbaum, M. P. Complicating connectomes: electrical coupling creates646

parallel pathways and degenerate circuit mechanisms. Developmental Neurobiology 77, 597–609 (2017).647

5 Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).648

6 Mu, Y. et al. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell649

178, 27–43 (2019).650

7 White, J. G., Southgate, E., Thomson, J. N., Brenner, S. et al. The structure of the nervous system of the651

nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1–340 (1986).652

8 Jarrell, T. A. et al. The connectome of a decision-making neural network. science 337, 437–444 (2012).653

9 Cook, S. J. et al. Whole-animal connectomes of both caenorhabditis elegans sexes. Nature 571, 63–71654

(2019).655

10 Witvliet, D. et al. Connectomes across development reveal principles of brain maturation. Nature 596,656

257–261 (2021).657

11 Zheng, Z. et al. A complete electron microscopy volume of the brain of adult drosophila melanogaster.658

Cell 174, 730–743 (2018).659

12 Scheffer, L. K. et al. A connectome and analysis of the adult drosophila central brain. Elife 9, e57443660

(2020).661

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


13 Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nature Methods 19,662

119–128 (2022).663

14 Hulse, B. K. et al. A connectome of the drosophila central complex reveals network motifs suitable for664

flexible navigation and context-dependent action selection. eLife 10, e66039 (2021).665

15 Wanner, A. A., Genoud, C., Masudi, T., Siksou, L. & Friedrich, R. W. Dense em-based reconstruction of666

the interglomerular projectome in the zebrafish olfactory bulb. Nature neuroscience 19, 816–825 (2016).667

16 Hildebrand, D. G. C. et al. Whole-brain serial-section electron microscopy in larval zebrafish. Nature668

545, 345–349 (2017).669

17 Svara, F. et al. Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain.670

Nature Methods 1–10 (2022).671

18 Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471,672

177–182 (2011).673

19 Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina.674

Nature 500, 168–174 (2013). URL http://dx.doi.org/10.1038/nature12346.675

20 Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).676

21 Motta, A. et al. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366,677

eaay3134 (2019).678

22 Loomba, S. et al. Connectomic comparison of mouse and human cortex. Science 377, eabo0924 (2022).679

23 Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).680

24 Shapson-Coe, A. et al. A connectomic study of a petascale fragment of human cerebral cortex. BioRxiv681

(2021).682

25 Jabr, F. The connectome debate: Is mapping the mind of a worm worth it? Scientific American (2012).683

URL https://www.scientificamerican.com/article/c-elegans-connectome/.684

26 Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,685

and Systems 5, 455–455 (1992).686

27 Leshno, M., Lin, V. Y., Pinkus, A. & Schocken, S. Multilayer feedforward networks with a nonpolyno-687

mial activation function can approximate any function. Neural networks 6, 861–867 (1993).688

28 Montufar, G. F., Pascanu, R., Cho, K. & Bengio, Y. On the number of linear regions of deep neural689

networks. Advances in neural information processing systems 27 (2014).690

29 Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (MIT press, 2016).691

30 Kornblith, S., Norouzi, M., Lee, H. & Hinton, G. Similarity of neural network representations revisited.692

In International Conference on Machine Learning, 3519–3529 (PMLR, 2019).693

31 Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C. & Dosovitskiy, A. Do vision transformers see like694

convolutional neural networks? Advances in Neural Information Processing Systems 34, 12116–12128695

(2021).696

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nature12346
https://www.scientificamerican.com/article/c-elegans-connectome/
https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


32 Reichardt, W. Autocorrelation, a principle for evaluation of sensory information by the central nervous697

system. Principles of sensory communications (1961).698

33 Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. The699

Journal of Physiology 178, 477–504 (1965).700

34 Seung, H. S. How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 13339–13344 (1996).701

35 Goldman, M. S. Memory without Feedback in a Neural Network. Neuron 61, 621–634 (2009). URL702

http://dx.doi.org/10.1016/j.neuron.2008.12.012.703

36 Wang, P. Y., Sun, Y., Axel, R., Abbott, L. & Yang, G. R. Evolving the olfactory system with machine704

learning. Neuron 109, 3879–3892 (2021).705

37 Biswas, T. & Fitzgerald, J. E. Geometric framework to predict structure from function in neural networks.706

Physical Review Research 4, 023255 (2022).707

38 Bagherian, D. et al. Fine-grained system identification of nonlinear neural circuits. arXiv preprint708

arXiv:2106.05400 (2021).709

39 Wengert, R. E. A simple automatic derivative evaluation program. Communications of the ACM 7,710

463–464 (1964).711

40 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Advances in712

Neural Information Processing Systems 32 (2019).713

41 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors.714

Nature 323, 533–536 (1986).715

42 Kingma, D. & Ba, J. Adam: A method for stochastic optimization. 3rd International Conference on716

Learning Representations (ICRL) (2014).717

43 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436–444 (2015).718

44 Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex.719

Nature neuroscience 19, 356–365 (2016).720

45 Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations in neural721

networks trained to perform many cognitive tasks. Nature neuroscience 22, 297–306 (2019).722

