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Abstract  18 

Cell death, such as apoptosis and ferroptosis, play essential roles in the process of 19 

development, homeostasis, and pathogenesis of acute and chronic diseases. The 20 

increasing number of studies investigating cell death types in various diseases, 21 

particularly cancer and degenerative diseases, has raised hopes for their modulation 22 

in disease therapies. However, identifying the presence of a particular cell death type 23 

is not an obvious task, as it requires computationally intensive work and costly 24 

experimental assays. To address this challenge, we present CellDeathPred, a novel 25 

deep learning framework that uses high-content-imaging based on cell painting to 26 

distinguish cells undergoing ferroptosis or apoptosis from healthy cells. In particular, 27 

we incorporate a deep neural network that effectively embeds microscopic images into 28 

a representative and discriminative latent space, classifies the learned embedding into 29 

cell death modalities and optimizes the whole learning using the supervised 30 

contrastive loss function. We assessed the efficacy of the proposed framework using 31 

cell painting microscopy datasets from human HT-1080 cells, where multiple inducers 32 

of ferroptosis and apoptosis were used to trigger cell death. Our model confidently 33 

separates ferroptotic and apoptotic cells from healthy controls, with an averaged 34 

accuracy of 95% on non-confocal datasets, supporting the capacity of the 35 

CellDeathPred framework for cell death discovery. 36 

 37 

 38 

 39 
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Introduction 40 

Cell death can be mediated by multiple signaling pathways and each type of cell death 41 

is associated with specific changes in cell and organelle shape and cytoskeletal 42 

organization, resulting in specific morphological features. Apoptosis is the most 43 

extensively studied form of regulated cell death, but in the past two decades, other 44 

forms have been discovered, including necroptosis, pyroptosis, and ferroptosis (1, 2, 45 

3). Cells that undergo apoptosis show these typical morphological changes: cell 46 

shrinkage followed by condensation/blistering, fragmentation and formation of 47 

apoptotic bodies (4). In contrast, other forms of cell death (necroptosis, pyroptosis, or 48 

ferroptosis) are not modulated by the activity of caspase-3/7 and hence represent 49 

distinct morphological features (5). Ferroptosis is an iron-dependent form of cell death 50 

that occurs as a consequence of lipid peroxidation (6, 7). It has been shown to be 51 

involved in multiple physiological and pathological processes, such as 52 

neurodegenerative disease, tissue damage, and acute renal failure (7). Ferroptotic 53 

cells typically show smaller mitochondria with reduced cristae and a ruptured outer 54 

membrane, but lack characteristic features of apoptosis such as chromatin 55 

condensation or apoptotic bodies (8, 9). In order to determine the acute, subacute, 56 

and chronic effects of drugs and chemical toxins, it is important to understand how a 57 

compound can induce cytotoxicity in cells and which of the various cell death pathways 58 

is activated. Cytotoxicity profiling of small molecule libraries is a well-established 59 

process in high-throughput-screening (HTS) campaigns (10), but most of the assay 60 

types detect only general cytotoxicity and do not examine the mode of action of the 61 

respective compounds. Usually, a combination of different approaches is used to study 62 

and distinguish apoptotic and the different non-apoptotic cell death processes in more 63 

detail.  64 
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It is known that cell morphology and cellular structures in response to small molecule 65 

treatment or genetic perturbations are very closely linked, such that morphological 66 

phenotypic screening might classify the mode of action of chemicals or genes in a cell 67 

(11). Based on this, the “cell painting” assay was developed. Cell painting is an image-68 

based fluorescence microscopy assay that can be used to visualize the morphology 69 

of the cells by fluorescent labeling of cellular structures and subsequent analysis of 70 

cells (12). Through the multiplex use of fluorescent dyes, eight different cell structures 71 

can be examined simultaneously (12). After image acquisition with an automated 72 

microscope, the traditional workflow includes specialized high-content-analysis (HCA) 73 

software that can detect and further segment cellular objects and extract 74 

morphological features such as size, intensity or textures of the cell segments for 75 

further analysis including machine learning (ML) methods (12, 13). However, this 76 

requires appropriate software and can be subject to a certain bias, since only extracted 77 

features from the given images are further analyzed. Here, it is also possible that 78 

important information that would facilitate cell state classifications have not been fully 79 

detected. These features are also missing in the subsequent ML model.   80 

Several recent publications leveraged deep learning (DL) for analyzing microscopic 81 

images and contributed a lot to canonical tasks in high-content screening (HCS) image 82 

analysis: e.g., image synthesis and feature representation (13). One example shows 83 

an image-to-image translation architecture for synthesizing three different 84 

fluorescence images from bright-field microscopy images to observe the apoptosis, 85 

nuclei, and cytoplasm of cells (14). Another study proposed a U-Net architecture to 86 

