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We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe28

et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by29

recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated30

segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc31

proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons32

produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of33

axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can34

require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh35

manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-36

annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc37

proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many38

downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more39

accessible to neuroscience researchers focused on a variety of scientific questions.40
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Introduction43

To understand the morphological features of individual neurons and the principles governing their connectivity, the use of44

large-scale electron microscopy and reconstruction of entire neural circuits is becoming increasingly routine. For example, in45

the past year, the MICrONS Consortium published a millimeter-scale open-source dataset of mouse visual cortex (Consortium46

et al., 2021) (approximately 80,000 neurons and 500 million synapses; "MICrONS dataset"), and a team at Harvard published a47

similar reconstructed volume of human temporal lobe (Shapson-Coe et al., 2021) (approximately 15,000 neurons, 130 million48

synapses; "H01 dataset"). These reconstructions offer opportunities for analysis of neural morphology and synaptic connec-49

tivity at a scale that was previously inaccessible. However, effectively using these massive and complex datasets for scientific50

discovery requires a new ecosystem of software tools.51

Here, we describe NEURD — short for "NEURal Decomposition" — a software package in Python that extracts useful52

information from 3-D neuronal meshes and implements workflows for a variety of downstream applications including auto-53

mated proofreading, morphological analysis and connectomic studies. NEURD decomposes the 3-D meshes of neurons from54

EM reconstructions into a richly-annotated graph representation with many pre-computed features. These graphs characterize55

the neuron at the level of non-branching segments in the axonal and dendritic arbor, a relatively coarse level of representation56

that enables a wide variety of queries about the statistics and geometry of neural wiring.57
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We begin by demonstrating the utility of this framework in an automated proofreading pipeline that is highly effective at58

correcting merge errors using heuristic rules. We evaluate the performance of this pipeline against human proofreading both at59

the level of cleaning merge errors from entire axonal and dendritic arbors, and at the level of generating split points for each60

error that can be executed in a hierarchical segmentation graph (Dorkenwald et al., 2022a,b) to batch-correct large numbers61

of errors. Because proofreading is performed by a set of interpretable heuristic rules, we show how the feedback from this62

validation process can be used to tune specific parameters in order to achieve even higher accuracy on certain kinds of edits.63

Our proofreading workflow is conservative; it is biased towards a higher number of false negative connections but low false64

positives, resulting in a high-fidelity but sparsely-sampled connectivity graph.65

We then show how the pre-computed features extracted by NEURD can enable us to recapitulate and extend a variety of66

previous observations about neural morphology and geometry, taking advantage of the thousands of reconstructed neurons67

spanning all layers in these volumes. These diverse features include everything from spine annotations to the branching ge-68

ometry of axonal and dendritic arbors, enabling powerful queries across multiple spatial scales. Using combinations of these69

features, we show that it is possible to distinguish excitatory and inhibitory neurons in both the mouse and human datasets with70

high accuracy, and to classify neurons into excitatory and inhibitory sub-classes (basket, bipolar, etc.), even when using isolated71

fragments of dendrites.72

Finally, we examine the potential of this highly-annotated, sparse but clean connectivity graph to yield novel scientific73

insights about neural circuit connectivity, including higher order motifs. NEURD includes a fast workflow to identify close74

axonal-dendritic proximities that can serve as a null distribution for analyses focused on understanding the specificity of synapse75

formation between different cells, even if their axon and dendritic arbors are incomplete. We use this capability to show that76

the ratio of synapses to proximities (synaptic conversion rate) varies as expected across cell-type-specific connections, and we77

show that our automatic proofreading enables us to identify a set of extremely rare multi-synaptic connections with four or78

more synapses between pairs of excitatory cells. We find that these pairs have more similar functional properties in vivo, as79

predicted by a principle of "like-to-like" connectivity in the mouse visual cortex (Lee et al., 2016; Ko et al., 2011; Ding et al.,80

2023).81

With NEURD, we set out to achieve two goals: The first goal is to extract a large set of useful features that many downstream82

analyses have in common, and to represent them in a compact, intuitive, and manageable format. Having ready access to these83

extracted features will be a valuable resource and enable many analyses beyond the ones we consider here. The second goal84

is to use these features to perform automated proofreading of merge errors, removing the large majority of these confounding85

errors in the volume and producing a high-fidelity, sparsely-sampled connectome that can be paired with appropriate proximity86

controls to study principles of neural connectivity. A useful analogy may be drawn with software tools that have supported the87

widespread adoption of other complex data modalities such as population calcium imaging (CaImAn, Suite2P; Giovannucci88

et al. 2019; Pachitariu et al. 2017), neuropixel recordings (KiloSort, MountainSort; Pachitariu et al. 2023; Chung et al. 2017),89

label-free behavioral tracking (DeepLabCut, MoSeq, SLEAP; Mathis et al. 2018; Pereira et al. 2022; Markowitz et al. 2018),90

and spatial transcriptomics (Giotto, Squidpy; Dries et al. 2021; Palla et al. 2022). Like these packages, the goal of NEURD is91

to make "big neuroscience data" (in this case, large-scale EM reconstructions) accessible to a larger community, by providing92

a common pre-processing and feature extraction workflow that can support a wide variety of downstream analyses. As more93

large-scale EM reconstructions become available, tools like NEURD will become increasingly essential for exploring principles94

of neural organization across multiple species.95

Results96

Summary of large-scale dense EM reconstructions. Data collection for the MICrONS and H01 dataset has been described97

in previous publications (Consortium et al., 2021; Shapson-Coe et al., 2021). The tissue preparation, slicing procedure, and98

imaging resolution (8nm x 8nm x 30-40nm) was roughly similar in both cases: Both volumes were stained with heavy metals99

(Yin et al., 2020; Tapia et al., 2012), embedded in resin, and cut on an automatic tape-collecting ultramicrotome (ATUM)100

(Schalek et al., 2011; Own et al., 2015). However, the imaging and reconstruction workflows for the two datasets were very101

different. The MICrONS volume was collected with transmission electron microscopy (TEM) (Yin et al., 2020), while the102

H01 volume was collected with scanning electron microscopy (SEM) (Hayworth et al., 2014), and slice alignment and dense103

reconstruction for the two datasets were performed via different reconstruction pipelines (Macrina et al., 2021; Consortium104

et al., 2021; Shapson-Coe et al., 2021). However, despite the differences in source tissue and significant differences in the105

acquisition workflows for MICrONS and H01, in the end all volumetric reconstructions produce similar 3-D meshes as a106

common data product downstream of the segmentation process. The capabilities of NEURD are focused at the level of these107

mesh representations, which capture rich information about the microscale anatomy of neurons that can be useful for a variety of108

downstream analyses, including comparative analyses of neural circuitry across species, volumes, and reconstruction methods.109

Preprocessing of Neuronal Meshes. EM reconstructions yield neural meshes with varying levels of completeness, and with110

different kinds of merge errors (Fig. 1b-e). Merge errors include multiple whole neurons connected together (Fig. 1c), and111

disconnected pieces of neurite ("orphan neurites") merged onto different neural compartments (Fig. 1d). Merge errors may also112
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Fig. 1. Working with neuronal meshes from large-volume EM segmentations a The portion of the MICrONS volume that we analyzed ( 65% of the entire
reconstruction) is an approximately 1300 × 820 × 520µm3 rectangular volume from mouse visual cortex, while H01 is a wedge-shaped volume with a longest
dimension of 3mm, a width of 2mm, and a thickness of 150µm from human temporal cortex. Panels b-e illustrate the range of accuracy across neural reconstructions.
b Example of a nearly complete (manually-proofread) single neuron, and c a mesh containing two merged neurons from the MICrONS volume. d Example of an
orphan merge error with a piece of dendrite incorrectly merged onto a neuron mesh, and e an incompletely-reconstructed neuron from the H01 volume. The
reconstructed meshes are pre-processed through a number of steps including decimation, glia (f) and nuclei removal, soma detection (g), and skeletonization (h).
Finally, mesh features are projected onto branches from the skeleton (i) and spines are detected (j).

include glia or pieces of blood vessels merged onto neurons (Fig. 1f). We take advantage of existing tools for mesh processing113

(Fabri et al., 2023; Cacciola et al., 2023; Gao et al., 2023; Dorkenwald, 2022) and apply them in an initial workflow that is114

agnostic to the identity of the mesh object. The downsampled meshes enter a neuron-specific mesh preprocessing pipeline115

(Fig. 1f-g, see Methods): In this pipeline, merged glia and nuclei submeshes are identified and filtered away (Fig. 1f), the116

locations of all somas are detected (Fig. 1g), and the mesh representation of axonal and dendritic processes are skeletonized117

into a series of connected line segments (Fig. 1h). In a final series of steps, the correspondence between each skeletal segment118

and its overlying mesh is reestablished (Fig. 1i), and the mesh segments composing neuronal spines are automatically detected,119

taking advantage of the more trivial problem of identifying protrusions on individual non-branching segments (rather than the120

entire dendritic arbor; Fig. 1j). Systematic inspection by manual proofreaders confirmed the high accuracy of the soma, axon,121

dendrite, glia, and spine annotations generated during the mesh processing workflow (Fig. 8), as well as the labeling of basal122

and apical dendritic compartments (Fig. 9).123

Graph Decomposition. We decompose skeletons of axonal and dendritic processes into a directed tree graph (NetworkX124

object in Python Hagberg et al. 2008) where the root node is the soma, the other nodes are individual non-branching segments125

and edges project downstream in the direction away from the soma; therefore, subgraphs downstream of the soma are a stem.126

There may initially be multiple soma nodes in the graph, but these are split apart if more than one soma is detected, and127

any cycles in the graph are broken during the decomposition process (see Methods, Fig.2b). Previous work has emphasized128

the utility of this kind of graph representation of each neuron, which facilitates flexible queries and analyses of features and129

annotations at different scales: individual branches, subgraphs of stems, or all of the stems graphs at once (entire neuron)130

(Pastor et al., 2021; Schneider-Mizell et al., 2016).131

NEURD computes a variety of features of decomposed neurons at the branch (node), stem (subgraph), or whole neuron132

(graph) level (Fig. 2a,b). Node features include mesh features of each branch (number of spines, average width, etc.), skeletal133

features (length, directed angle of projection, etc.) and synapse features (number of postsyns/presyns, number of spine head134

synapses, etc.). Subgraph features are computed from the interactions of node features in a local neighborhood of the decom-135

position graph, such as angle between skeleton projections and difference in average width. Graph features can be computed136

by averaging node features in the graph, such as the average number of spines per µm of skeletal length or the average number137

of postsyns per µm of skeletal length. Alternatively, graph features can be calculated by counting subgraph motifs, such as the138

number of subgraphs bordering at least one soma node or the number of subgraphs connected to multiple soma nodes.139

