bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.532473; this version posted March 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pattern completion and disruption characterize
contextual modulation in mouse visual cortex

Jiakun Fu'2, Suhas Shrinivasan’, Kayla Ponder'?, Taliah Muhammad'?, Zhuokun Ding', Eric Wang'?, Zhiwei Ding'-?, Dat
T. Tran'2, Paul G. Fahey'?, Stelios Papadopoulos', Saumil Patel'?, Jacob Reimer'-?, Alexander S. Ecker**, Xaq Pitkow'2,
Ralf M. Haefner’, Fabian H. Sinz">>°, Katrin Franke>*, and Andreas S. Tolias' >

1Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
2Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
3Institute of Computer Science and Campus Institute Data Science, University of Géttingen, Germany
“Max Planck Institute for Dynamics and Self-Organization, Gottingen, Germany
SBrain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, USA
®Institute for Bioinformatics and Medical Informatics, University of Tibingen, Tibingen, Germany
T Senior authors

A key role of sensory processing is integrating information
across space. Neuronal responses in the visual system are influ-
enced by both local features in the receptive field center and con-
textual information from the surround. While center-surround
interactions have been extensively studied using simple stimuli
like gratings, investigating these interactions with more com-
plex, ecologically-relevant stimuli is challenging due to the high
dimensionality of the stimulus space. We used large-scale neu-
ronal recordings in mouse primary visual cortex to train con-
volutional neural network (CNN) models that accurately pre-
dicted center-surround interactions for natural stimuli. These
models enabled us to synthesize surround stimuli that strongly
suppressed or enhanced neuronal responses to the optimal cen-
ter stimulus, as confirmed by in vivo experiments. In con-
trast to the common notion that congruent center and surround
stimuli are suppressive, we found that excitatory surrounds
appeared to complete spatial patterns in the center, while in-
hibitory surrounds disrupted them. We quantified this effect
by demonstrating that CNN-optimized excitatory surround im-
ages have strong similarity in neuronal response space with sur-
round images generated by extrapolating the statistical prop-
erties of the center, and with patches of natural scenes, which
are known to exhibit high spatial correlations. Our findings
cannot be explained by theories like redundancy reduction or
predictive coding previously linked to contextual modulation
in visual cortex. Instead, we demonstrated that a hierarchi-
cal probabilistic model incorporating Bayesian inference, and
modulating neuronal responses based on prior knowledge of
natural scene statistics, can explain our empirical results. We
replicated these center-surround effects in the multi-area func-
tional connectomics MICrONS dataset using natural movies as
visual stimuli, which opens the way towards understanding cir-
cuit level mechanism, such as the contributions of lateral and
feedback recurrent connections. Our data-driven modeling ap-
proach provides a new understanding of the role of contextual
interactions in sensory processing and can be adapted across
brain areas, sensory modalities, and species.
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Introduction

Across animal species, sensory information is processed in a
context-dependent manner and, therefore, the perception of
a specific stimulus varies with context. This mechanism al-
lows to flexibly adjust sensory processing to changing envi-

ronments and tasks. In vision, context is provided by global
aspects of the visual scene. For example, reliable object de-
tection not only depends on integrating local object features
like contours or textures, but also on the visual scene sur-
rounding the object (Biederman et al., 1982; Hock et al.,
1974). Physiologically, this is reflected by the fact that re-
sponses of visual neurons to stimuli presented in their recep-
tive field (RF) center (i.e. classical RF) — the region of space
in which visual stimuli evoke responses — are modulated by
stimuli presented in their RF surround (i.e. extra-classical
RF). This center-surround contextual modulation has been
described across several processing levels of the visual sys-
tem, from the retina to visual cortex (Chiao and Masland,
2003; Goldin et al., 2022; Alitto and Usrey, 2008; Knierim
and Van Essen, 1992; Keller et al., 2020b; Jones et al., 2012;
Rossi et al., 2001; Vinje and Gallant, 2000), and is mediated
by both lateral interactions and feedback from higher visual
areas (Nassi et al., 2013; Nurminen et al., 2018; Keller et al.,
2020a; Shen et al., 2022; Adesnik et al., 2012).

How context modulates visual activity has so far largely been
studied in non-ecological settings with well-interpretable
parametric stimuli, like oriented gratings. Studies in non-
human primates, and more recently mice (Keller et al., 2020a;
Self et al., 2014; Samonds et al., 2017; Keller et al., 2020b),
have provided important insights into center-surround mod-
ulations in the primary visual cortex (V1). The most com-
monly observed center-surround modulation is suppression,
where neuronal responses to stimuli presented in the center
RF decrease in the presence of certain surrounding stimuli
(Knierim and Van Essen, 1992; Levitt and Lund, 1997; Ka-
padia et al., 1999; Sceniak et al., 1999; Cavanaugh et al.,
2002b,c; Nassi et al., 2013; Nurminen et al., 2018). The
strength of the suppression tends to be the highest when the
surrounding elements have the same orientation as the stimu-
lus within the center RF (Knierim and Van Essen, 1992; Ca-
vanaugh et al., 2002c; Self et al., 2014). Surround excitation
is less commonly observed and has largely been reported in
cases where the stimulus in the center RF is not salient, such
as low contrast (Levitt and Lund, 1997; Polat et al., 1998;
Keller et al., 2020b).

In general, contextual modulation of visual responses de-
pends on a variety of stimulus features such as contrast and
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size of the grating presented in the RF center (Levitt and
Lund, 1997; Kapadia et al., 1999; Sceniak et al., 1999; Polat
et al., 1998; Cavanaugh et al., 2002b), the difference in ori-
entation between center and surround stimuli (Knierim and
Van Essen, 1992; Cavanaugh et al., 2002c), and the spa-
tial resolution of the surround pattern (Li et al., 2006). Al-
though these stimulus features interact with each other (Ka-
padia et al., 1999), they are usually studied independently
due to limited experimental time. Moreover, parametric stim-
uli such as gratings likely drive visual neurons sub-optimally.
This is because many visual neurons — like in mouse V1
(Walker et al., 2019; Franke et al., 2022; Ustyuzhaninov et al.,
2022) and primate higher visual areas (Pasupathy and Con-
nor, 2001; Bashivan et al., 2019) — exhibit strong selectivity
to complex stimuli like corners, checkerboards or textures.

The dependence of contextual modulation on different stim-
ulus features and the strong neuronal preference for complex
visual stimuli calls for a more systematic and data-driven
way to characterize center-surround interactions using stim-
uli with ecologically relevant statistics. So far, this has been
challenging due to the high dimensionality of natural stimuli
and the difficulty in interpreting neuronal responses to a natu-
ral input. Here, we overcome these challenges and systemat-
ically study center-surround modulations in mouse V1 using
naturalistic stimuli by performing inception loops, a closed-
loop paradigm circling between large-scale neuronal record-
ings, convolutional neural network (CNN) models that accu-
rately predict neuronal responses to arbitrary natural stimuli,
in silico optimization of non-parametric center and surround
images and in vivo verification (Walker et al., 2019; Franke
et al., 2022; Bashivan et al., 2019).

Using our data-driven CNN model, we synthesized non-
parametric surround images that maximally excite and inhibit
the activity of mouse V1 neurons to their optimal visual stim-
ulus in the RF center and subsequently verified their accuracy
in vivo. Synthesized surround images contained complex fea-
tures also present in natural scenes, but were more effective in
modulating neuronal activity than natural surround images.
Interestingly, we found that the excitatory surround stim-
uli appeared congruent, completing the spatial pattern of the
center stimulus, whereas the inhibiting surround stimuli ap-
peared incongruent. We confirmed this qualitative effect by
showing that when we extrapolated the natural image statis-
tics of the center into the surround, the resulting surround
images resembled model-derived optimized excitatory sur-
rounds. In addition, excitatory surround images, compared
to inhibitory ones, exhibited a larger similarity in neuronal
response space to natural scenes, which are known to be spa-
tially correlated and congruent (Geisler et al., 2001; Sigman
et al., 2001). Finally, we showed that excitation and inhi-
bition of visual activity by congruent and incongruent sur-
round stimuli, respectively, emerge within a simple hierar-
chical generative model that encodes an important aspect of
natural scene statistics, which is long-range spatial correla-
tions, thereby supporting a new functional role of contextual
modulation in sensory processing. Our results regarding con-
textual modulation are reproduced in a large-scale functional
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connetomics dataset spanning multiple areas of mouse visual
cortex (MICrONS Consortium et al., 2021), which opens the
way to dissect its circuit mechanism, including delineating
the role of lateral and feedback recurrent connections.

Our work is the first data-driven approach to study contex-
tual interactions in the mouse visual system. It can be easily
adapted to other visual areas, animal species and sensory sys-
tems, providing the unique possibility to systematically study
how context shapes neuronal tuning.