46 Mano, O., Creamer, M. S., Badwan, B. A. & Clark, D. A. Predicting individual neuron responses with723

anatomically constrained task optimization. Current Biology 31, 4062–4075 (2021).724

47 Sandbrink, K. J. et al. Task-driven hierarchical deep neural network models of the proprioceptive path-725

way. bioRxiv (2020).726

48 Shinomiya, K. et al. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila727

brain. Elife 8, 2431 (2019).728

49 Takemura, S.-y. et al. The comprehensive connectome of a neural substrate for ‘ON’ motion detection729

in Drosophila. eLife 6, 1–16 (2017).730

50 Rivera-Alba, M. et al. Wiring economy and volume exclusion determine neuronal placement in the731

drosophila brain. Current Biology 21, 2000–2005 (2011).732

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


51 Krapp, H. G., Hengstenberg, B. & Hengstenberg, R. Dendritic structure and receptive-field organization733

of optic flow processing interneurons in the fly. Journal of neurophysiology 79, 1902–1917 (1998).734

52 Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annual Review of Neuroscience 33, 49–70 (2010).735

URL https://doi.org/10.1146%2Fannurev-neuro-060909-153155.736

53 Strother, J. A. et al. The emergence of directional selectivity in the visual motion pathway of drosophila.737

Neuron 94, 168–182 (2017).738

54 Gruntman, E., Romani, S. & Reiser, M. B. Simple integration of fast excitation and offset, delayed739

inhibition computes directional selectivity in Drosophila. Nature Neuroscience 21, 250–257 (2018).740

URL http://dx.doi.org/10.1038/s41593-017-0046-4.741

55 Gruntman, E., Romani, S. & Reiser, M. B. The computation of directional selectivity in the drosophila742

off motion pathway. Elife 8, e50706 (2019).743

56 Borst, A., Haag, J. & Mauss, A. S. How fly neurons compute the direction of visual motion. Journal of744

Comparative Physiology A 206, 109–124 (2020).745

57 Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in drosophila mo-746

tion vision. Nature 468, 300–304 (2010). URL https://doi.org/10.1038%2Fnature09545.747

58 Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computa-748

tional structure of the motion detector in drosophila. Neuron 70, 1165–1177 (2011).749

59 Strother, J. A., Nern, A. & Reiser, M. B. Direct observation of on and off pathways in the drosophila750

visual system. Current Biology 24, 976–983 (2014). URL http://dx.doi.org/10.1016/j.751

cub.2014.03.017.752

60 Behnia, R., Clark, D. A., Carter, A. G., Clandinin, T. R. & Desplan, C. Processing properties of ON and753

OFF pathways for drosophila motion detection. Nature 512, 427–430 (2014).754

61 Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nature755

Neuroscience 18, 1067 (2015).756

62 Maisak, M. S. et al. A directional tuning map of Drosophila elementary motion detectors. Nature 500,757

212–216 (2013).758

63 Yonehara, K. & Roska, B. Motion detection: neuronal circuit meets theory. Cell 154, 1188–1189 (2013).759

64 Fisher, Y. E., Silies, M. & Clandinin, T. R. Orientation Selectivity Sharpens Motion Detection in760

Drosophila. Neuron 88, 390–402 (2015). URL http://dx.doi.org/10.1016/j.neuron.761

2015.09.033.762

65 Fischbach, K. F. & Dittrich, A. P. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of763

wild-type structure. Cell and Tissue Research 258, 441–475 (1989).764

66 Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse765

stereotyped cell arrangements in the fly visual system. Proceedings of the National Academy of Sciences766

of the United States of America 112, E2967–76 (2015).767

67 Takemura, S.-y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature768

500, 175–181 (2013). URL http://dx.doi.org/10.1038/nature12450.769

31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

https://doi.org/10.1146%2Fannurev-neuro-060909-153155
http://dx.doi.org/10.1038/s41593-017-0046-4
https://doi.org/10.1038%2Fnature09545
http://dx.doi.org/10.1016/j.cub.2014.03.017
http://dx.doi.org/10.1016/j.cub.2014.03.017
http://dx.doi.org/10.1016/j.cub.2014.03.017
http://dx.doi.org/10.1016/j.neuron.2015.09.033
http://dx.doi.org/10.1016/j.neuron.2015.09.033
http://dx.doi.org/10.1016/j.neuron.2015.09.033
http://dx.doi.org/10.1038/nature12450
https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