These multi-scale features make it straightforward to translate neuroscience domain knowledge into neuron or compartment-140

level operations and queries. The most important context for this translation is automatic proofreading, where we demonstrate141

that these features can be used for accurate cleaning of merge errors including multi-soma merges. NEURD also provides142

workflows for common tasks such as annotating cellular compartments and classifying cells based on morphology. In addition143

to heuristic approaches for these tasks, the suite of graph features computed during decomposition can be used as inputs to144

statistical analyses or as training sets for machine learning. In what follows, we demonstrate the use of these annotated graphs145

Celii et al., 2023 et al. | NEURD: automated proofreading and feature extraction for connectomics 3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.14.532674doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532674


Fig. 2. Decomposition, feature extraction, and graph annotation a Decomposition graph object composed of two neurons merged together. The decomposition
compresses the skeleton, mesh and synapses (and any derived features) of a non branching segment into a node in a graph, with directed edges to the downstream
segments after a branch point. The soma is a singular node connected to the downstream nodes bordering the soma. b NEURD automates computation of features
at multiple levels. Node (non-branching segment)-level features include basic mesh characteristics such as the diameter of the neural process or the number of
synapses per skeletal length. Subgraph features capture relationships between adjacent nodes like branching angle or width differences. Graph features capture
characteristics of the entire neuron and are computed by weighted average or sum of node features, or by counting subgraph motifs. c NEURD supports a variety
of operations and manipulations on the decomposition objects. Multi-soma splitting is performed if a decomposition graph contains multiple soma nodes, splitting
the graph into separate single soma subgraphs based on heuristic rules. The rest of the processing steps are performed on each single soma subgraph separately.
The entire decomposition graph is classified as excitatory or inhibitory using a logistic regression model. A heuristic algorithm identifies one subgraph as the axon
while labeling all other stems as dendrite. Automated proofreading is performed by a series of heuristic graph rules identifying and removing probable merge errors
(see Fig. 3). Finally, a set of heuristic rules are implemented to find subgraphs representing specific neural compartments (apical trunk, apical tuft, etc.). d The final
product of this workflow is a cleaned and annotated decomposition object with a single soma that can be fed into a variety of downstream analysis pipelines.

in the context of automated proofreading (Fig. 3), cell-type classification (Fig. 4), morphological analysis (Fig. 5), and146

connectivity analysis (Fig. 6, Fig. 7). Note, these decomposition graphs can easily be converted to SWC files (and NEURD147

provides this functionality) in case the user desires to utilize any other neuron processing pipelines requiring that data input148

format.149

Automated Proofreading. Node, graph, and subgraph features computed during the decomposition step can be queried to150

identify potential sites of merge errors in the reconstruction, enabling rule-based automatic proofreading where all nodes down-151

stream of the error are stripped from the mesh. While this approach does not enable automatic extension (i.e. fixing split errors),152

it can facilitate many subsequent analyses of individual cell morphology and circuit connectivity.153

Automated proofreading involves defining graph configurations of nodes and attributes (called graph filters) that typically154

indicate merge errors, finding matching subgraphs in each neuron graph, and then labeling either all or some of the nodes in that155

match as errors. For example, a graph filter to locate dendritic branches with three or more downstream nodes and with certain156

width jumps or skeletal angle differences is useful for identifying errors in the H01 dataset because there are more dendritic157

merge errors compared to MICrONS. The graph filters are mostly directed one-hop or zero-hop configurations where one-hop158

configurations only consider adjacent downstream nodes, and zero-hop configurations consider only individual node features.159

However, proofreading rules can also consider larger-scale features of the graph (such as enforcing the existence of only one160

axonal arbor for each cell). Graph filter heuristics and parameters can be tuned for axon and dendrite subgraphs, excitatory161

or inhibitory cell types, and specific data sources (H01 vs MICrONS). In a workflow based on this approach, the user defines162

which graph filters to apply in which order, and as the errors are identified, the meta-data for each correction is stored (to163
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Fig. 3. NEURD graph decomposition enables automated proofreading a Implementing domain knowledge as subgraph rules to automatically identify and
remove merge errors. Most of the same rules can be applied across excitatory and inhibitory cells in the MICrONS and H01 volume as-is, or with small changes in
parameters. b Laminar distribution of all graph rule edits in the H01 dataset illustrating the inhomogeneity of errors across different layers, likely due to differences
in neuropil density. Pial surface is to the right and slightly up. c In the MICrONS dataset, an increased frequency of axon edits is observed in layer 5 of cortex. Pial
surface is up. d Dendritic errors in the MICrONS dataset are increased near the top layers of the volume, where fine excitatory apical tufts lead to more frequent
merges. e,f Validation of MICrONS and H01 neurons quantified by synapse precision and recall compared to manual proofreading. "Before" indicates the state
of the raw segmentation prior to any proofreading. Note the high precision of dendrites in both volumes, even prior to automated proofreading. The substantial
increases in precision "After" automated proofreading indicate that the cleaned neurons have good fidelity nearly on par with manual cleaning. The reduction in
"After" recall indicates that we are losing some valid synapses in the automatic proofreading process (mostly on the axons) but still retaining the majority of correct
synapses. For the MICrONS dataset the validation is further separated into neurons with a multi-soma merge and those without in Fig. 15, showing the very high
( 99%) dendritic recall for single soma segments due to the high quality of initial dendritic reconstruction. g. Example excitatory neuron from the MICrONS dataset
in the 75th percentile of merge error skeletal length; merge errors identified by automatic proofreading are shown in red. h,i Number of true positive (TP; green)
and false positive (FP; red) axonal synapses from individual excitatory neurons in the validation set before and after automated proofreading, illustrating the large
number of false positive synapses in the raw segmentation that are removed using the automated proofreading j,k Skeletal length of true and false excitatory axon
skeletons before and after automated proofreading. l-p Same as g-k but for inhibitory neurons. Note that false-negative axonal skeleton in j,o indicates that some
axon segments are lost in the mesh or decomposition preprocessing pipeline prior to automatic proofreading.

be used for subsequent semi-supervised proofreading or training data for machine learning approaches). Once the algorithm164

processes all filters, the mesh, graph nodes, and synapses associated with all error branches are removed.165

To illustrate this approach, we provide a small set of heuristic proofreading rules implemented as graph filters (Fig. 3a; see166

Methods) that yielded good performance on merge error correction in both volumes, but especially in the MICrONS dataset.167

An example rule indicating a merge error is "Low Degree Axon" (the parent class of the "Parallel Children" rule), where168

an upstream branch node with exactly two downstream nodes has its local graph configuration checked for properties more169

typically associated with merge errors ( 0 degree or 90 degree angle between skeleton projection of downstream nodes, a170

synapse at the branching point, very thin mesh segmentation at branching point, etc.).171

Manual validation of these rules was performed in the context of standard proofreading and multi-soma splitting using the172

NeuVue Proofreading Platform (Xenes et al., 2022). We provided the proofreading team at John Hopkins University Applied173

Physics Laboratory (APL) with suggested error locations in the MICrONS volume, and experienced proofreaders evaluated174
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each proposed split for accuracy. This validation included identifying split points for multi-soma splitting, axon-on-axon,175

and axon-on-dendrite merge errors, and enabled us to measure both the accuracy of these proofreading rules and the speed176

benefits of a semi-supervised approach compared to a fully-manual effort. We were also able to optimize these rules based177

on proofreader feedback, and this process enabled us to identify specific rules and parameter thresholds that we could apply178

with high confidence to correct merge errors without human intervention (Fig. 10a-c,e). Specifically, we used feedback from179

proofreaders to pick parameters that selected a high confidence subset of axon-on-axon merges and axon-on-dendrite merges.180

Validation of this subset then revealed a 99% and 95% accuracy respectively (Fig. 10e). We applied nearly 150,000 of these181

high-confidence automatic edits back into the current MICrONS segmentation. Furthermore, using NEURD suggestions in a182

semi-supervised manner to guide the challenging process of splitting multi-soma segments increased the speed of this process183

more than three-fold compared to other augmented methods (Fig. 10d, see Methods).184

It is worth noting the scale of the merge errors removed by automated proofreading. In the MICrONS dataset, we identified185

hundreds of thousands of merge errors corresponding to dozens of meters of incorrectly-merged axons and dendrites onto the186

neurons within the 1mm3 volume (Fig. 11). Corrections in the H01 dataset were an order of magnitude smaller due to fewer187

cells and the less complete initial reconstructions in that volume, but were still substantial. These errors reflect the scale of188

neural wiring that exists in a tiny volume of cortex, despite the high performance of both automated segmentations. Merge189

errors were identified throughout both volumes, and were more prevalent for some regions due to sectioning artifacts (Fig.190

12g-l), or due to intrinsic differences in the morphology of neurons across layers (Fig. 3b-d, Fig. 12a-f, Fig. 13a-g,) For191

example high- and low-degree axon edits in the MICrONS dataset were frequently made in upper layer 5, potentially due to192

higher quantities of inhibitory neuropil, while dendritic double-back and width jump errors were more frequently located near193

the top layers of the volume, due to merges between fine distal apical tufts of excitatory cells (Fig. 12, Fig. 13).194

We compared the outcome of automatic proofreading (all edits, not just the high confidence subset) to manual proofreading195

on a test set of cells in the MICrONS (n=122 excitatory and n=88 inhibitory) and H01 (n=49 excitatory and n=18 inhibitory)196

volumes. The precision of synaptic data was substantially higher after proofreading (for example 0.87 after compared to 0.13197

before for MICrONS excitatory axons), without a commensurate reduction in recall (summarized in Fig. 3e,f, Fig. 14, Fig.198

16, and Fig. 15). Note, because our automated proofreading procedure only removes data, recall is measured based on the199

synapses which were part of the automatic segmentation and which remained after manual proofreading was performed, but200

does not include synapses which were added in manual proofreading. Note also the high recall for dendrites, which was even201

higher ( 99% for MICrONS) when considering only single-soma neurons 15, reflecting the high performance of the initial seg-202

mentation. Overall recall was lower for axons, indicating a larger number of incorrectly-removed axonal segments compared to203

dendrites. Performance on the H01 dataset was also reduced compared to MICrONS because the less-extensive reconstruction204

was associated with fewer merge errors overall. Initial reconstruction quality of dendrites in both volumes was high, and espe-205

cially in the MICrONS volume, extensive axonal arbors remained after removing merge errors (Fig. 3g,l, Fig. 17). Note that206

our proofreading heuristics and parameters were tuned to remove incorrect connections at the expense of sometimes removing207

correct connections, based on the rationale that incomplete, but largely-correct morphology and connectivity is more useful for208

downstream analyses than more complete neurons with falsely merged segments. In summary, both from the perspective of209

synapses (Fig. 3h,i,m,n) and skeletons (Fig. 3j,k,o,p), our automated proofreading approach can be applied at scale to yield210

neural reconstructions (Fig. 17) of similar quality to manually-cleaned cells without any extension.211

