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To understand how the brain computes, it is important to un-
ravel the relationship between circuit connectivity and function.
Previous research has shown that excitatory neurons in layer
2/3 of the primary visual cortex of mice with similar response
properties are more likely to form connections. However, tech-5

nical challenges of combining synaptic connectivity and func-
tional measurements have limited these studies to few, highly
local connections. Utilizing the millimeter scale and nanometer
resolution of the MICrONS dataset, we studied the connectivity-
function relationship in excitatory neurons of the mouse vi-10

sual cortex across interlaminar and interarea projections, as-
sessing connection selectivity at the coarse axon trajectory and
fine synaptic formation levels. A digital twin model of this
mouse, that accurately predicted responses to arbitrary video
stimuli, enabled a comprehensive characterization of the func-15

tion of neurons. We found that neurons with highly correlated
responses to natural videos tended to be connected with each
other, not only within the same cortical area but also across mul-
tiple layers and visual areas, including feedforward and feed-
back connections, whereas we did not find that orientation pref-20

erence predicted connectivity. The digital twin model separated
each neuron’s tuning into a feature component (what the neu-
ron responds to) and a spatial component (where the neuron’s
receptive field is located). We show that the feature, but not the
spatial component, predicted which neurons were connected at25

the fine synaptic scale. Together, our results demonstrate the
“like-to-like” connectivity rule generalizes to multiple connec-
tion types, and the rich MICrONS dataset is suitable to fur-
ther refine a mechanistic understanding of circuit structure and
function.30
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Introduction

In the late 1800’s, Santiago Ramón y Cajal — while poring
over the structure of Golgi-stained neurons using only light35

microscopy — imagined the Neuron Doctrine, the idea that
individual neurons are the fundamental units of the nervous
system (Ramón y Cajal, 1911). From that moment, under-
standing how cortical computation emerges from those indi-
vidual neurons was linked to understanding the relationship40

between their connectivity and function. A variety of influ-
ential proposals about this relationship have been advanced
in the past century. For example, Donald Hebb’s “cell as-
sembly" hypothesis (Hebb, 1949) — colloquially stated as
“neurons that fire together, wire together” — predicted that45

interconnected neuronal subnetworks “reverberate" to stabi-
lize functionally relevant activity patterns. In the visual sys-
tem, Hubel and Wiesel proposed that the hierarchical organi-
zation of connected neurons might build feature selectivity;
for example the orientation selectivity of simple cells might50

be derived from convergent inputs from neurons in the lateral
geniculate nucleus whose receptive fields are arranged along
a straight line in the visual field. (Hubel and Wiesel, 1962).
Although significant insight can be gleaned from functional
or structural analysis alone, thoroughly testing these predic-55

tions requires information about both neural activity and con-
nectivity in the same set of neurons. In the mammalian vi-
sual cortex, evidence for several varieties of “like-to-like”
connectivity (i.e. increased connectivity for cells with sim-
ilar response preferences) has been found via spine imaging60

(Iacaruso et al., 2017), combined in vivo imaging and in vitro
multipatching (Ko et al., 2011; Cossell et al., 2015), com-
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bined in vivo imaging and rabies monosynaptic retrograde
tracing (Wertz et al., 2015; Rossi et al., 2020; Federico Rossi
et al., 2019), and combined in vivo imaging with electron mi-65

croscopy (EM) reconstruction (Bock et al., 2011; Lee et al.,
2016; Scholl et al., 2021). The results of these early func-
tional connectomics studies are consistent with an organi-
zation reminiscent of Hebbian cell assemblies, where inter-
connected pyramidal subnetworks with similar feature pref-70

erences amplify sensory input, perhaps to sharpen tuning or
overcome a strong inhibitory tone (Lien and Scanziani, 2013;
Reinhold et al., 2015; Lee et al., 2016).

However, these important early studies that yielded the first
glimpses of functional-structural rules required monumental75

effort just to examine small populations of neurons restricted
to small volumes of primary visual cortex (V1), and typically
limited to cortical Layers 2 and 3 (L2/3). This is due in part
to the challenge of collecting functional connectomics data
and especially the challenge of identifying synaptic connec-80

tions between neurons across distances larger than a few hun-
dred microns. Therefore, many questions remain unanswered
about how these rules generalize across areas and layers, in-
cluding connections within and between different layers and
areas (including feedforward and feedback), and how they85

relate to local and hierarchical mechanisms of sensory pro-
cessing.

Enormous strides have been made over the past decade in our
ability to record activity over large populations of neurons
distributed across multiple regions of the brain (Sofroniew90

et al., 2016; Pachitariu et al., 2017; Allen et al., 2019; Stringer
et al., 2019; Demas et al., 2021; Steinmetz et al., 2021;
Jun et al., 2017). Recent technological innovations in se-
rial electron microscopy (Yin et al., 2020; Phelps et al.,
2021) and automatic dense reconstruction using deep learn-95

ing (Turner et al., 2020; Dorkenwald et al., 2022b; Mitchell
et al., 2019; Lu et al., 2021; Wu et al., 2021; Dorkenwald
et al., 2022a; Lee et al., 2017), when combined with meso-
scopic two-photon imaging (Sofroniew et al., 2016), have
converged to enable collection of the MICrONS dataset, the100

largest functionally-imaged and densely-reconstructed cal-
cium imaging/EM dataset to date (MICrONS Consortium
et al., 2021).

Here, dense reconstruction means that every membrane com-
partment in the volume is segmented into an axon, den-105

drite, glia, etc. — in contrast with previous studies that
have sparsely reconstructed connections from or to a lim-
ited number of functionally-characterized target cells (Lee
et al., 2016; Bock et al., 2011). As a result, we were able
to gather information from a higher density of reconstructed110

“bystanders”, nearby neurons that could have formed connec-
tions, yet didn’t. This allows for a multi-tiered analysis at dif-
ferent spatial scales, with a coarse level corresponding to the
axonal trajectory past the dendrites of some neurons but not
others, and a fine level at which it may form synapses only115

with a subset of those candidate neurons. This multi-tiered
analysis enables a more comprehensive understanding of the
mechanisms by which neurites select their synaptic partners,
including sharing certain functional properties, and thus help

shed light on the complex interplay between structure and120

function in the nervous system.
Our functional analysis utilized a digital twin model of the
recorded neurons (Wang et al., 2023), which was able to ac-
curately predict how neurons responded to dynamic natural
stimuli. With this model, we were able to conduct a thor-125

ough characterization of neuronal function. Our findings re-
vealed that neurons with highly correlated responses to nat-
ural videos tended to be connected with each other, not only
within the same cortical areas but also across multiple layers
and visual areas, including feedforward and feedback con-130

nections. Interestingly, we did not find evidence that con-
nected neurons share similar orientation tuning. The digi-
tal twin model allowed us to separate each neuronal tuning
into two components: a feature component (what the neu-
ron responded to), and a spatial component (the location of135

the neuron’s receptive field). Further analysis showed that
the feature component, rather than the spatial component,
predicted fine-scale synaptic connections between neurons.
Lastly, we showed that signal correlation and feature tuning
each uniquely contribute to predicting synaptic level connec-140

tivity. Our results provide support for the “like-to-like” con-
nectivity rule across different types of connections (local, in-
terarea, interlaminar, etc) and highlight the potential of the
MICrONS dataset in enhancing our understanding of circuit
structure and function.145

Results
MICrONS functional connectomic dataset. Data were
collected and processed as described in the MICrONS data
release publication (MICrONS Consortium et al. 2021, Fig.
1). Briefly, a single mouse expressing GCaMP6s in exci-150

tatory neurons underwent fourteen two-photon scans of a
1200 × 1100 × 500µm3 volume (anteroposterior × medio-
lateral × radial depth) spanning layers 2 through 6 at the
conjunction of lateral primary visual cortex and anterolateral
(AL), lateromedial (LM) and rostrolateral (RL) higher visual155

areas (HVA, Fig. 1a). Neuronal responses in the awake, be-
having animal from 115,372 functional units representing an
estimated 75,909 unique excitatory neurons were collected in
response to visual stimuli composed of natural and rendered
movies and parametric dynamic stimuli (Fig. 1b). A state-of-160

the-art deep recurrent neural network was trained to predict
neural responses to arbitrary stimuli (Wang et al., 2023), and
used to characterize the in silico functional properties of im-
aged neurons (Fig. 1c).
After functional imaging, the tissue was fixed and a block en-165

compassing the functionally characterized volume was dis-
sected for osmium staining, resin embedding, and ultra-
thin sectioning for electron microscopy (Yin et al., 2020) at
4 × 4 × 40nm3 resolution (Fig. 1d). The EM images were
aligned (Mitchell et al., 2019) and automatically segmented170

using 3D convolutional networks into “atomic” supervoxels,
which were agglomerated to create objects (e.g. neurons)
with corresponding 3D meshes (Lee et al., 2017; Dorken-
wald et al., 2022b; Lu et al., 2021; Wu et al., 2021; Dorken-
wald et al., 2022a). Synaptic clefts were predicted from the175
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Figure 1. Overview of MICrONS Dataset. a, Depiction of functionally characterized volume in right visual cortex (green: GCaMP6s, red: vascular label), using two-photon
(2P) mesoscopic imaging of awake, head-mounted mouse with movie visual stimuli presented to the left eye. Visual areas: primary visual cortex (V1), anterolateral (AL),
lateromedial (LM) and rostrolateral (RL). b, Representation of deconvolved calcium traces of 100 imaged neurons. Alternating blue/white column overlay represents the
duration of serial video trials, with sample frames of natural videos depicted below. Parametric stimuli (not pictured) were also shown for a shorter duration and included in the
model training set. c, Schematic representing digital twin deep recurrent architecture. During training, subsequent movie frames (left) are inputted into a shared convolutional
deep recurrent core (orange, blue layers) resulting in extracted representation of local spatiotemporal stimulus features. Each neuron learns the location (spatial component
in the visual field (gray layer) to read out feature activations (shaded blue vectors), and the dot product with the neuron-specific learned feature weights (shaded lines, feature
component) results in the predicted mean neural activation for that time point. d, Depiction of the structurally characterized and densely reconstructed EM subvolume 65. e,
Overlap of the functional 2P (green) and structural EM (gray) volumes, from which somas were recruited. f, g, Demonstration of corresponding structural features in 2P (f)
and EM (g) volumes, including soma constellations (dotted white circles) and unique local vasculature (red arrowheads), used to build confidence in the manually assigned
2P-EM cell match (solid white circle). Scale bars = 5µm. h, Depiction of 122 manually proofread mesh reconstructions (gray), including representative samples from Layer
2/3 (red), Layer 4 (blue), Layer 5 (green), and Layer 6 (yellow). Bottom panel: presynaptic soma locations relative to visual area boundaries.

EM data and assigned to presynaptic and postsynaptic part-
ners by 3D convolutional networks similar to that used for
segmentation (Dorkenwald et al., 2022b; Turner et al., 2020;
Wu et al., 2021). The densely reconstructed EM volume
spanned roughly 870 × 1300 × 820µm3 (anteroposterior ×180

mediolateral × radial depth) after alignment with the func-
tional volume. The analysis presented here is restricted to
the contents of subvolume 65 (roughly 65% of the total EM
volume along the anteroposterior axis, see MICrONS Con-
sortium et al. 2021 for details), which contained an approxi-185

mately 560×1100×500µm3 volume (in vivo dimensions) of
overlapping two-photon and EM that has been both densely

functionally and structurally characterized. Of 82,247 auto-
matically extracted neuronal nuclei in subvolume 65, 45,334
were both classified as excitatory and located within the inter-190

section of the EM reconstructed volume and functional vol-
ume.