68 Takemura, S.-y. et al. Synaptic circuits and their variations within different columns in the visual system770

of Drosophila . Proceedings of the National Academy of Sciences 112, 13711–13716 (2015).771

69 Shinomiya, K., Nern, A., Meinertzhagen, I. A., Plaza, S. M. & Reiser, M. B. Neuronal circuits integrating772

visual motion information in drosophila melanogaster. Current Biology 32, 3529–3544 (2022).773

70 Meier, M. & Borst, A. Extreme Compartmentalization in a Drosophila Amacrine Cell. Current Biology774

29, 1545–1550.e2 (2019). URL https://doi.org/10.1016/j.cub.2019.03.070.775

71 Hahnloser, R. & Seung, H. S. Permitted and forbidden sets in symmetric threshold-linear networks.776

Advances in neural information processing systems 13 (2000).777

72 Curto, C., Degeratu, A. & Itskov, V. Flexible memory networks. Bulletin of mathematical biology 74,778

590–614 (2012).779

73 Liu, T. X., Davoudian, P. A., Lizbinski, K. M. & Jeanne, J. M. Connectomic features un-780

derlying diverse synaptic connection strengths and subcellular computation. Current Biology 32,781

559–569.e5 (2022). URL https://www.sciencedirect.com/science/article/pii/782

S0960982221016420.783

74 Götz, K. G. Optomotorische untersuchung des visuellen systems einiger augenmutanten der fruchtfliege784

drosophila. Kybernetik 2, 77–92 (1964).785

75 Ready, D. F., Hanson, T. E. & Benzer, S. Development of the drosophila retina, a neurocrystalline lattice.786

Developmental biology 53, 217–240 (1976).787

76 Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher788

visual cortex. Proceedings of the National Academy of Sciences 111, 8619–8624 (2014).789

77 Butler, D. J., Wulff, J., Stanley, G. B. & Black, M. J. A Naturalistic Open Source Movie for Optical Flow790

Evaluation (Sintel). Eccv 611–625 (2012).791

78 Braitenberg, V. Patterns of projection in the visual system of the fly. i. retina-lamina projections. Exper-792

imental Brain Research 3, 271–298 (1967).793

79 Werbos, P. J. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78,794

1550–1560 (1990).795

80 Marder, E. & Taylor, A. L. Multiple models to capture the variability in biological neurons and networks.796

Nature Neuroscience 14, 133–138 (2011).797

81 Schaeffer, R., Khona, M. & Fiete, I. No free lunch from deep learning in neuroscience: A case study798

through models of the entorhinal-hippocampal circuit. bioRxiv (2022).799

82 Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S. & Sussillo, D. Universality800

and individuality in neural dynamics across large populations of recurrent networks. In Wal-801

lach, H. et al. (eds.) Advances in Neural Information Processing Systems, vol. 32 (Curran As-802

sociates, Inc., 2019). URL https://proceedings.neurips.cc/paper/2019/file/803

5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf.804

83 Peretz, A. et al. The light response of drosophila photoreceptors is accompanied by an increase in cellular805

calcium: effects of specific mutations. Neuron 12, 1257–1267 (1994).806

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

https://doi.org/10.1016/j.cub.2019.03.070
https://www.sciencedirect.com/science/article/pii/S0960982221016420
https://www.sciencedirect.com/science/article/pii/S0960982221016420
https://www.sciencedirect.com/science/article/pii/S0960982221016420
https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


84 Reiff, D. F., Plett, J., Mank, M., Griesbeck, O. & Borst, A. Visualizing retinotopic half-wave rectified807

input to the motion detection circuitry of drosophila. Nature neuroscience 13, 973–978 (2010).808

85 Freifeld, L., Clark, D. A., Schnitzer, M. J., Horowitz, M. A. & Clandinin, T. R. Gabaergic lateral809

interactions tune the early stages of visual processing in drosophila. Neuron 78, 1075–1089 (2013).810