Results

Deep neural network model accurately predicts center-sur-
round modulation of visual responses in mouse primary vi-
sual cortex We combined large-scale population imaging
and neural predictive modeling to systematically characterize
contextual modulation in mouse primary visual cortex (V1).
The experimental and modeling setup was adapted based on
(Walker et al., 2019). Specifically, we used two-photon imag-
ing to record the population calcium activity in L2/3 of V1
(630x630 um, 10 planes, 7.97 volumes/s) in awake, head-
fixed mice positioned on a treadmill, while presenting the
animal with natural images (Fig. la,b). To capture center-
surround interactions, we presented full-field natural images,
which activate both center (classical RF) and surround (extra-
classical RF) of V1 neurons, and local masked images that
predominantly drive the center of the recorded neurons. Nat-
ural images were masked by applying an aperture of 48° vi-
sual angle in diameter in the center of the image. For each
functional recording, the center RF across all recorded neu-
rons — estimated as minimal response field (MRF) using a
sparse noise stimulus (Jones and Palmer, 1987) — was cen-
tered on the monitor (Fig. 1c). This ensured that the RF
center of the majority of neurons was within the area of
the presented masked images. Then, we used the recorded
neuronal activity in response to full-field and masked nat-
ural images to train a convolutional neural network (CNN)
model to predict neuronal responses as a function of visual
input. The model also considered eye movements and the
modulatory gain effect of the animal’s behavior on neuronal
responses (Niell and Stryker, 2010), by using the recorded
pupil and running speed traces as input to a shifter and mod-
ulator network (Fig. 1d; Walker et al., 2019). An example
model (architecture shown in Fig. le) that was trained on
7,741 neurons and 4,182 trials (i.e. images) yielded a nor-
malized correlation between model predictions and mean ob-
served responses of 0.731+0.20 (mean + standard deviation;
Fig. 1f). This is comparable to state-of-the-art models of
mouse V1 (Franke et al., 2022; Willeke et al., 2022; Lurz
et al., 2021). Importantly, masking half of the training images
improved the model’s prediction of contextual modulation
(Fig. 1g): The prediction of how neuronal responses differ
between a masked image and its full-field counterpart signif-
icantly increased when using masked natural images during
model training (for statistics, see figure legend). Together,
this shows that our deep neural network approach accurately
captures center-surround modulation of visual responses in
mouse primary visual cortex, allowing us to study contextual
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Fig. 1. Deep neural network approach captures center-surround modulation of visual responses in mouse primary visual cortex. a, Schematic of experimental
setup: Awake, head-fixed mice on a treadmill were presented with full-field and masked natural images from the ImageNet database, while recording the population calcium
activity in V1 using two-photon imaging. b, Example recording field. GCaMP6s expression through cranial window, with the borders of different visual areas indicated in
white. Area borders were identified based on the gradient in the retinotopy (Garrett et al., 2014). The recording site was chosen to be in the center of V1, mostly activated
by the center region of the monitor. The right depicts a stack of imaging fields across V1 depths (10 fields, Sustep in z, 630x630y, 7.97 volumes/s). ¢, Top shows heat
map of aggregated population RF of one experiment, obtained using a sparse noise stimulus. The dotted line indicates the aperture of masked natural images. The bottom
shows RF contour plots of n=4 experiments and mice. d, Raster plot of neuronal responses of 100 example cells to natural images across 6 trials. Trial condition (full-field
vs. masked) indicated below each trial. Each image was presented for 0.5s, indicated by the shaded blocks. e, Schematic of model architecture. The network consists of a
convolutional core, a readout, a shifter network accounting for eye movements by predicting a gaze shift, and a modulator predicting a gain attributed to behavior state of the
animal. Model performance was evaluated by comparing predicted responses to a held-out test set to observed responses. f, Distribution of normalized correlation between
predicted and observed responses averaged over repeats (maximal predictable variability) for an example model trained on data from n=7,741 neurons and n=4,182 trials.
Vertical lines indicate mean performance of other animals. g, Accuracy of model predictions of surround modulation for only full-field versus full-field and masked natural
images. Each test image was presented in both full-field and masked, allowing us to compute a surround modulation index per image per neuron. The modulation indices
across images were averaged per neuron. Left and right shows predicted vs. observed surround modulation indices for a model trained on only full-field images and full-field
and masked images, respectively. The model trained on both full-field and cropped images predicted surround modulation significantly better than the model trained on only
full-field images (p-value<0.001). The total number of training images was the same, and the data was collected from the same animal in the same session.

modulation in the setting of complex and naturalistic visual sual cortex to identify non-parametric surround images that
stimuli. greatly modulate neuronal activity. For that, we focused on

the most exciting and most inhibiting surround image, which
CNN model identifies non-parametric excitatory and in- enhances and reduces the response of a single neuron to its

hibitory surround images of mouse V1 neurons We used optimal stimulus in the center, respectively. The rationale
the trained CNN model as a “digital twin” of the mouse vi-
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Fig. 2. Modeling approach accurately predicts non-parametric excitatory and inhibitory surround images of single neurons in mouse V1. a, Schematic of the
optimization of surround images. The initial image is Gaussian noise with the center replaced by the MEI. During optimization, the gradient only flows in the region where
the inverse MEI mask is non-zero, leaving the center unchanged. We optimized for the most exciting or the most inhibiting image in the surround. After 1,000 iterations, we
reached the final image of the excitatory or the inhibitory surround. b, Panel shows MEI, excitatory surround with MEI, the difference between the two, inhibitory surround
with MEI, and the difference between the two for 5 example neurons. Since the gradient was set to zero during optimization for the area within the MEI mask, the center
remained the same as the MEI. ¢, Model predicted responses to the excitatory (left) and inhibitory (right) surround images (y-axis), compared to the predicted responses
to the MEls (x-axis). Responses are depicted in arbitrary units, corresponding to the output of the model. d, Observed responses to the excitatory (left) and inhibitory
(right) surround (y-axis), compared to the observed responses to the MEls (x-axis). For each neuron, responses are normalized by the standard deviation of responses to
all images. Across the population, the modulation was significant for both excitatory (p-value=1.15 x 10775, Wilcoxon signed rank test) and inhibitory surround images
(p-value=8.79 x 10~ "1). Across stimulus repetitions, 28.4% neurons responded significantly stronger to the excitatory surround image than to the MEI (n=6 animals, 960
cells, two-sided t-test, p-value<0.05) while 2.6% responded weaker. 55.1% neurons responded significantly weaker to the inhibitory surround image than to the MEI while
0.4% responded stronger (n=3 animals, 510 cells). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal. e, Diameters of
RFs estimated using sparse noise, the MEls, and the MEls with excitatory and inhibitory surround. The mean of center RF (gray distribution) sizes across all neurons (n=4,
419 cells) is 23.4 degrees £ 0.34 (mean £ s.e.m.). The mean of the MEI (green distribution) size across all neurons (n=4, 434 cells) is 31.3 degrees £ 0.20. The size of the
MEI is larger than the center RF. The sizes of both the excitatory (red distribution) and inhibitory (blue distribution) surround are much larger than the center RF, measuring
51.4 £ 0.23 and 46.1 £ 0.23 (mean =+ s.e.m.) respectively (n=4, 434 cells).

behind this approach was to identify surround images that
maximally modulate the encoding of the neuron’s preferred
visual feature. To identify the optimal center stimulus per
neuron, we first optimized the most exciting input (MEI) us-
ing gradient ascent as previously described (Walker et al.,
2019; Franke et al., 2022). In the following, we use the MEI
as approximation for the RF center and consider all visual
space beyond the MEI as RF surround. To generate excita-
tory and inhibitory surround images, we used a second op-
timization step that started with the MEI and initial Gaus-
sian noise in the surround and during optimization, only pix-
els in the surrounding area of the MEI were updated (Fig.
2a). Thereby, the center (i.e. MEI) of the surround images
remained unchanged while redistributing the contrast in the
surround (Suppl. Fig. la and b). This yielded complex sur-
round images of V1 neurons (Fig. 2b), which were predicted
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by the model to either enhance or reduce visual responses to
optimal stimuli in the center (Fig. 2c). Interestingly, the ex-
citatory surround images were predicted to be less effective
in modulating the neurons’ activity than the inhibitory ones
(Fig. 2c¢)..

To verify the efficacy of the synthesized surround images
in vivo, we performed inception loop experiments (Walker
et al., 2019; Bashivan et al., 2019): After model training and
stimulus optimization, we presented MEIs and the respec-
tive surrounds back to the same mouse on the next day while
recording from the same neurons, thereby testing whether
they effectively modulate neuronal responses as predicted by
the model. We found that the in silico predictions (Fig. 2c)
matched the in vivo results (Fig. 2d, Suppl. Fig. 2): The
responses of the neuronal population significantly increased
and decreased by the synthesized excitatory and inhibitory
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surround images, respectively, compared to presenting the
MEI alone. While 55.1% of the neurons verified in vivo dur-
ing inception loop experiments were significantly inhibited
by their inhibitory surround images across stimulus repeti-
tions, only 28.4% were significantly facilitated by their ex-
citatory surround images, in line with the lower modulation
strength of excitatory compared to inhibitory surround im-
ages predicted by the model. Critically, less than 3% were
significantly modulated in the direction opposite to what the
model predicted. These results from the inception loop ex-
periments demonstrate the accuracy of our CNN model in
predicting non-parametric modulatory surround images of
mouse V1 neurons. Notably, we also reproduced the de-
scribed center-surround effects in the large-scale multi-area
functional connectomics MICrONS dataset (MICrONS Con-
sortium et al., 2021) that used natural movies instead of static
images as visual stimuli (Suppl. Fig. 3). This opens the way
to dissect circuit mechanisms underlying contextual modula-
tion in mouse visual cortex, including delineating the role of
lateral and feedback recurrent connections.