The two-photon and EM volumes were approximately
aligned (Fig. 1e), and 8905 excitatory neurons were manu-
ally matched between the two volumes (Fig. 1f, g; MICrONS195

Consortium et al. 2021). Visually responsive and well char-
acterized neurons in retinotopically matched areas in V1 and
HVA were chosen for manual morphological proofreading
focused on extending axonal branches projecting across the
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Figure 2. Neurons with higher signal correlation are more likely to form synapses. a, Schematic illustrating inclusion criteria for anatomical controls of increasing
specificity. For each proofread presynaptic neuron (yellow), controls for its true postsynaptic partners (black) are drawn from neurons located in the same cortical region
(blue), or from neurons with at least one Axonal-Dendritic Proximity (“ADP”) on the presynaptic axonal arbor (red). b, Representative meshes demonstrating a true presynaptic
(yellow) to postsynaptic (black) pair and corresponding ADP control (red). c, Density histogram of pairwise signal correlation between observed presynaptic - postsynaptic
partners (black) is right-shifted with respect to the control groups described in a. d, Mean signal correlation is different (mean ± sem, two-sample t-test) between observed
presynaptic - postsynaptic partners (black), same region control (blue), and ADP control (red). e, Mean signal correlation of connected neurons is increased with respect
to controls as in d, for within-area (V1 and HVA), feedforward, and feedback connectivity. f, Fold change of connection probability given signal correlation of true synaptic
connectivity relative to controls is decreased for low signal correlations and increased for high signal correlations. (Error bar = ± 1 STD by bootstrap, p values by Cochran-
Armitage two-sided test for trend). g, Fold change of connection probability is decreased for low signal correlations and increased for high signal correlations as in d for
within-area (V1 and HVA), feedforward, and feedback connectivity. h, Representative meshes demonstrating synapses with low cleft volume (896 voxels, left) and high
cleft volume (41716 voxels, right). i, Synapse size (log10 cleft volume in voxels) positively correlated with signal correlation. j, Representative meshes demonstrating
a multisynaptic presynaptic (yellow) to postsynaptic (black) pair. k, Signal correlations between connected neurons with more than 1 observed synapse are higher than
connected neurons with 1 observed synapse, after controlling for synapse opportunity by ADP (p values by two-way ANOVA). (For all panels, ∗ = p-value < 0.05, ∗∗ = p-value
< 0.01, ∗ ∗ ∗ = p-value < 0.001, multiple comparison correction by BH procedure)

boundary of primary visual cortex and removing inappro-200

priate merges (MICrONS Consortium et al., 2021). Postsy-
naptic partners of the proofread neurons were automatically
cleaned of inappropriate merge errors (Celii et al., 2023).
In total, this resulted in a connectivity graph consisting of
122 presynaptic neurons and 1975 postsynaptic partners with205

function characterized in the digital twin (Fig. 1h).

Multi-tiered anatomical controls. Connectivity between
neurons is affected by numerous mechanisms, ranging from
developmental processes that organize broad patterns of
functional tuning and neurite growth, to mechanisms of210

synaptic formation and plasticity that modulate the strength
of individual connections between neurons. Thus, it is im-
portant to differentiate connectivity patterns that can be ex-
plained by the spatial locations of cell bodies, axons and den-
drites, from those which require additional specificity. Be-215

cause the dense reconstruction provides information not only
on the detailed morphology of the axonal arbor of presynaptic

neurons and dendritic arbor of postsynaptic neurons, but also
on the dendritic arbors of “bystander” neurons with no ob-
served connection, it allows for the creation of specific and220

multi-tiered controls for testing hypotheses on the relation-
ship between function and connectivity. In this study, we
compare the population of connected neurons against two
groups of control neurons with progressively tighter inclu-
sion criteria (Fig. 2a, b). The first is the “same region” con-225

trol, which includes all reliably visually responsive excita-
tory neurons (CCmax > 0.6) that are accurately predicted by
the digital twin (CCabs > 0.35), have been matched to the
EM volume, and are located in the same cortical region (V1
vs HVA) as the postsynaptic target, but were not observed230

to form a synapse with the presynaptic neuron. The sec-
ond control group is the Axonal-Dendritic Proximity (ADP)
control(Lee et al., 2016), which further restricts the neurons
in the same region control to those with the opportunity to
synapse, as defined by a dendrite passing within 5µm of the235

presynaptic neuron axonal skeleton and also within 10µm of
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at least one synapse in the presynaptic axonal arbor (3D eu-
clidean distance). The functional properties of the two con-
trol groups and the observed synaptic partners can be com-
pared against each other to better interpret the different con-240

tributions to synaptic partner selectivity. The difference be-
tween the ADP control and same region control represents
a coarse level selectivity related to the axon’s trajectory to
some areas and layers of visual cortex but not others. For
example, if the targeted cortical area is organized with re-245

spect to functional properties such as receptive field location
(i.e. retinotopy) or preferred orientation (Fahey et al., 2019),
then the functional similarity of the synaptic partners of the
axon could be due to where it projects within that area, even
if it synapses randomly within that location. On the other250

hand, the difference between the connected neurons and the
ADP group represents a fine level selectivity related to which
ADPs are converted into synapses.

Signal correlation is selected at axon trajectory and
synaptic levels. For pairs of connected neurons and con-255

trols included under the constraints described above, the digi-
tal twin was used to calculate the in silico signal correlation in
response to a large battery of novel natural movies (250 clips,
10 seconds per clip). By using the predicted mean response
from the digital twin, which would require many repeats to260

obtain with in vivo measurements, we are able to explore a
much larger stimulus space with in silico experiments than
would be possible with in vivo measurements (Wang et al.,
2023). We found that the distribution of in silico signal cor-
relations for observed synapses had a small but significant265

positive shift relative to both controls (Fig. 2c, d; p-value <
0.001 for both comparisons, two-sided two-sample t-test cor-
rected for multiple comparisons with Benjamini-Hochberg
(BH) procedure). This pattern was also independently ob-
served when subsets of neuron pairs were grouped into lo-270

cal V1, local HVA, feedforward (V1 → HVA) and feedback
(HVA → V1) connections (Fig. 2e, see Supp. Tab. 1 for
details). Notably, when testing local and interarea selectivity
separately, it may potentially be confounded by differences in
spatial distribution between local and interarea arbors, for ex-275

ample due to incomplete reconstruction following proofread-
ing emphasis on projecting interarea axons. To measure how
signal correlation affects connection probability compared to
either same region or ADP control, we quantified the fold
changes in connection probability as a function of signal cor-280

relation. We observed that connection probability is higher
for neurons with larger signal correlations (Fig. 2f, p-value
<0.001 for both comparisons, Cochran-Armitage two-sided
tests for trend, see Supp. Tab. 3 for details). This increased
connectivity was stronger in the same region control but re-285

mained positive in the more restrictive ADP control. For a
small group of highly correlated neurons (>0.3 signal corre-
lation, 5.2% of neurons), connection probability reached as
high as 1.8 fold increase relative to the same region control
and 1.5 fold increase relative to the ADP control. This re-290

lationship was observed in both local projections within V1
and HVA, feedforward, and feedback projections (Fig. 2g).

Functional similarity predicts volume and number of
synapses. Previous studies have found that presynaptic-
postsynaptic pairs with greater functional similarity have295

greater synapse strength (Cossell et al., 2015) and larger post-
synaptic density (PSD) area (Lee et al., 2016). In the MI-
CrONS dataset, synapses were automatically segmented with
cleft volume measurements, which is related to spine head
volume, PSD area, and synaptic strength (Arellano et al.,300

2007; Holler et al., 2021; Dorkenwald et al., 2022b). We
found that signal correlation positively correlates with cleft
volume (Fig. 2h, i; pearson r = 0.098, p < 0.001). We
also found that presynaptic-postsynaptic pairs with multiple
synapses had higher signal correlation (Fig. 2j, k) when com-305

pared to monosynaptic pairs.

Factorized in silico functional representation. Due to
the architecture of the digital twin (Fig.1c, Wang et al. 2023),
each modeled neuron’s predicted response is determined by
two factors: readout location in visual space—a pair of az-310

imuth/altitude coordinates; and readout feature weights—
the relative contribution of the core’s learned nonlinear out-
put features in predicting the target neuron’s activity. For
each neuron, the combination of this receptive field location
and feature weights together encode everything the model has315

learned about that neuron’s functional properties, and enable
the model’s predictive capacity for that neuron. This factor-
ized in silico representation allowed us to examine the extent
to which these two elements independently contribute to the
relationship between signal correlation and connectivity seen320

in Fig. 2.

Postsynaptic feature tuning is selected at the synap-
tic level. As seen with signal correlation above (Fig. 2c), the
mean cosine similarity between the presynaptic and postsy-
naptic feature weights of the connected population is larger325

than both control populations (Fig. 3a, p-value <0.001, two-
sample t-test). The local V1, local HVA, feedforward, and
feedback projection breakout analyses further demonstrate
selectivity at the synaptic level with respect to the model fea-
ture weight similarity (Fig. 3b, c, see Supp. Tab. 4, 6 for de-330

tails). Higher feature weight similarity is also associated with
larger synapse volume and multisynapse connectivity (Supp.
Fig. 1a, b).

Postsynaptic receptive field location is selected at the
axon trajectory level. Receptive field location similarity335

was measured as the visual angle difference between the
model receptive field centers, with lesser center distance cor-
responding to greater location similarity. In contrast to signal
correlation and feature weight similarity, receptive field lo-
cation similarity is selected at the axon trajectory level, as340

evidenced by the leftward shift in receptive field location dis-
tance between connected neurons and same region control
(black vs blue, Fig. 3d). This pattern is consistent with the
decrease in receptive field location distance between same re-
gion control and connected neurons in the projection break-345

out (black vs blue, Fig. 3e, see Supp. Tab. 7 for details)
and with the decreasing trend in connection probability (blue,
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Figure 3. Feature weight similarity predicts synaptic selectivity better than receptive field center distance and difference in preferred orientation. a,
d, g, Density histograms of pairwise model feature weight similarity (a), RF center distance (d), and difference in preferred orientation (Delta ori, g) for observed
presynaptic-postsynaptic pairs (black) and controls. Mean signal correlation, mean RF center distance and mean difference in preferred orientation are compared
across the connected neuron pairs and two controls (two sample t-test). b, e, h, Mean feature weight similarity (b), mean RF center distance (e), and mean
difference in preferred orientation (h) for connected and control populations (two-sample t-test). c, f, i, Fold change in connection probability conditioned on feature
weight similarity (c), receptive field center pairwise distance (f), and difference in preferred orientation (i). (Cochran-Armitage two-sided tests for trend) Error bars
are bootstrapped STD. (For all panels, ∗ = p-value < 0.05, ∗∗ = p-value < 0.01, ∗ ∗ ∗ = p-value < 0.001, p-values are corrected for multiple comparison using BH
procedure)

Fig. 3f, see Supp. Tab. 9 for details). However, there is
no statistically significant difference between the connected
population and ADP control across all three analyses (black350

vs red, Fig. 3d, e, f), suggesting that there is not an additional
synaptic selectivity on the basis of receptive field location
beyond axonal targeting of retinotopically matched regions.
Receptive field center distance also does not correlate with
synapse volume (Supp. Fig. 1c), nor with multisynapse con-355

nectivity (Supp. Fig. 1d).

Postsynaptic orientation tuning is selected at the axon
trajectory level. Previous work has found like-to-like con-
nectivity with respect to similarity in orientation preference
(Supp. Fig. 2a, b; Ko et al. 2011; Lee et al. 2016). Similar to360

the in silico signal correlation computed above, we extracted
neuronal orientation tuning from the responses to in silico
presentations of noise-based stimuli with coherent orienta-
tion and direction. Only orientation-tuned neurons are in-
cluded in the analysis (global OSI > 0.25) which were shown365

to have similar in silico and in vivo orientation tuning prop-
erties in a separate set of experiments (Supp. Fig. 4). Over-
all orientation tuning of the volume revealed a cardinal bias
(Kondo and Ohki, 2016; Salinas et al., 2017; Kreile et al.,
2011), resulting in a U-shaped distribution in the difference370

in preferred orientation between presynaptic and postsynap-
tic neurons (Fig. 3g). While we did find a leftward shift of
the overall connected distribution relative to the same region

control (Fig. 3g), we did not observe synapse level selectiv-
ity when comparing in silico orientation tuning in connected375

pairs against ADP controls, either at the overall level (Fig.
3g) or in the projection breakout analysis (Fig. 3h, i, see
Supp. Tab. 12, 10 for details). Thus, for the portion of V1
captured in the connectivity graph used for these analyses,
like-to-like connectivity with respect to in silico orientation380

tuning was only detected at the axon trajectory level, and not
at the synapse level. However, in order to recruit an unbiased
presynaptic population, candidates for proofreading were not
chosen based on orientation tuning, and consequently only
87 of the presynaptic neurons were significantly tuned for385

orientation. To control for the decrease in sample size, we re-
tested the relationship between connectivity and signal cor-
relation (Fig. 2c, e, g), and between connectivity and feature
weight similarity (Fig. 3a - c) with only the subsampled pop-
ulation with statistically significant orientation tuning (Supp.390

Fig. 3). We found that both signal correlation and feature
weight relationships remained similar overall, suggesting the
subsampling alone cannot account for the lack of relationship
between similarity in orientation preference and connectivity.