synthesize AT8-pTau image given two DAPI and YFP-tau image channels (15). With 87 

the potential of DL architectures in extracting meaningful features directly from 88 

microscopic images, recent studies proposed self-supervised learning frameworks, 89 
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including a framework for studying the temporal drug effect on cancer cell images, or 90 

a framework to learn phenotypic embeddings of HCS images using self-supervised 91 

triplet network (16, 17). While these advancements in DL application to HCS images 92 

offer the potential to accelerate drug discovery, so far there is only very little work 93 

about the analysis and prediction of regulated cell death. Understanding and 94 

identifying drugs that lead to distinct cell death modalities is of high importance. Two 95 

studies describe ML and DL methods for predicting cell death modalities using 96 

microscopic images. The first work leveraged multinomial logistic regression models 97 

using the LASSO for discriminating microscopic images of fluorescently stained cells 98 

undergoing different cell death modalities–ferroptosis and apoptosis (18). Although 99 

promising, the current model is based on specific immunostaining, TfR1 (19) and 100 

Hoechst, which is limiting its generalizability to other cell death modalities. The second 101 

work utilizes a VGG-19 deep network to discriminate apoptosis from necroptosis (20). 102 

This method proposed a pre-filtering step to filter all cells that showed alive 103 

morphology from cell images where inducers were added, which enforces the DL 104 

model to classify cell death modalities from well selected image features.  105 

In this study, we demonstrate a framework that learns from cell painting images without 106 

any pre-filtering step. This not only reduces the extra computation of a filtering step, 107 

but importantly, it enables the model to learn from heterogeneous cell images; thus, 108 

being a more generalizable model for different kinds of cell death-related images. The 109 

present work deals with the question: “Given microscopic images generated from a 110 

high-content cell painting assay, can we classify whether the drug induces ferroptosis, 111 

apoptosis or has no adverse effect?" Addressing such a question may be important in 112 

predicting the presence of a particular cell death type in clinically relevant drugs, which 113 

may open up new therapeutic possibilities. 114 
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 115 

Results 116 

Characterization of ferroptosis versus apoptosis inducers 117 

For this study, seven well-characterized apoptosis and ferroptosis inducers (FINs) 118 

were used to explore the applicability of a DL framework to classify ferroptotic, 119 

apoptotic and healthy cells (Fig. 1A). In order to confirm that ferroptosis is indeed 120 

induced by FINs, HT-1080 fibrosarcoma cells were seeded and either untreated or 121 

pre-treated with the ferroptosis inhibitor ferrostatin-1 (Fer-1) before RSL3 was added 122 

as a representative FIN at various concentrations (20-point titration). Fer-1 is 123 

described as an inhibitor of lipid peroxidation and rescues cells from ferroptosis (3). 124 

HT-1080 cells were chosen because they are well established in ferroptosis research 125 

(3, 21, 22) and well-suited for microscopy. By using the CellTiter-Glo (CTG) viability 126 

assay, which measures intracellular ATP levels, it could be shown that co-treatment 127 

of FINs with Fer-1 rescued cells from undergoing cell death (Supplementary Fig. 1). 128 

In contrast, staurosporine (STS) induced cell death could not be rescued with Fer-1 129 

co-treatment (Supplementary Fig. 1), demonstrating that the selected molecules are 130 

specific. 131 

 132 

Experimental setup and imaging upon cell painting 133 

For subsequent experiments, it was important to choose compound concentrations 134 

that have a mild to moderate effect on cell viability. Our goal was to treat cells in such 135 

a way that cell death was induced (ATP reduction), but the cells are not yet affected 136 

by excessive end phase necrosis. For this, we performed a pilot study with a wide 137 

range of concentrations (20-point titration) to determine optimal concentrations for 138 

each of the 14 small molecules. (Fig. 1B). We measured intracellular ATP levels after 139 
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24 and 72 hours, respectively, and then selected a concentration spectrum of 5 140 

concentrations based on the IC50 value for the subsequent experiments (Table 1). 141 

Different treatment durations of 24 and 72 hours were chosen, because some 142 

substances are known to induce cell death very quickly, while other compounds only 143 

have an increased toxic effect after several rounds of the cell cycle. 144 

Guided by the results of the pilot study, cell painting experiments were conducted 145 

using the optimized compound concentrations. HT-1080 cells were seeded in 384-well 146 

plates and treated with the five defined concentrations of the cell death inducers (Table 147 

1) for 24 and 72 hours. We used five (Hoechst 33342, Wheat Germ Agglutinin, 148 

Concanavalin A, TRITC-Phalloidin, Mitotracker) instead of the six dyes, which are 149 

described in the standard cell painting protocol, allowing us to run the assay on only 150 

one plate per data point instead of two parallel plates. Image sets of two slightly 151 

modified independent experiments were collected as training data sets: in experiment 152 