We verified that the observed response modulations indeed
originated from activating the surround (i.e. extra-classical
RF) of the neurons. First, we demonstrated that the synthe-
sized surround images extend beyond the center (i.e. classi-
cal RF) of the neurons (Fig. 2e). Specifically, we estimated
each neuron’s center RF as the minimal response field (MRF)
using a sparse noise stimulus (Jones and Palmer, 1987) and
compared its size to the size of the MEI and the excitatory
and inhibitory surround, respectively. The MRF was, on av-
erage, smaller than the MEI, suggesting that the MEI itself
corresponds to an overestimation of the RF center. Impor-
tantly, both the excitatory and inhibitory surround were much
larger than the MREF, indicating that the modulatory effect on
neuronal activity we observed by the surround images was
indeed elicited by activating the surround component of V1
RFs. In line with this, in additional control experiments we
show that the response modulation persisted in silico and in
vivo in a "far" surround region not directly adjacent to the
METI (Suppl. Fig. 4). In addition, we showed that increasing
the contrast in the center was more effective in driving the
neurons than adding the same amount of contrast in the sur-
round of the image (Suppl. Fig. 5), consistent with the idea
that the enhancement in neuronal response from the surround
is modulatory (Allman et al., 1985; Cavanaugh et al., 2002a;
Jones et al., 2001; Knierim and Van Essen, 1992). Together,
these results demonstrate that the observed response modula-
tion by model-derived surround images originates from acti-
vating the surround RF of V1 neurons.

Surround images are ecologically relevant and correspond
to the optimal modulating stimulus We next asked the
question whether the center-surround modulation we ob-
served with our non-parametric images exhibits ecological
relevance, meaning that a similar contextual modulation of
V1 neuronal activity can be observed with surround images
present in ecological images. To address this, we compared
the modulation elicited by model-derived surround images to
the modulation by natural images. We focused this analy-
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sis on natural image surrounds that contain the neuron’s pre-
ferred center feature, similar to the optimized surround im-
ages that have the MEI in the center. To obtain surrounds
of natural images, we therefore screened a new set of 5,000
masked natural images and identified the most exciting nat-
ural images per neuron (>80 % activation compared to the
METI activation), matching the size, location and contrast of
its MEI (Fig. 3a). We then replaced the center of these im-
ages by the MEI, and masked the images to match the av-
erage size and contrast of excitatory and inhibitory surround
images. For each neuron, this yielded a set of images with
the same optimal stimulus in the center (i.e. the MEI), but
diverse natural surrounds. To obtain the modulation strength
of these natural surrounds, we presented the natural surround
images to the model and compared the predicted activations
to the activation of the MEI alone.

We found that there are indeed natural surrounds that enhance
and reduce V1 model responses to the preferred visual fea-
ture, similar to our synthesized surround images (Fig. 3b).
We tested this in silico prediction by performing inception
loop experiments with the synthesized surround images and
the most and least activating natural surrounds per neuron,
as predicted by the model. Across the neuronal population,
the most activating natural surrounds significantly enhanced
V1 responses to their optimal center stimulus, while the least
activating natural surround resulted in reduced activity (Fig.
3c). In addition, across the population, the synthesized in-
hibitory surround images were more effective in modulat-
ing V1 neuronal activity than the least activating natural sur-
rounds (Fig. 3d). In contrast, the modulation strength of the
most activating natural surround images was comparable to
the synthesized excitatory surrounds (Fig. 3d). Together,
these findings strongly suggest that the model-derived sur-
round images exhibit ecological relevance, as they modulate
V1 responses to their preferred center feature in a similar way
as surround patches of natural images.

Completion and disruption of center features character-
ize excitatory and inhibitory surround images Center-
surround modulation of visual activity corresponds to a
neuronal implementation for integrating visual information
across space, thereby providing context for visual process-
ing. So far, little is known about the natural image statistics
that drive contextual modulation in vision, due to the lack of
tools that allow unbiased and systematic testing of such high-
dimensional visual inputs. Here, we used our data-driven
model and the optimized surround images to systematically
investigate the rules that determine contextual excitation ver-
sus inhibition in a naturalistic setting.

We observed that the excitatory surround images appeared
more congruent with respect to the MEI in the center com-
pared to the inhibitory surround images (Fig. 4a). Spatial
patterns in the MEI, such as orientation, were mostly main-
tained and completed by the excitatory surround but often
disrupted and opposed by the inhibitory surround. Therefore,
we hypothesized that the excitatory and inhibitory surround
can be characterized by pattern completion and disruption,
respectively, with respect to the preferred feature in the cen-
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surround suppressed neuronal response more than the MEI with the least activating natural surround (p-value=1.98 x 10~ 2%, Wilcoxon signed rank test). The MEI with
excitatory surround enhanced neuronal response more than the MEI with most activating natural surround (p-value=1.05 x 10~ ¢, Wilcoxon signed rank test). Across stimulus
repetitions, 37% of neurons responded significantly weaker to the MEI with inhibitory surround compared to the MEI with the least activating natural surround and 19% of the
neurons responded significantly stronger to the MEI with excitatory surround compared to the MEI with the most activating natural surround (n=3 animals, 226 cells, two-sided
t-test, p-value<0.05). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal.

ter. We tested these predictions by performing a set of in
silico experiments. First, we used the MEI in the RF center
to extrapolate its spatial patterns into the surround based on a
bivariate spline approximation, thereby creating a congruent
surround that completes patterns present in the center (Fig.
4b). For most neurons, the extrapolated surround perceptu-
ally looked more similar to the excitatory than the inhibitory
surround (Suppl. Fig. 6). To quantify the perceptual simi-
larity of optimized and extrapolated surrounds, we computed
the "representational similarity" for a given pair of images
in the neuronal response space. We chose to use representa-
tional similarity instead of pixel-wise correlation to quantify
similarity between images because (i) the representational
space more closely mimics perceptual similarity (Kriegesko-
rte et al., 2008) and (ii) this process gets rid of irrelevant im-
age features, such as high spatial frequency noise. Specifi-
cally, we presented the optimized and extrapolated surround
images to the trained CNN model, obtained a vector of neu-
ronal responses per image and estimated the cosine similarity
between the response vectors of an image pair (i.e. extrapo-
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lated and excitatory surround; Fig. 4b). We found that the
extrapolated surround images that complete the spatial struc-
ture of the MEI exhibit a high representational similarity to
the MEI with excitatory surround images, while the similar-
ity to the MEI with inhibitory surrounds was much weaker
(Fig. 4c). This suggests that excitatory surround images of
V1 neurons are characterized by pattern completion of the
optimal center stimulus.

We further tested this hypothesis by quantifying the statis-
tics of our model-derived surround images. Specifically, we
took advantage of the well-described fact that natural im-
ages are correlated across space and often contain congruent
structures that form object contours and continuous patterns
(Geisler et al., 2001; Sigman et al., 2001). Therefore, excita-
tory surround images should share statistical properties with
and be perceptually similar to the surrounds of natural image
patches, more so than inhibitory surround images. We com-
pared the spatial correlation structure of optimized MEI with
surround images to the one of natural surrounds that contain
the neuron’s preferred image feature in the center (>80% ac-

Pattern completion and disruption characterize contextual modulation in mouse visual cortex
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Fig. 4. Pattern completion and disruption characterize excitatory and inhibitory surround images. a, MEI with excitatory and inhibitory surround of four example
neurons, illustrating that excitatory and inhibitory surround images complete and disrupt, respectively, spatial patterns of the MEI. b, MEI of example neuron, with extrapolated
and excitatory and inhibitory surround images. Right shows a schematic illustrating how we compared the similarity of surround images using representational similarity.
In brief, each surround image was presented to the trained CNN model to obtain a response vector. The response vectors for different images were than compared using
Pearson’s correlation coefficient. ¢, Representational similarity (as Pearson’s correlation coefficient) of extrapolated surround images to excitatory and inhibitory surround
(p-value=2.26 x 10~ 2%, two-sided Wilcoxon signed rank test, n=3 animals, 219 neurons). d, Left shows auto-correlation function of an example natural surround image, for a
vertical (dotted line) and horizontal (solid line) projection through the center of mass of the image (mean in black). Right shows the mean auto-correlation functions of natural
(black), excitatory (blue) and inhibitory (red) surround images (n=3 animals, 219 neurons; shading: s.d.), with the histograms of correlation coefficients for a spatial shift of 15°
visual angle indicated on the right. For a shift of 15° visual angle, corresponding to the mean radius of MEls, inhibitory surround images exhibited significantly weaker spatial
correlations than excitatory surround images (p-value=1.8 x 10~ 1%, two-sided Wilcoxon signed rank test). e, Excitatory and inhibitory surround of an example neuron, with
one exciting natural image and surround (left) and representational similarity (as Pearson’s correlation coefficient, right; p-value=5.28 x 10~ >°, two-sided Wilcoxon signed
rank test, n=3 animals, 219 neurons) of natural surround images with excitatory and inhibitory surround. Each dot represents the mean across natural surrounds per neuron.

tivation compared to the MEI activation). Spatial correlations
were quantified using the auto-correlation function of inten-
sity profiles through the center of the surround images (Fig.
4d). We found that, like natural image patches, the MEI with
excitatory surround displayed significantly higher spatial cor-
relations than the MEI with the inhibitory surround image
(Fig. 4d), at least for spatial shifts of the mean MEI size
across neurons. Next, we used the representational similarity
metric introduced above to quantify the similarity between
optimized and natural center-surround images. This revealed
that natural surround images with the neuron’s preferred cen-
ter feature exhibit a larger similarity with excitatory than in-
hibitory surround images (Fig. 4e). Taken together, our re-
sults demonstrate that surround excitation and inhibition in
mouse primary visual cortex can be characterized by pattern
completion and disruption, respectively, thereby identifying a
clear relationship between natural image statistics and mod-
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ulation of neuronal activity.