Cell-type classification. Densely-reconstructed EM volumes hold great promise for understanding the connectivity between212

different neural subtypes (Schneider-Mizell et al., 2023, 2021; Dorkenwald et al., 2022a; Weis et al., 2022; Dorkenwald et al.,213

2022c; Peters and Feldman, 1976; Martin and Whitteridge, 1984). Because EM provides limited access to genetic markers,214

cell types must be identified by morphological features, although the relationship with molecularly-defined cell classes can be215

inferred from extensive previous work relating morphological features to transcriptomic classes (Scala et al., 2021; Peng et al.,216

2021; Gouwens et al., 2020). Compared to light microscopy, the ultra-high resolution of EM reconstructions provides many217

additional features that can be used to classify cells by morphology. Previous studies have demonstrated that rich information218

enabling cell-type classification is available even in local nuclear and peri-somatic features (Elabbady et al., 2022; Al-Thelaya219

et al., 2021), small segments of neural processes (Dorkenwald et al., 2022c), and the shape of postsynaptic regions (Seshamani220

et al., 2020). NEURD provides an additional rich and interpretable feature set that can be used for cell-type classification via a221

number of different approaches.222

As an initial demonstration, we performed Principle Components Analysis (PCA) on the averages of NEURD node features223

for neurons hand-labeled as inhibitory or excitatory (MICrONS n=3,985 excitatory and n=897 inhibitory; H01 n=5,800 exci-224

tatory and n=1,755 inhibitory). As expected, spine density (number of spines per micron of skeletal length) and shaft synapse225

density (number of synapses not on a spine per micron of skeletal length) were very informative features for distinguishing226

excitatory from inhibitory cells (Azouz et al., 1997). In fact, we found that a logistic regression model trained on just these227

two spine and synapse features separates excitatory and inhibitory cells with high accuracy, using the same parameters for228

classification across both the MICrONS and H01 dataset (Fig. 4a,b). We were able to perform this classification step prior to229

proofreading and axon/dendrite annotation, which enabled these rules to be specific to excitatory or inhibitory neurons.230

To test whether NEURD graph objects could be used to distinguish even finer cell types, we turned to Graph Convolutional231
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Networks (GCN) (Fig. 4c-e). We trained a simple GCN on the dendritic subgraph of a variety of hand-labeled cell types in the232

MICrONS volume (n=873 total cells). We focused on the dendrites in this volume because of their high recall from the initial233

segmentation and the high precision after automated proofreading (Fig. 3f). This classifier produced an embedding space with234

a continuum of excitatory neurons progressing from the top layers down to the bottom layers, while keeping inhibitory neurons235

and some morphologically-distinct excitatory neurons (5P-NP and 5P-PT) clearly separated (Fig. 4c). Most of the embedding236

space was covered by the labeled dataset (Fig. 4c), and cells outside the labeled dataset had soma centroids at expected laminar237

depths (Fig. 4d); even though no coordinate features are used in the GCN classifier. Thus, the classifier was able to identify238

these layer-specific classes from distinct morphological features, not simply based on the location of cells in the training set.239

Within the smaller volume with manually-labeled cells, cell type classification performance on a held-out test set was similarly240

high for both entire dendritic graphs (n=178 test neurons; Fig. 4e, Fig. 19a-c), and their disconnected stems (n=1023 test stems;241

Fig. 4f, Fig. 19d-f). Consistent with previous literature classifying cells based on more local features, this demonstrates that242

the information present in disconnected individual dendritic stems (branching segments connected to the soma) is sufficient to243

perform fine cell-type classification nearly as well as graphs representing entire neurons.244

Morphological Analysis. The features extracted by NEURD - including features of different compartments (Fig. 5a), the ge-245

ometry of axonal and dendritic compartments (Fig. 5b), and spine features (Fig. 5c) - provide a rich substrate for morphological246

analysis (Fig. 20).247

Extensive work has been done on automatic spine detection in 2-D or 3-D image data using fully-automatic (Xiao et al.,248

2018; Driscoll et al., 2019; Janoos et al., 2009; Shi et al., 2014; Basu et al., 2018) or semi-automatic (Benavides-Piccione et al.,249

2013) approaches. NEURD offers an accurate spine detection workflow that achieves high accuracy with a mesh segmentation250

approach. Importantly, these spine features are then available for queries in combination with all the other morphology and251

connectivity information available in NEURD graphs. Precision and recall for spines with a skeletal length larger than 700252

nm was 90% or higher in extensive validation by manual annotators on both volumes (Fig. 8). In addition, NEURD isolates253

individual spine meshes, then segments the spine head from the neck (when possible), and finally computes statistics about254

the overall spine mesh and also the individual head and neck submeshes. As expected, the spine head volume and synaptic255

density volume were the only strongly correlated spine features (Fig. 23; Harris and Stevens 1989; Arellano et al. 2007). The256

kernel density estimation of UMAP embeddings for feature vectors of spines sampled from the MICrONS and H01 dataset257

showed a similar embedding structure, with spines that share similar features embedded in similar locations and a somewhat258

consistent embedding pattern for inhibitory and excitatory spines in the two volumes (Fig. 5d,Fig. 5e). These results build on,259

and are consistent with, previous work describing the distribution of non-parametric representations of post-synaptic shapes260

across diverse neural subtypes (Seshamani et al., 2020).261

We attempted to replicate and extend several other findings observed in previous studies of the MICrONS and H01 datasets262

regarding the sub-cellular targeting of synaptic inputs. First, we counted synapses onto the axon initial segment (AIS) of263

neurons at different depths. Replicating a previous report, in the MICrONS volume, superficial L2/3 pyramidal cells received264

the largest number of AIS synapses, with up to 2-3 times the innervation of the lower cortical layers (Fig. 5f; Schneider-Mizell265

et al. 2021; Wang et al. 2019; Inan et al. 2013). However, in the H01 dataset, this laminar inhomogeneity in AIS synapses was266

much less prominent, with more similar numbers of AIS inputs observed across all depths (Fig. 5g). Additionally, like AIS267

synapses, we found a striking difference in the distribution of somatic synapses across depth between the MICrONS and H01268

dataset. (Fig. 21g,h). Lastly, the overall frequency of somatic synapses were also distinct across the two volumes, consistent269

with previous literature describing fewer somatic synapses in the human compared to mouse (Fig. 21d; Wildenberg et al. 2021);270

however, we found the opposite trend for the AIS, with fewer AIS synapses in the mouse compared to the human (Fig. 21c).271

In H01, deep layer pyramidal cells were previously observed to have a strong bias in the radial angle of their thickest basal272

dendrite (Shapson-Coe et al., 2021). The geometry of neural branching is a subgraph-level feature computed by NEURD, and273

process diameter is a node feature, so we examined the combination of these features to replicate this finding. First we examined274

the MICrONS volume and did not observe a strong bias in thickest basal, even in deep layers (Fig. 5h). Then, looking at H01,275

we were able to replicate the pattern of thickest basal dendrite direction preferences in deeper layers (Fig. 5i). However, we276

also found that this pattern appeared to continue into more superficial layers. We wondered whether the previous emphasis on277

deep layers might be because the effect was more salient there. Indeed, making use of the precomputed widths for all branches,278

we found that in deep layers the difference between the thickest and second-thickest dendrite was nearly doubled compared to279

more superficial layers. Thus, this dendritic orientation bias appears to be a general property of the H01 volume, albeit less280

salient in more superficial layers.281

The diversity of precomputed features offered by NEURD enabled us to identify several interesting morphological features282

that differ across cell types, including many that have been reported previously in other studies. For example, the spindly, non-283

branching basal dendrites of NP cells (Schneider-Mizell et al., 2023; Weis et al., 2022) are clearly distinct from extensively-284

branching basal dendrites of L2/3 pyramidal cells. This feature is clear in a histogram of total skeletal length across individual285

nodes (Fig. 5j), as is the fact that neurogliaform cells are the most highly-branched neurons with the largest number of leaf286

nodes (Fig. 22a). As an interesting sidenote, we found that across all neurons, dendritic stems with larger numbers of leaf287
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nodes had a larger initial dendritic diameter at their connection to the soma (Fig. 22b-c), potentially reflecting developmental288

or metabolic constraints.289

Comparing synapses onto the dendritic shaft with synapses onto dendritic spines provides a rough proxy of inhibitory versus290

excitatory inputs (Ribak et al., 1981; DeFelipe and Fariñas, 1992; Kwon et al., 2019). In a histogram of shaft to spine synapses,291

NP cells were again located at the higher end of the distribution, while L4 and L2/3 pyramidal cells had the lowest shaft-synapse292

to spine-synapse ratio (Fig. 5k), suggesting they receive a relatively larger fraction of excitatory (compared to inhibitory) input.293

Because NEURD also automatically segments both soma meshes and spine heads and necks, this enables comparison across294

cell types of features like soma volume and somatic synapses (Fig. 8b,f), spine neck length (Fig. 5l), spine density (Fig. 8a),295

and the relationship between spine synapse size and spine head volume as in Fig. 5k and Fig. 23.296

Connectivity and Proximities. Next, we examined the connectivity graph in the MICrONS and H01 datasets after automatic297

proofreading. Proofreading substantially reduced the mean in- and out-degree across both volumes due to the removal of merge298

errors, resulting in a sparsely-sampled but high-fidelity graph (Fig. 3e,f). A variety of connectivity statistics including number299

of nodes and edges, mean in and out degrees, and mean shortest path between pairs of neurons along excitatory and inhibitory300

nodes is provided in Fig. 25. Note that "edges" here are synapses between neurons, and a subset of neurons that were not301

fully processed by the decomposition pipeline are excluded from all statistics comparing the "raw" graph to the graph after302

automated proofreading (neurons with manual proofreading are excluded from this comparison). The shortest path statistics303

are generated by randomly sampling source and target neurons; sample pairs without a path between them are excluded from304

the calculation.305

To facilitate the analysis of synapse specificity in sparse connectomes, we implemented a fast workflow for identifying axo-306

dendrite proximities, regions where the axon of one neuron passes within at least within 5 µm of the dendrite of another neuron307