86 Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79,811

111–127 (2013).812

87 Meier, M. et al. Neural circuit components of the drosophila off motion vision pathway. Current Biology813

24, 385–392 (2014).814

88 Fisher, Y. E. et al. A Class of Visual Neurons with Wide-Field Properties Is Required for Local Mo-815

tion Detection. Current Biology 25, 3178–3189 (2015). URL http://dx.doi.org/10.1016/j.816

cub.2015.11.018.817

89 Hardie, R. C. & Juusola, M. Phototransduction in drosophila. Current opinion in neurobiology 34, 37–45818

(2015).819

90 Leonhardt, A. et al. Asymmetry of drosophila on and off motion detectors enhances real-world velocity820

estimation. Nature neuroscience 19, 706–715 (2016).821

91 Yang, H. H. et al. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo.822

Cell 166, 245–257 (2016).823

92 Serbe, E., Meier, M., Leonhardt, A. & Borst, A. Comprehensive characterization of the major presynaptic824

elements to the drosophila off motion detector. Neuron 89, 829–841 (2016).825

93 Arenz, A., Drews, M. S., Richter, F. G., Ammer, G. & Borst, A. The Temporal Tuning of the Drosophila826

Motion Detectors Is Determined by the Dynamics of Their Input Elements. Current Biology 27, 929–944827

(2017). URL http://dx.doi.org/10.1016/j.cub.2017.01.051.828

94 Ramos-Traslosheros, G. & Silies, M. The physiological basis for contrast opponency in motion compu-829

tation in drosophila. Nature communications 12, 1–16 (2021).830

95 Gruntman, E., Reimers, P., Romani, S. & Reiser, M. B. Non-preferred contrast responses in the831

drosophila motion pathways reveal a receptive field structure that explains a common visual illusion.832

Current Biology 31, 5286–5298 (2021).833

96 Groschner, L. N., Malis, J. G., Zuidinga, B. & Borst, A. A biophysical account of multiplication by a834

single neuron. Nature 603, 119–123 (2022).835

97 Ketkar, M. D. et al. First-order visual interneurons distribute distinct contrast and luminance information836

across on and off pathways to achieve stable behavior. Elife 11, e74937 (2022).837

98 Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nature838

Neuroscience 18, 1067–1076 (2015). URL https://doi.org/10.1038%2Fnn.4050.839

99 Gjorgjieva, J., Sompolinsky, H. & Meister, M. Benefits of pathway splitting in sensory coding. Journal840

of Neuroscience 34, 12127–12144 (2014).841

100 Serbe, E. Analysis of the neural circuit underlying the detection of visual motion in drosophila842

melanogaster (2016).843

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.cub.2015.11.018
http://dx.doi.org/10.1016/j.cub.2015.11.018
http://dx.doi.org/10.1016/j.cub.2015.11.018
http://dx.doi.org/10.1016/j.cub.2017.01.051
https://doi.org/10.1038%2Fnn.4050
https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


101 Ammer, G., Leonhardt, A., Bahl, A., Dickson, B. J. & Borst, A. Functional Specialization of Neural844

Input Elements to the Drosophila on Motion Detector. Current Biology 25, 2247–2253 (2015). URL845

http://dx.doi.org/10.1016/j.cub.2015.07.014.846

102 Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnol-847

ogy 37, 38–44 (2019).848
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Extended Data Figures936

Extended Data Figure 1: Statistics of derived connectome. (a) (left) Half of the 65 cell types receive input from
more than ten other cell types, while the other half receives input from less than ten. (right) Half of the 65 cell types
project onto more then six other cell types, while the other half projects onto less than six. (b) (left) Half of the 65
cell types receive input from 21 up to 200 cells, while the other half receives input from less than 21 cells. (right)
Half of the 65 cell types project output onto 20 up to 200 cells, while the other half projects output onto less than 20
cells. (c) Half of the connections are characterized by less than 1.6 synapses while the other half are characterized by
1.6 up to hundreds of synapses. (d) A pair of presynaptic and postsynaptic cell type is connected by 5.5 synapses in
half of the cases and by more than 5.5 up to hundreds in the other half of the cases. (e) (left) Half of the 65 cell types
receive input from less than 93.6 synapses and the other half between 93.6 to 400 synapses. (right) Half of the 65 cell
types project less than 55.9 synapses and the other half projects between 55.9 to 600 synapses. (f) Separating (e) into
excitatory and inihibitory synapses, (left) we see that half of the 65 cell types receive excitatory inputs from less than
52.3 synapses and the other half from 52.3 to hundreds. Half of the 65 cell types receive inhibitory inputs from less
than 39.2 synapses and the other half from 39.2 to hundreds. (right) Half of the 65 cell types project less than 22.1
excitatory synapses and the other half from 22.1 to hundreds. At least half of the 65 cell types project no inhibitory
synapses and the rest project between zero to hundreds.
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Extended Data Figure 2: Statistics of learned parameters of best 20% models vs. worst 20% models. (a) Task-
optimized resting potentials. (b) Task-optimized time constants. (c) Task-optimized filter scaling factors.