Probabilistic perception via Bayesian inference can explain
observed center-surround effects Finally, we linked our
observed center-surround effects to normative, first-principle
theories of perceptual inference. In general, the goal of per-
ception is to infer useful features from the world, but given
that ambiguous, noisy sensory stimuli often conceal these
features, it is beneficial to combine information from the in-
coming sensory stimulus with prior knowledge of the envi-
ronment (Von Helmholtz, 1867). One principled way how the
brain could accomplish this is to perform Bayesian inference
over relevant latent variables (features) underlying the stim-
ulus using a statistical generative model of the world (Knill
and Richards, 1996; Kersten et al., 2004; Lochmann and Den-
eve, 2011; Fiser et al., 2010). Here, we demonstrate that sur-
round excitation and inhibition by congruent and incongruent
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neurons depend on the visual input I (likelihood, feedforward) as well as on G (prior, feedback). b, Gabor filters corresponding to the 6 model neurons as activated only
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i.e., MEI, MEI & congruent surround, and MEI & incongruent surround are defined w.r.t the center neuron. d-f, Scatterplot of posterior samples from the center neuron under
various stimulus presentations, reproducing the key experimental observations of surround-based excitation and inhibition.

surround patterns, respectively, is consistent with this theory
by using a simple hierarchical generative model of the stim-
ulus that encodes long-range spatial correlations of natural
image statistics in its prior.

Our hierarchical generative model is similar to ones previ-
ously proposed (Haefner et al., 2016; Banyai et al., 2019).
Specifically, in our model we assume that a set of oriented
Gabor-shaped filters located in the center and surround of vi-
sual space are linearly combined to generate the observed im-
age I (Fig. 5a). We further assume that the activation of each
of these filters depends on a global orientation variable, G,
which boosts the activity of compatible filters, and suppresses
those of incompatible filters (Fig. 5b). Upon observing a
stimulus, i.e. during perception, the brain inverts the gener-
ative model to compute the posterior distribution p (G, X|I).
Specifically, the brain combines the latent global orientation
G which is provided by feedback from higher areas and the
feedforward sensory information given the image /. As a re-
sult of this inference process, the neuronal responses X to a
given stimulus are influenced by both the stimulus I and the
global orientation G.

To quantify the center-surround interactions in this model, we
presented three stimuli tailored to an example sensory neuron
whose RF is located in the center of visual space (Fig. 5c¢):
(1) the MEI of the example neuron, (2) the MEI with a spa-
tially congruent stimulus in the surround, (3) the MEI with a
spatially incongruent stimulus in the surround. These three
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conditions match the pattern completion and disruption that
characterize the contextual modulations we found in mouse
V1. For each stimulus condition, we computed the posterior
p (G, X|I) in our hierarchical model to obtain a distribution
of global orientations and responses given the stimulus condi-
tion. The model responses reproduced our key experimental
results (Fig. 5d): (1) the example neuron is driven strongly
by the MEI alone, (2) the spatially congruent stimulus drives
the example neuron in the center stronger than its MEI, (3)
the spatially incongruent stimulus inhibits the responses of
the neuron, despite the MEI being present in the center.

In summary, our probabilistic inference model reproduced
the main experimental findings of our study, with congruent
surround stimuli being excitatory and incongruent surround
stimuli being inhibitory with respect to the neuron’s preferred
feature. The key driver of this behavior in our model is the
higher certainty about the global orientation induced by con-
gruency of center and surround and, as a result, a stronger
prior on the lower level features of similar orientation. As a
result, even neurons with RFs in the center are more strongly
activated.

Discussion

Our study discovered a novel rule of surround modulation in
mouse V1: Completion (or extension) of visual features in
the RF center governed surround excitation, whereas disrup-
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tion (or termination) of RF center features produced inhibi-
tion. Non-linearity and high dimensionality in the neuronal
responses to natural images have so far made it challenging
to accurately define the RF center properties and to model the
interactions with the RF surround. Our accurate digital twin
models allowed us to model the non-linearity both within
and beyond the RF center, and to predict the best modulat-
ing stimuli in the surround without any parametric assump-
tions about their underlying statistical structure. We verified
the predictions from the model experimentally in a closed-
loop manner, and found that combining an optimal stimulus
in the RF center with an excitatory surround yielded images
that were more similar to natural scenes than images consist-
ing of optimal center stimulus and inhibitory surround. This
type of surround facilitation by congruent structures emerged
within a simple hierarchical model that modulates neuronal
responses based on prior knowledge of natural scene statis-
tics, and may potentially enhance the encoding of prominent
features in the visual scene, such as contours and edges, es-
pecially when the sensory input is noisy and ambiguous.

Relationship between surround modulation and stimulus
statistics Classical studies in monkeys have investigated
the spatial patterns driving contextual modulation in primary
visual cortex using oriented stimuli such as gratings and bars
(Knierim and Van Essen, 1992; Levitt and Lund, 1997; Ka-
padia et al., 1999; Sceniak et al., 1999; Cavanaugh et al.,
2002b,c; Nassi et al., 2013; Nurminen et al., 2018). This
revealed that suppression is the dominant form of surround
modulation and that surround stimuli congruent with the cen-
ter stimulus tend to be the most suppressive (Knierim and Van
Essen, 1992; Levitt and Lund, 1997; Kapadia et al., 1999;
Sceniak et al., 1999; Cavanaugh et al., 2002b,c; Nassi et al.,
2013; Nurminen et al., 2018). The suppression strength de-
creased as the surrounding stimulus becomes less congruent
(Knierim and Van Essen, 1992; Kapadia et al., 1999). In con-
trast, surround facilitation has been much more rarely ob-
served, and it requires more specific configurations of the
center stimulus such as low contrast or even absence of stim-
ulation (Polat et al., 1998; Lee and Nguyen, 2001). This is
in line with our finding that excitatory surround images are
less effective in modulating visual responses than inhibitory
surround images.

Howeyver, our results based on naturalistic stimuli and a data-
driven approach, which does not make any assumptions about
stimulus selectivity, reveal a different principle of surround
modulation in mouse primary visual cortex. We find that
the most excitatory surround stimulus is congruent with re-
spect to the center stimulus, while the most inhibiting sur-
round stimulus is incongruent. So far, the spatial patterns
driving surround excitation versus inhibition in mouse V1 are
less conclusive compared to primates. Some previous stud-
ies have reported suppression and facilitation of mouse V1
neurons by congruent and incongruent parametric surround
stimuli (Keller et al., 2020a; Self et al., 2014), respectively,
consistent with the results in primates. However, there seems
to be a large variability across neurons, where surround stim-
uli that have the same orientation as the center stimulus can
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be either excitatory or inhibitory (Samonds et al., 2017) and
different orientations of the surround relative to the center
can be excitatory (Keller et al., 2020b). In part, this variabil-
ity across neurons might be related to the fact that parametric
stimuli like gratings and bars drive mouse V1 neurons sub-
optimally, due to the neurons’ selectivity for more complex
visual features (Walker et al., 2019). It is well established
that contextual modulation depends on the center stimulus
(Knierim and Van Essen, 1992; Kapadia et al., 1999) and,
therefore, it might be critical to condition surround stimuli
on the optimal stimulus in the RF center, corresponding to
the MEI (Walker et al., 2019).

The inconsistencies in surround patterns eliciting excitation
and inhibition reported in studies on mouse and primate V1
might partially be due to differences in stimulus design. For
example, the complex naturalistic stimuli we used vary from
parametric stimuli with respect to image statistics and likely
result in different neuronal responses (Froudarakis et al.,
2014; David et al., 2004), which may influence the modu-
latory effect of the surround on the RF center. Other critical
stimulus parameters that impact neuronal responses are stim-
ulus contrast and luminance. It has been previously shown
that at lower contrast, congruent surround stimuli facilitate
responses in monkey V1 neurons to the preferred center stim-
ulus (Polat et al., 1998), similar to the pattern of surround ex-
citation we describe here. In monkeys, surround facilitation
turned into suppression as the contrast of the center stimulus
increased (Polat et al., 1998). We optimized the MEIs and
surround images to minimize clipping of pixel values outside
the 8-bit range, even for the contrast-matched MEIs that had
higher contrast in the center (cf. Suppl Fig. 4), and presented
them at mesopic light levels. Without further experiments,
it is challenging to compare our non-parametric MEIs and
surround stimuli to previous results using parametric grating
stimuli presented at varying contrasts and light levels (Po-
lat et al., 1998; Adesnik et al., 2012; Keller et al., 2020b,a).
Importantly, it is worth noting that, in addition to the ex-
perimental and technical differences described above, there
likely exist species-specific differences in the stimulus statis-
tics that drive surround modulation. Primates and mice may
have distinct strategies in visual processing due to ethologi-
cal differences, and, therefore, surround modulation of visual
responses might serve a different computational goal. Fu-
ture experiments are required to further understand possible
species-specific roles of contextual modulation in vision.