Like-to-like rule generalizes across joint layer and area395

membership of cells. To get a more detailed understand-
ing of the organization of connections across layers and ar-
eas, for each functional similarity metric (signal correlation,
feature weight similarity, receptive field center distance, and
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Figure 4. Like-to-like effects are widespread but vary across joint area / layer
membership and tuning similarity metric. a-h, Hinton plot of functional similarity
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difference in preferred orientation), we also tested the rela-400

tionship with connectivity across the joint distribution of two
area groups (primary visual cortex, V1; higher visual areas
AL and RL, HVA) and three layer groups (L2/3, L4, and L5,
Fig. 4). For signal correlation (Fig. 4a, b, see Supp. Tab.
2 for details) and feature weight similarity (Fig. 4c, d, see405

Supp. Tab. 5 for details), like-to-like effects (red squares)
were widespread across many area and layer combinations,
relative to both same region and ADP controls. However, per-
tinent negatives include HVA L2/3 → HVA L2/3, for which

we failed to reject the null hypothesis of no difference from410

ADP control, despite that this group had 296 synapses be-
tween 46 unique presynaptic and 207 unique postsynaptic
neurons, suggesting that in at least some subgroups the like-
to-like is either greatly diminished, highly variable, or per-
haps entirely absent. In the case of RF center distance, while415

like-to-like effects (red squares) were widespread when com-
pared to the same region control across many groups and
layers, none were significant in the ADP comparison, sug-
gesting that RF distance selectivity at the axon trajectory but
not synaptic level is also consistent across tested excitatory420

cell types (Fig. 4e, f, see Supp. Tab. 8 for details). Lastly,
in the case of difference in preferred orientation, we were
not able to detect significant differences between connected
and control neuron pairs (Fig. 4g, h, see Supp. Tab. 11 for
details). When we examine orientation tuning for V1 L2/3425

→ V1 L2/3 connections specifically, we observed a similar
trend of connection probability compared to previous litera-
ture (Supp. Fig. 2a, b), however the trend was not signif-
icant (p = 0.090 vs region control, p = 0.750 vs ADP con-
trol, Cochran-Armitage two-sided test for trend). Because430

the data are constrained to only presynaptic and postsynaptic
pairs with significant orientation tuning, it is possible that the
tuning and selectivity of a few individual presynaptic neurons
may have an outsized influence on single categories. How-
ever, the V1 L2/3 → V1 L2/3 group in our data has a greater435

number of connections when compared to previous studies
(Ko et al. 2011: 25 connections; Lee et al. 2016: 29 connec-
tions; this study: 126 connections), and only slightly fewer
unique presynaptic neurons (Lee et al. 2016: 15 presyn., 21
postsyn.; this study: 9 presyn., 115 postsyn.).440

Signal correlation and feature weight similarity inde-
pendently contribute to connectivity. We next examined
the relationships between pairwise functional properties. Sig-
nal correlation is correlated to feature weight similarity (pear-
son r=0.66, p < 0.001) (Fig. 5a), and weakly anti-correlated445

to receptive field center distance (pearson r=-0.08, p < 0.001)
(Fig. 5b). To test whether in silico signal correlation and fea-
ture weight similarity both independently contribute to higher
connection probability, we used a logistic regression model to
analyze the relationship between feature weight, signal cor-450

relation and connectivity. We first tested the efficacy of our
selected model on simulated data with known effect sizes.
A graph of potential connectivity was constructed, where
nodes are neurons, and edges were assigned between neu-
rons with an observed synapse or ADP in the dataset. For455

each edge, observed pairwise signal correlation (SC), fea-
ture weight similarity (FW), and receptive field center dis-
tance (RF) were inherited from the corresponding neurons.
In three toy models, synapses in the graph were stochasti-
cally simulated at the overall observed connectivity rate (Fig.460

5c, red dotted line), with synapse probability determined per
ADP by feature weight similarity alone (Fig. 5c, left), sig-
nal correlation alone (Fig. 5c, center), or an equal contribu-
tion of signal correlation and feature weight similarity (Fig.
5c, right). We are able to recover the simulated contribu-465

tions through the estimated coefficients of the logistic regres-
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Figure 5. Feature weight similarity predicts synaptic connectivity beyond signal correlation. a, b, Signal correlation is strongly correlated with feature weight
similarity (a, two-sample t-test) and weakly anti-correlated with receptive field (RF) center distance (b, two-sample t-test). c, After simulating connectivity graphs in
which pairwise functional properties were preserved (top row) but with injected causal relationships (red arrows) between connectivity and feature weight similarity
(FW, left), signal correlation (SC, center), or both (right), logistic regression models trained to predict connectivity from SC, FW, and RF (bottom row) recover injected
relationships in the model coefficients (mean ± 95% c.i. by Monte Carlo simulation, p values = difference from zero, red dotted line = ground truth contribution). d,
Logistic regression model coefficients as in (c), fitted to observed connectivity data, revealing significant non-zero contribution from both SC and FW (mean ± 95%
c.i. by MLE, p value by Wald test). The contributions from SC and FW were not significantly different from each other (likelihood ratio test (LRT), p = 0.062)). e,
Logistic regression model connectivity prediction performance on observed connectivity data (measured as likelihood relative to an intercept-only model) for three
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0.001).

sion model (connectivity ∼ SC + FW + RF , p < 0.001
by Monte-Carlo simulation) despite the high correlation be-
tween SC and FW (Fig. 5c). Interestingly, when we applied
the logistic regression model to the observed connectivity, we470

found that the coefficients of both signal correlation and fea-
ture weight were statistically significant (Fig. 5d, coefficients
significantly different from zero, Wald test, p < 0.001 for
both SC and FW, p = 0.091 for RF). Additionally, we found
that including both signal correlation and feature weight sim-475

ilarity as predictors in the model significantly improved pre-
diction accuracy compared to models in which either one was
excluded (Fig. 5e, likelihood ratio test, p < 0.001 for reduc-
ing SC, p < 0.001 for reducing FW, p = 0.092 for reducing
RF). Overall, our results show that both signal correlation480

and feature weight similarity carry independent information
about the connection probability between neurons, that could
not be fully captured by either metric alone.

Discussion
Discovering the principles that relate structure to function485

is central in the pursuit of a circuit-level mechanistic under-
standing of brain computations. Here, we used the MICrONS
multi-area dataset — the largest of its kind — to study the re-
lationship between the connections and functional responses
of excitatory neurons in mouse visual cortex across cortical490

layers and visual areas. Our findings revealed that neurons
with highly correlated responses to natural videos (i.e. high
signal correlations) tended to be connected with each other,
not only within the same cortical areas but also across multi-
ple layers and visual areas, including feedforward and feed-495

back connections. While the overall principle of “like-to-
like” connectivity that we describe here is consistent with a
number of previous studies, this work leverages three unique

strengths of the MICrONS dataset to extend and refine these
previous findings.500

First, the scale of the volume enabled us to look at connec-
tion principles across all layers of cortex, not just within V1,
but also in projections between V1 and higher visual areas.
In agreement with previous findings from V1 L2/3, we found
that pairs of cells with higher signal correlations were more505

likely to be connected (Ko et al., 2011; Cossell et al., 2015).
This general principle held not just in V1 L2/3, but also in
higher visual areas and for interarea feedforward and feed-
back projections.
Second, we were able to take advantage of the dense recon-510

struction to compute a set of null distributions for the ex-
pected connectivity between neurons. These controls enable
us to distinguish whether the relationships we observed be-
tween connectivity and function are due to the overall geom-
etry of axonal and dendritic arbors in the volume, or whether515

they reflect a more precise connectivity rule at the level of
individual synapses. For example, it is only with the inclu-
sion of both same region and ADP controls that we are able
to observe the diverging findings of axon trajectory level se-
lectivity for receptive field center distance (Fig. 3 d, e, f) and520

synaptic level selectivity for feature weight similarity (Fig. 3
a, b, c). These different controls can be mapped onto poten-
tial developmental or adult plasticity mechanisms that may
shape the coarse axon trajectory and fine-scale synaptic con-
nectivity across the brain.525

Finally, our deep learning neural predictive modeling ap-
proach enabled us to not only comprehensively character-
ize signal correlation, but also to separate (i.e. factorize)
neuronal tuning into spatial and feature tuning components.
While the model feature weights represent the feature tun-530

ing preferences of a given neuron, signal correlation repre-
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sents how those feature tuning preferences interact with the
statistics of the stimulus set used to measure them. Although
these two metrics are correlated, by comparing the relation-
ship to connectivity in cases where feature weight similar-535

ity and signal correlation diverge, we can attempt to separate
the contributions of feature tuning (e.g. “like-to-like”) and
stimulus-driven coincident activity (e.g. “fire together, wire
together”) to how neural circuits are wired. In fact, we find
that signal correlation and feature weight similarity do inde-540

pendently contribute to predictions of connectivity between
pairs of neurons. The causes of these independent contri-
butions provide the opportunity for some interesting specu-
lation. For example, both feature weight similarity and sig-
nal correlation could predict connectivity arising from coin-545

cident activity due to features within the overlapping classi-
cal receptive field. However, the independent contribution
of signal correlation may be due to long range spatiotem-
poral correlations in natural scene statistics (Simoncelli and
Olshausen, 2003), including those beyond the range of the550

classical receptive field. This is because under the “fire to-
gether, wire together” hypothesis, the observed synapses are
due to the coincident firing of neuron ensembles shaped by
the statistics of the lifetime visual experience of the animal,
which we mimic with the statistics of our natural dynamic555

stimuli. On the other hand, the independent contribution of
feature weights may be a result of mechanisms that influence
both neuronal tuning properties and connectivity. One exam-
ple would be if functionally similar neurons are genetically
predestined to form more synapses between them.560

A more banal explanation might be that one could falsely de-
tect an independent contribution when two similarity metrics
are correlated — as one metric fails to capture the functional
similarity between a neuron pair, the second metric provides
the missing information. One potential cause would be if565

our similarity metrics inadequately capture the relevant fea-
tures influencing connectivity. For example, to the extent
that the high dimensional feature representation in the digital
twin suffers from a redundant (i.e. non-identifiable) embed-
ding, decreasing predictive power of feature weight cosine570

similarity may emerge as an apparently independent signal
correlation contribution. While the focus in this work was
on creating a model optimized for predictive performance,
and model training included dropout (Srivastava et al., 2014)
which has been shown to decorrelate features in neural net-575

work (Cogswell et al., 2015), future work might improve
by also including model architecture and training regime
changes guaranteeing a non-redundant penultimate layer of
feature weights. Alternatively, if the in vivo or in silico stimu-
lus poorly approximates the lifetime statistics of the animal’s580

visual experience, it may result in an apparently indepen-
dent feature weight similarity contribution. To mitigate this,
the MICrONS dataset utilized a high-entropy, natural video
stimulus and hours-long recordings to characterize functional
properties, although future work could expand in this dimen-585

sion by continuing to design more immersive or ethologically
linked recording conditions (Froudarakis et al., 2014; Hoy
et al., 2016; Parker et al., 2022)

In order to compare with previous work, we also used the
digital twin to extract a more classical form of feature tuning590

preference, orientation tuning. However, in contrast to pre-
vious studies (Lee et al., 2016; Ko et al., 2011), we did not
see a significant relationship between orientation tuning and
connection probability, except at the axon trajectory level.
This may be due to practical differences, such as the paramet-595

ric stimulus used to characterize orientation tuning (in silico
drifting noise with orientation coherence in our study versus
drifting gratings), cell selection criteria (gOSI > 0.25 in our
study versus OSI > 0.4 in Ko et al. 2011), or the location and
size of the area being studied (anterolateral V1 and HVA in600

our study versus posterior V1 in Lee et al. 2016 and monoc-
ular V1 in Ko et al. 2011). In the last case, previous work has
described an orientation tuning bias across V1 (Fahey et al.,
2019). As a consequence, the same connectivity rule may
be more difficult to observe under different orientation bi-605

ases in different parts of V1, for example if the presynaptic
or postsynaptic population was unusually homogeneous with
respect to preferred orientation. It is also possible that con-
nectivity rules might differ across V1. However, given that
stimuli optimized to drive the responses of neurons even in610

mouse V1 exhibit complex spatial features deviating strik-
ingly from Gabor-like stimuli (Walker et al., 2019), this may
highlight the advantages of studying more complete tuning
functions, such as the model feature weights, that go beyond
classical orientation preference.615

Lastly, many of the relationships we describe here, while
statistically significant, have an apparently small effect size.
One possibility is that small effects, applied broadly in the
context of large neural populations, may have emergent ef-
fects across the circuit with large consequences. Another620

possibility is that the small effect sizes we see here are ac-
tually the average of more complicated rules that net out to
a small effect in aggregate. Future work could address this
by expanding the descriptive model to take into account ad-
ditional features that inform the likelihood of a synapse for625

a particular presynaptic-postsynaptic pair, such as transcrip-
tomic / morphological features, role in higher order circuit
motifs, or location of the synapse opportunity within the ar-
bor.