(See Methods, Fig. 6a). Note that these proximities would not be meaningful without first cleaning all skeletons of merge errors.308

The width measurement at every skeletal point can also be used to exclude myelinated axons from this proximity computation309

using a maximum width threshold. Previous studies have computed proximities from skeletons of simulated models (Udvary310

et al., 2022), or manually traced data (Mishchenko et al., 2010; Kasthuri et al., 2015), with a similar logic. Proximities are311

necessary but not sufficient for the formation of a synapse (Peters and Feldman, 1976; Brown and Hestrin, 2009; Mishchenko312

et al., 2010; Costa and Martin, 2011), and so the "proximity graph" can serve as a valuable null distribution for comparing313

potential connectivity with synaptic connectivity between neurons: Instead of looking at synapse counts between cells which314

are dependent on the geometry and completeness of the neuropil, proximities make it possible to calculate "conversion rates" -315

the fraction of proximities which resulted in actual synaptic connections. NEURD also provides functions to compute presyn316

skeletal walk - the distance from a synapse to the soma of the presynaptic neuron along the axon, and and postsyn skeletal317

walk - the distance from synapse to soma along the postsynaptic dendrite. Combined with cell typing, compartment labeling318

and spine annotation, these features enable powerful analyses of neural connectivity conditioned on the cellular identity and319

subcellular location of synapses on both pre- and post-synaptic partners (Fig. 6b).320

Conversion rates between neural subtypes in the MICrONS dataset replicated previous results from connectivity measured321

via slice multi-patching and EM reconstructions, especially the prolific connectivity of basket cells onto both excitatory and322

inhibitory somas (Fig. 6c; Jiang et al. 2015; Schneider-Mizell et al. 2023; Lee et al. 2013; Freund and Katona 2007) and323

inhibitory-inhibitory relationships including BC inhibiting other BC, MC avoiding inhibiting other MC, and BPC preferentially324

inhibiting MC ( Fig.27; Pfeffer et al. 2013; Jiang et al. 2015; Lee et al. 2013; Schneider-Mizell et al. 2023).325

The subcellular targeting of different inputs is apparent in plots of the postsynaptic skeletal walk distance to the soma for326

synapses arriving at the basal dendrite. As has been previously described (Ribak et al., 1981; Hwang et al., 2021; Megıas et al.,327

2001), inhibitory-onto-excitatory synapses tend to be found closer to the somatic compartment than excitatory-onto-excitatory328

synapses (Fig. 6d,e). At an even smaller scale, with the spine head, spine neck, or shaft classification propagated to synapses,329

we can study how excitatory and inhibitory inputs to spines display different scaling relationships between synapse size and330

spine head volume (Fig. 24). We also show, as expected, that excitatory and inhibitory cells differ in the number and relative331

sizes of synapses on their target spine heads (Fig. 24; Parnavelas et al. 1977; Megıas et al. 2001).332

Conversion rates for excitatory-to-excitatory proximities were low in both H01 and MICrONS, consistent with previous333

findings of sparse pyramidal cell connectivity in the cortex (Fig. 6f,g; Campagnola et al. 2022; Jiang et al. 2015; Kasthuri et al.334

2015; Mishchenko et al. 2010). However, conversation rates were substantially higher for excitatory-to-inhibitory proximities335

(Fig. 6f,g), especially in H01, and were substantially higher for proximity distances less than 2 microns (unlike excitatory336

synapses onto excitatory cells, where spines presumably reduce the dependence on distance). Combining the presyn (axonal)337

skeletal walk features and proximity analyses revealed an interesting similarity in excitatory-onto-inhibitory connectivity be-338

tween the MICrONS and H01 datasets, with conversion rates peaking in the more proximal axon a few hundred microns from339

the soma (Fig. 6h,i; Bock et al. 2011; Bopp et al. 2014; Schmidt et al. 2017; Dorkenwald et al. 2022c). Conversion rates were340

also higher above (more superficial to) the presynaptic soma than below (deeper than) the presynaptic soma for excitatory-onto-341

inhibitory connections in both volumes (Fig. 26).342

Large-volume EM connectomics offers tremendous potential opportunities to examine higher-order motifs on a large scale,343

beyond pairwise connectivity. By comparing the frequency of synaptic motifs with "proximity motifs" defined by neurons344
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that had a chance to participate in a particular synaptic motif based on their axon/dendrite geometry, it is possible to begin to345

ask questions about higher-order connectivity even with incompletely-reconstructed neurons because they have been stripped346

of merge errors. With this approach we found that more densely-connected triangle motifs were enriched in the MICrONS347

volume compared to several controls, including a null graph with the same number of nodes and edges where synaptic degree348

distribution is held the same but edges are shuffled (configuration model), a control where the synaptic edges are shuffled only349

between neurons with an existing proximity edge, or one where synapses are random shuffled between neurons regardless350

of proximity (Fig. 6j). This is consistent with previous findings at smaller spatial scales suggesting that this higher-order351

organization is enriched in the cortex (Song et al., 2005; Perin et al., 2011; Milo et al., 2002; Udvary et al., 2022; Schneider-352

Mizell et al., 2021). A similar pattern was observed in the H01 dataset, consistent with previous modeling of connections and353

proximities there (Udvary et al., 2022). In the H01 volume several of the three-node motifs with larger numbers of connected354

edges were missing due to the less complete reconstruction (Fig. 28).355

Fig. 4. Graph decomposition enables cell-type classification. a,b) Two interpretable features identified by PCA were highly informative for excitatory/inhibitory
classification: spine density (number of spines per µm of skeletal length) and shaft synapse density (number of synapses not on a spine per µm of skeletal
length). Consistent with previous studies (Azouz et al., 1997; Kawaguchi et al., 2006), a logistic regression model trained on just these two features enabled linear
discrimination of excitatory and inhibitory cells with high accuracy (same parameters for logistic regression model used for both MICrONS and H01 dataset). c)
A Graph Convolutional Neural Network (GCN) trained on manually-annotated cell types produces an embedding space with a continuum of excitatory neurons
progressing from the top layers down to the bottom layers while keeping inhibitory neurons and some excitatory neurons with distinct morphology (5P-NP and 5P-PT)
clearly separated. d) The depth of predicted cell types outside of the training volume are consistent with their expected laminar distribution even though no coordinate
features are used in the GCN classifier. e) Confusion Matrix of the test dataset for the neuron GCN classifier tested on=178 held out neurons: 23P (n=33), 4P (n=51),
5P-IT (n=10), 5P-NP (n=4), 5P-PT (n=7), 6P-CT (n=19), 6P-IT (n=29), BC (n=13), BPC (n=9), MC (n=1), NGC (n=2). f) Cell classes could also be determined
using a dendritic subgraph of only one stem (branching segment connected to the soma) nearly as well as when using the entire dendritic tree, suggesting that the
GCN identifies somewhat local features that enable classification. GCN tested on n=1023 test stems: 23P (n=230), 4P (n=301), 5P-IT (n=48), 5P-NP (n=18), 5P-PT
(n=45), 6P-CT (n=116), 6P-IT (n=137), BC (n=65), BPC (n=30), MC (n=19), NGC (n=14).

Functional Connectomics. A key advantage of the MICrONS dataset is the additional functional characterization of matched356

neurons in vivo prior to EM data collection. The relationship between function and synaptic connectivity is covered in detail in357

a separate paper (Ding et al., 2023), but here we wanted to provide an illustration of how automated proofreading can enable358

functional connectomics analyses that would be impossible otherwise. We identified pairs of excitatory neurons connected by359

one, two, three, or four or more synapses. Querying for these rare high-degree connections between pyramidal cells was only360

possible after automated proofreading to correct merge errors, especially since inhibitory axon fragments (for example from361

basket cells) are much more likely to form multi-synaptic connections and so merge errors onto excitatory cells are a substantial362

confound for this analysis. In fact, approximately 97% of the 10,000+ pairs with four or more connections were identified as363

merge errors during automatic proofreading. Connections were further restricted to synapses onto postsynaptic spines in order364

to guard against possible missed merge errors where an inhibitory axon segment might still be merged to an excitatory neuron.365

Examples of these multi-synaptic connections have been highlighted in the H01 data set (Fig. 7a), and rare examples can also366

be found in the MICrONS data set (Fig. 7b; see also Chicurel and Harris 1992). We were able to identify n=11 of these367

pairs in exclusively-automatically proofread neurons (no manual proofreading) where both neurons also had been characterized368

functionally (Fig. 7c). The average response correlation was calculated for each group of pairs (see Methods and Ding et al.369
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2023; Wang and Tolias 2023). We found that neurons with four or more synapses had significantly higher response correlations370

to visual stimuli than neurons with < 4 synapses connecting them (Fig. 7d), consistent with a Hebbian "fire together/wire371

together" rule governing high-degree connectivity in the cortex, and this same pattern was also observed for n=12 pairs of372

manually-proofread neurons. (For autoproofread neurons, two Sample Kolmogorov-Smirnov test and t-test for comparing each373

multi-synaptic group’s null likelihood of being drawn from the same distribution as the one-synapse group: 2 synapses KS test374

statistic = 0.068 and p = 0.17, t-test p<0.03, 3 synapses KS test statistic = 0.139 and p=0.49, t-test p = 0.60, 4 synapses KS test375

statistic = 0.508 and p < 10−2, t-test p<10−2).376

Fig. 5. Morphological analysis enabled by NEURD feature extraction. a) Cleaned and annotated neuron mesh; soma synapses in blue, axon initial segment
(AIS) synapses in yellow, basal dendrite in brown, apical trunk in aqua, oblique branches in green. Spine heads in red, spine necks in yellow and non-segmented
spine in black along dendritic segments. b) Top down view of the neuron in a). An example of geometric analysis: the thickest basal branch is boxed in pink and
the xz angle of these branches are indicated with a blue circular angle marker. c) Most spines are annotated with interpretable features such as head volume,
spine skeletal length, and spine neck length. Smaller spines (black) are left un-annotated. d,e) Kernel density estimation of UMAP embedding of spines sampled
from MICrONS and H01 dataset using spine features from panel c) (without head or neck features). The embeddings show a similar embedding structure between
the two datasets in terms of spine shape and inhibitory/excitatory class, similar to previous work clustering a non-parametric representation of postsynaptic shapes
(Seshamani et al., 2020). f,g) Average number of synapses onto the axon initial segment (AIS) of cells at different laminar depths (mean +/- std) for the MICrONS
and H01 volume. Same depth color scheme used in 21. h,i) Histograms showing the distribution of mean skeletal angle of the thickest basal stem. Each row is a
normalized histogram for a specific depth bin. The H01 dataset shows more bimodal structure (especially in the deeper layers) than the MICrONS dataset, consistent
with a previous report (Shapson-Coe et al., 2021). We find that this pattern is also visible in more superficial layers of H01, but is less obvious because the width
difference between the widest and the second-widest basal branch is much larger in deep layers ("Width Diff" plot to right of heat maps). j) Distribution of the average
skeletal length of non-branching dendritic segments for stems of different cell-type subclasses. k) The ratio of non-spine synapses to spine counts varies across cell
types. l) Distribution of average spine neck length of different excitatory cell type subclasses. As expected, 5P-NP cells have the longest average neck lengths, but
4P cells also display significantly longer necks than other excitatory cell types. m) KDE plots of spines on different cell type subclasses, comparing each spine head’s
volume and the size of the largest synapse on that spine head. These plots reveal differences in both the distribution and scaling of synapse sizes and spine heads
across cell types. For example Martinotti cells (red) have larger spine head synapses than other inhibitory spines (light green) and the head volume and synapse
size scale at a rate more similar to other excitatory cells (grey).