Circuit-level mechanism of contextual modulation in visual
cortex Mechanistically, surround suppression in V1 can be
partially accounted for by feedback projections from higher
visual areas. In monkeys, inactivation of feedback from V2
and V3 reduces surround suppression induced by large grat-
ing stimuli (Nassi et al., 2013; Nurminen et al., 2018) and
also results in an increase in RF size (Sceniak et al., 1999;
Nurminen et al., 2018). In mice, feedback from higher visual
areas also strongly modulates V1 responses to center stimuli
and even elicits strong responses without any stimulation of
the center RF, thereby creating a feedback RF (Keller et al.,
2020b; Shen et al., 2022). The cellular substrate of surround
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modulation has been predominantly studied in mice, due to
available genetic tools for cell-type specific circuit manipula-
tions. Different types of inhibitory neurons have been iden-
tified as key players of surround modulation, including so-
matostatin (SOM)- and vasoactive intestinal peptide (VIP)-
expressing cells, which inhibit each other as well as exci-
tatory V1 neurons and are further modulated by feedback
(Adesnik et al., 2012; Keller et al., 2020a; Shen et al., 2022).
Based on these results, surround suppression in mouse V1,
and likely primate V1, is dependent on the exact balance be-
tween the excitatory input from feedforward and feedback
projections and the inhibitory inputs from locally present in-
hibitory neuron types.

To further explain surround modulation of individual vi-
sual neurons as a function of local and long-range network
connectivity, one can take advantage of recent advances
in functional connectomics, combining large-scale neuronal
recordings with detailed anatomical information at the scale
of single synapses. Here, we demonstrated that the ob-
served center-surround effects of mouse V1 neurons were
reproduced in a recently published functional connectomics
dataset (MICrons dataset) spanning V1 and multiple higher
areas of mouse visual cortex (MICrONS Consortium et al.,
2021). Specifically, this dataset includes responses of >75k
neurons to natural movies and the reconstructed sub-cellular
connectivity of the same cells from electron microscopy data.
A dynamic recurrent neural network (RNN) model of this
mouse’s visual cortex exhibits not only a high predictive per-
formance for natural movies, but also accurate out-of-domain
performance on other stimulus classes such as drifting Gabor
filters, directional pink noise, and random dot kinematograms
(Wang et al., 2023). We took advantage of the model’s
ability to generalize to other visual stimulus domains and
showed that MEIs and surround images optimized using the
RNN model trained on the same natural movies used in the
MICrons dataset closely resemble those obtained from our
model. The MICrons dataset provides ample resources to
link connectivity among neurons within V1 and across areas
to the functional properties observed with regard to contex-
tual modulation, thereby further delineating the role of local
and feedback recurrent connections.

Theoretical implications of surround facilitation We dis-
covered that surround facilitation is a prominent feature
of contextual modulation in mouse primary visual cortex,
thereby highlighting that center-surround interactions cannot
simply be explained by suppression of sensory responses.
Importantly, excitatory surround images with the optimal
center stimulus exhibited a high representational similarity
with natural images, indicating that congruent patterns fre-
quently present in natural scenes (Geisler et al., 2001; Sig-
man et al., 2001) are associated with high neuronal activa-
tions. Excitation by congruent surround structures relative to
the center may be explained by preferential long-range con-
nections between neurons with co-linearly aligned RFs de-
scribed in mice (lacaruso et al., 2017) and higher mammals
(Bosking et al., 1997; Schmidt et al., 1997; Sincich and Blas-
del, 2001) and might serve perceptual phenomena like edge
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detection, contour integration and object grouping observed
in humans and primates (Kapadia et al., 1995; Geisler et al.,
2001).

Our empirical results of surround facilitation are surprising
in the light of a long line of theoretical work that explains
sensory responses using principles like redundancy reduction
(Barlow et al., 1967) or predictive coding (Rao and Ballard,
1999). The idea that neurons should minimize redundancy
has given rise to contrast normalization models (Schwartz
and Simoncelli, 2001) that were recently expanded to a
flexibly-gated center-surround normalization model (Coen-
Cagli et al., 2015) most relevant to our data. The key idea
behind the latter model is to only normalize (typically reduce)
center activation when the surround is similar, and otherwise
ignore the surround. This proposal cannot explain our empir-
ical findings. Analogously, predictive coding proposes that
neuronal activity reflects prediction errors, and that therefore
the center activation should be lower when it can be well
predicted from the surround (Rao and Ballard, 1999; Keller
and Mrsic-Flogel, 2018) — again in contradiction to our find-
ing that excitatory surrounds appear to ‘complete’ the center
stimulus, and frequently occuring in natural scenes.

In contrast, our results are expected within an alterna-
tive framework for understanding sensory neurons: percep-
tual (Bayesian) inference (Von Helmholtz, 1867; Knill and
Richards, 1996). Here, sensory responses compute beliefs
about latents in a hierarchical model with higher level latents
both representing larger, more complex features of the im-
age and acting as priors on lower level latents that represent
localized parts of the image via feedback signals (Lee and
Mumford, 2003). In such a model, global image structure
can increase or decrease responses of neurons with localized
RFs, depending on whether the global structure increases or
decreases the probability of the local feature being present in
the image (Haefner et al., 2016; Banyai et al., 2019). In fact,
our toy-model which qualitatively reproduces our empirical
findings is an example of such a model. Our approach of
characterizing contextual modulation in a data-driven way for
arbitrary stimuli, without any assumptions about neuronal se-
lectivity, have revealed a novel relationship between surround
modulation and natural image statistics, providing evidence
for a role of contextual modulation in hierarchical inference,
rather than only minimizing redundancy or prediction errors.

Materials and Methods

Animals and surgical preparation All experimental pro-
cedures complied with guidelines of the NIH and were ap-
proved by the Baylor College of Medicine Institutional An-
imal Care and Use Committee (permit number: AN-4703),
expressing GCaMP6s in cortical excitatory neurons. Mice
used in this study (n=7, 3 males and 4 female, aged 2.5 to
3.5 month) were heterozygous crosses between Ail62 and
Slc7a7-Cre transgenic lines (JAX #031562 and #023527, re-
spectively). To expose V1 for optical imaging, we performed
a craniotomy and installed a window that was 4mm in diam-
eter and centered at 3mm lateral to midline and 2mm ante-
rior to lambda (Reimer et al., 2014; Froudarakis et al., 2014).

Fu etal. | Pattern completion and disruption characterize contextual modulation in mouse visual cortex
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Mice were housed in a facility with reverse light/dark cycle
to ensure optimal alertness during the day when experiments
were performed.

Neurophysiological experiments and data processing We
recorded calcium signals using 2-photon imaging with a
mesoscope (Sofroniew et al., 2016) which was equipped with
a custom objective (0.6 numerical aperture, 21 mm focal
length). The imaging fields of each recording were 630 x 630
um? per frame at 0.4 pixels um™! xy resolution and were po-
sitioned in the center of V1 according to the retinotopic map
(Fig. 1b). Z resolution was 5 um with a total of ten planes
from —200pm to —245um relative to cortical surface. The
laser power increased exponentially as imaging plane moved
farther from the surface according to:

P =Pyt

Here P is the laser power used at target depth z, P is the
power used at the surface (19.71 mW = 4.68, mean = stan-
dard deviation), and L, is the depth constant (220 um). The
highest laser output was of 54.79 mW =+ 13.67 and was used
at approximately 240 pm from the surface. Most scans did
not require more than 50 mW at maximal depth, except for
one mouse where the average laser power at the deepest scan-
ning field was 82.03 mW.

For each animal, we first performed retinotopic mapping
across the whole cranial window to identify the border of V1
(Fig. 1b and c; Schuett et al., 2002). At the beginning of
each imaging session, we measured the aggregated popula-
tion RF to ensure precise placement of the monitor with re-
gard to the imaging site. We used stimuli consisting of dark
(pixel value=0) square dots of size 6 degrees in visual an-
gle on a white background (pixel value=255). The dots were
randomly displayed at locations on a 10 by 10 grid covering
the central region of the monitor and at each location the dot
was shown for 200 ms and repeated 10 times over the whole
duration of dot mapping. The mean calcium signal was de-
convolved and averaged across repeated trials to produce the
population RF. The monitor was placed such that the popula-
tion RF was centered on the monitor.