This work provides a first glimpse of principles of corti-630

cal organization that can be discovered with large datasets
combining detailed functional characterization with synaptic-
scale connectivity. While the incredible accuracy of machine
learning-based reconstruction methods has rightly increased
optimism about the potential discoveries that can be made635

from large EM volumes — especially when combined with
functional characterization — we should also not forget the
magnitude of the challenge contained in even a 1mm3 vol-
ume of mouse cortex. The analyses in this paper are based
on only a small number of manually proofread neurons, but640

even this limited view of the dataset represents an impressive
volume of axonal and dendritic reconstruction. Ongoing in-
vestments in proofreading, matching, and extension efforts
within this volume will have exponential returns for future
analyses as they yield a more complete functional connec-645
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tomic graph. There is much more to discover about this rela-
tionship from this dataset, and others like it that are currently
in preparation. Our hope is that this dataset, including both
the structural anatomy and the immortalized digital twin for
ongoing in silico experiments, will be a community resource650

that will yield both concrete insights as well as inspiration
about the scale of investigation that is now possible in Neu-
roscience.
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Methods700

MICrONS Dataset. MICrONS dataset was collected as de-
scribed in MICrONS Consortium et al. (2021), including
neurophysiological data collection, visual stimulation, stim-
ulus composition, EM data collection, automatic EM seg-
mentation and reconstruction, manual EM proofreading, vol-705

ume coregistration, and manual soma-soma matching be-
tween the functional and EM volumes. Neurophysiologi-
cal experiments, Visual Stimulution,and Stimulus Composi-
tion sections below are specific to additional experiments de-
scribed in Supp. Fig. 4.710

Neurophysiological experiments. All procedures were
approved by the Institutional Animal Care and Use Com-
mittee of Baylor College of Medicine. Three mice (Mus

musculus, 1 female, 2 males, 78-86 days old at first exper-
imental scan) expressing GCaMP6s in excitatory neurons via715

Slc17a7-Cre and Ai162 transgenic lines (recommended and
generously shared by Hongkui Zeng at Allen Institute for
Brain Science; JAX stock 023527 and 031562, respectively)
were anesthetized and a 4 mm craniotomy was made over the
visual cortex of the right hemisphere as described previously720

(Reimer et al., 2014; Froudarakis et al., 2014).
For additional experiments, mice were head-mounted above
a cylindrical treadmill and calcium imaging was performed
with an experimental mesoscope (Sofroniew et al., 2016) as
described in release (MICrONS Consortium et al., 2021),725

with surface power not exceeding 20 mW, depth constant of
220 µm, and greatest laser power of ∼ 86 mW was used at
approximately 400 µm from the surface.
The craniotomy window was leveled with regards to the ob-
jective with six degrees of freedom. Pixel-wise responses730

from an ROI spanning the cortical window (3600 x 4000 µm,
0.2 px/µm, 200 µm from surface, 2.5 Hz) to drifting bar stim-
uli were used to generate a sign map for delineating visual
areas (Garrett et al., 2014).
For the orientation tuning validation data in Supp. Fig. 4,735

our target imaging site was a 1200×1100µm2 area spanning
L2-L5 at the conjunction of lateral primary visual cortex (V1)
and three lateral higher visual areas: anterolateral (AL), lat-
eromedial (LM), and rostrolateral (RL). This resulted in an
imaging volume that was roughly 50% V1 and 50% higher740

visual area. This target was chosen in order to mimic the
area membership and functional property distribution in the
MICrONS animal. Each scan was performed at 6.3 Hz, col-
lecting eight 620 × 1100µm2 fields per frame at 0.4 px/µm
xy resolution to tile a 1190 − 1200 × 1100µm2 FOV at four745

depths (two planes per depth, 40 − 50µm overlap between
coplanar fields). The four imaging planes were distributed
across layers with at least 50µm spacing, with two planes in
L2/3 (depths: 180µm,230µm), one in L4 (325µm), and one
in L5 (400µm).750

Movie of the animal’s eye and face was captured throughout
the experiment. A hot mirror (Thorlabs FM02) positioned be-
tween the animal’s left eye and the stimulus monitor was used
to reflect an IR image onto a camera (Genie Nano C1920M,
Teledyne Dalsa) without obscuring the visual stimulus. The755

position of the mirror and camera were manually calibrated
per session and focused on the pupil. Field of view was man-
ually cropped for each session. The field of view contained
the left eye in its entirety, 250-310 pixels height x 350-400
pixels width at 20 Hz. Frame times were time stamped in760

the behavioral clock for alignment to the stimulus and scan
frame times. Video was compressed using Labview’s MJPEG
codec with quality constant of 600 and stored the frames in
AVI file.
Light diffusing from the laser during scanning through the765

pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on
17 manually labeled samples from 11 animals to label each
frame of the compressed eye video (intraframe only H.264
compression, CRF:17) with 8 eyelid points and 8 pupil points770
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at cardinal and intercardinal positions. Pupil points with like-
lihood >0.9 (all 8 in 69.8-91.0% of frames per scan) were fit
with the smallest enclosing circle, and the radius and center
of this circle was extracted. Frames with < 3 pupil points
with likelihood >0.9 (<0.5% frames per scan), or produc-775

ing a circle fit with outlier > 5.5 standard deviations from
the mean in any of the three parameters (center x, center y,
radius, <0.1% frames per scan) were discarded (total <0.6%
frames per scan). Gaps of <= 10 discarded frames were re-
placed by linear interpolation. Trials affected by remaining780

gaps were discarded (<4 trials per scan, <0.5%).
The mouse was head-restrained during imaging but could
walk on a treadmill. Rostro-caudal treadmill movement
was measured using a rotary optical encoder (Accu-Coder
15T-01SF-2000NV1ROC-F03-S1) with a resolution of 8000785

pulses per revolution, and was recorded at ∼100 Hz in order
to extract locomotion velocity.

Visual stimulation. For the orientation tuning validation
data in Supp. Fig. 4, monitor size and positioning relative to
the mouse were as described in MICrONS Consortium et al.790

(2021), with the exception of replacing the dot stimulus with
10 x 10 grid tiling a central square (approx 90 degrees width
and height) with 10 repetitions of 200 ms presentation at each
location.
A photodiode (TAOS TSL253) was sealed to the top left cor-795

ner of the monitor, and the voltage was recorded at 10 KHz
and timestamped with a 10 MHz behavior clock. Simulta-
neous measurement with a luminance meter (LS-100 Kon-
ica Minolta) perpendicular to and targeting the center of the
monitor was used to generate a lookup table for linear inter-800

polation between photodiode voltage and monitor luminance
in cd/m2 for 16 equidistant values from 0-255, and one base-
line value with the monitor unpowered.
At the beginning of each experimental session, we collected
photodiode voltage for 52 full-screen pixel values from 0 to805

255 for one second trials. The mean photodiode voltage for
each trial was collected with an 800 ms boxcar window with
200 ms offset. The voltage was converted to luminance using
previously measured relationship between photodiode volt-
age and luminance and the resulting luminance vs voltage810

curve was fit with the function L = B +A ·P γ where L is the
measured luminance for pixel value P, and the γ of the moni-
tor was fit as 1.73. All stimuli were shown without linearizing
the monitor (i.e. with monitor in normal gamma mode).
During the stimulus presentation, display frame sequence in-815

formation was encoded in a 3 level signal, derived from the
photodiode, according to the binary encoding of the display
frame (flip) number assigned in-order. This signal under-
went a sine convolution, allowing for local peak detection
to recover the binary signal together with its behavioral time820

stamps. The encoded binary signal was reconstructed for
>93% of the flips. Each flip was time stamped by a stimulus
clock (MasterClock PCIe-OSC-HSO-2 card). A linear fit was
applied to the flip timestamps in the behavioral and stimulus
clocks, and the parameters of that fit were used to align stim-825

ulus display frames with scanner and camera frames. The
mean photodiode voltage of the sequence encoding signal at

pixel values 0 and 255 was used to estimate the luminance
range of the monitor during the stimulus, with minimum val-
ues of approximately 0.005 cd/m2 and maximum values of830

approximately 9.0 cd/m2.

Stimulus Composition. Dynamic stimuli libraries of natu-
ral movies, global directional parametric stimuli ("Monet"),
and local directional parametric stimuli ("Trippy"), are as de-
scribed in MICrONS Consortium et al. (2021). In addition835

to the 84 minutes of trials as described in MICrONS Consor-
tium et al. (2021), each stimulus contained an additional 40
minutes of trials, randomly intermixed, as follows:
• Unique Global Directional Parametric Stimulus

("Monet"): 120 seeds, 15 seconds each, 1 repeat per scan,840

30 minutes total. Seeds conserved across all scans.
• Oracle Global Directional Parametric Stimulus

("Monet"): 4 seeds, 15 seconds each, 10 repeats, 10
minutes total. Seeds conserved across all scans.

Preprocessing of neural responses and behavioral845

data. Fluorescence traces from the MICrONS dataset and the
additional data for Supp. Fig. 4 were detrended, decon-
volved, and aligned to stimulus and behavior as described in
Wang et al. (2023), and all traces were resampled at 29.967
Hz. Possible redundant traces, where a single neuron pro-850

duced segmented masks in multiple imaging fields, were all
kept for downstream model training. We elected to remove
one of the 14 released scans from the analysis due to com-
promised optics (water ran out from under the objective for
∼ 20 minutes), leaving 13 scans. Trials with more than 10855

consecutive untracked pupil frames were discarded (18-180
trials per scan, 2-39%).

Model architecture. Model architecture was similar to
Wang et al. (2023) with the following differences in the core
component of the neural network:860

• a feedforward network with 7 3D convolutional layers with
an ELU nonlinearity, instead of 3 layers with a GeLU non-
linearity.

• a recurrent network with a Conv-LSTM architecture, in-
stead of the newly proposed recurrent vision transformer865

(RvT) architecture.

Model training of digital twin. We utilized transfer learn-
ing to train the digital twin model as described in Wang et al.
(2023). Briefly, the core network of the models was trained
on 8 scans collected from 8 mice to capture cortical represen-870

tations of visual stimuli shared across mice. The parameters
of the core network are then frozen and the rest of the net-
work parameters are trained for each scan in the MICrONS
dataset independently.

Functional unit inclusion criteria. In order to focus our875

analyses on neurons that are visually responsive and well
modeled by the digital twin, we applied a dual functional
threshold over two metrics prior to all analyses related to
signal correlation, receptive field center distance, and feature
weight similarity.880
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In vivo reliability threshold: In order to estimate the relia-
bility of neuronal responses to visual stimuli, we computed
the upper bound of correlation coefficient (CCmax, Schoppe
et al. 2016) across 60 seconds of natural movie stimuli re-
peated 10 times across the stimulus period (10 min total).
CCmax was computed as:

CCmax =

√
NV ar(y)−V ar(y)

(N −1)V ar(y) ,

where y is the in vivo responses, and N is the number of
trials. A threshold of CCmax > 0.6 was applied.
Model prediction performance threshold: In order to fo-
cus our analyses on neurons for which adequate model per-
formance indicated sufficiently accurate representation of the
neuronal tuning features, we computed the test correlation
coefficient on the withheld oracle test dataset, which was not
part of the training set. Test correlation coefficient (CCabs)
was computed as:

CCabs = Cov(x,y)√
V ar(x)V ar(y)

,

where x is the in silico response and y is the in vivo response.
A threshold of CCabs > 0.35 was applied.
122 out of 152 presynaptic neurons and 1975 out of 5502885

postsynaptic neurons passed the dual functional unit inclu-
sion criteria.
Oracle score: Lastly, the oracle score was computed
for all units as described in MICrONS Consortium et al.
(2021). Where more than one two-photon functional unit890

was matched to a given EM unit, the functional trace with
the higher oracle score was used for analysis.