Discussion377

NEURD is an end-to-end automated pipeline capable of cleaning and annotating 3-D meshes from large electron microscopy378

volumes and pre-computing a rich set of morphological and connectomic features that are ready for many kinds of downstream379

analyses. Building on existing mesh software packages, NEURD adds a suite of neuroscience-specific mesh functions for soma380
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Fig. 6. Connectivity analysis enabled by NEURD a) Schematic illustrating two proximities between a pair of neurons where one neuron’s axon passes within 5
µm radius of a target neuron’s dendrite. Only one proximity actually includes a synapse, thus in this example the "conversion rate" is 50%. Each proximity creates
an edge in a proximity graph between the two neurons. Edge features for proximities include the number of synapses, the proximity distance between the closest
presyn and postsyn skeletal point, postsyn compartment, pre/postsyn skeletal walk and euclidean distances, etc. b) Cell-type specific connections and motifs in the
MICrONS dataset can be found by querying the annotated connectivity graph. NEURD allows for visualization of these connection paths and motifs so they can be
quickly inspected. c) Conversion rates for different cell type subclasses and compartments in the MICrONS dataset are consistent with previous cell type specific
connectivity work (cell type labels generated from GNN classifier). d,e) Cumulative density function (CDF) of the postsynaptic skeletal walk distance distribution for
different exc/inh connection combinations (apical and soma synapses are excluded). In both datasets, excitatory inputs are further along the dendrite from the soma.
f,g) Conversion Rates (synapses / proximities) for different exc/inh combinations. The x-axis represents the maximum distance that is considered a "proximity". h,i)
Mean conversion rate as a function of distance from the synapse to the presynaptic cell along the axon. j) Proximities enable the computation of null distributions
for higher order motifs even with incompletely-reconstructed neurons. The frequency of edge-dense three-node motifs was enriched compared to null graphs (with
the same number of nodes and edges) where synaptic degree distribution is held the same but edges are shuffled (configuration model), where the synaptic edges
are shuffled only between neurons with an existing proximity edge, or where synapses are randomly shuffled between neurons regardless of proximity (250 random
graph samples for each null distribution comparison).

identification, spine detection, and spine segmentation that are applicable across multiple data sets, as well as workflows for381

skeletonization and mesh correspondence that complement existing tools. The atomic unit (node) in the NEURD decomposition382

graph is either a single non-branching segment of axon or dendrite, or a soma - each of these nodes is automatically decorated383

with a large number of features. We demonstrate the utility of this highly-annotated coarse-grained graph representation for384

many downstream analyses and tasks, including splitting multiple-soma merges, cell typing, automated proofreading of merge385

errors, and compartment labeling. We highlight the ability to implement interpretable heuristic rules in these workflows, but386

NEURD graphs can also be used as inputs for machine-learning based approaches, as we demonstrate in the context of cell-type387

classification. Our hope is that offering many automatically-computed features at the level of coarse-grained NEURD graphs388

will make these daunting datasets more accessible for a larger group of researchers. The set of features generated by NEURD389

is easily extensible, and the illustrations here have only tapped a tiny bit of their potential for scientific discovery.390

Several previous studies have proposed post-hoc methods for automated proofreading including merge and split error de-391

tection and correction. Some of these methods make use of Convolutional Neural Networks (CNNs) ( either supervised Zung392

et al. 2017; Gonda et al. 2021 or unsupervised Rolnick et al. 2017), reinforcement learning methods (Nguyen et al., 2022),393
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Fig. 7. Functional Connectomics Illustration: High-degree cell pairs a) Example multi-synaptic connection (n=7 synapses) from an excitatory to inhibitory neuron
in the H01 dataset b) Example multi-synaptic connection (n=4 synapses) from excitatory to excitatory neuron in the MICrONS dataset. c) Example of a highly spatially
clustered multisynaptic connection (n=4 synapses) on a postsynaptic basal dendrite from a neuron cleaned with automated proofreading in the MICrONS dataset
(presynaptic skeletal walk shown in aqua, synapses shown in red) d) Distribution of response correlation between pairs of functionally matched excitatory neurons
in the MICrONS dataset. Response correlation is significantly larger for pairs of neurons with 4 or more synapses connecting them (n=11 pairs) compared to those
with 1, 2, or 3 synapses (n=5350, 280, 34 pairs respectively).

or other machine learning approaches (Schubert et al., 2019; Schmidt et al., 2022; Berman et al., 2022). Others make use394

of heuristic rules applied to neural skeletons (Meirovitch et al., 2016; Sicat et al., 2013), and at least one approach uses both395

skeleton heuristics and CNNs (Matejek et al., 2019). Although our method is based primarily on heuristic rules, NEURD can396

support a variety of downstream methods. Multiple proofreading approaches can benefit from NEURD’s pre-computed feature397

set that includes cell types, compartments, spine information, and skeleton geometry. The coarse-scale graph structure facili-398

tates flexible querying at the level of non-branching segments and the characteristics of the branch points between them. In the399

context of automated proofreading, having a pre-computed feature set at multiple scales can provide a clearer view of the con-400

text in which a potential segmentation error occurs. For instance, determining whether a thin, aspiny projection from a dendrite401

is the true axon or a merge error may be an ambiguous without additional information about the cell type of the neuron, the402

distance of the candidate axon from the soma, and the spine density of the parent dendritic branch. This information can make403

the probability of a merge much more clear. We demonstrate how this information can be leveraged together in rules defined404

as a graph filters with interpretable parameters. We find that many of these graph filters generalize across the two different405

volumes, either with or without tuning of thresholds. These parameters can also be tuned in interpretable ways for more or less406

conservative proofreading, or for different downstream applications.407

Our present implementation does not address some types of errors in automated segmentation. For example, it cannot408

presently handle merge errors where a single segment needs to be split within its primary trunk as it looks for edits to occur409

surrounding branch points. Second, because NEURD’s present implementation has focused on removing false mergers it410

is unable to fix incomplete neural processes, though for performing extensions we could potentially leverage its feature set411

to lower the range of plausible extension candidates. Another limitation is that NEURD currently only takes advantage of412

the information available in neuronal meshes, which of course only includes features that are visible at the level of the cell413

membrane. Using the segmentation to loop back to the raw EM data might allow us to capture some of the additional rich414

ultrastructural features that are available in EM data, for example the density of organelles such as mitochondria, in order to415

add additional annotations to the NEURD graph.416

Thanks to the efforts of trained proofreaders at APL, we were able to perform extensive validation of a set of these rules "in417

situ", which enabled us to speed up semi-supervised splitting of multiple somas, and also enabled us to identify a subset of rules418

with high accuracy that could be batch-applied automatically to the current segmentation of the MICrONS volume. As far as419

we know the latter is by far the most extensive set of post-hoc edits generated by an automatic proofreading method that have420

actually been applied to improve the quality of an EM segmentation. Although EM segmentation methods continue to improve,421

post-hoc workflows for automated proofreading are likely to continue to be necessary given the amount of neuronal wiring in422

even a 1mm3 volume, and having an interpretable and tunable pipeline where we know what errors are easy or difficult for423

these methods to fix may even inform choices about what to optimize during the segmentation pipeline itself.424

NEURD graphs are useful for cell typing. Previous work discusses differences in spine and synapse characteristics between425

cell type classes (Azouz et al., 1997; Kawaguchi et al., 2006). Based on these findings and our exploration with PCA, we find426

that the precomputed features of spine density and shaft synapse density enable a linear classifier to distinguish these coarse cell427

classes using the same parameters for both the H01 and MICrONS dataset (Fig.4a,b). More fine-scale subclass classification428

can be performed with a simple GNN operating directly on the annotated NEURD graph (Fig.4c - f). Even higher performance429

may be achieved in the future with different classifier architectures. Similar approaches may also enable classification of orphan430

dendrite or axon segments within the EM volume, greatly expanding the scale of connectivity principles that can be explored431

in these datasets.432

Highly-annotated NEURD graphs provide a compact representation of many features that are useful for all kinds of mor-433

phological analysis, making it possible to extract more of the incredible value that these large datasets offer for looking at434
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morphological characteristics of neurons. For example, a simple query indicates that the percentage of pyramidal cells with435

axons protruding from dendrites (rather than the soma) is higher in the mouse (17.8%) than the human (8%), which closely436

replicates the findings of a previous study focused on this question (Wahle et al., 2022). Several of the morphological properties437

of cell types shown in Fig. 5j-m and Fig. 20 replicate observations from previous studies (Elabbady et al., 2022; Kawaguchi438

et al., 2006; Villa and Nedivi, 2016). Additionally, using the spine metrics extracted by NEURD, we were able to replicate439

many of the findings of (Harris and Stevens, 1989; Arellano et al., 2007) concerning synapse size and spine head volume cor-440

relation, and we also show that these scaling rules and others depend on cell type (Fig.5m, Fig. 23). Looking at how synapses441

onto the AIS and soma vary across species, we find the expected lower rate of soma synapses on human neurons than mouse442