The full two-photon imaging processing pipeline is available
at (https://github.com/cajal/pipeline). Briefly, raster correc-
tion for bidirectional scanning phase row misalignment was
performed by iterative greedy search at increasing resolu-
tion for the raster phase resulting in the maximum cross-
correlation between odd and even rows. Motion correction
for global tissue movement was performed by shifting each
frame in x and y to maximize the correlation between the
cross-power spectra of a single scan frame and a template
image, generated from the Gaussian-smoothed average of
the Anscombe transform from the middle 2000 frames of
the scan. Neurons were automatically segmented using con-
strained non-negative matrix factorization, then traces were
deconvolved to extract estimates of spiking activity, within
the CalmAn pipeline (Giovannucci et al., 2019). Cells were
further selected by a classifier trained to separate somata ver-
sus artifacts based on segmented cell masks, resulting in ex-
clusion of 8.1% of the masks.
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A 3D stack of the volume imaged was collected at the end
of each day to allow registration of the imaging plane and
identification of unique neurons. The stack was composed of
two volumes of 150 planes spanning from 50 um above the
most superficial scanning field to 50 um below the deepest
scanning field. Each plane was 500 x 800 um, together tiling
a 800 x 800 um field of view (300 um total overlap), and
repeated 100 times per plane.

Visual stimulation  Visual stimuli were displayed on a 31.8
x 56.5 cm (height x width) HD widescreen LCD monitor
with a refresh rate of 60 Hz at a resolution of 1080 x 1920
pixels. When the monitor was centered on and perpendicular
to the surface of the eye at the closest point, this corresponded
to a visual angle of 2.2°/cm on the monitor. We recorded
the voltage of a photodiode (TAOS TSL253) taped to the top
left corner of the monitor to measure the gamma curve and
luminance of the monitor before each experimental session.
The voltage of the photodiode is linearly correlated with the
luminance of the monitor. To convert from photodiode volt-
age to monitor luminance, we used a luminance meter (LS-
100 Konica Minolta) to measure monitor luminance for 16
equidistant pixel values from 0-255 while recording the pho-
todiode voltage. The gamma value for experiments in this
paper ranged from 1.751 to 1.768 (mean = 1.759, standard
deviation = 0.005). The minimum luminance ranged from
0.23 cd/m? t0 0.97 cd/m? (0.49 + 0.25, mean =+ standard de-
viation), and the maximum ranged from 84.11 cd/m? to 86.04
cd/m? (85.07 + 0.72, mean =+ standard deviation).

ImageNet stimulus. Natural images were randomly selected
from the ImageNet database (Deng et al., 2009), converted to
gray scale, and cropped to the monitor aspect ratio of 16:9. To
probe center-surround interactions, we modified the images
using a circular mask that was approx. 48 degrees in visual
angle in diameter with smoothed edges. The mask radius was
defined as fraction of monitor width, i.e. 7aperture = 1 means
a full-field mask. We used 7aperture = 0.2

Tpixel — Taperture
r= PR U 4

«
Ieoslmr) g <r <1
M=<1 r<0
0 otherwise

where M is the mask, r is the radius, and « is the width of the
transition. We presented 5,000 unique natural images with-
out repetition during each scan, half of which were masked.
We also presented the same 100 images repeated 10 times
as full-field and 10 times as masked. The 100 images that
were repeated were conserved across experiments, while the
unique images varied across scans. Each trial consisted of
one image presented for 500 ms with a preceding blanking
period of 300 - 500 ms (randomly determined per trial).

Eye tracking A movie of the animal’s eye and face was
captured throughout the experiment. A hot mirror (Thorlabs
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FMO02) positioned between the animal’s left eye and the stim-
ulus monitor was used to reflect an IR image onto a camera
(Genie Nano C1920M, Teledyne Dalsa) without obscuring
the visual stimulus. The position of the mirror relative to the
camera was manually adjusted if necessary per session to en-
sure that the camera focuses on the pupil. The field of view
was manually cropped for each session. The field of view
contained the left eye in its entirety, 282-300 pixels height
X 378-444 pixels width at 20 Hz. Frame times were time
stamped in the behavioral clock for alignment to the stimulus
and scan frame times.

Light diffusing from the laser during scanning through the
pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on
17 manually labeled samples from 11 animals to label each
frame of the compressed eye video with 8 eyelid points and
8 pupil points at cardinal and intercardinal positions. Pupil
points with likelihood >0.9 (all 8 in 93% + 8% of frames)
were fit with the smallest enclosing circle, and the radius and
center of this circle was extracted. Frames with <3 pupil
points with likelihood >0.9 (0.7% =+ 3% frames per scan),
or producing a circle fit with outlier >5.5 standard deviations
from the mean in any of the three parameters (center x, center
y, radius, <1.3% frames per scan) were discarded (total <3%
frames per scan). Trials affected by gaps in the frames were
discarded (<2% trials for all animals except one, where the
animal’s eye appeared irritated).

Registrations of neurons in 3D stack We densely sampled
the imaging volume to avoid losing cells due to tissue defor-
mation from day to day. Therefore, some cells were recorded
in more than one plane. To select unique cells, we sub-
sampled our recorded cells based on proximity in 3D space.
Each functional scan plane was independently registered to
the same 3D structural stack. Specifically, we used an affine
transformation matrix with 9 parameters estimated via gradi-
ent ascent on the correlation between the sharpened average
scanning plane and the extracted plane from the sharpened
stack. Using the 3D centroids of all segmented cells, we it-
eratively grouped the closest two cells from different scans
until all pairs of cells are at least 10 um apart or a further join
produces an unrealistically tall mask (20 ym in z). Sequential
registration of sections of each functional scan into the struc-
tural stack was performed to assess the level of drift in the
z dimension. The drift over the 2 to 2.5 hour recording was
4.70 £ 2.64, and for most of them the drift was limited to <5
um.

Model architecture and training The convolutional neural
network used in this study consisted of two parts: a core and
areadout. The core captured the nonlinear image representa-
tions and was shared among all neurons. The readout mapped
the features of the core into neuronal responses and contained
all neuron specific parameters.

Core. To get a rich set of nonlinear features, we used a deep
CNN as our core. We used a CNN with 3 layers and 32 fea-
ture channels per layer as previously described in (Walker
et al., 2019). These architectures were chosen with a hyper-
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parameter search, with the objective of maximizing a valida-
tion score (see Training and evaluation). Each of the 2D
convolutional layers was followed by a batch normalization
layer and an ELU non-linearity.

Readouts. The goal of the readout was to find a linear-
nonlinear mapping from the output of the last core layer ®(x)
to a single scalar firing rate for every neuron. We used a pyra-
mid readout, as described in Sinz et al. (2018). We computed
a linear combination of the feature activations at a spatial po-
sition, parameterized as (x,y) relative coordinates (the mid-
dle of the feature map being (0,0)). Training this readout
poses the challenge of maintaining gradient flow when opti-
mizing the objective function. We tackled this challenge by
recreating multiple sub-sampled versions of the feature maps
and learning a common relative location for all of them. We
then passed these features through a linear regression and a
non-linearity to obtain the final neuronal responses.

Training and evaluation. Natural images in the training, val-
idation and test sets were all Z-scored using the mean and
standard deviation of the training set. The mean and standard
deviation for the cropped natural images were weighted by
the mask used to crop the images to avoid artificially lower-
ing the mean and standard deviation due to large gray areas
in the cropped images.

The networks were trained to minimize Poisson loss
LS (P —r®1og#(®)) where m denotes the number
of neurons, 7 the predicted neuronal response and r the ob-
served response. We implemented early stopping on the cor-
relation between predicted and measured neuronal responses
on the validation set: if the correlation failed to increase dur-
ing 10 consecutive epochs through the entire training set, we
stopped the training and restored the best performing model
over the course of training. After each stopping, we either
decreased the learning rate or stopped training altogether if
the number of learning-rate decay steps was reached. Net-
work parameters were optimized via stochastic gradient de-
scent using the Adam optimizer. Once training completed,
the trained network was evaluated on the validation set to
yield the score used for hyper-parameter selection.

MEI and surround image generation Because our neuronal
recordings were performed with dense sampling (Z spacing
= bum), we first needed to select unique neurons. We regis-
tered the planes of the functional experiments to the stack of
the volume (see Registration of neurons in 3D stack) and
identified unique neurons.

Then, we optimized the MEIs and the surround images in two
steps.

MEI generation. We used regularized gradient ascent by solv-
ing the optimization problem defined as

x* = argmax f;(x)
x

on our trained deep neural network models to obtain a maxi-
mally exciting input image for each neuron, given by z

x e R
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(Walker et al., 2019). We initialized with a Gaussian white
noise image. In each iteration of gradient ascent, we showed
the image to the model and calculated the gradients of the
image w.r.t. the model activation of a single neuron. We then
blurred the obtained gradient with Gaussian blurring, with a
Gaussian sigma of 1 pixel. Following this, we stepped our
optimizer to change the image as given by the gradients. Fi-
nally, we calculated the standard deviation of the resulting
image and compared it to a fixed budget of 0.05 for the MEI.
The standard deviation budget can be effectively thought of
as a contrast constraint. The contrast budget was chosen to
minimize the number of pixels with values exceeding those
corresponding to 0 and 255, which are the lower and upper
bound for pixel values displayed on the monitor. We used
the Stochastic Gradient Descent (SGD) optimizer with step
size=0.1 and ran each optimization for 1,000 iterations.

Surround image generation. A tight mask (ranging between
0 and 1) around the MEI was computed by thresholding (see
below) which we used to define the ’center’ and set it apart
from the ’surround’ during the next step of optimization. By
applying the inverse MEI mask to the target image x, we op-
timized the surrounding area in the image by allowing more
contrast (RMS contrast = 0.1) outside of the MEI mask.