1 the cells were imaged with 40x magnification and a confocal spinning disk, while for 153 

experiment 2 a 40x magnification and widefield was used. Nine technical replicate 154 

wells for each substance and concentration within one experiment were imaged. In 155 

addition, we recorded nine to eleven images per well using four different fluorescence 156 

channels, creating a large image data set per experiment. In order to check the 157 

strength of cell death for each treatment condition (compound and concentration), we 158 

performed CTG assays in parallel (Fig. 2A). Importantly, the cell pool, the number of 159 

cells, the compound plates, and the way of treatment that were used for CTG 160 

measurement were identical to those used in the cell painting experiment. In a next 161 

step, the data of the ATP measurement and cell paining were annotated. By this we 162 

were able to select only images for training that reflected a certain level of intracellular 163 

ATP reduction. In all the experiments, we normalized the absolute ATP values to the 164 
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DMSO levels. So, the wells with values close to 1.0 are considered not to be affected. 165 

While those approaching 0.0 are ”dead”. We selected wells with ATP values that fall 166 

into the range [0.3 - 0.8]. Supposedly, in these wells the treatments did not completely 167 

kill the cell population and at the same time caused some non-negligible effect 168 

including morphological changes. We also analyzed the images with the Columbus 169 

high-content-analysis software. For this purpose, the nuclei were identified using 170 

Hoechst signal, and based on this, the cytoplasm and the membrane regions were 171 

segmented using the F-actin signal (Supplementary Fig. 2). The intensity, the 172 

morphology, and the symmetry of the objects, as well as the texture properties, and 173 

structure of the fluorescence signal were determined within these defined cell 174 

segments for the different fluorescent channels. This resulted in 245 extracted features 175 

that could be used for classical machine learning (ML) approaches. Importantly, the 176 

features for single cells were averaged for images coming from the same well 177 

(median).  178 

 179 

CellDeathPred architecture and classification strategy 180 

To predict whether treatment of cells with a certain drug induces apoptosis or 181 

ferroptosis or has no effect, we developed CellDeathPred, a DL architecture 182 

comprising four parts: data augmentation, model backbone, an embedder network 183 

trained with supervised contrastive loss and finally a classification network trained with 184 

cross-entropy loss (Fig. 3A). Data augmentation is a widely used technique in DL, 185 

which aims to improve the generalizability of the model during training; thus, 186 

enhancing the prediction accuracy of the classifier. We applied five crops to the initial 187 

1320x1024 image. Then, we applied to each 512x512 crop the horizontal and vertical 188 

flips, 90 rotation and the gaussian noise augmentations (Fig. 3B). We chose our model 189 
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backbone to be EfficientNet-b0 (23), a convolutional neural network that is pretrained 190 

on the large scale of the ImageNet dataset comprising 1,000 classes of RGB images. 191 

Since our images have four channels (i.e., ER, Actin/Golgi, Mitochondria, and Nuclei), 192 

we replaced the first layer of the backbone network, which originally accepts three-193 

channel images with a four-channel input. We assigned the average weight of the 194 

three channels to be the weight for the fourth channel. The pretrained EfficientNet-b0 195 

has a role of feature extractor for our cellular dataset; therefore to classify the drugs 196 

we added a classification layer trained with the cross-entropy loss. While this is a 197 

universal loss term used in most of DL classification frameworks, recent studies 198 

showed that the cross-entropy loss alone cannot guarantee a good generalizability of 199 

the trained network, in particular in the presence of a batch effect (24). Batch effect is 200 

a common problem in microscopy imaging data, which refers to systematic differences 201 

such as temperature or microscopy lighting conditions in an experiment cause change 202 

in the image intensities and features from batch to batch–i.e., one batch refers to a set 203 

of experimental plates that are executed together. To solve this issue, we added a 204 

supervised contrastive loss (SupConLoss) after an embedder network that consists of 205 

a sequence of fully connected layers that maps the output of the backbone into a low 206 

dimensional space (Fig 3A). SupConLoss is a recent state-of-the-art metric learning 207 

loss term that aims to maximize the similarity between a pair of samples in the same 208 

class whilst minimizing the similarity of two samples from different classes (25). By 209 

encouraging the network to learn a more robust and discriminative representation, 210 

SupConLoss improves its generalizability (for more details we refer the reader to the 211 

material and methods section). Moreover, to better overcome the batch effect issue, 212 

we further propose a batch-aware sampling strategy in conjunction with SupConLoss 213 

(for more details we refer the reader to the material and methods section). A byproduct 214 
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 10 

of SupConLoss is image retrieval at the testing stage (Fig. 3C): given an input testing 215 

image our CellDeathPred framework generates the embedding features and retrieves 216 