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

task error

0

10

20

30

40

50

nu
m

be
r o

f m
od

el
s

task-optimized DMN
random DMN
unconstrained CNN

Extended Data Figure 3: Models with random parameter configurations consistently performed worse on the
task than task-optimized models. Task error distributions over ensembles. (green) The task error of 50 DMNs
distributes between 5.1 and 5.5 (a.u.) after optimization. (red) The task error of 50 random DMNs collapses at 5.7
despite optimization of the decoders. (blue) An unconstrained CNN with 414,666 parameters reaches a task error
between 4.5 and 4.6 (here 5 models).

Extended Data Figure 4: Predicted tuning with respect to task-performance. (a) Flash response index computed
as the max-abs-scaled peak response to an off flash subtracted from the max-abs-scaled peak response to an on flash
– both of approximately 35◦ radius and presented for 1s after 2 seconds of grey input. Values above 0 indicate
on-polarity, values below zero indicate off-polarity. Known on-polar and off-polar cell types are colored in yellow
and magenta. (b) Single cell type direction selectivity of best 20% task-performing models versus worst 20% task-
performing models of an ensemble of 50 models as a result of peak voltage responses in central columns to on-edges
and off-edges moving towards all possible directions on grey background (Equation 9). The bolded cell types are those
which optic flow is decoded from.
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Extended Data Figure 5: Models with random parameter configurations predict the known direction selectiv-
ity indices and flash response indices worse than task-optimized models. We correlate predicted tuning metrics
from each model to the known tuning properties to answer if models with random parameter configurations lead to
similarly accurate tuning predictions as task-optimized models. (a) Task-optimized DMNs (green) predict more ac-
curate direction selectivity indices than randomly parametrized models (red) (P = 2× 10−11, Mann-Whitney-U). (b)
Task-optimized DMNs (green) predict more accurate flash response indices than randomly parametrized models (red)
(P = 5.3× 10−5, Mann-Whitney-U).

Extended Data Figure 6: Better task performing models predict motion tuning neurons better. We correlate
predicted tuning metrics from each model to the known tuning properties to understand when better performing models
give us better tuning predictions. (orange) When correlating the direction selectivity index of each model to the binary
known properties for T4 and T5 and their input cell types, we find that this correlation is higher for better performing
models. (magenta) While the models predicted the known contrast preferences generally well, the correlation of flash
response index to the binary known contrast preferences of 31 cell types did not significantly increase with better
performing models.
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Extended Data Figure 7: Spatio-temporal receptive fields mapped with OFF-impulses and maximally excitatory
stimuli. (a) Spatio-temporal receptive field mapping with single ommatidium OFF-impulses. (b) Maximally excita-
tory stimuli and baseline-subtracted responses. Including full-field naturalistic, regularized naturalistic, artificial, and
moving edge stimuli and responses. Moving edge angle and speed maximize the central cell peak response. Artificial
stimuli are optimized from initial noise to maximize the central cell activity using gradient ascent plus full-field regu-
larization towards grey. The last row shows the baseline-subtracted central cell responses. Peak central cell responses
at time point zero.

Extended Data Figure 8: Motion tuning predictions for T4 and T5 subtypes to preferred and null contrast edges
in the best-task-performing model.
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Extended Data Figure 9: Investigating the role of sparse connectivity with synthetic networks for MNIST hand-
written digit recognition. (a) Median hidden-layer response correlation as a function of synthetic network connec-
tivity percentage for task and connectome constrained models that had access to only connectivity information but
not connection strength. (b) Median hidden-layer response correlation as a function of synthetic network connectivity
percentage for task and connectome constrained models with access to noisy estimates of connection strength (multi-
plicative noise levels of σ = 0.1, σ = 0.25, and σ = 0.5, respectively). Connectome constrained models were task
optimized with a soft (L2) constraint with the noisy connectomic measurements.
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Supplementary Information937

Supplementary Note 1 Probabilistic model for automatic construction of938

connectome939

The EM-datasets primarily contain the lamina projections, medulla (FIB-25), lobula and lobula plate (FIB-940

19) cells, and the important cell types of the primary motion detection circuit (T4, T5). In total, they contain941

1801 neurons (702 from FIB-25 and 1099 from FIB-19), with hand-annotated positions available for 830942

of these neurons (SI Figure 1). To accurately localize the remaining neurons and synapses and to derive943

cell-type connectivity (Fig. 1b), we build a probabilistic expectation maximization algorithm that takes944

synaptic connection statistics, projected synapse center-of-mass clusters and existing column annotations945

into account. We verified the quality of our reconstruction, concluding that even in the absence of 90% of946

the hand-annotations available to us, we could accurately position the majority of the neurons in our circuit947

reconstruction (SI Table 1, SI Figure 2). In the absence of ground-truth annotations, we verified the quality948

of our reconstruction by the recovery and consistency rates (Table 1). The recovery rate is defined as the949