To define the center stimuli, we computed a mask around the
METI for each neuron by thresholding at 1.5 standard devia-
tions above the mean. We then blurred the mask with Gaus-
sian sigma = 1 pixel. We initialized an image with Gaussian
noise and cropped out the center of this image using the MEI
mask and added the MEI at a fixed contrast = 0.05. At the
same time, we used the inverse of the MEI mask to set the
contrast for the area outside of the mask to 0.1. A gradient
was computed on the modified image and we blurred the gra-
dient with a Gaussian sigma = 1. We used the same SGD
optimizer to update the image at each iteration, and due to
the inverse of the mask being applied to the image, only pix-
els outside of the MEI mask could be changed (illustrated
in Fig. 2a). We set the full-field image contrast to an arbi-
trary value within the training image regime (0.1) to prevent
the pixel values from getting out of range and this step was
not differentiable. At the end of each iteration, we normal-
ized the contrast in the center and the surround again to reach
the optimal stimulus with correct contrast (MEI=0.05, sur-
round=0.1). We repeated these steps for 1,000 iterations. To
generated the extend mask for the MEI used in Suppl. Fig.
4, we set the value between 1 and 0.001, i.e. in the blurred
area, in the original mask to 1 and blurred the new mask with
the same Gaussian filter that was applied to the MEI mask.
We applied the extended mask to the surround images to pro-
duced a new set of masked surround images that were slightly
smaller than the original ones, and tested surround modula-
tion restricted only to the ‘near’ surround region.

Probabilistic model

Hierarchical generative model. We simulated inference us-
ing a simple probabilistic generative model of the stimulus
as would be learned by the brain as an attempt to explain
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our center-surround results. In our model, G is represented
in a higher visual area, encoding a global orientation vari-
able, X represents our model sensory neurons, each with an
oriented Gabor filter as its projective field (PF), and I repre-
sents the visual input. We assume the existence of a single
G ~U(0,7). We model sensory neurons as X = {x;};'*,
where n, is the number of sensory neurons (n, = 6 in our

case), conditioned on G as x;|G ~ ﬁexp (—%) H (z;)
where A (i) is the firing rate function of the ith neuron defined
by a von Mises function around the global orientation G as

A(i) =exp (m%), where 6; is the preferred orienta-
tion of the ith neuron. In other words, the closer the preferred
orientation of a neuron to the global orientation, the higher is
its firing rate. This way, we induce a positive (prior) correla-
tion among neurons that prefer similar orientations, i.e. neu-
rons with vertical PFs have high correlation with each other,
as do neurons with horizontal PFs. Finally, the visual input
in our model is assumed to be a noisy, linear combination
of the Gabor PFs of neurons with neuronal activations, i.e.
I~N (1|3 PFx;,0?), where PF; is the PF and w; is the
activation (spike count) of the ¢th neuron.

Inference. Our assumption is that when presented with a vi-
sual input, the brain computes the posterior over variables X
and G using the (learned) generative model, i.e. computes
p (G, X |I). We sampled from this posterior for various stim-
uli via No-U-Turn-Sampler (NUTS) using python’s PyMC
package. For each stimulus, we sampled 4,000 samples of G
and each neuron z; after a burn-in period of 1,000 samples.
We then visualized the samples of the center neuron across
different stimuli in Fig. 5d. We computed the mean of the
samples of the center neuron for a given stimulus in order to
quantify the effect that the particular stimulus had. The mean
of the center neuron for the different stimuli reproduced our
key experimental results: (1) the example neuron’s mean was
driven strongly by the MEI alone, (2) the spatially congru-
ent stimulus drove the example neuron’s mean in the center
stronger than its MEI, (3) the spatially incongruent stimulus
inhibited the mean of the samples of the neuron, despite the
METI being present in the center.

Closed-loop experiments

Selection of neurons for closed-loop. We ranked the neurons
recorded in one experiment based on the reliability and model
performance (test correlation). Specifically, we correlated the
leave-one-out mean response with the remaining single-trial
response across repeated images in the test set to obtain a
measurement of neuronal response reliability. We then com-
puted an averaged rank score of each neuron from its reliabil-
ity rank and model test correlation rank. After removing du-
plicate neurons following the procedure described above, we
selected the top 150 neurons according to the averaged rank
of the correlation between predicted response and observed
response averaged over repeats and the correlation between
the leave-one-out mean response of repeated test trials to the
left-out test trial response for closed-loop experiments.
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Stimulus presentation. We converted the images generated
by the model back to pixel space by reversing the Z-score step
with the stats of the training set. Each image was repeated 40
times. We shuffled all the images with repeats across dif-
ferent classes (MEI, excitatory and inhibitory surrounds and
contrast-matched MEI, masked surround controls) and pre-
sented them at random orders. Each trial consisted of one
image presented for 500 ms with a preceding blanking pe-
riod of 300 - 500 ms (randomly determined per trial).

Matching neurons across experiments. We matched neurons
from different experiments according to the spatial proximity
in the volume of the same anatomical 3D stack. Each func-
tional scan plane was registered to the 3D stacks collected af-
ter each day’s experiment. We chose the neurons that had the
highest matching frequency across all stacks, and included
them as a valid neuron in the closed-loop analysis.

Estimation of center RF size  To measure to size of the min-
imum response field (MRF) for each neuron, we presented
stimuli consisting of circular bright (pixel value=255) and
dark (pixel value=0) dots of size 7 degrees in visual angle
on a gray background (pixel value=128) in conjunction with
natural image stimuli. The dots were randomly shown at lo-
cations on a 9 by 9 grid covering 40% of the monitor in the
center along the horizontal edge, and at each location, the dot
was shown for 250 ms and repeated 16 times. The responses
were averaged across repeats, and a 2D Gaussian was fitted
to the On and Off response maps, respectively. The size of
the MRF was measured as the largest distance between points
on the border of the 2D Gaussian at 1.5 standard deviations
away for both On and Off responses.

To estimate the size of the MEIs and the excitatory and in-
hibitory surround, we first computed the mask for each im-
age as described in section MEI and surround image gen-
eration. The size was computed in pixels as the longest dis-
tance between points on the border of the mask. The size was
converted to degrees in visual angle according to the ratio
between pixel and degrees in visual angle.

Exciting natural image patches and natural surrounds  All
natural images in the ImageNet dataset were first Z-scored
with the mean and standard deviation of the training dataset.
We then cropped the images with the MEI masks and nor-
malized to match the contrast of the MEI within the mask.
The images were presented to the model to get the predicted
response. Images that elicited activations above 80% of MEI
activation were chosen as the maximally exciting natural im-
age patches. Images used to train the specific model were
removed from this collection. For neurons with more than 10
maximally exciting natural image patches, we replaced the
center of the natural image with the MEI and included the
surround region of the natural image to the same extend as
the average size of the excitatory and the inhibitory surround.

Representational similarity The maximally exciting natu-
ral image patches of a neuron plus the surround of the same
image were normalized to the same contrast as the excitatory
and the inhibitory surround images and were presented to the

14 | bioRxiv

model. The excitatory and the inhibitory surround images
were cropped with the average mask of the two to match the
size, contrast-adjusted and presented to the model. The acti-
vation of all neurons in the model were taken as an approx-
imation of the given image in ’representational space’. We
computed Pearson correlation between a natural image patch
with surround and an image of the MEI with either excitatory
or inhibitory surround. The Pearson correlation is an estima-
tion of ’representational similarity’.

Auto-correlation function To quantify correlations across
space of optimized and natural center-surround images,
we computed the auto-correlation function of each image
(Rikhye and Sur, 2014). For each neuron, we first identi-
fied exciting natural images (>80 % activation relative to the
MEI) with the preferred feature in the center as described
above. We then cropped the optimized and exciting natural
images based on the average mask of the excitatory and in-
hibitory surrounds, extracted horizontal and vertical intensity
profiles through the center of mass of each image and com-
puted the mean auto-correlation function of these intensity
projections for excitatory and inhibitory center-surround im-
ages, as well as for all exciting natural images per cell. We
shifted the intensity projections in steps of 2 degrees visual
angle and for maximally 20 degrees visual angle, thereby ex-
tending beyond the MEI (radius approx. 15 degrees visual
angle) into the surround.

Extrapolated surround images We generated extrapolated
surround images based on the spatial pattern of the MEI
using a bivariate spline interpolation method on a rectan-
gular grid (RectBivariateSpline function of scipy pack-
age). Specifically, we first cropped out the MEI using a 95%
threshold of the MEI mask and fit the cropped MEI with the
RectBivariateSpline function. Then, we used the fit to ex-
trapolate from the MEI into the surround and cropped the ex-
trapolated surround based on the mask of optimized surround
images.