Anatomical controls. In order to control for anatomy at the
coarse axon projection level ("same region" control), we re-
cruited all visually responsive, well predicted, matched ex-895

citatory neurons (CCmax > 0.6, CCabs > 0.35, EM → 2P
soma matched) that are located in the same region as the post-
synaptic target, but are not observed to form a synapse with
the presynaptic neuron. Area membership labels per neuron
were used from the MICrONS release (MICrONS Consor-900

tium et al., 2021). Additionally, control candidates that meet
criteria for both the same region control and the ADP control
will only be included in ADP control.
In order to control for anatomy at the finer synaptic level
("ADP" control), we recruited all visually responsive, well905

predicted, matched excitatory neurons (CCmax > 0.6, CCabs

> 0.35, EM → 2P soma matched) with a dendritic skeleton
passing within 5µm of the presynaptic neuron axonal skele-
ton and also within 10µm of at least one synapse in the presy-
naptic axonal arbor (3D euclidean distance), but are not ob-910

served to form a synapse with the presynaptic neuron. Presy-
naptic axonal skeletons were computed using the pcg_skel
package developed by collaborators at the Allen Institute
for Brain Science (Schneider-Mizell et al., 2023; Schneider-
Mizell and Collman, 2023). For postsynaptic dendritic skele-915

tons, we used the automatically proofread and skeletonized

dendritic arbors as described in Celii et al. (2023). ADP de-
tection was also run as described in Celii et al. (2023), with
the exception of using pcg_skel presynaptic skeletons as
described above.920

In the case of the joint area and layer analysis (Fig. 4), can-
didates in both the "same region" and "ADP" controls must
additionally match the same layer classification as the post-
synaptic target in order to be included. Layer membership
was classified by depth of imaged soma respect to the dura925

in the structural two-photon stack: L1: 0 − 98µm; L2/3:
98 − 283µm; L4: 283 − 371µm; L5: 371 − 574µm; L6:
574−713µm.

Measuring functional similarities.

In silico response correlations. To characterize the pair-wise930

tuning similarity between two modeled neurons, we com-
puted the Pearson correlation of their responses to 2500 sec-
onds of natural movies. The natural movies were fed in to
the model as trials of 10 sec. Model responses were gener-
ated at 29.967 Hz and Pearson correlations were computed935

after binning the responses into 500msec non-overlapping
bins and concatenating across trials.

In silico feature weight similarity and receptive field cen-
ter distance. The digital twin model architecture includes a
shared core which is trained to represent spatiotemporal fea-940

tures in the stimulus input, and a final layer where the spa-
tiotemporal features at a specific readout location are linearly
weighted in order to produce the predicted activity of a spe-
cific neuron at the current time point (Wang et al., 2023).
The readout location and linear feature weight are indepen-945

dently learned for each neuron. In order to measure the fea-
ture weight similarity between two units, we extract the linear
feature weights from this final step as vector of length 512,
and take the cosine similarity between the two vectors. In
order to measure the receptive field center distance between950

two units, we extract the readout location as 2D coordinates
on the monitor, and take the angle between them with respect
to the mouse’s eye, assuming the monitor is centered on, 15
cm away from, and normal to the surface of the mouse’s eye
at the closest point.955

In silico difference in preferred orientation. 240 blocks of
parametric directional visual stimuli ("Monet") are shown to
the model, with each fifteen second block consisting of 16 tri-
als of equally distributed and randomly ordered unique direc-
tions of motion between 0-360 degrees. A modeled neuron’s960

direction tuning curve is computed as its mean responses
to 16 directions averaged across blocks. We calculated the
global orientation selectivity index (gOSI) from the modeled
neuron’s tuning curve as follows:

gOSI = ΣRθe2iθ

ΣRθ
(1)

where θ is the direction of the stimulus and Rθ is the mean965

modeled response to the stimulus at direction θ. Only neu-
rons with gOSI > 0.25 were included in the analyses in this
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paper. Unit-wise direction tuning curves are then modeled by
a bivariate von Mises function with an offset:

f(θ|µ,κ,p) = 1
2πI0(κ){pexp(κcos(θ −µ))

+ (1−p)exp(−κcos(θ −µ))}
+ b

(2)

where I0 is the modified Bessel function, µ is the preferred970

direction, κ measures the concentration of the two peaks
(larger κ means higher peaks thus higher orientation selectiv-
ity), p measures the relative height of the two peaks (p = 0.5
means two peaks of the same height, when p approaches 0 or
1, the bi-modal distribution reduces to a uni-model von Mises975

distribution), b is the offset. µ, κ, p, and b are fit by minimiz-
ing least squared error. The preferred orientation of a neuron
is taken as the modulus of µ to 180 degrees.
In three scans not included in the MICrONS release, we char-
acterized both the in vivo orientation tuning in response to 30980

minutes of global directional parametric stimulus ("Monet",
Supp. Fig. 4a), as well as the in silico orientation tuning
as described above for digital twin models with shared cores
and readouts trained on neurons from the same scans, in re-
sponse to stimuli matching the composition and duration of985

the MICrONS release scans (Supp. Fig. 4b). When we ap-
plied a threshold of gOSI > 0.25, we found that 95% of cells
had an absolute difference between their in silico and in vivo
preferred orientations less than 9.77°.

Statistical analysis of functional similarities and con-990

nectivity. To compare functional similarities among the
three neuron pair populations (connected neuron populations
and two control neuron populations), independent t-tests
were performed, with the Benjamini-Hochberg (BH) proce-
dure used to correct for multiple comparisons. For region995

breakout analysis, multiple comparisons across four groups
(V1 → V1, HVA → HVA, V1 → HVA, HVA → V1) and
two control designs (connected v.s. same region control and
connected v.s. ADP) were accounted for (total eight groups).
For layer breakout analysis, we started with six presynap-1000

tic/postsynaptic groups (two regions; L2/3, L4, L5; total 36
groups) and two control comparisons (connected vs same re-
gion control, connected vs ADP; total 72 groups), and only
groups with >10 connected neuron pairs were included in
the analysis and accounted for in multiple comparisons (581005

for Fig. 4a-f, 50 for Fig. 4g, h). To quantify fold changes
in connection probability as a function of functional simi-
larities, we followed these steps: 1) We binned all neuron
pairs by their functional similarities (signal correlation, fea-
ture weight similarity, RF center distance, or difference in1010

preferred orientation). 2) We calculated connection probabil-
ity within each bin as the fraction of connected neuron pairs
out of the total number of connected and control neuron pairs.
3) We normalized the connection probability by overall con-
nection probability across all bins. Only bins with more than1015

10 connected neuron pairs and more than 2.5% of all con-
nected neuron pairs are included in the analysis. To estimate
standard deviation of fold changes in connection probability,

we resampled the connected and control neuron pairs with re-
placement, binned the resampled distribution, and calculated1020

the standard deviation of fold change in connection probabil-
ity within each bin.
Pearson correlation coefficients were used to quantify rela-
tionships between functional similarities and cleft volume
sizes. P values of two-sided tests on the Pearson correla-1025

tion coefficients were reported. To test if multi-synaptic con-
nected neuronal pairs share more similar functional prop-
erties when compared to ADP controls for spatial proxim-
ity, we grouped all connected neuron pairs and ADP neu-
ron pairs into two groups: single synapse/ADP contact and1030

multiple synapse/ADP contacts. Two-way ANOVA is per-
formed to test whether functional similarity changes signif-
icantly across the interaction term of connectivity (synapses
vs ADPs) and number of contacts (single vs multiple).

Simulated connectivity graphs. A graph of potential con-1035

nectivity was constructed, where vertices are all visually re-
sponsive, well predicted, matched excitatory neurons (CCmax
> 0.6, CCabs > 0.35, EM → 2P soma matched), and vertices
are connected by an edge if the pair of neurons has an ob-
served synapse or ADP in the dataset. For each edge, we1040

included the pairwise signal correlation (SC), feature weight
similarity (FW), and receptive field center distance (RF) from
the pair of corresponding vertices as potential causal vari-
ables for connectivity. Thus the colinearities among them
were kept the same as the observed data. Fisher transforma-1045

tions were applied to SC and FW to Gaussianize the respec-
tive marginal distributions. Transformed SC, FW, and RF are
then mean-subtracted and scaled by standard deviations for
simulation and logistic regression analysis downstream.
The simulated connection probabilities were determined by
three causal models: 1). signal correlation alone (Fig. 5c,
left), 2). feature weight similarity alone (Fig. 5c, center),
or 3). an equal contribution of signal correlation and feature
weight similarity (Fig. 5c, right) through a logistic function

psim = 1
1+e−(Ax+B)

, where psim is the simulated connection probability, x is the1050

determining functional property, A is the coefficient of the
logistic regression p ∼ SC fit on the observed data and B is
optimized such that the simulated overall connection proba-
bility matches the observed overall connection probability.
Lastly, we sample 1000 simulated connectivity graphs per1055

causal model. Each simulated graph is generated by stochas-
tically sampling edges according to the edge probability. For
each simulated graph, we fitted a multivariable logistic re-
gression to predict connectivity probability between two ver-
tices and included the SC, FW, and RF from the pair of corre-1060

sponding vertices as covariates (p ∼ SC + FW + RF ). We
derived the 95% confidence intervals of the coefficients for
each causal model from empirical distributions of the coeffi-
cients across simulations.

Logistic regression analysis of connectivity predic-1065

tion. We modeled the connection probability between two
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neurons as a multivariable logistic regression of form p ∼
SC + FW + RF , with three coefficients corresponding to
the signal correlation, feature weight similarity, and recep-
tive field center distance between the two neurons. Mean1070

and variance of the coefficients are estimated through Max-
imum Likelihood Estimation (MLE). We next compared the
full model with reduced models where each of the three vari-
ables (SC, FW, and RF) are removed from the model. Mc-
Fadden’s pseudo-R-squared of the full model and the reduced1075

models are reported. Likelihood ratio tests (LRT) were used
to compare the performance of the full models to the reduced
models in order to assess the significance and importance of
each individual feature for connectivity prediction.

Software. Experiments and analysis are carried out with cus-1080

tom built data pipelines. The data pipeline is developed in
Matlab and Python with the following tools: Psychtoolbox,
ScanImage, DeepLabCut, CAIMAN, and Labview were used
for data collection. DataJoint, MySQL, and CAVE were
used for storing and managing data. Meshparty, NEURD,1085

and pcg_skel were used for morphology analysis. Numpy,
pandas, SciPy, statsmodels, scikit-learn, and PyTorch were
used for model training and statistical analysis. Matplotlib,
seaborn, HoloViews, Ipyvolume, and Neuroglancer were
used for graphical visualization. Jupyter, Docker, and Ku-1090

bernetes were used for code development and deployment.

Data availability. All MICrONS data have already
been released on BossDB (https://bossdb.org/
project/microns-minnie, please also see https:
//www.microns-explorer.org/cortical-mm31095

for details). Additional data including learned weights of the
digital twin model and in silico similarity metrics will be
made publicly available in an online repository latest upon
journal publication. Please contact us if you would like to
get access before that time.1100