ratio of reference positions successfully recovered by our algorithm after removing a random proportion of950

reference positions from the data. For each 10% of the reference positions removed, on average, only 2.5%951

are not correctly recovered. The consistency rate is defined as the fraction of neurons obtaining the same952

position between evaluations of the algorithm starting with a different fraction of reference positions. For953

each 10% of the reference positions removed, on average, an additional 3.9% of neurons are not consistently954

estimated. We found that even just 10% (83 positions) of the available ground truth was sufficient to robustly955

position the majority of the neurons (64.3%, 534 positions) into the correct columns, and annotate 48% (865956

neurons) perfectly consistent.957

Probabilistic expectation maximization for unassigned neurons. Each neuron is either annotated in958

the dataset (in K), assigned to a position (in A) by our algorithm, or still under evaluation (in set U).959

Iteratively, the EM-expectation step updates the normal distribution (µs,t,(y,x), σs,t,(y,x)) of expected synapse960

counts between neurons, while the EM-maximization step updates the positions (y, x) of all neurons not yet961

assigned to a column (set U).962

Synapse center-of-mass as a neuron column position proxy. For offset assignment, we take the center-963

of-mass of all synapses belonging (pre- or postsynaptic) to a neuron into account. These are generally964

a more useful hint than the physical location of the cell body, as the cell bodies are mostly positioned965

on the side of the neuropiles, and not near the column to which the neuron belongs to, but most cells966

have a majority of synapses in close proximity to their own column. Since many neurons span more than967

one layer in a neuropile, or even multiple neuropiles, we first group all synapses per neuron into clusters,968

and then assign the center-of-mass of these clusters to one of up to N = 5 super-clusters (approximately969

matching the medulla, lobula and lobula plate). Clustering is done via k-means with the ideal number of970

clusters determined by silhouette scores. The super-clusters allow to project 3D synapse coordinates onto a971

retinotopic 2D hexagonal lattice with a simple projection and affine transformation.972

Hybrid cost-model for neuron-position likelihood estimates. Prior knowledge about the normal dis-973

tribution (µs,t,(y,x), σs,t,(y,x)) of expected synapse counts between neurons from existing annotations is974

required to express the probability of any cell specimen c to be located at position (y, x). This metric cor-975

relates a neuron to all pre- and postsynaptic neurons it is connected to, of which some already have a fixed,976

known position. Thereby, the neighbouring neurons with known position (inK andA) contribute to stabilize977
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Reference positions 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 average

Recovery rate 0.870 0.849 0.820 0.807 0.790 0.754 0.730 0.707 0.669 0.643
Recovery rate delta 0.020 0.029 0.013 0.017 0.036 0.024 0.023 0.039 0.025 0.025
Consistency rate 0.790 0.728 0.701 0.682 0.638 0.609 0.552 0.546 0.480
Consistency rate delta 0.062 0.027 0.019 0.044 0.029 0.057 0.006 0.066 0.039

Table 1: Recovery and consistency of columnar cell position estimation.

the probabilities of unassigned neurons (in set U). For columnar, spatially repeated neurons, we can also978

assume that only one neuron per position is present. This prior rapidly discounts the number of possible979

positions an unassigned neuron can have, each time another neuron becomes assigned (moves from U toA).980

Fusion of sepratately evaluated datasets. Since FIB-19 and FIB-25 are evaluated separately, we have to
combine the estimated parameters of both models to a single, coherent model. The datasets overlap partially,
in terms of the neurpoiles and cell types covered, and our method therefore fuses the model by always taking
the larger estimated parameter.

µs,t,(y,x) = max(µFIB-19
s,t,(y,x), µ

FIB-25
s,t,(y,x)) (6)

This method of model fusion only underestimates the number of synapses between two neurons if they have981

connections in two different neuropiles, and if each neuropile is exclusively covered by only one dataset.982

Pruning spurious synapses. Some automatic annotations, which are not proof read in the FlyEM DVID
data, contain a large number of autapses per neuron on most neuron types, arising from wrongly de-
tected synapses in the cell bodies themselves. Additionally, there are many statistically insignificant single
synapses left from the assignment algorithm. We imposed the following additional filter on our estimated
model parameters, to remove both autapses and spurious connections with less than one synapse on average.