(Wildenberg et al., 2021), and replicate the expected distribution of AIS synapses across depth in the mouse (Schneider-Mizell443

et al., 2021). We also find that the human dataset does not show a similar change over depth in AIS synapses, and that the444

human AIS is more densely innervated than mouse (Fig.5f-g, Fig. 21c). Finally, we demonstrate the use of a query combining445

geometric information and branch-level characteristics to replicate the previously-reported bias in the orientation of the thickest446

basal segment in the H01 dataset (Shapson-Coe et al., 2021). We extend this finding with an observation that this bias is actually447

consistent across all depths but is just less salient in upper layers because the relative size of the thickest and second-thickest448

basal dendrites changes smoothly across depth (Fig.5h-i).449

At the level of the connectome, not only do we have access to a large number of high fidelity synapses and proximities450

but also precomputed node (neuron) and edge (synapse) features, enabling a variety of connectomics analyses. For instance,451

using the cell type node labels and the skeletal walk length edge features, we confirmed previous work (Hwang et al., 2021;452

Megıas et al., 2001) describing different distal and proximal preferences for different excitatory and inhibitory connection453

types (Fig.6d-g). Furthermore, using the proximity controls computed on the cleaned skeletons, we also were able to observe454

a consistent trend across datasets showing the propensity for forming connections from excitatory to inhibitory neurons peaks455

around 200 µm away from the soma, potentially consistent with a pattern of surround suppression (Fig.6k,l). Additionally,456

with the cell type node labels and spine compartment and synapse size edge labels, we confirmed a variety of expected findings457

about synaptic and spine head size: excitatory to excitatory connections have the largest synapses, synapse size correlates with458

spine heads for excitatory sources but not inhibitory sources, and spine heads with inhibitory synapses generally are multi-459

synaptic spines where the inhibitory synapse is typically much smaller than the largest synapse on the spine head (Fig. 24).460

With spine features (spine length, neck length, etc.) thoroughly documented throughout the volume and immediately available461

for queries, these properties can be investigated at the level of cell types and compartments to help understand the specificity462

of these synaptic features. Finally, by using proximities between cleaned skeletons to compute conversion rates as an estimate463

of connection probability, we replicate a variety of previous findings about the connection probability between both coarse464

(excitatory/inhibitory) and fine cell types (Jiang et al., 2015; Pfeffer et al., 2013; Schneider-Mizell et al., 2023). A variety of465

exciting questions about cell type specificity can be addressed with this kind of data.466

We illustrate the power of combining automated proofreading to generate a clean but incomplete graph, with proximities to467

serve as a null distribution to account for this incompleteness. Together this powerful approach can begin to reveal principles468

of pairwise and higher-order connectivity motifs in dense reconstructions. We demonstrate our ability to take advantage of469

automated proofreading to identify a rare two-node motif (four or more synapses connecting two excitatory neurons) that would470

be buried in noise in the unproofread volume. This just illustrates one example of the potential for future discovery, especially471

given the matched functional properties available in the MICrONS dataset. Additionally, with the cleaned connectome, we472

were able to start counting the number of different triangle motifs (the simplest of higher order motifs) in the datasets, and473

we observe a general overexpression of these motifs in comparison to proximity controls and some standard null models, as474

previously reported in (Udvary et al., 2022; Song et al., 2005; Perin et al., 2011; Milo et al., 2002) However, the ability to475

expand this work to include cell type colorings of these motifs and add proximity based controls will enable investigation of476

more complicated motif questions, unleashing the power of these extraordinary datasets for a larger community of researchers.477

Methods478

Data Management. For simplified data management and querying of input neuron reconstruction meshes, NEURD interme-479

diate decomposition graphs, and all derived statistics and data products, we utilized the DataJoint Python package (Yatsenko480

et al., 2015, 2018)481

Mesh Preprocessing. NEURD operates on 3-D meshes which are represented in a standard form as lists of vertices and faces482

in 3-D coordinates. A connected mesh component is a set of faces and vertices in which all faces have at least one adjacent edge483

to another face. Segmentation algorithms may not output a single connected component as a mesh, but instead may generate484

several disconnected submeshes, each of which is a subset of faces that is a connected component. NEURD is generally robust485

to discontinuous meshes, meshes of different resolutions, and several kinds of meshing errors.486

The resolution of meshes delivered as part of the MICrONS and H01 datasets was sufficiently high that we performed an487

initial decimation of the mesh (reduced to 25% for MICrONS and 18% for H01) to speed up subsequent computations while488

retaining all the detail necessary for morphological characterization even of fine axons and spine necks. This decimation was489
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performed using the MeshLab Quadric Edge Collapse Decimation function (Cignoni et al., 2008). Following decimation, we490

separated this decimated mesh into into connected components. We next applied a Poisson Surface Reconstruction (Cignoni491

et al., 2008) to each connected component. This can be thought of as "shrink-wrapping" the mesh - it smooths discontinuities492

on the surface of the mesh and ensures that each connected component is "water-tight" (i.e. no gaps or missing faces). This493

pre-processing facilitates the subsequent decomposition steps.494

Glia, Nuclei Removal. Glia and nuclei submeshes are identified and filtered away using ambient occlusion functions (Cignoni495

et al., 2008) to identify regions with a high density of inside faces. Inside faces are mesh faces that are almost fully surrounded496

by other mesh faces. For example, glia that are merged onto neurons appear as cavities filled with a high density of mesh faces,497

and are distinct from the hollow reconstructions of most excitatory and inhibitory neurons. Similarly, the mesh representation498

of the soma surrounds the nucleus mesh and thus nuclei are almost entirely made up of inside faces. Therefore to identify499

glia and nuclei in the reconstructed meshes, we look for large connected components with high percentages of inside faces as500

candidates. To determine whether mesh faces are internal or external, we simulate an external "light source" that emits from501

all angles and we compute the exposure each face receives. This metric is thresholded to classify faces as either inside or502

outside faces, and submeshes made up entirely of inside faces are candidates for removal. We then apply additional thresholds503

on the candidate submeshes volume and number of faces to classify them as a glia mesh, nuclei mesh or neither. Finally, for504

glia we include all floating meshes within the bounding box of the submesh or within a search radius (3000 nm) of any faces505

of the submesh. This post-hoc mesh agglomeration serves to clean up the areas around glia segmentation, which can be very506

unconnected and non-standard.507

Soma detection. Soma detection is run on any segment containing at least one detected nucleus (note that nucleus detection508

was performed previously as part of the segmentation and annotation workflow Consortium et al. 2021; Shapson-Coe et al.509

2021). To detect the soma, we first perform a temporary heavy decimation of the mesh to remove small features and facilitate510

detection of the large somatic compartment. We then segment this low-resolution mesh into contiguous submeshes using the511

CGAL mesh segmentation algorithm (Yaz and Loriot, 2023). This function not only provides the specific faces in each submesh512

but also an estimate of the width of the submesh as a SDF value (Shape Diameter Function, a measure of diameter at every513

face of the mesh surface Yaz and Loriot 2023). We then filter all the resulting submeshes for soma candidates by restricting514

to those within a set size (number of faces), SDF range, bounding box length and volume threshold. We restrict to candidates515

that are sufficiently spherical to represent the general shape of a soma, but liberal enough to account for somas that are partially516

reconstructed, for example at the edge of the volume. Once we identify candidate somas in the low-resolution mesh, we return517

to the original mesh representation (prior to starting soma detection) and apply a final size and width threshold. Given the initial518

restriction to segments with at least one detected nucleus, if we are not able to detect at least one soma after this process, we519

relax the thresholds slightly and iterate until a soma is detected or a threshold limit is reached.520

Decomposition. With the glia and nuclei submeshes identified, we filter those away from the original mesh, which may cause521

splitting into additional connected components. We identify connected components containing at least one soma submesh522

(note that some segmentations may contain multiple somas prior to soma splitting). Mesh fragments that are not connected to523

somas may be floating meshes inside the soma (which are filtered away using the same ambient occlusion methods described524

for glia above), or detached mesh pieces of neural processes that can be stitched to the neuron representation later. For each525

of the soma-containing meshes we filter away the soma submeshes and identify connected components of these meshes as526

stems. Any stem submesh must contain at least one set of connected adjacent edges and common vertices shared with a soma527

submesh ("border vertices"). We construct a connectivity graph where edges only exist between stem and soma nodes if there528

exists border vertices between the stem and the soma. Through the graph constructed in this manner, limbs that provide paths529

between multiple somas can be easily identified for subsequent splitting (see below).530

Each of the stem submeshes is then processed into a skeleton - a 3-D "line-segment" representation that is a set of vertices531

and edges. We use the Meshparty package for this initial round of skeletonization because of its efficient implementation,532

and because it provides both a width estimate and a correspondence between the faces of the original mesh and each vertex533

in the skeleton (Dorkenwald, 2022). This skeleton is then further divided into branches (non-branching subskeletons). The534

corresponding meshes of branches with an average width greater than a threshold are re-skeletonized with a higher-fidelity535

method that yields skeletons which pass through the hollow centers of the mesh to provide a better estimation of the location536

and curvature of the surrounding mesh. This is particularly important for some neural processes, for example wide apical trunks537

where a skeleton that is not centered within the mesh could be displaced nearly a micron from the actual center of the trunk.538

This higher-fidelity method is performed using the CGAL Triangulated Surface Mesh Skeletonization algorithm (Gao et al.,539

2023).540

For mesh correspondence and width determinations of all skeletons, the NEURD algorithm employs a custom mesh corre-541

spondence workflow based on the following steps: First, each non-branching segment of the skeleton is divided into smaller542

pieces, and for each piece a cylindrical search radius is used to identify the mesh correspondence. The closest distance between543

the skeleton and corresponding mesh faces is computed at multiple points along the skeletal segment, and these are averaged544
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to get a mean radius. Finally, all mesh correspondences of sub-branches are combined into the mesh correspondence of the545

branch. Concatenating the widths along the sub-branches forms a width array along the branch, with the entire branch width546

determined from the average of the array. This method results in one face of the original branch possibly corresponding to547

more than one branch’s mesh correspondence, so the algorithm employs a final graph propagation step from unique mesh548

correspondence faces to allow branches to claim the previously conflicting faces.549

The procedure described above yields a collection of disconnected non-branching skeletal segments as well as their asso-550

ciated mesh correspondence. The skeleton of finer-diameter processes is the initial MeshParty Dorkenwald (2022) skeleton551

which tracks along the mesh surface, while larger-diameter processes have skeletons that track through the center of their vol-552

ume. These pieces are then all stitched together into a single connectivity graph where each non-branching segment is a node,553

and the edges between them represent their connectivity. Any conflicts in the mesh correspondence of adjacent nodes at stitch-554

ing points is again resolved, yielding a smooth and connected mesh representation of the entire stem where each mesh face is555

associated with a single node (non-branching segment). This entire process is repeated for every stem submesh connected to556

the soma. Finally, all floating meshes outside the soma are decomposed in the same manner as the stems, and then appended to557

the existing skeleton if they have any faces within a threshold distance of another node (for example, in the MICrONS dataset558

the maximum stitch distance was set at 8 um).559

The soma(s) and decomposed stems of a neuron are then represented as a NetworkX graph object (Hagberg et al., 2008).560