Replication of center-surround modulation in functional
connectomics dataset Recently, we and others released a
large-scale functional connectomics dataset of mouse visual
cortex ("MICrONS dataset"), including responses of >75k
neurons to full-field natural movies and the reconstructed
sub-cellular connectivity of the same cells from electron mi-
croscopy data (MICrONS Consortium et al., 2021). A dy-
namic recurrent neural network (RNN) model of this mouse’s
visual cortex—digital twin—exhibits not only a high predic-
tive performance for natural movies, but also accurate out-
of-domain performance on other stimulus classes such as
drifting Gabor filters, directional pink noise, and random dot
kinematograms (Wang et al., 2023). Here, we took advan-
tage of the model’s ability to generalize to other visual stim-
ulus domains and presented our full-field and masked images
to this digital twin model in order to relate specific func-
tional properties to the neurons’ connectivity and anatomi-
cal properties. Specifically, we recorded the visual activity
of the same neuronal population to static natural images as
well as to the identical natural movies that were used in the
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MICrONS dataset. Neurons were matched anatomically as
described for the closed loop experiments. Based on the re-
sponses to static natural images we trained a static model as
described above, and from the responses to natural movies we
trained a dynamic model using a RNN architecture described
in (Wang et al., 2023). We then presented the same static
natural image set that we showed to the mice also to their dy-
namic model counterparts and trained a second static model
using these predicted in silico responses. This enabled us to
compare the MEIs and surround images for the same neu-
rons generated from two different static models: one trained
directly on responses from real neurons, and another trained
on synthetic responses to static images from dynamic mod-
els (D-MEI and D-surround). To quantify similarity, we pre-
sented both versions of MEIs and surround images to an in-
dependent static model trained on the same natural images
and responses but initialized with a different random seed,
thereby avoiding model-specific biases.

Code and data availability The analysis code and all data
will be publicly available in an online repository latest upon
journal publication. Please contact us if you would like ac-
cess before that time.
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Supplemental Fig. 1. Comparison of stimulus contrast of MEls and excitatory and inhibitory surround. a, Full-field RMS contrast comparison between the MEI (x-axis)
and the excitatory surround images (y-axis) (n=6 animals, 960 cells total). b, Full-field RMS contrast comparison between the MEI (x-axis) and the inhibitory surround images
(y-axis) (n=3 animals, 510 cells total). ¢, Full-field RMS contrast comparison between the excitatory surround image (x-axis) and the contrast-matched MEI (y-axis) (n=3
animals, 560 cells total).
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Supplemental Fig. 2. Neuronal responses to MEls and surround imaged recorded during inception loop experiments. a, Comparing observed responses to the MEI
(x-axis) and the excitatory surround (y-axis) per experiment (n=6 mice, 960 cells total). Dark dots indicate neurons where the response to the surround images is significantly
higher than to the MEI (Wilcoxon rank-sum test, p-value<0.05). Across the population, the modulation was significant for all animals (p-value<0.05, Wilcoxon signed rank
test). b, Comparing observed responses to the MEI (x-axis) and the inhibitory surround (y-axis) per experiment (n=3 mice, 510 cells total). Dark dots indicate neurons where
the response to the surround images is significantly lower than to the MEI (Wilcoxon rank-sum test, p-value<0.05). Across the population, the modulation was significant
for all animals (p-value<0.05, Wilcoxon signed rank test). ¢, Comparing observed responses to the excitatory surround (x-axis) and the contrast-matched MEI (y-axis) per
experiment (n=3 mice, 560 cells total). Dark dots indicate neurons where the response to the contrast-matched MEls is significantly higher than to the MEI (Wilcoxon rank-sum
test, p-value<0.05). Across the population, the modulation was significant for all animals (p-value<0.05, Wilcoxon signed rank test).
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Supplemental Fig. 3. Contextual modulation is reproduced in digital twin of large-scale functional connectomics dataset. a, Circuit-level mechanistic explanations
of neuronal function require the combination of functional recordings and anatomical analyses. This panel shows a schematic illustrating how we reproduced our findings
regarding contextual modulation in a functional connectomic dataset, which includes responses of >75k neurons to full-field natural movies and the reconstructed sub-cellular
connectivity of the same cells from electron microscopy data ("MICrONS" dataset (MICrONS Consortium et al., 2021)). Importantly, a dynamic model of this mouse visual
cortex—digital twin—exhibits not only a high predictive performance for natural movies, but also accurate out-of-domain performance on other stimulus classes such as
drifting Gabor filters, directional pink noise, and random dot kinematograms, allowing to present new stimuli to this digital twin model in order to relate specific functional
properties to the neurons’ connectivity and anatomical properties. To this end, we recorded the visual activity of the same neuronal population to static natural images as well
as to the identical natural movies that were used in the MICrONS dataset. Based on the responses to static natural images we trained a static model as described above, and
from the responses to natural movies we trained a dynamic model using a recurrent neural network architecture described in REF. We then presented the same static natural
image set that we showed to the mice also to their dynamic model counterparts and trained a second static model using these predicted in silico responses. This enabled
us to compare the MEls and surround images for the same neurons generated from two different static models: one trained directly on responses from real neurons, and
another trained on synthetic responses to static images from dynamic models (D-MEI and D-surround). b, Static and dynamic MEIs and surround images of four example
neurons, matched across recordings using their anatomical position in a structural stack. Importantly, the MEls and surround images optimized from these two models were
perceptually very similar. ¢, To quantify this similarity, we presented both versions of MEls and surround images to an independent static model trained on the same natural
images and responses but initialized with a different random seed, thereby avoiding model-specific biases. The panel shows neuronal activation to natural image crops,
normalized with respect to MEI activation. Gray lines show the fraction out of 5,000 images that elicit a given activation or higher for n=x example model neurons (mean in
black). For a representative cell (red), we show MEI, D-MEI and image crops with different activations. d, Fraction of natural images that activate the neurons stronger than
the D-MElIs. On the population level, the fraction of natural image crops with activations higher than the D-MEI was very small, demonstrating that D-MEls strongly activate
their corresponding neurons. e, D-MEI responses plotted versus responses to excitatory and inhibitory D-surround images predicted by an independent static model. This
shows that the excitatory and inhibitory D-surround stimuli modulated V1 responses in the direction as predicted by the model. e, Finally, we used the above pipeline to
optimize MEls and surround images from example neurons of the MICrONS dataset itself. Schematic shows the MICrONS dataset (left) and MEIs with surround images of
four example neurons of the MICrONS dataset are shown on the right. This allows future circuit dissections towards understanding the mechanism underlying center-surround
interaction in mouse visual cortex.
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Supplemental Fig. 4. Images restricted to the far surround still result in surround modulation. a, Examples of the MEI, the excitatory surround and cropped excitatory
surround. b, Examples of the MEI, the inhibitory surround and cropped inhibitory surround. ¢, Comparing predicted response to the MEI, the excitatory surround and
the cropped surround image (n=3, 560 cells). d, Comparing predicted response to the MEI, the inhibitory surround and the cropped surround image (n=3, 560 cells). e,
Comparing observed response to the MEI, the excitatory surround and the cropped surround image (n=3, 560 cells). Black dots indicate neurons with significantly higher
response under the condition on the y-axis (one-sided Wilcoxon rank-sum test, p<0.05, 33.6%, 20.2% and 13.4% significant cells for each pair). Modulation is significant on
population level for each pair (p-value=1.83 x 10~45,9.98 x 10745, 6.89 x 109, Wilcoxon signed rank test). f, Comparing observed response to the MEI, the inhibitory
surround and the cropped surround image (n=3, 560 cells). Black dots indicate neurons with significantly higher response under the condition on the y-axis (one-sided
Wilcoxon rank-sum test, p<0.05, 55.9%, 40.3% and 19.6% significant cells for each pair). Modulation is significant on population level for each pair (p-value=8.05 x 10773,
9.03 x 107, 2.42 x 10~24, Wilcoxon signed rank test).
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Supplemental Fig. 5. Contrast-matched MEls result in higher activation than MEls with excitatory surround. a, Panel shows MEI, excitatory surround with MEI,
the contrast-matched MEI, and the difference between the original MEI and the contrast-matched MEI for 4 example neurons. Note that the contrast-matched MEI is a
scaled-up version of the original MEI with same features. b, Diameters of RFs estimated using sparse noise, the MEls, the MEIs with excitatory and inhibitory surround, and
the contrast-matched MEI. Same data shown in Fig. 2e except for the contrast-matched MEI. The mean of the contrast-matched MEI (magenta distribution) size across all
neurons (n=4, 434 cells) is 33.2 degrees & 0.23 (mean =+ s.e.m.). The size of the contrast-matched MElI is slightly larger than the original MEI (31.3 degrees =4 0.20). ¢, Model
predicted responses to the MEI and excitatory surround (x-axis) and contrast-matched MEI (y-axis). Responses are depicted in arbitrary units, corresponding to the output
of the model. d, Observed responses to the the MEI and excitatory surround (x-axis) and contrast-matched MEI (y-axis). For each neuron, responses are normalized by the
standard deviation of responses to all images. Across the population, the neuronal responses to the contrast-matched MEI was significantly higher (p-value=7.35 x 1039,
Wilcoxon signed rank test, slope of linear regression line=1.58). Across stimulus repetitions, 58.9% of the neurons responded stronger to the contrast-matched MEI (n=3
animals, 560 cells, two-sided t-test, p-value<0.05). Solid line indicates the regression line across the population, and dotted gray line indicates the diagonal. e, Contrast
comparison between the MEI and excitatory surround (x-axis) and the contrast-matched MEI. By definition, the full-field contrast of each pair of images are matched.
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Supplemental Fig. 6. Surround images extrapolated from the spatial pattern of the MEI. a, MEls, surround images extrapolated from the spatial pattern of the MEI and
optimized excitatory and inhibitory surround images of example neurons.
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