K-nearest-neighbor (KNN) in the training images by ranking feature distance in the 217 

embedding space (we choose $k = 1$ and a cosine distance as a metric, details refer 218 

to the material and methods section). Besides image retrieval, CellDeathPred also 219 

predicts the probability of an input image to belong to each of the main classes (i.e., 220 

healthy, apoptosis or ferroptosis) (Fig. 3D).  221 

 222 

DL versus ML classification to classify cell death from cell painting 223 

In order to test the CellDeathPred model on a previously unseen data set, we 224 

performed a third experiment in the same way as described in Figure 3 225 

(Supplementary Fig. 4). In contrast to experiment 1 and 2, the cells were only treated 226 

for 24 hours, but this time we imaged the plates of the same experiment both confocal 227 

and non-confocal to investigate whether this has an impact on the classification 228 

accuracy. Also, these images were analyzed with our imaging software and 245 229 

features were extracted. Before evaluating ML models on the features extracted by 230 

Columbus software, a preprocessing step was essential for training the models. 231 

Mainly, we removed columns with not a number (NaN) values, duplicated columns and 232 

normalized the values. We chose three ML models widely used in the literature: 233 

Random Forest (26), Logistic Regression (27) and AdaBoost (28). We used uniform 234 

manifold approximation and projection (UMAP) (29) as a dimension reduction 235 

technique to visualize how images of ferroptosis drugs cluster from those of apoptosis, 236 

and the healthy cells. As shown in the UMAP of CellDeathPred learnt feature space 237 

(Fig. 4A (DL), images of healthy, apoptosis and ferroptosis classes are clustered into 238 

three distinct clusters, whilst they are mixed in the UMAP of cellular features extracted 239 
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from Columbus software (Fig. 4A (ML)). A side-by-side comparison of DL vs ML 240 

methods (Fig. 4B) show that CellDeathPred reached a classification accuracy of over 241 

93% for Plate 1 and Plate 2, which is almost 10% increase over the best ML method. 242 

Also, in most cases, CellDeathPred with SupConLoss outperforms CellDeathPred w/o 243 

SupConLoss (Fig. 4B), suggesting better model generalizability. This could also be 244 

demonstrated by the UMAP of feature space when we color the images according to 245 

their batch whilst images of different plates are well mixed, suggesting SupConLoss is 246 

effective in avoiding the batch effect problem (Supplementary Fig. 5).  247 

 248 

Classification of ferroptotic and apoptotic cells at different drug concentration 249 

using CellDeathPred 250 

In the previous paragraph, we demonstrated that CellDeathPred is more accurate than 251 

the tested ML models. Moreover, we have shown that non-confocal images are 252 

sufficient for the separation of the different classes in the UMAP and for accurate 253 

classification. Therefore, we focused on the DL results of the non-confocal images as 254 

their acquisition requires a fraction of the imaging time compared to confocal images 255 

with comparable prediction accuracy (Fig. 4B). Like all other experiments, experiment 256 

3 was performed as technical triplicate (three different 384 well plates, 24h treatment). 257 

In addition, every substance, whether ferroptosis or apoptosis inducer, occurred in 258 

triplicates in five different concentrations on each of the three plates. First, we checked 259 

the ATP level from the experiment that was conducted in parallel to the cell painting 260 

assay. Most of the 14 substances led to increased cell death with increasing 261 

concentrations (Supplementary Fig. 3), indicating that we have chosen the correct 262 

concentration range. The confusion matrix of the CellDeathPred DL model showed 263 

that the prediction worked very well, and to a large extent both types of cell death 264 
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inducers and healthy cells were correctly classified (close to 100% for plates 01 and 265 

02). However, it also showed that the predictions for plate 03 were worse than for plate 266 

01 and 02 (Fig. 5A). To identify the cause of the lower prediction accuracy of plate 03, 267 

we used the data from the image segmentation and the feature nucleus area as an 268 

indicator of the potency of the small molecules in the cell painting experiment (Fig. 269 

5B). Here, plate 03 appeared to be very different from plate 01 and 02, where cell 270 

death induction is much weaker. In fact, by chance plate 03 acted as a good control 271 

and confirmed the high accuracy of CellDeathPred that classifies cell death only if 272 

sufficient loss of viability is present, which was not the case in plate 03. Next, we 273 

analyzed the prediction accuracy of the individual substances depending on the ATP 274 

signal. Usually, a correct prediction was achieved with a cell viability of around 50% 275 

(Fig. 5C). If the concentrations of the substances are too low and thus the viability 276 

higher than 80%, the cells are classified as healthy. For example, the ATP levels in 277 

cells treated with Actinomycin D and Erastin are relatively high in this experiment, 278 

indicating that they did not induce cell death (Fig. 5C). Accordingly, CellDeathPred 279 

classified the cells treated with Erastin or Actinomycin D mainly as "healthy" in this 280 

case, again demonstrating its high accuracy based on the experimental perofrmance.  281 