Code availability. Custom developed code used in the anal-
ysis including digital twin architecture will be made publicly
available in an online repository latest upon journal publica-
tion. Please contact us if you would like to get access before
that time.1105
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Supplemental Figure 1. Functional similarity predicts synaptic volume and number. a, c, e, Presynaptic-postsynaptic pairwise
feature weight similarity (a), receptive field center distance (c), and difference in preferred orientation (e) as a function of synapse size
(log10 cleft volume in voxels, r = pearson correlation coefficient, two sided p-value). b, d, f, Mean presynaptic-postsynaptic pairwise
feature weight similarity (b), receptive field center distance (d), and difference in preferred orientation (f) for pairs with single versus
multiple synapses (black) or ADPs (red). p-value by two way ANOVA.
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Supplemental Figure 3. Functional similarity selectivity findings consistent in orientation-tuned subsample. a, b, c, Selectivity
with respect to signal correlation as Fig. 2c, e, g, but restricted to orientation-tuned neurons as in Fig. 3g, h, i. d, e, f, Same as a, b, c,
but with respect to feature weight similarity as in Fig. 3a, b, c. g, h, i, Same as a, b, c, but with respect to receptive field center distance
as in Fig. 3d, e, f. j, k, l, Same as Fig. 3g, h, i, duplicated here for reference.
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Supplemental Figure 4. In silico orientation tuning is consistent with in vivo orientation tuning a, Sample frame from global
directional parametric stimulus ("Monet") used to characterize orientation and direction selectivity. Directional motion was orthogonal to
orientation, and was tested at 22.5°intervals. b, Schematic of domain validation experimental design. In a single scan in a new animal,
neuronal responses are collected in response to sufficient stimulus to both train the digital twin model and characterize orientation tuning
from in vivo responses. Later, in silico orientation tuning is extracted from model responses to parametric stimuli, and compared against
in vivo orientation tuning for the same neurons. c, Comparison of in silico and in vivo mean responses per stimulus direction (mean ±
SEM), fitted tuning curves (lines), and extracted preferred orientation (dotted lines) for three neurons. d, 95th percentile difference in
preferred orientation between in silico and in vivo fitted responses as a function of gOSI threshold. Dotted lines correspond to gOSI >
0.25 threshold applied for all analyses and resulting 95th percentile difference in preferred orientation ≈ 9.77° across all three animals
imaged. Lines correspond to individual animals (gray) or cumulative across all animals (black). e, f, Two-dimensional histogram of in
silico versus in vivo preferred orientation for all neurons across three animals (e) and only neurons with gOSI > 0.25 (f).
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Supplemental Table 1. Independent two-sided t-tests performed to compare signal correlation between connected neuron
pairs and control neuron pairs across brain areas
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1->V1 adp 929 32 692 5136 32 1465 9.14 8.35e-20 6.68e-19 6063
HVA->HVA adp 1260 86 680 7148 75 867 4.45 8.62e-06 1.38e-05 8406
V1->HVA adp 191 22 174 1117 20 626 3.22 1.30e-03 1.49e-03 1306
HVA->V1 adp 456 62 399 2248 59 1171 4.24 2.33e-05 3.11e-05 2702
V1->V1 same region 929 32 692 62095 32 2131 8.67 4.35e-18 1.74e-17 63022
HVA->HVA same region 1260 86 680 87826 86 1120 2.60 9.44e-03 9.44e-03 89084
V1->HVA same region 191 22 174 23332 22 1120 5.28 1.32e-07 2.63e-07 23521
HVA->V1 same region 456 62 399 129418 62 2131 6.00 1.95e-09 5.20e-09 129872
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Supplemental Table 2. Independent two-sided t-tests performed to compare signal correlation between connected neuron
pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1, L2/3->V1, L2/3 adp 227 19 181 1023 19 447 5.13 3.40e-07 4.93e-06 1248
V1, L2/3->V1, L4 adp 112 17 103 353 16 215 1.99 4.68e-02 1.04e-01 463
V1, L2/3->V1, L5 adp 269 19 194 1161 18 460 5.98 2.78e-09 8.07e-08 1428
V1, L2/3->HVA, L2/3 adp 68 11 62 321 11 214 0.54 5.92e-01 7.44e-01 387
V1, L2/3->HVA, L4 adp 28 9 27 63 8 60 0.43 6.70e-01 7.93e-01 89
V1, L2/3->HVA, L5 adp 68 14 65 317 14 192 2.81 5.26e-03 2.18e-02 383
V1, L4->V1, L2/3 adp 12 1 12 84 1 84 -0.07 9.47e-01 9.63e-01 94
V1, L4->V1, L4 adp 11 1 11 27 1 27 0.79 4.37e-01 6.07e-01 36
V1, L4->V1, L5 adp 12 1 12 29 1 29 0.40 6.92e-01 8.03e-01 39
V1, L5->V1, L2/3 adp 72 9 67 303 8 249 0.70 4.85e-01 6.40e-01 373
V1, L5->V1, L4 adp 46 10 46 113 9 104 1.29 2.00e-01 3.38e-01 157
V1, L5->V1, L5 adp 119 10 110 497 10 341 3.81 1.51e-04 1.09e-03 614
V1, L5->HVA, L2/3 adp 13 2 13 89 1 89 2.19 3.09e-02 8.14e-02 100
HVA, L2/3->V1, L2/3 adp 147 27 138 593 24 377 2.13 3.31e-02 8.36e-02 738
HVA, L2/3->V1, L4 adp 23 11 23 70 9 64 0.01 9.89e-01 9.89e-01 91
HVA, L2/3->V1, L5 adp 129 39 109 503 37 318 3.63 3.10e-04 1.80e-03 630
HVA, L2/3->HVA, L2/3 adp 296 46 207 1266 26 335 0.94 3.47e-01 5.17e-01 1560
HVA, L2/3->HVA, L4 adp 93 27 77 276 22 150 2.66 8.11e-03 3.14e-02 367
HVA, L2/3->HVA, L5 adp 226 44 146 1111 41 272 3.57 3.75e-04 1.98e-03 1335
HVA, L4->V1, L5 adp 12 3 12 52 3 51 0.09 9.30e-01 9.63e-01 62
HVA, L4->HVA, L2/3 adp 116 9 99 531 8 267 -0.09 9.27e-01 9.63e-01 645
HVA, L4->HVA, L4 adp 61 10 56 171 9 121 -0.50 6.16e-01 7.45e-01 230
HVA, L4->HVA, L5 adp 77 9 69 312 9 172 2.60 9.80e-03 3.34e-02 387
HVA, L5->V1, L2/3 adp 72 8 71 301 7 267 0.77 4.39e-01 6.07e-01 371
HVA, L5->V1, L4 adp 19 6 19 43 5 43 0.86 3.94e-01 5.71e-01 60
HVA, L5->V1, L5 adp 47 14 44 148 13 126 -1.27 2.04e-01 3.38e-01 193
HVA, L5->HVA, L2/3 adp 159 17 136 699 17 290 1.23 2.21e-01 3.56e-01 856
HVA, L5->HVA, L4 adp 60 18 50 146 17 111 1.42 1.58e-01 2.92e-01 204
HVA, L5->HVA, L5 adp 172 20 129 748 19 254 1.02 3.06e-01 4.67e-01 918
V1, L2/3->V1, L2/3 same region 227 19 181 15812 19 899 5.29 1.26e-07 2.44e-06 16037
V1, L2/3->V1, L4 same region 112 17 103 8120 17 505 2.03 4.25e-02 9.86e-02 8230
V1, L2/3->V1, L5 same region 269 19 194 12060 19 710 6.72 1.90e-11 1.10e-09 12327
V1, L2/3->HVA, L2/3 same region 68 11 62 4627 11 456 1.36 1.74e-01 3.06e-01 4693
V1, L2/3->HVA, L4 same region 28 9 27 2564 9 295 1.84 6.56e-02 1.41e-01 2590
V1, L2/3->HVA, L5 same region 68 14 65 4781 14 369 5.04 4.89e-07 5.68e-06 4847
V1, L4->V1, L2/3 same region 12 1 12 803 1 803 -0.52 6.03e-01 7.44e-01 813
V1, L4->V1, L4 same region 11 1 11 466 1 466 1.56 1.18e-01 2.29e-01 475
V1, L4->V1, L5 same region 12 1 12 669 1 669 2.35 1.90e-02 5.24e-02 679
V1, L5->V1, L2/3 same region 72 9 67 7716 9 899 -0.54 5.91e-01 7.44e-01 7786
V1, L5->V1, L4 same region 46 10 46 4891 10 505 1.40 1.61e-01 2.92e-01 4935
V1, L5->V1, L5 same region 119 10 110 6474 10 710 4.88 1.07e-06 1.04e-05 6591
V1, L5->HVA, L2/3 same region 13 2 13 810 2 456 -2.07 3.86e-02 9.33e-02 821
HVA, L2/3->V1, L2/3 same region 147 27 138 23533 27 899 2.58 9.78e-03 3.34e-02 23678
HVA, L2/3->V1, L4 same region 23 11 23 5462 11 505 0.75 4.52e-01 6.10e-01 5483
HVA, L2/3->V1, L5 same region 129 39 109 27058 39 710 3.82 1.36e-04 1.09e-03 27185
HVA, L2/3->HVA, L2/3 same region 296 46 207 19368 46 456 0.12 9.05e-01 9.63e-01 19662
HVA, L2/3->HVA, L4 same region 93 27 77 7596 27 295 1.76 7.76e-02 1.61e-01 7687
HVA, L2/3->HVA, L5 same region 226 44 146 14899 44 369 3.36 7.74e-04 3.74e-03 15123
HVA, L4->V1, L5 same region 12 3 12 2066 3 710 2.38 1.76e-02 5.24e-02 2076
HVA, L4->HVA, L2/3 same region 116 9 99 3457 9 456 3.25 1.18e-03 5.27e-03 3571
HVA, L4->HVA, L4 same region 61 10 56 2708 10 295 0.07 9.45e-01 9.63e-01 2767
HVA, L4->HVA, L5 same region 77 9 69 2932 9 369 3.62 3.01e-04 1.80e-03 3007
HVA, L5->V1, L2/3 same region 72 8 71 6819 8 899 1.18 2.40e-01 3.76e-01 6889
HVA, L5->V1, L4 same region 19 6 19 2968 6 505 1.73 8.34e-02 1.67e-01 2985
HVA, L5->V1, L5 same region 47 14 44 9745 14 710 0.31 7.53e-01 8.40e-01 9790
HVA, L5->HVA, L2/3 same region 159 17 136 6894 17 456 2.35 1.90e-02 5.24e-02 7051
HVA, L5->HVA, L4 same region 60 18 50 5104 18 295 2.54 1.11e-02 3.59e-02 5162
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Supplemental Table 2. Independent two-sided t-tests performed to compare signal correlation between connected neuron
pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

HVA, L5->HVA, L5 same region 172 20 129 6440 20 369 -0.35 7.29e-01 8.29e-01 6610
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Supplemental Table 3. Two-sided Cochran-Armitage test of trend performed to test whether connection probability increases
with respect to signal correlation
statistic and p are the test statistic and p value of the two-sided Cochran-Armitage test of trend. adj. p is the adjusted p value through
the BH multicomparison correction procedure.