In the ideal scenario there is a single soma root node with multiple stem subgraphs, and each stem subgraph is a directed561

tree structure representing the connectivity between non-branching segments of the skeleton from the most proximal branch562

connecting to the soma to the most distal leaves of the axonal or dendritic process. In less ideal cases (which are common),563

cycles may exist in the skeleton due to self-touches of the axonal or dendritic process (close proximities of neurites that are564

incorrectly meshed together), and multiple somas may be included in a single segmented object. Handling of these cases is565

described in "Multi-Soma and Multi-Touch Splitting" below. The soma node contains the soma submesh and SDF values566

generated during the soma extraction, and each branch node in each stem stores the mesh correspondence, skeleton and width567

array for that node. Using these raw features, many more features of these branches can be extracted (for example spines), and568

additional annotations can be added (such as synapses).569

Spine Detection. The non-branching segments produced by the mesh decomposition of each node present an ideal scenario570

for spine detection. Briefly, we started by using an existing mesh segmentation algorithms (Fabri et al., 2023) which calculates571

a local estimate of the volume for each face of the mesh (SDF), applies a Gaussian Mixture Model (GMM) to the distribution572

of SDF values to enable a soft clustering of faces to k clusters, and finally minimizes an energy function defined by the573

alpha-expansion graph-cut algorithm to finish with a hard cluster assignment over the mesh. This last step takes a smoothness574

parameter controlling the likelihood that adjacent faces with concave edges will be more or less likely to be clustered together.575

We found that setting the number of clusters to 3 and a smoothness of 0.2 was optimal to produce an over-segmentation of576

the branch mesh which serves as input to the next spine detection step. Then, we convert the branch segmentation into a577

graph representation (branch segmentation graph) where the nodes are submeshes of the segmentation and edges exist between578

submeshes with adjacent faces. The dendritic shaft subgraph is determined by establishing the longest contiguous shaft line579

path in the graph (from most likely node candidates defined by size, width and diameter thresholds), and then spine candidates580

are identified as subgraphs (not in the shaft path) based on size, volume, and distance from the mesh surface. The final product581

of this stage is the individual spine submeshes and then subsequently calculated spine statistics (volume, length, area). Based582

on these statistics, in some cases we perform an additional processing step that divides the submesh of larger spines into a spine583

head and spine neck. At the completion of this workflow, each mesh face in the node receives a spine label of head, neck, shaft584

or just "spine" (if no head and neck segmentation could be performed). Finally, the width of each branch is recomputed after585

removing spines that may have previously confounded that measurement.586

Synapse Addition. Synapses from the reconstruction pipeline are mapped to the closest mesh face of the closest branch. Any587

annotations of the associated face (for example) spine head, spine neck or shaft can then be propagated to the synapse. In588

addition, the closest skeletal point on the associated branch object is computed to define an anchor point for the synapse on the589

neuron’s skeleton. This anchor point enables computation of metrics such as skeletal walk distance to the closest spine, closest590

neurite branch point (upstream or dowstream) or skeletal walk distance to the soma.591

Multi-Soma and Multi-Touch Splitting. After the initial decomposition, cycles may exist in the stem graphs due to self-592

touches in the decomposed mesh (regions where neurites pass very close to each other, resulting in inappropriate connectivity593

of faces in the mesh representation). Furthermore, stems may include edges with multiple somas if two or more somas are594

merged together in the same mesh object. This is a challenging problem that requires a general solution since stems can be595

both multi-touch and multi-soma of any degree. For example, some apical stems of neurons in the MICrONS dataset were596

initially connected to 9 or more somas due to close mesh proximities with apical tufts of other cells. The aim of this stage in597

the processing pipeline is to split the stem objects optimally, while attributing the correct portion of the stem mesh and skeleton598

to the correct neurite.599
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The workflow for splitting both multi-touches and multi-somas proceeds as follows: For every stem identified as having a600

multi-touch or multi-soma connection, the process first starts by identifying cyclic or soma-to-soma paths. The best edge to cut601

on the path is then determined using a series of heuristic rules that are applied in the order listed below:602

1. Break any edge on the multi-touch or multi-soma path where the angle between the skeleton vectors of two adjacent603

branches on the path is larger than some threshold (reflecting the fact that neurite processes generally do not typically604

abruptly double-back).605

2. Break any edge on the multi-touch or multi-soma path where more than two downstream branches exist at a branch point606

and the best match for skeletal branch angle and width is not on the multi-touch or multi-soma path.607

3. Break any edge on the multi-touch or multi-soma path where there is a difference in width between two nodes along the608

path greater than a threshold amount.609

After an edge is removed based on any of these rules, the process restarts and the graph representation is checked again to610

see if cyclic or multi-soma paths still exist. The process is repeated until no such paths exist. If no candidate edge is identified611

by using these rules then, depending on the user settings, the the stem may be completely discarded from the neuron object or612

cut at the very first or last branch.613

This splitting algorithm is not guaranteed to optimally split all multi-soma or multi-touch paths, but residual errors from614

a sub-optimal split may be cleaned by further proofreading steps. As with any automated proofreading, the rule and relevant615

parameters that determined the edit are stored for subsequent evaluation and use.616

Excitatory/Inhibitory Classification. Once each neuron object has a single soma, the NEURD workflow moves on to an617

initial round of coarse cell classification, determining whether each neuron is excitatory or inhibitory. Performing the classi-618

fication at this point in the workflow enables the use of subsequent proofreading or annotation algorithms that are excitatory-619

or inhibitory-specific. For example, axon identification (see below) is much easier if the coarse E/I type of the cell is known620

beforehand. The cell class is determined via logistic regression on two features: postsynaptic shaft density (number of synapses621

onto dendritic shafts per micron of skeletal distance on the postsynaptic dendrite) and spine density (number of spines per622

micron of skeletal distance on the postsynaptic neuron). These two features enabled linearly-separable elliptical clusters for623

excitatory and inhibitory cells. To enable this classification prior to proofreading, we applied two restrictions to the unproofread624

graph that reduce potential confounds due to merge errors and ambiguity between axon and dendrite. First, we restrict to larger625

dendrites using a simple width threshold to not include potential orphan axon merges, and second, we restrict to the proximal626

dendrite within a limited skeletal walk distance from the soma center. The latter reduces confounds due to dendritic merge627

errors which are more common at the distal branches (Fig. 3d). When compared to human E/I labels, the classifier results are628

shown in Fig. 4a,b. These results are also robust against an approximate 10:1 and 1.8:1 excitatory to inhibitory class imbalance629

in the labeled MICrONS and H01 datasets respectively.630

Non-Neuronal Filtering. While all the neurons in the H01 dataset were hand-checked as neurons and manually annotated631

for cell types, the MICrONS dataset initially was not. Consequently, segments with nuclei in the MICrONS dataset could632

include blood vessels, glia cells, or agglomerations of orphan axons without a neuron mesh due to an incorrect nucleus merge,633

and we did observe this frequently in the version of MICrONS processed in this study, version 374 (but this issue is now634

largely resolved in the most current data release with tables that indicate which segments are predicted as non-neuronal, using635

a method independent from NEURD, and with more accurate nuclei merging). Therefore, in order to filter away almost all of636

these segments without sacrificing a significant amount of valid neurons, we found a suitable filter using cell type classification637

(predicted by our logistic regression model), number of soma synapses and the mean dendritic branch length. Specifically, the638

filter excluded the following: all segments with less than 3 soma synapses, excitatory cells with less than 17 soma synapses639

and a mean dendritic branch length less than 35 µm, and inhibitory cells with less than 17 soma synapses and a mean dendritic640

branch length less than 28 µm. This filter then removed approximately 14,000 segments from all of our downstream analysis.641

Axon Identification. The goal of this stage in the pipeline is to identify at most one connected component subgraph that642

represents the axon of the cell. In the absence of merge and split errors, identifying the axon would be a simple process of643

identifying the subgraph with presynaptic connections, but un-proofread datasets pose a number of challenges to this approach.644

1. Due to partial reconstruction of cells, the true axon may not exist or only the axon initial segment (AIS) may exist. In645

this case there would be no true presynaptic connections from the cell.646

2. Postsynaptic synapses on dendritic segments may be incorrectly labeled as presynaptic connections if the synapse classi-647

fier is incorrect.648
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3. Orphan axons may be incorrectly merged onto the cell’s dendrite or soma. These frequent merge errors add incorrect649

presynaptic connections onto dendrites that make identifying the true axon subgraph more difficult. Anecdotally, if650

the algorithm simply chose the connected component subgraph with the highest presynaptic density, this would almost651

always be an orphan-axon-onto-dendrite merge error.652

Our approach to axon identification is thus motivated by the following neuroscience "rules" which we implement as heuristic653

selection criteria. Note that in this and following sections "up" or "higher" refers to the pial direction, while "down" or "lower"654

refers to the white matter.655

1. Axons can either project directly from the soma or from a proximal dendritic branch.656

2. The axon is the only compartment (possibly excluding the soma) that forms presynaptic synapses.657

3. The width of axon segments are typically thinner than most dendritic branches658

4. Axon segments do not have spines (although boutons may have similar features)659

5. Axons receive postsynaptic inputs at the AIS, but these typically have low postsynaptic density compared to dendrites.660

(Note that we found the latter was not necessarily true in the H01 dataset and adjusted accordingly.)661

6. For excitatory cells, the axon typically projects directly from the soma or from dendritic limbs that originate from the662

deeper half of the soma.663

7. For excitatory cells, the AIS starts at most 14 µm skeletal distance from the soma and the general skeleton vector of the664

AIS typical projects downwards. The AIS does not split into multiple branches close to the soma.665

8. For inhibitory cells the AIS can start much farther away (up to 80 µm skeletal distance from soma) and can come off the666

soma or dendritic branch. The inhibitory AIS has very low postsynaptic and presynaptic density.667