Together, we have developed CellDeathPred, a DL framework, which is able to 282 

classify ferroptotic and apoptotic cells with an accuracy of close to 100% using non-283 

confocal images, when the drugs sufficiently induce the type of cell death. 284 

 285 

Discussion 286 

To induce cell death, we chose seven apoptosis inducers and seven FINs to ensure 287 

that the generated data are balanced for each of the respective cell death modality. 288 

Notably, we selected the cell death inducers to modulate different biological targets of 289 
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the given cell death modality in order to cover larger aspects of apoptosis and 290 

ferroptosis. Here, the seven apoptosis inducers targeted caspases, microtubules, 291 

oxidative phosphorylation, RNA-synthesis, and topoisomerase II. The seven 292 

ferroptosis inhibitors belonged to class I, II, III and IV FINs; thus, inhibiting system xc–293 

, and GPX4 activity in a direct or indirect manner. Of course, the collection of 14 small 294 

molecules does not cover all possibilities to induce apoptotic or ferroptotic cell death, 295 

and it may be interesting to test other substances in future to understand if 296 

CellDeathPred would correctly classify them into the correct categories.  297 

We created the CellDeathPred model by using datasets in a single cell line and one 298 

type of microscope with specific settings, and we are aware that this choice limits the 299 

potential for generalizability of our model using it for datasets created with other cell 300 

lines and microscopic devices. However, the 14 selected substances can serve as 301 

internal benchmarks to generate comparable datasets with other cell lines and other 302 

small molecules that can be used to train the model.  303 

Determining the exact concentration series of the different substances was crucial to 304 

generate highly standardized data in order to minimize technical variability and 305 

therefore maximize the biological signal in the data. Our assumption was that if the 306 

concentrations are too low the cells are relatively healthy. In contrast, if the 307 

concentrations are too high the cells might be already in a necrotic phase and any kind 308 

of ML or DL model would have problems to correctly classify these cells. In fact, we 309 

recommend identifying the IC50 for all substances used in new experiments in order to 310 

have internal controls for the assay. With the defined induction rate, we made use of 311 

the cell painting assay (12) to visualize healthy, apoptotic or ferroptotic cells. Previous 312 

efforts to stain cell death have been selective of a given cell death modality, e.g., TfR1 313 

staining for ferroptosis (18, 19) or Annexin-V staining for apoptosis (30). Importantly, 314 
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by applying cell painting to visualize cell death the procedure does not rely on specific 315 

markers, but can use general content-information about DNA, ER, mitochondria, 316 

Golgi, and actin to profile cells with regards to distinguishing healthy state from 317 

apoptosis and ferroptosis. This advance will enable the rapid transfer of CellDeathPred 318 

to other forms of cell death, such as necroptosis and pyroptosis. The performance of 319 

CellDeathPred to classify apoptosis and ferroptosis was close to 100%, and 320 

importantly in cases where experimental failure led to poor cell death induction (e.g., 321 

Erastin hardly induced any ferroptosis in plate 03 of the test experiment) the model 322 

correctly classified such samples as healthy cells (Fig. 5C). 323 

In CellDeathPred, we applied contrastive learning to allow the model to pull together 324 

cell death modality images of a particular treatment. This is represented in the total 325 

loss that combines the contrastive learning and cross-entropy losses with equal 326 

weights. Moreover, to combat the batch effect during training, we added more diversity 327 

by including images from different plates to a batch and thereby reducing batch effect. 328 

Our choice for the backbone model was also important to achieve high prediction 329 

performance. In the literature, EfficientNet models demonstrated a better efficiency 330 

over existing state-of-the-art architecture such as ResNet-18 (31). Therefore, adopting 331 

a transfer learning strategy and further training the backbone on our cellular dataset 332 

had the advantage regarding computational efficiency and accuracy compared to 333 

training from scratch and extracting representative features. As our model is the first 334 

deep learning model aiming to distinguish ferroptosis-based modulators from 335 

apoptosis and healthy ones, we compared it with a baseline method “CellDeathPred 336 

w/o SL”, where we removed the SupConLoss and we kept the same architecture, and 337 

three different machine learning models Random Forest, Logistic Regression, and 338 

AdaBoost. To validate our model, we investigated the accuracy and F1-score metrics 339 
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for the four comparison methods (Fig. 4). Our model (“CellDeathPred with SL”) mostly 340 

outperformed its variant (w/o SL), and was better than all ML models in confocal and 341 

non-confocal assays.  342 

It would be interesting for the future investigations to investigate substances that have 343 

not yet been assigned to any of the cell deaths, but which have shown cytotoxic 344 

effects, and understand if they induce a specific form of cell death. Moreover, 345 