projection group control statistic p adj. p

V1->V1 adp 23235 2.27e-14 9.08e-14
HVA->HVA adp 37686 1.07e-04 2.13e-04
V1->HVA adp 5149 1.43e-02 1.43e-02
HVA->V1 adp 10037 1.37e-03 1.82e-03
V1->V1 same region 305178 1.03e-17 4.14e-17
HVA->HVA same region 493604 8.08e-03 8.08e-03
V1->HVA same region 110311 1.51e-07 2.01e-07
HVA->V1 same region 596230 5.45e-08 1.09e-07
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Supplemental Table 4. Independent two-sided t-tests performed to compare feature weight similarity between connected
neuron pairs and control neuron pairs across brain areas
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1->V1 adp 929 32 692 5136 32 1465 6.71 2.14e-11 8.58e-11 6063
HVA->HVA adp 1260 86 680 7148 75 867 5.27 1.41e-07 2.25e-07 8406
V1->HVA adp 191 22 174 1117 20 626 3.24 1.24e-03 1.24e-03 1306
HVA->V1 adp 456 62 399 2248 59 1171 4.14 3.64e-05 4.85e-05 2702
V1->V1 same region 929 32 692 62095 32 2131 7.80 6.41e-15 5.13e-14 63022
HVA->HVA same region 1260 86 680 87826 86 1120 5.47 4.51e-08 1.20e-07 89084
V1->HVA same region 191 22 174 23332 22 1120 3.91 9.17e-05 1.05e-04 23521
HVA->V1 same region 456 62 399 129418 62 2131 5.37 7.78e-08 1.56e-07 129872
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Supplemental Table 5. Independent two-sided t-tests performed to compare feature weight similarity between connected
neuron pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1, L2/3->V1, L2/3 adp 227 19 181 1023 19 447 3.54 4.21e-04 2.44e-03 1248
V1, L2/3->V1, L4 adp 112 17 103 353 16 215 1.04 2.99e-01 4.95e-01 463
V1, L2/3->V1, L5 adp 269 19 194 1161 18 460 4.95 8.31e-07 2.41e-05 1428
V1, L2/3->HVA, L2/3 adp 68 11 62 321 11 214 0.68 4.99e-01 6.58e-01 387
V1, L2/3->HVA, L4 adp 28 9 27 63 8 60 1.13 2.60e-01 4.58e-01 89
V1, L2/3->HVA, L5 adp 68 14 65 317 14 192 3.09 2.16e-03 1.05e-02 383
V1, L4->V1, L2/3 adp 12 1 12 84 1 84 -0.94 3.52e-01 5.47e-01 94
V1, L4->V1, L4 adp 11 1 11 27 1 27 -0.10 9.20e-01 9.52e-01 36
V1, L4->V1, L5 adp 12 1 12 29 1 29 0.25 8.07e-01 8.90e-01 39
V1, L5->V1, L2/3 adp 72 9 67 303 8 249 -0.25 8.05e-01 8.90e-01 373
V1, L5->V1, L4 adp 46 10 46 113 9 104 0.24 8.13e-01 8.90e-01 157
V1, L5->V1, L5 adp 119 10 110 497 10 341 2.98 3.03e-03 1.35e-02 614
V1, L5->HVA, L2/3 adp 13 2 13 89 1 89 -0.18 8.56e-01 9.19e-01 100
HVA, L2/3->V1, L2/3 adp 147 27 138 593 24 377 2.30 2.17e-02 5.99e-02 738
HVA, L2/3->V1, L4 adp 23 11 23 70 9 64 -0.07 9.42e-01 9.58e-01 91
HVA, L2/3->V1, L5 adp 129 39 109 503 37 318 4.28 2.13e-05 1.76e-04 630
HVA, L2/3->HVA, L2/3 adp 296 46 207 1266 26 335 1.89 5.93e-02 1.56e-01 1560
HVA, L2/3->HVA, L4 adp 93 27 77 276 22 150 2.51 1.26e-02 3.84e-02 367
HVA, L2/3->HVA, L5 adp 226 44 146 1111 41 272 4.68 3.21e-06 6.20e-05 1335
HVA, L4->V1, L5 adp 12 3 12 52 3 51 0.34 7.37e-01 8.55e-01 62
HVA, L4->HVA, L2/3 adp 116 9 99 531 8 267 0.61 5.43e-01 6.84e-01 645
HVA, L4->HVA, L4 adp 61 10 56 171 9 121 0.69 4.91e-01 6.58e-01 230
HVA, L4->HVA, L5 adp 77 9 69 312 9 172 1.82 6.92e-02 1.67e-01 387
HVA, L5->V1, L2/3 adp 72 8 71 301 7 267 -0.14 8.86e-01 9.35e-01 371
HVA, L5->V1, L4 adp 19 6 19 43 5 43 1.37 1.76e-01 3.64e-01 60
HVA, L5->V1, L5 adp 47 14 44 148 13 126 -1.01 3.12e-01 5.03e-01 193
HVA, L5->HVA, L2/3 adp 159 17 136 699 17 290 0.35 7.29e-01 8.55e-01 856
HVA, L5->HVA, L4 adp 60 18 50 146 17 111 0.49 6.24e-01 7.54e-01 204
HVA, L5->HVA, L5 adp 172 20 129 748 19 254 1.33 1.85e-01 3.71e-01 918
V1, L2/3->V1, L2/3 same region 227 19 181 15812 19 899 4.52 6.11e-06 8.85e-05 16037
V1, L2/3->V1, L4 same region 112 17 103 8120 17 505 2.30 2.16e-02 5.99e-02 8230
V1, L2/3->V1, L5 same region 269 19 194 12060 19 710 5.31 1.12e-07 6.48e-06 12327
V1, L2/3->HVA, L2/3 same region 68 11 62 4627 11 456 1.82 6.86e-02 1.67e-01 4693
V1, L2/3->HVA, L4 same region 28 9 27 2564 9 295 0.72 4.74e-01 6.54e-01 2590
V1, L2/3->HVA, L5 same region 68 14 65 4781 14 369 4.42 1.00e-05 9.69e-05 4847
V1, L4->V1, L2/3 same region 12 1 12 803 1 803 -0.90 3.69e-01 5.49e-01 813
V1, L4->V1, L4 same region 11 1 11 466 1 466 1.10 2.72e-01 4.64e-01 475
V1, L4->V1, L5 same region 12 1 12 669 1 669 1.78 7.51e-02 1.74e-01 679
V1, L5->V1, L2/3 same region 72 9 67 7716 9 899 -1.61 1.08e-01 2.32e-01 7786
V1, L5->V1, L4 same region 46 10 46 4891 10 505 0.54 5.92e-01 7.31e-01 4935
V1, L5->V1, L5 same region 119 10 110 6474 10 710 4.11 4.00e-05 2.90e-04 6591
V1, L5->HVA, L2/3 same region 13 2 13 810 2 456 -3.22 1.33e-03 7.00e-03 821
HVA, L2/3->V1, L2/3 same region 147 27 138 23533 27 899 2.69 7.25e-03 2.63e-02 23678
HVA, L2/3->V1, L4 same region 23 11 23 5462 11 505 0.78 4.37e-01 6.19e-01 5483
HVA, L2/3->V1, L5 same region 129 39 109 27058 39 710 4.05 5.08e-05 3.27e-04 27185
HVA, L2/3->HVA, L2/3 same region 296 46 207 19368 46 456 1.20 2.31e-01 4.19e-01 19662
HVA, L2/3->HVA, L4 same region 93 27 77 7596 27 295 2.71 6.83e-03 2.63e-02 7687
HVA, L2/3->HVA, L5 same region 226 44 146 14899 44 369 4.46 8.18e-06 9.49e-05 15123
HVA, L4->V1, L5 same region 12 3 12 2066 3 710 2.80 5.10e-03 2.11e-02 2076
HVA, L4->HVA, L2/3 same region 116 9 99 3457 9 456 2.57 1.01e-02 3.27e-02 3571
HVA, L4->HVA, L4 same region 61 10 56 2708 10 295 0.92 3.58e-01 5.47e-01 2767
HVA, L4->HVA, L5 same region 77 9 69 2932 9 369 2.66 7.82e-03 2.67e-02 3007
HVA, L5->V1, L2/3 same region 72 8 71 6819 8 899 0.86 3.90e-01 5.65e-01 6889
HVA, L5->V1, L4 same region 19 6 19 2968 6 505 1.25 2.13e-01 4.12e-01 2985
HVA, L5->V1, L5 same region 47 14 44 9745 14 710 -0.04 9.67e-01 9.67e-01 9790
HVA, L5->HVA, L2/3 same region 159 17 136 6894 17 456 0.64 5.25e-01 6.77e-01 7051
HVA, L5->HVA, L4 same region 60 18 50 5104 18 295 1.21 2.26e-01 4.19e-01 5162
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Supplemental Table 5. Independent two-sided t-tests performed to compare feature weight similarity between connected
neuron pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

HVA, L5->HVA, L5 same region 172 20 129 6440 20 369 1.71 8.75e-02 1.95e-01 6610
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Supplemental Table 6. Two-sided Cochran-Armitage test of trend performed to test whether connection probability increases
with respect to feature weight similarity
statistic and p are the test statistic and p value of the two-sided Cochran-Armitage test of trend. adj. p is the adjusted p value through
the BH multicomparison correction procedure.

projection group control statistic p adj. p

V1->V1 adp 16891 8.98e-08 3.59e-07
HVA->HVA adp 25625 3.32e-06 6.64e-06
V1->HVA adp 4801 2.11e-02 2.11e-02
HVA->V1 adp 6713 2.85e-03 3.80e-03
V1->V1 same region 235787 7.03e-13 2.81e-12
HVA->HVA same region 358809 2.21e-08 4.42e-08
V1->HVA same region 84906 1.70e-04 1.70e-04
HVA->V1 same region 444800 3.29e-06 4.39e-06
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Supplemental Table 7. Independent two-sided t-tests performed to compare receptive field center distance between connected
neuron pairs and control neuron pairs across brain areas
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1->V1 adp 929 32 692 5136 32 1465 2.10 3.61e-02 5.78e-02 6063
HVA->HVA adp 1260 86 680 7148 75 867 -0.46 6.45e-01 7.37e-01 8406
V1->HVA adp 191 22 174 1117 20 626 -0.31 7.58e-01 7.58e-01 1306
HVA->V1 adp 456 62 399 2248 59 1171 0.91 3.61e-01 4.82e-01 2702
V1->V1 same region 929 32 692 62095 32 2131 -9.07 1.22e-19 4.86e-19 63022
HVA->HVA same region 1260 86 680 87826 86 1120 -14.72 5.86e-49 4.69e-48 89084
V1->HVA same region 191 22 174 23332 22 1120 -3.34 8.42e-04 1.68e-03 23521
HVA->V1 same region 456 62 399 129418 62 2131 -5.37 7.69e-08 2.05e-07 129872
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Supplemental Table 8. Independent two-sided t-tests performed to compare receptive field center distance between connected
neuron pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1, L2/3->V1, L2/3 adp 227 19 181 1023 19 447 0.32 7.46e-01 8.61e-01 1248
V1, L2/3->V1, L4 adp 112 17 103 353 16 215 0.83 4.06e-01 5.75e-01 463
V1, L2/3->V1, L5 adp 269 19 194 1161 18 460 1.20 2.31e-01 3.93e-01 1428
V1, L2/3->HVA, L2/3 adp 68 11 62 321 11 214 -0.68 4.98e-01 6.71e-01 387
V1, L2/3->HVA, L4 adp 28 9 27 63 8 60 -0.94 3.50e-01 5.20e-01 89
V1, L2/3->HVA, L5 adp 68 14 65 317 14 192 0.24 8.07e-01 8.84e-01 383
V1, L4->V1, L2/3 adp 12 1 12 84 1 84 2.03 4.47e-02 1.30e-01 94
V1, L4->V1, L4 adp 11 1 11 27 1 27 0.25 8.08e-01 8.84e-01 36
V1, L4->V1, L5 adp 12 1 12 29 1 29 -1.06 2.97e-01 4.54e-01 39
V1, L5->V1, L2/3 adp 72 9 67 303 8 249 0.43 6.70e-01 8.44e-01 373
V1, L5->V1, L4 adp 46 10 46 113 9 104 0.57 5.70e-01 7.35e-01 157
V1, L5->V1, L5 adp 119 10 110 497 10 341 -0.16 8.70e-01 9.35e-01 614
V1, L5->HVA, L2/3 adp 13 2 13 89 1 89 -1.44 1.52e-01 3.04e-01 100
HVA, L2/3->V1, L2/3 adp 147 27 138 593 24 377 -0.91 3.65e-01 5.29e-01 738
HVA, L2/3->V1, L4 adp 23 11 23 70 9 64 0.57 5.70e-01 7.35e-01 91
HVA, L2/3->V1, L5 adp 129 39 109 503 37 318 0.01 9.90e-01 9.90e-01 630
HVA, L2/3->HVA, L2/3 adp 296 46 207 1266 26 335 -1.36 1.75e-01 3.28e-01 1560
HVA, L2/3->HVA, L4 adp 93 27 77 276 22 150 -1.42 1.57e-01 3.04e-01 367
HVA, L2/3->HVA, L5 adp 226 44 146 1111 41 272 -0.36 7.22e-01 8.61e-01 1335
HVA, L4->V1, L5 adp 12 3 12 52 3 51 0.34 7.32e-01 8.61e-01 62
HVA, L4->HVA, L2/3 adp 116 9 99 531 8 267 -0.37 7.08e-01 8.61e-01 645
HVA, L4->HVA, L4 adp 61 10 56 171 9 121 -1.49 1.39e-01 3.04e-01 230
HVA, L4->HVA, L5 adp 77 9 69 312 9 172 1.18 2.40e-01 3.99e-01 387
HVA, L5->V1, L2/3 adp 72 8 71 301 7 267 1.49 1.37e-01 3.04e-01 371
HVA, L5->V1, L4 adp 19 6 19 43 5 43 -2.01 4.85e-02 1.34e-01 60
HVA, L5->V1, L5 adp 47 14 44 148 13 126 -0.08 9.35e-01 9.64e-01 193
HVA, L5->HVA, L2/3 adp 159 17 136 699 17 290 1.34 1.81e-01 3.29e-01 856
HVA, L5->HVA, L4 adp 60 18 50 146 17 111 0.11 9.16e-01 9.64e-01 204
HVA, L5->HVA, L5 adp 172 20 129 748 19 254 1.25 2.11e-01 3.70e-01 918
V1, L2/3->V1, L2/3 same region 227 19 181 15812 19 899 -7.96 1.81e-15 1.05e-13 16037
V1, L2/3->V1, L4 same region 112 17 103 8120 17 505 -4.27 2.00e-05 1.16e-04 8230
V1, L2/3->V1, L5 same region 269 19 194 12060 19 710 -4.57 4.96e-06 3.20e-05 12327
V1, L2/3->HVA, L2/3 same region 68 11 62 4627 11 456 -3.28 1.05e-03 4.04e-03 4693
V1, L2/3->HVA, L4 same region 28 9 27 2564 9 295 -1.07 2.85e-01 4.54e-01 2590
V1, L2/3->HVA, L5 same region 68 14 65 4781 14 369 -1.45 1.47e-01 3.04e-01 4847
V1, L4->V1, L2/3 same region 12 1 12 803 1 803 1.48 1.39e-01 3.04e-01 813
V1, L4->V1, L4 same region 11 1 11 466 1 466 -1.70 9.02e-02 2.27e-01 475
V1, L4->V1, L5 same region 12 1 12 669 1 669 -3.49 5.05e-04 2.09e-03 679
V1, L5->V1, L2/3 same region 72 9 67 7716 9 899 0.71 4.77e-01 6.58e-01 7786
V1, L5->V1, L4 same region 46 10 46 4891 10 505 -2.01 4.48e-02 1.30e-01 4935
V1, L5->V1, L5 same region 119 10 110 6474 10 710 -1.45 1.47e-01 3.04e-01 6591
V1, L5->HVA, L2/3 same region 13 2 13 810 2 456 -2.35 1.92e-02 6.18e-02 821
HVA, L2/3->V1, L2/3 same region 147 27 138 23533 27 899 -3.65 2.58e-04 1.15e-03 23678
HVA, L2/3->V1, L4 same region 23 11 23 5462 11 505 0.07 9.47e-01 9.64e-01 5483
HVA, L2/3->V1, L5 same region 129 39 109 27058 39 710 0.31 7.57e-01 8.61e-01 27185
HVA, L2/3->HVA, L2/3 same region 296 46 207 19368 46 456 -7.03 2.16e-12 6.26e-11 19662
HVA, L2/3->HVA, L4 same region 93 27 77 7596 27 295 -4.58 4.63e-06 3.20e-05 7687
HVA, L2/3->HVA, L5 same region 226 44 146 14899 44 369 -4.05 5.09e-05 2.68e-04 15123
HVA, L4->V1, L5 same region 12 3 12 2066 3 710 -1.71 8.74e-02 2.27e-01 2076
HVA, L4->HVA, L2/3 same region 116 9 99 3457 9 456 -5.54 3.31e-08 6.40e-07 3571
HVA, L4->HVA, L4 same region 61 10 56 2708 10 295 -5.22 1.89e-07 2.74e-06 2767
HVA, L4->HVA, L5 same region 77 9 69 2932 9 369 -4.90 9.94e-07 1.15e-05 3007
HVA, L5->V1, L2/3 same region 72 8 71 6819 8 899 -4.59 4.42e-06 3.20e-05 6889
HVA, L5->V1, L4 same region 19 6 19 2968 6 505 -2.75 6.04e-03 2.06e-02 2985
HVA, L5->V1, L5 same region 47 14 44 9745 14 710 -1.04 2.97e-01 4.54e-01 9790
HVA, L5->HVA, L2/3 same region 159 17 136 6894 17 456 -3.93 8.66e-05 4.18e-04 7051
HVA, L5->HVA, L4 same region 60 18 50 5104 18 295 -2.91 3.69e-03 1.34e-02 5162
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Supplemental Table 8. Independent two-sided t-tests performed to compare receptive field center distance between connected
neuron pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