µs,t,(y,x) =


∅ if s = t ∧ (y, x) = (0, 0)

∅ if µs,t,(y,x) < 1

µs,t,(y,x) otherwise

(7)

Finally, neuron types without connections and synapses with either missing target or source can be983

removed. The resulting mean synapse counts µs,t,(y,x) form the convolutional filters for our simulation.984

Pos. removed [%] 0 10 20 30 40 50 60 70 80 90 100

Reference positions 830 747 664 581 498 415 332 249 166 83 0
Combined 1801 1459 1305 1346 1248 1152 1229 1081 972 944 0
FIB-25 702 592 573 566 538 509 491 464 445 399 0
FIB-19 1099 867 732 780 710 643 738 617 527 545 0
Combined (annotated) 721 708 694 684 658 643 626 576 566 499 0
FIB-25 (annotated) 393 387 379 375 360 353 339 307 304 272 0
FIB-19 (annotated) 328 321 315 309 298 290 287 269 262 227 0

Table 2: Results of the probabilistic model construction.
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A FIB-19 synapse center-of-mass superclusters B FIB-25 synapse center-of-mass superclusters

C FIB-19 Mi10 cell and synapse projections D FIB-25 T4a cell and synapse projections

Supplementary Figure 1: (A) FIB-19 synapse center-of-mass superclusters. The clusters form two strata in the medulla
(ME), and in the lobula (LO) and lobula plate layers (LOP, 1-4) additionally. Each dot corresponds to the center-of-
mass of all synapses belonging to the super-cluster. Typically, each diverging arborization of a cell becomes a distinct
location, which helps our probabilistic model to project 3D positions of synapses into retinotopic 2D planes, despite
the lobula having a different spatial orientation (perpendicular) than the medulla and lobula (Fig. 1a and c). (B) FIB-
25 synapse center-of-mass superclusters. The clusters form two strata (ME) in the medulla. (C) Mi10 cell type in
FIB-19 with no pre-annotated lattice positions. The seven cell specimen (hexagons) are recovered by our probabilistic
algorithm. Individual synapses and synapse center-of-mass projections are superimposed. (D) T4a cell type in FIB-25
with eight pre-annotated (an) and two recovered (al) lattice positions. The projected synapse positions show directional
displacement consistent with the direction selectivity of T4a cells (Fig. 3a).
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Supplementary Figure 2: Results of the probabilistic model construction.
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Supplementary Note 2 Manually constructed connectome985

Lamina and ommatidia model Since neither FIB-19 nor FIB-25 contain the connections of the omma-986

tidia or first neuropile, the lamina48, 68, we reused and refined the existing hand-crafted model from our987

previous work119, which is based on data from Rivera-Alba et al.50 and Tuthill et al.124, 125.988

Non-columnar single CT1 cell model While we did in general not model any neurons with large tan-989

gential branches, such as Mt, Mt, Pm, Dm, which span many columns and are therefore insufficiently990

segmented in FIB-19 and FIB-25, we did model the single CT1 cell present in the lobula CT1(Lo1) and991

medulla CT1(M10)49. Because a multi-compartment model with bidirectional electrical synapses resulted992

often in oscillatory dynamics in earlier modeling attempts and because CT1 terminals were found to act as993

functionally independent units70 we modelled CT1 as two anatomically separate cell types CT1(Lo1) and994

CT1(M10).995

Non-columnar periodic cells Because lamina-wide-field neurons, Lawf1 and Lawf2, do not occur in each996

individual column but more sparsely, we modeled them with an inferred spatial stride to occur more sparsely997

resulting in 123 cell of each type in our model (there are approx. 140 Lawf2 neurons per optic lobe, and998

each of approx. 700 columns is innervated by approx. 5 Lawf2 cells124).999

Hexagonal lattice rendering of connectome For compilation into the hexagonal grid, the convex hull of1000

the filters is filled with ones to remove spatial discontinuities. Although these are considered mostly false1001

positives from the connectome reconstruction12, this allowed for weak autapses in our hexagonal model that1002

did not affect the tuning predictions.1003

Additional proofreading We manually proofread filters on the hexagonal lattice and compared them to1004

the reported filters in the literature to ensure overall correspondence. We found that the reconstruction did1005

not fully capture the asymmetry reported in48 of the T5 anatomical receptive field of Tm9, which we then1006

substituted by a Gaussian at the reported offset column scaled by the reported number of input synapses. For1007

few T4 and T5 inputs the number of input synapses reported in the literature48 slightly deviated from our1008

reconstruction. To get a better initialization of our filter scale we scaled them to closely match the number1009

of input synapses reported48.1010
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Supplementary Note 3 Investigating the role of sparse connectivity with1011

synthetic networks for MNIST digit recognition1012

Training feedforward synthetic networks The weight matrix for each layer in Dale’s-law-based syn-
thetic networks (DLTrues) is decomposed into three components: binary adjacency matrix, non-negative
weight magnitudes, and a sign vector.