CellDeathPred should be expanded in future studies to integrate other regulated cell 346 

deaths, such as necroptosis and pyroptosis.  347 

 348 

Conclusions 349 

In summary, we have demonstrated that our CellDeathPred framework is able to 350 

accurately classify cells that were treated with small molecules inducing ferroptotic and 351 

apoptotic cell death. Here we present a detailed experimental protocol on how to 352 

generate the data, to train and use our developed CellDeathPred model. This work will 353 

contribute to the characterization of cell death inducing small molecules or biologics, 354 

and thereby help to better understand their mode of action. We think that our work 355 

based on the cell painting protocol in combination with our DL model can be extended 356 

to other questions in the classification of chemical substances and thus may act as a 357 

blueprint for comparable future projects. 358 

 359 

Materials and methods 360 

Cultivation of cells 361 

HT-1080 cells were cultivated in DMEM with high glucose, glutamine, and pyruvate 362 

(Gibco™), supplemented with 10% FBS (Gibco™), 1% Penicillin-Streptomycin 363 
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(Gibco™), 1% NEAA (Gibco™). They were grown in the incubator at 37 °C and 5% 364 

CO2. 365 

 366 

CellTiterGlo® assay 367 

HT-1080 cells were seeded 1000 cells/well in 50 µl DMEM with high glucose, 368 

glutamine and pyruvate (Gibco™), supplemented with 10% FBS (Gibco™), 1% 369 

Penicillin-Streptomycin (Gibco™), 1% NEAA (Gibco™) on white opaque 384-well 370 

CulturPlate-384 Microplates (PerkinElmer, 6007680). Seeding was performed with the 371 

MultiFlo Microplate Dispenser (BioTek). The next day compounds were diluted in 372 

DMSO on a compound plate. 0,5 µl were transferred from the compound plate onto 373 

the cells with the Sciclone G3 Liquid Handling Workstation (PerkinElmer). Before 374 

addition of compounds, cells were pre-treated with 5 µl media (control) or 5µl Fer-1 375 

media solution to have a final concentration of 2 µM on the cells. When the CellTiter 376 

Glo assay was performed in parallel with the cell painting assay, deviations from the 377 

standard assay protocol occurred. 1000 cells were seeded in 25 µl media instead of 378 

50µl. In addition, as for the cell painting experiment, an intermediate dilution step was 379 

introduced during compound transfer. For this, compounds were transferred into 380 

plates containing only cell medium. In a next step 25 µl of the compound cell culture 381 

media mix were carefully transferred from the intermediate plate on plates with the 382 

cells in 25 µl media using a Beckman Coulter Biomek Fx. After 24 h or 72 h incubation 383 

at 37 °C and 5% CO2 in the incubator (Cytomat, ThermoFisher), 25 µl CellTiterGlo® 384 

(Promega) per well was added and the luminescence was read at 700 nm, 385 

measurement height 6.5 mm and measurement time 0.5 s with EnVision Multimode 386 

Plate Reader (PerkinElmer). 387 

 388 
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Cell painting Reagents 389 

Mitotracker Deep Red (Invitrogen, #M22426), WGA (Invitrogen, #W32464), 390 

Concanavalin (Invitrogen, #C11252) and Hoechst 33342 (Invitrogen, #H3570) stock 391 

solutions were prepared according to supplier information. For Phalloidin-TRITC 392 

(Sigma, #P1951) methanol was added to 1 vial to prepare 0,1 mg/ml stock solution. 393 

Cell painting assay 394 

HT-1080 cells were seeded with a cell number of 1000 cells/well in 25µl cell culture 395 

media on PhenoPlate™ 384-well microplates (PerkinElmer, 6057308) with the MultiFlo 396 

Microplate Dispenser (BioTek) to have 6 replicates. Compounds were diluted in a 20- 397 

or 5-point titration with DMSO (x mM) as highest concentrations on a compound plate. 398 

On the next day transfer and mix of compounds into plates only containing cell culture 399 

media was performed with the Sciclone G3 Liquid Handling Workstation 400 

(PerkinElmer). This intermediate dilution step was included to avoid DMSO gradient 401 

effects on cell monolayers. In a next step 25µl of the compound cell culture media mix 402 

were carefully transferred from the intermediate plate on plates with the cells using a 403 

Beckman Coulter Biomek Fx followed by incubation in the Cytomat incubator 404 

(ThermoFisher) at 37°C and 5% CO2 for 24 and or 72 h. The cell painting protocol was 405 

performed as described in Anne Carpenter's original publication (12). The only 406 

deviations were the omission of the Syto14 dye and the use of phalloidin-TRITC 407 

instead of phalloidin-568. The settings we have chosen for the Operetta microscope 408 

are as follows: Acquisition type: Spinning disk confocal or widefield with 40x high na 409 

objective. Main emission [nm]/ main excitation [nm]: 525/ 475 for ER stain, 445/ 380 410 

for nucleus stain, 705/ 630 for mitochondria stain, 595/ 535 for actin-RNA stain. 411 