HVA, L5->HVA, L5 same region 172 20 129 6440 20 369 -4.64 3.50e-06 3.20e-05 6610
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Supplemental Table 9. Two-sided Cochran-Armitage test of trend performed to test whether connection probability increases
with respect to receptive field center distances
statistic and p are the test statistic and p value of the two-sided Cochran-Armitage test of trend. adj. p is the adjusted p value through
the BH multicomparison correction procedure.

projection group control statistic p adj. p

V1->V1 adp 5709 9.13e-02 3.65e-01
HVA->HVA adp 11528 8.66e-01 8.98e-01
V1->HVA adp 1835 8.98e-01 8.98e-01
HVA->V1 adp 3543 4.85e-01 8.98e-01
V1->V1 same region 80432 3.36e-17 6.72e-17
HVA->HVA same region 163453 7.74e-43 3.09e-42
V1->HVA same region 38762 4.50e-03 4.50e-03
HVA->V1 same region 210855 1.27e-07 1.70e-07
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Supplemental Table 10. Independent two-sided t-tests performed to compare difference in preferred orientation between
connected neuron pairs and control neuron pairs across brain areas
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1->V1 adp 543 20 458 2864 20 1215 -0.89 3.73e-01 6.46e-01 3405
HVA->HVA adp 719 60 480 3531 51 766 -2.14 3.25e-02 1.83e-01 4248
V1->HVA adp 71 13 66 382 13 297 0.58 5.65e-01 6.46e-01 451
HVA->V1 adp 390 47 351 1865 44 1051 0.04 9.71e-01 9.71e-01 2253
V1->V1 same region 543 20 458 38373 20 2090 -2.00 4.59e-02 1.83e-01 38914
HVA->HVA same region 719 60 480 57550 60 1031 -1.73 8.45e-02 2.25e-01 58267
V1->HVA same region 71 13 66 12950 13 1031 -0.77 4.41e-01 6.46e-01 13019
HVA->V1 same region 390 47 351 95975 47 2090 0.58 5.62e-01 6.46e-01 96363
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Supplemental Table 11. Independent two-sided t-tests performed to compare differences in perferred orientation between
connected neuron pairs and control neuron pairs across brain areas and layers
connected pair #, connected pre # and connected post # are the number of neuron pairs, the number of unique presynaptic neurons
and the number of unique postsynaptic neurons included in the connected neuron pairs respectively. control pair #, control pre #
and control post # are the number of neuron pairs, the number of unique presynaptic neurons and the number of unique postsynaptic
neurons included in the control neuron pairs respectively. t and p are the test statistic and p value of the independent two-sample
two-sided t tests. adj. p is the adjusted p value through the BH multicomparison correction procedure. dof is the degree of freedom of
the t tests.

projection group control connected control t p adj. p dof
pair # pre # post # pair # pre # post #

V1, L2/3->V1, L2/3 adp 126 9 115 634 9 347 -0.53 5.96e-01 8.45e-01 758
V1, L2/3->V1, L4 adp 50 8 50 176 8 124 0.36 7.18e-01 8.97e-01 224
V1, L2/3->V1, L5 adp 149 9 120 513 9 296 -1.32 1.87e-01 5.50e-01 660
V1, L2/3->HVA, L2/3 adp 17 4 17 83 4 73 0.49 6.25e-01 8.45e-01 98
V1, L2/3->HVA, L5 adp 23 8 21 47 8 43 0.18 8.55e-01 9.50e-01 68
V1, L4->V1, L2/3 adp 10 1 10 65 1 65 1.76 8.18e-02 4.54e-01 73
V1, L4->V1, L4 adp 17 1 17 58 1 58 -0.32 7.50e-01 9.12e-01 73
V1, L5->V1, L2/3 adp 25 7 25 110 6 97 0.08 9.37e-01 9.55e-01 133
V1, L5->V1, L4 adp 26 7 26 88 7 82 1.11 2.72e-01 5.90e-01 112
V1, L5->V1, L5 adp 79 8 74 314 8 228 -1.35 1.78e-01 5.50e-01 391
V1, L5->HVA, L2/3 adp 12 1 12 82 1 82 0.18 8.58e-01 9.50e-01 92
HVA, L2/3->V1, L2/3 adp 125 19 119 552 18 379 0.75 4.54e-01 7.32e-01 675
HVA, L2/3->V1, L4 adp 22 10 22 81 9 74 -0.16 8.74e-01 9.50e-01 101
HVA, L2/3->V1, L5 adp 109 31 98 426 30 266 -2.66 8.05e-03 2.01e-01 533
HVA, L2/3->HVA, L2/3 adp 172 28 137 661 15 262 -1.10 2.71e-01 5.90e-01 831
HVA, L2/3->HVA, L4 adp 63 19 53 139 16 98 0.70 4.88e-01 7.62e-01 200
HVA, L2/3->HVA, L5 adp 123 28 100 562 23 222 -2.06 3.96e-02 3.77e-01 683
HVA, L4->HVA, L2/3 adp 55 7 53 227 7 180 1.56 1.20e-01 5.45e-01 280
HVA, L4->HVA, L4 adp 27 7 26 67 7 57 -1.01 3.16e-01 6.09e-01 92
HVA, L4->HVA, L5 adp 34 7 33 135 7 100 -1.18 2.38e-01 5.90e-01 167
HVA, L5->V1, L2/3 adp 76 7 75 320 7 274 2.84 4.70e-03 2.01e-01 394
HVA, L5->V1, L5 adp 29 10 27 95 7 82 0.84 4.03e-01 7.06e-01 122
HVA, L5->HVA, L2/3 adp 101 14 87 424 12 242 -0.39 7.00e-01 8.97e-01 523
HVA, L5->HVA, L4 adp 23 11 21 41 10 41 -2.30 2.48e-02 3.77e-01 62
HVA, L5->HVA, L5 adp 121 15 92 410 14 201 -0.64 5.25e-01 7.96e-01 529
V1, L2/3->V1, L2/3 same region 126 9 115 7511 9 920 -1.82 6.94e-02 4.54e-01 7635
V1, L2/3->V1, L4 same region 50 8 50 3902 8 516 0.06 9.55e-01 9.55e-01 3950
V1, L2/3->V1, L5 same region 149 9 120 4927 9 621 -1.62 1.05e-01 5.25e-01 5074
V1, L2/3->HVA, L2/3 same region 17 4 17 1592 4 423 -1.50 1.34e-01 5.50e-01 1607
V1, L2/3->HVA, L5 same region 23 8 21 2682 8 344 -0.82 4.12e-01 7.06e-01 2703
V1, L4->V1, L2/3 same region 10 1 10 845 1 845 1.78 7.48e-02 4.54e-01 853
V1, L4->V1, L4 same region 17 1 17 440 1 440 -0.80 4.24e-01 7.06e-01 455
V1, L5->V1, L2/3 same region 25 7 25 6305 7 920 0.96 3.38e-01 6.26e-01 6328
V1, L5->V1, L4 same region 26 7 26 3498 7 516 0.60 5.49e-01 8.07e-01 3522
V1, L5->V1, L5 same region 79 8 74 4567 8 621 -1.38 1.69e-01 5.50e-01 4644
V1, L5->HVA, L2/3 same region 12 1 12 329 1 329 -0.11 9.10e-01 9.55e-01 339
HVA, L2/3->V1, L2/3 same region 125 19 119 16803 19 920 0.28 7.76e-01 9.12e-01 16926
HVA, L2/3->V1, L4 same region 22 10 22 5057 10 516 0.27 7.84e-01 9.12e-01 5077
HVA, L2/3->V1, L5 same region 109 31 98 18716 31 621 -1.39 1.63e-01 5.50e-01 18823
HVA, L2/3->HVA, L2/3 same region 172 28 137 10983 28 423 -1.07 2.85e-01 5.94e-01 11153
HVA, L2/3->HVA, L4 same region 63 19 53 4814 19 264 0.46 6.47e-01 8.52e-01 4875
HVA, L2/3->HVA, L5 same region 123 28 100 8947 28 344 -1.46 1.43e-01 5.50e-01 9068
HVA, L4->HVA, L2/3 same region 55 7 53 2679 7 423 1.01 3.14e-01 6.09e-01 2732
HVA, L4->HVA, L4 same region 27 7 26 1747 7 264 -1.10 2.70e-01 5.90e-01 1772
HVA, L4->HVA, L5 same region 34 7 33 2239 7 344 -1.16 2.48e-01 5.90e-01 2271
HVA, L5->V1, L2/3 same region 76 7 75 6044 7 920 2.13 3.29e-02 3.77e-01 6118
HVA, L5->V1, L5 same region 29 10 27 6086 10 621 -0.50 6.17e-01 8.45e-01 6113
HVA, L5->HVA, L2/3 same region 101 14 87 5397 14 423 0.10 9.18e-01 9.55e-01 5496
HVA, L5->HVA, L4 same region 23 11 21 2840 11 264 -2.00 4.53e-02 3.77e-01 2861
HVA, L5->HVA, L5 same region 121 15 92 4614 15 344 -1.17 2.43e-01 5.90e-01 4733
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Supplemental Table 12. Two-sided Cochran-Armitage test of trend performed to test whether connection probability increases
with respect to differences in preferred orientation
statistic and p are the test statistic and p value of the two-sided Cochran-Armitage test of trend. adj. p is the adjusted p value through
the BH multicomparison correction procedure.

projection group control statistic p adj. p

V1->V1 adp 4370 4.10e-01 7.89e-01
HVA->HVA adp 6405 8.32e-02 3.33e-01
V1->HVA adp 638 7.23e-01 7.89e-01
HVA->V1 adp 3491 7.89e-01 7.89e-01
V1->V1 same region 52233 4.75e-02 1.90e-01
HVA->HVA same region 87116 1.02e-01 2.03e-01
V1->HVA same region 20714 3.89e-01 5.18e-01
HVA->V1 same region 145106 6.51e-01 6.51e-01
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