WDLTrue = CDLTrue �WDLTrue � [1⊗ sDLTrue] ,

where CDLTrue = binary adjacency matrix,

WDLTrue = non-negative weight magnitudes of true network,

sDLTrue = sign vector

By means of projected gradient descent, WDLTrue is enforced to be non-negative and is initialized from1013

the absolute value of the He initialization distribution140. Although sign vector sDLTrue is randomly initial-1014

ized with equal probability to be either -1 or +1 to represent inhibitory and excitatory synapses respectively,1015

its elements are allowed to assume values in R over the course of training.1016

Inducing sparsity Binary adjacency matrix CDLTrue is initialized to be a unit matrix and is later updated1017

according to the desired true network connectivity level. Following the LTH algorithm, a portion of the1018

lowest-magnitude weights, designated to be pruned, were identified from WDLTrue � [1⊗ sDLTrue]. For1019

pruning synapses, the corresponding entries in the adjacency matrix CDLTrue were then set to zero. After1020

each pruning iteration, weight magnitudes were reset back to their original initialization, followed by a final1021

training run post-pruning.1022

Training with/without sign constraints In addition to a Dale’s-law-based sign constraint, we also exper-
imented with networks trained without any sign constraint. No restrictions were imposed on the nature of
outgoing synapses i.e., a neuron can have both excitatory and inhibitory outgoing synapses. For true net-
work variants trained without a sign constraint, 1⊗sDLTrue was simply replaced by a sign matrix SnonDLTrue
initialized in a similar fashion; that is, all entries were initialized to be in {−1,+1} with equal probability.
We will refer to true networks trained without a sign constraint as nonDLTrues.

WnonDLTrue = CnonDLTrue �WnonDLTrue � SnonDLTrue,
where CnonDLTrue = binary adjacency matrix,

WnonDLTrue = non-negative weight magnitudes of true network,

SnonDLTrue = sign matrix

Training simulated networks As elements in a true network’s sDLTrue or SnonDLTrue are allowed to
assume values in R while training, only the signs of these elements are inherited by the true networks’s
respective simulated network.

WDLSimulated = CDLTrue �W ′DLSimulated �
[
1⊗ s′DLTrue

]
,

where CDLTrue = binary adjacency matrix from corresponding DLTrue,

W ′DLSimulated = non-negative weight magnitudes of simulated network,

s′DLTrue = signs of elements in sDLTrue

47

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.11.532232doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532232
http://creativecommons.org/licenses/by/4.0/


WnonDLSimulated = CnonDLTrue �W ′nonDLSimulated � S′nonDLTrue,
where CnonDLTrue = binary adjacency matrix from corresponding NonDLTrue,

W ′nonDLSimulated = non-negative weight magnitudes of simulated network,

S′nonDLTrue = signs of elements in SnonDLTrue

Extended Data Fig. 9 A shows median hidden-layer tuning correlations for networks trained with and1023

without Dale’s law sign constraint for three different architectures.1024

Training simulated networks that had access to weight magnitudes Three levels of multiplicative noise
σ = 0.1, 0.25, 0.5 were explored, inducing low-noise, medium-noise, and high-noise weight estimates,
respectively. Each noise level represents the maximum percentage by which a weight magnitude could be
perturbed.

WSimulated Init = X �WTrue,

where Xij = Uniform(1− σ, 1 + σ)

Simulated networks were trained with a Gaussian prior on the weights centered around the noisy initializa-
tion. In effect, this additional loss term penalizes trainable weights for deviating from their noisy initializa-
tion.

Lweight prior = Lcross entropy + λ
∑

[WSimulated −WSimulated Init]2

Fig. 9B shows median hidden-layer tuning correlations for networks with low-, medium-, and high-noise1025

weight perturbations.1026

Sparse networks have larger local minima. We inspected the size of the simulated networks’ local min-1027

ima by analyzing how well they converged when initialized from a perturbed local optimum. Response1028

tuning correlation in this context was used to quantify efficacy of convergence. After training the connec-1029

tome simulations on the same handwritten digit classification task, we found that sparser networks were able1030

to recover function even from highly-perturbed network initializations. By virtue of weight pruning, as the1031

number of free parameters in the true network (and hence simulated network) are reduced, we believe that1032

the size of the simulations’ local minima increase, allowing sparser simulated networks to converge even1033

when initialized far from optimum.1034

Simulated networks were initialized with a noisy version of their respective true network’s weights.1035

Three varying levels of multiplicative noise (σ = 0.1, 0.25, 0.5) were used to perturb the simulations’ local1036

minima.1037

Extended Data Fig ?? shows median hidden-layer tuning correlations at initialization distances of σ =1038

0.1, 0.25, 0.5 for networks with 128, 256, and 512 neurons per hidden layer, respectively.1039
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