 412 

Automated image analysis 413 
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Image analysis was performed using Columbus software version 2.9.1 (PerkinElmer). 414 

In the following, the analysis steps in Columbus are described: the Hoechst 33342 and 415 

TRITC signals were smoothened for the cell segmentation process using Median 416 

filters to reduce noise signals. Nuclei were detected via the Hoechst 33342 signal. The 417 

TRITC channel was used to define the cytoplasm. In a next step, 418 

morphology/symmetry features, texture (SER features), and intensity properties of the 419 

Hoechst 33342, TRITC, 488 and 647 channels were calculated for each cell region 420 

(nuclei and cytoplasm). Moreover, we applied a filter to remove border objects (nuclei 421 

that cross image borders). For the detailed analysis pipeline in Columbus, please see 422 

Supplementary Table 1 with the analysis sequences. 423 

 424 

Model training and application 425 

Designing a DL model for distinguishing between cell death modalities given a set of 426 

microscopic images is challenging due to several factors as explained previously: 427 

batch effect and reduced generalizability performance. To overcome these issues, we 428 

propose to train in a supervised contrastive learning fashion using the SupConLoss 429 

defined as follows:  430 

 431 

$z_i$ is an embedding vector with class label $y_i$ generated by the embedder 432 

network. $i$ is an anchor in the batch $I$. $P(i) = {p ∈ A(i) : y_i = y_p}$ denotes positive 433 

samples that belong to the same class. SupConLoss first calculates the inner product 434 

of the anchor with samples in $P(i)$, second applies an exponential function in order 435 
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to amplify large values. The outputs are summed up and normalized over all samples 436 

$A = I\(1)$. $τ$ denotes the supervised temperature, a hyperparameter that helps 437 

disentangling positive and negative samples. The main benefit of our supervised 438 

contrastive learning is that it disentangles batch effects from relevant biological 439 

variables (24, 32) and this can be seen in the UMAP reported results (Fig.4 A). Mainly, 440 

we chose UMAP over other dimensionality reduction techniques such as t-distributed 441 

stochastic neighbor embedding (t-SNE) or principal component analysis (PCA) owing 442 

to its speed and performance for the preservation of the global structure of the data. 443 

To further tackle the batch effect problem, we propose a batch-aware sampling 444 

strategy to better train our network. We further use categorical cross entropy as 445 

classification loss during training. Ultimately, in our CellDeathPred architecture, we 446 

define the overall loss function as:      447 

where $\lambda_1$ and $\lambda_2$ are hyper-parameters that control the relative 448 

importance of SupConLoss and cross entropy losses, respectively. Empirically, we set 449 

the temperature parameter of the SupConLoss, the learning rate and both 450 

$\lambda_1$ and $\lambda_2$ to 0.1, 1.25e-5 and 0.5, respectively. We define the 451 

batch size $bs$ using the following formula: 452 

 For a batch of size 30, we compute it as 453 

30 = 2 * 5 * 3, which means it consists of samples from two plates with 5 samples of 454 

each cell death modality. The batch-norm layers were freezed to reduce overfitting. In 455 

the contrastive learning context we define a sample triplets: anchor, positive and 456 

negative. We define the anchor as an image belonging to a plate $p_i$ and the class 457 

$y_i$, while we choose the positive sample to be an image from another plate $p_p$ 458 
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($p_i ≠ p_p$) having the same label as the anchor and we define a negative sample 459 

as an image belonging to the same plate of the anchor with a different label $y_n$ 460 

($y_i ≠ y_n$). The ultimate goal is to minimize the distance between the anchor and 461 

positive samples and maximize the one between the anchor and negative samples. 462 

The main advantage of the sampling strategy is increasing heterogeneity of the batch 463 

during training thus increasing the generalizability of the model in the case of having 464 

a dataset with batch effect.  To evaluate our model, we first train it using 80% of the 465 

dataset and test it on 20%. We report accuracy and F1-score results in the field level 466 

(Fig. 4B) and in the well level (Fig. 5A). Knowing that all fields belonging to a particular 467 

well have the same label, we define the prediction on the well level as the majority 468 

voting where we count the number of apoptosis, ferroptosis, healthy predictions of the 469 

fields and assign the class with the maximum votes as the well class.  470 

Equipped with the above components, the proposed CellDeathPred not only 471 

overcomes the issues of applying a DL model on cell painting data but also represents 472 

the first automatic labeling method of drugs that can be easily adopted for classification 473 

on other datasets. 474 
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Table 1: Five concentrations for each substance. IC50, one concentration higher [+] 589 

and three different concentrations lower [-], [- -] and [- - -] than the IC50 590 

 591 

Figure 1: Identification of the ideal concentrations of apoptosis and ferroptosis 592 

inducers 593 

(A) Schematic overview of the cell death inducers used for this study. HT-1080 cells 594 

were seeded and treated with 7 apoptosis inducers, 7 ferroptosis inducers (FINs) and 595 

DMSO as a solvent control. Cells treated with apoptosis inducers execute the 596 

apoptotic program by activating caspases. Treatment of cells with FINs result in lipid 597 

peroxide accumulation due to the limited GPX4 activity and hence induce ferroptosis 598 

(B) Results of the dose response (20-point) viability assay with apoptosis inducers in 599 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532633doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

HT-1080 cells. 24h and 72h incubation time. Cellular ATP levels were measured using 600 

luminescence signals. Values indicate mean ± SD (n = 6, technical replicates). (C) 601 

Same as in (B) here for treatment with FINs.  602 

 603 

Figure 2: Schematic overview of the data generation process.  604 

(A) HT-1080 cells were treated with five different concentrations of apoptosis and 605 

ferroptosis inducers. ATP measurement (left) and cell painting (right) experiments 606 

were conducted in parallel. Staurosporine (STS) and RSL3 data are shown as 607 

representative data for apoptosis and ferroptosis inducers, respectively. Values 608 

indicate mean values ± SD of 6 technical replicates. The cells were imaged with a 40x 609 

objective. The different organelles (nuclei, golgi apparatus, actin cytoskeleton, 610 

mitochondria, endoplasmatic reticulum) were imaged using four different fluorescence 611 

channels. (B) The data from the viability assay were annotated with the images from 612 

the cell painting experiment. Only if viability was in the range of 80-30% the images 613 

were used for model training. Three experiments were performed. Experiments 1 and 614 

2 were used for training the CellDeathPred model. Experiment 3 to test the model. 615 

 616 

Figure 3: CellDeathPred architecture for classifying cell death modalities.  617 

(A) Given four channels of the raw image (ER, Actin/Golgi, Mitochondria and Nuclei) 618 

as input, the neural network predicts whether the drug used in the experiment induces 619 

apoptosis or ferroptosis or it is a DMSO one. The architecture comprised four phases: 620 

(1) data augmentation to ensure robustness of the model during training, (2) backbone 621 

model which is a pretrained network (Efficientnet-b0), (3) an embedder is a sequence 622 

of fully connected layers to map the input data to a low-dimensional space, and (4) a 623 

classifier which is a sequence of fully connected layers that outputs the predicted 624 
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modality. (B) Illustration of the used augmentations. Four corner and one center crops 625 

with sizes 512x512. Augmentations were applied to each crop. (C) Example of an 626 

image retrieval. Ten nearest neighbors for a query image in the embedding space. (D) 627 

The last layer with three nodes of the model. Classification predictions of the three 628 

classes. 629 

 630 

Figure 4: Comparing CellDeathPred with other ML models.  631 

(A) UMAP of embeddings of experiment 3 plates with confocal and non-confocal 632 

imaging. Every point corresponds to the embedding of an image. On the left using the 633 

CellDeathPred model which was trained on images from experiment 1 and 2. 634 

Individual wells are visualized as points on the scatter plot of the first two principal 635 

components. On the right UMAP of 245 features extracted from the images initially 636 

extracted from Columbus software. The color code is according to the drug category 637 

(blue = “healthy”, red = “apoptosis”, green = “ferroptosis”) and was added after the 638 

UMAP was conducted. (B) Accuracy and F1-score results on the well level are shown 639 

per plate for confocal data (top row) and non-confocal data (on the bottom row). The 640 

x-axis represents the proposed method CellDeathPred, its variant where we remove 641 

the SupConLoss and the machine learning-based methods widely used in the 642 

literature. The proposed deep learning model achieved best performance in both 643 

evaluation metrics compared to the comparison methods. 644 

 645 

Figure 5: Results of the DL model 646 

(A) Confusion matrices for experiment 3 (non-confocal) with CellDeathPred model. 647 

The model was trained on images from experiment 1 and 2. Order of plates from left 648 

to right. Heatmap of the ATP measurement that was conducted in parallel to the cell 649 
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painting experiment. Low (black) and high (yellow) luminescence signals correspond 650 

to the cellular ATP levels. The experiment was performed in technical replicates (three 651 

plates). Cells were treated with five different concentrations for each small molecule. 652 

(B) Heatmap of the nuclei count that was conducted on the images of the cell painting 653 

experiment. Low (black) and high (yellow) luminescence signals correspond to the 654 

number of selected nuclei. The experiment was performed in technical replicates 655 

(three plates). Cells were treated with five different concentrations for each small 656 

molecule.  (C) Prediction of every substance for every concentration across the plate 657 

depending on the ATP level (normalized). Performed for experiment 3, plate01 (non-658 

confocal), with the CellDeathPred model. For every concentration there are three 659 

replicates. 660 

 661 
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