NEURD identifies candidate axonal submeshes based on a combination of these heuristics applied in a cell-type-specific668

manner. For example, if the neuron being analyzed is excitatory, the search space of potential axonal stems is restricted to only669

those with a projection angle from the soma greater than 70 degrees relative to the top of the volume. Candidate AIS branches670

must fall within a maximum and minimum width range, they must have a synapse density below a threshold value, and they671

must be within a threshold skeletal distance from the soma that dictated by the cell type. If multiple potential candidates exist,672

the best potential axonal subgraph is selected based on longest skeletal length and closest proximity to the soma. Subgraphs673

that meet the heuristic criteria for axons but are not chosen as the actual axon of the cell in question retain a label of "axon-like"674

which facilitates subsequent proofreading.675

An additional round of skeletonization is performed once the axon is detected. This re-skeletonization better captures fine676

details of the axonal trajectory and enables auto-proofreading methods to catch more subtle axon-to-axon merge errors.677

Automatic Proofreading. The goal of the automatic proofreading stage is to identify merge errors and remove all down-678

stream branches (split errors resulting in missing portions of the axon or dendrite are not addressed by this process). NEURD679

implements a series of heuristic proofreading rules to identify merge errors based on graph filters - configurations of nodes680

and attributes that typically indicate merge errors. The graph filters are either directed one-hop or zero-hop configurations681

where one-hop configurations consider a node and it’s downstream nodes and zero-hop configurations consider only the node’s682

features itself. These graph filters have parameters that can be tuned for axons or dendrites, excitatory or inhibitory cells, or683

different data sources (H01 vs MICrONS). For example, a graph filter for resolving graph configurations of dendritic branches684

with 3 or more downstream nodes is useful for the H01 dataset which has more dendritic merge errors than MICrONS. Once the685

algorithm processes all filters, the mesh, graph nodes and synapses associated with all error branches are removed. Metadata686

for each correction is stored for subsequent review or for training non-heuristic models.687

The following graph filters exist for proofreading axon submeshes. Those only used for excitatory cell types are indicated.688

1. High Degree Branching: The filter identifies any node (below a potential width threshold to exclude myelinated sections)689

with more than two downstream nodes. The filter assumes this configuration results from a single or multiple crossing690

axon(s) merged at an intersection point, adding 2 or more additional downstream nodes. The filter aims to identify the691

one true downstream node. Possible upstream to downstream node pairings are filtered away if the width, synapse density692

or skeletal angle differ by threshold amounts. If multiple downstream nodes are viable, the algorithm attempts to find a693

downstream candidate with the best match of skeletal angle or width. If no clear winner exists, the algorithm can either694

mark all downstream nodes as errors if the user wishes to be conservative, or can pick the best skeletal-match candidate.695

There are more rare scenarios where a myelinated axon has 2 collateral projections protruding very close to one another696

and these would be incorrectly filtered away, but a large majority of these occurances are simply merge errors.697
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2. Low Degree Branching Filter: The filter processes any subgraph with one upstream node and exactly two downstream698

nodes and is only attempted on non-myelinated axon sections (as determined by a width threshold). The method attempts699

to find one of the following subgraph features within this directed 3 node subgraph, and if a match occurs either the700

algorithm marks all of the downstream nodes as errors or attempts to determine the correct downstream pairing.701

(a) Axon Webbing: An error is detected by an overly-thin mesh at the branching point of an upstream to downstream702

node. The filter attempts to differentiate between natural branching with cell membrane that forms a "webbing like"703

appearance as opposed to merge errors where no such thickening occurs.704

(b) T-Intersection: An error is detected by the presence of downstream branches that are thicker than an upstream705

branch and the downstream branches are aligned and resemble a continuous non-branching axon segment.706

(c) Double-Back (excitatory only): An error is detected when a downstream node "doubles-back" towards the upstream707

node at an unnatural skeletal angle.708

(d) Parallel Children (or Fork Divergence): An error is detected when the two downstream skeletons are nearly709

parallel without a natural gap between them.710

(e) Synapse At Branching: An error is detected if a synapse occurs very close to the branch point between upstream711

and downstream nodes; this usually indicates a merge of an orphan axon to a bouton segment.712

3. Width Jump: Processes a subgraph with any number of downstream nodes (only applies to non-myelinated sections).713

Any downstream node with an absolute width difference between segments above a certain threshold is marked as an714

error.715

The following graph filters exist for proofreading dendrite submeshes.716

1. Axon on Dendrite: Nodes that were previously labeled “axon-like” during the process of axon identification (see above)717

that do not end up in the axon submesh are marked as errors.718

2. High Degree Branching (H01 only, excitatory only, apical trunks excluded): An error is detected using the same algorithm719

as described above for the axonal High Degree Branching Filter except it is applied to dendritic nodes below a thresholded720

width.721

3. Width Jump: An error is detected using the same graph filter as described for axons but with larger width difference722

thresholds723

4. Double Back: An error is detected using the same algorithm and parameters as for axons above.724

APL Validation of Multi-Soma Splitting and High Confidence Orphan Merge Edits. Our collaborators at APL (Johns725

Hopkins University Applied Physics Laboratory) helped extensively validate multiple aspects of the NEURD automated proof-726

reading workflow. In particular, they provided information about the following:727

1. Validation of specific edits in the context of multi-soma splitting.728

2. Data about the time that proofreaders took to evaluate these split suggestions compared to other methods.729

3. Validation of specific edits focused on axon-onto-dendrite or axon-onto-axon merges730

This information made it possible to determine whether our suggestions for multi-soma split locations speed up the process731

(they do, more than three-fold), and if we could identify a set of heuristics and parameters for axon-on-dendrite and axon-732

on-axon merge correction that could be executed with high confidence on the entire volume without human intervention (we733

identified two classes of edits with performance >95%, and more than 150,000 of them have been applied to the MICrONS734

volume to date; see Fig. 10).735

A key method for both validating and applying automatic edits was the functionality in Neuroglancer (Perlman, 2019) which736

allows the placement of point annotations to define a split in the PyChunkedGraph segmentation (Dorkenwald et al., 2022a,b).737

To facilitate the proofreading process, APL created a web-based interface called NeuVue (Xenes et al., 2022) that allows for738

the efficient queuing, review and execution of split suggestions in Neuroglancer. We built the logic required to translate mesh739

errors identified by NEURD into split point annotations that can be executed by the NeuVue pipeline. This capability allowed740

proofreaders at APL to not only evaluate error locations identified by NEURD, but also a proposed set of points that could741

be subsequently executed in the PyChunkedGraph to correct the error. For a more detailed description of the NeuVue review742

pipeline see (Xenes et al., 2022).743

For multi-soma split edits, we generated point annotations for suggested splits that would contribute to separating neurons744

with between 2 and 6 possible somas in a single segment. APL had both experts and trained student proofreaders review these745

edits. The classifications for each of the edits was one of the following:746
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1. “yes”: same split point annotations the proofreader would have chosen.747

2. “yesConditional”: split point is correct, but point annotations required very minor adjustment.748

3. “errorNearby”: split point is not correct but is very close by, and split point annotations require adjustment749

4. “no”: the correct split location was not at or near the suggested location750

The expert proofreaders reviewed 5134 unique suggestions with no overlap between proofreaders, while the student proof-751

readers reviewed 2355 suggestions with some redundancy so the same suggested edit was seen by multiple student proofreaders752

and a majority vote determined the classification of the edit. The results of reviewing the first approximately 4000 of those ed-753

its are shown in Fig.10a and the accuracy was determined to be 76.12% when the “yes”,”yesConditional” and “errorNearby”754

categories were considered true positive classes. Additionally, because each split suggestion had an associated heuristic rule755

and set of parameters that was used to generate the suggestion, we were able to show that some rules were much higher fidelity756

than others, and that the parameters could be tuned to achieve a higher classification accuracy (Fig.10b,c).757

To compare against the performance achieved with NEURD suggestions, multi-soma splits were also performed by expert758

proofreaders using a tool that highlighted the path along the neural processes connecting two somas. This comparison enabled759

us to measure if the NEURD suggestions could potentially speed up the soma-splitting process. Because a single segment with760

a multi-soma merge could contain more than 2 somas and because different merges may require a different amount of work761

and number of cuts to be applied, we measured the overall time spent reviewing all edits and estimated the additional time762

that would have been required to make the slight adjustments required in the case of "yesConditional" (+30s) or "errorNearby"763

(+60s), prior to executing the edit. Note that “no” classifications added time to the review process without any possibility of764

contributing to an actual edit. Based on these metrics, we divided total time by total number of edits to determine the mean765

time per edit. We then compared this metric to the mean time per edit when proofreaders used a standard pathfinding tool that766

displayed the skeletal path connecting multiple somas, and they had to search along this path to identify errors manually. We767

observed a more than three-fold speed up when using NEURD suggestions (Fig.10d).768

Finally, outside the context of multi-soma splitting, APL proofreaders evaluated two kinds of merge error corrections that769

strip orphan axons from both excitatory and inhibitory neurons: axon-on-dendrite, and high degree axon-on-axon. The feedback770

on each error from proofreaders using the NeuVue pipeline allowed us to determine a subset of parameters that was correlated771

with high accuracy. Thresholds for the axon-on-dendrite included minimum parent width, distance from the soma, and skeletal772

length of the error segment. Thresholds for axon-on-axon included a minimum skeletal length, and a branching pattern that773

resembled a two line segment crossing, where the segments are closer to perpendicular in order to make the correct connectivity774

more obvious. For the review of orphan merge errors, an additional label was included in the true positive class: "yesPartial",775

which indicated that part but not all of the merge was removed by the split point annotations. The feedback from this effort776

provided our collaboration with enough evidence to then apply nearly 150,000 of these high-confidence automatic edits back777

into the current dynamic segmentation of the MICrONS dataset (Fig.10e).778

Automatic Compartment Labeling. After automatic proofreading removes as many merge errors as possible, compartment779

labeling is performed for excitatory cells, classifying graph submeshes as apical trunk, apical tuft, basal, and oblique. NEURD780

first attempts to identify the apical trunk based on the geometry relative to the soma and total skeletal length. Branches781

downstream of the end of the apical trunk are classified as the apical tuft, and branches off of the trunk with a skeletal angle782

close to 90 degrees are labeled as oblique. If the criteria for a defined trunk is not met, then NEURD applies a generic "apical"783

label. Other dendrites are classified as basal. Additionally, for the MICrONS dataset if the soma center is close enough to the784

pia as defined by a depth threshold, there can be multiple generic "apical" stems protruding from the top of the soma if they785

each meet the required width and geometry thresholds.786

Connectome-level features computed by NEURD. At the level of the connectome graph, nodes represent individual single-787

nucleus neurons and edges represent synaptic connections. In addition to the rich sub-cellular features that NEURD computes788

for the decomposition graph of each cell, NEURD provides a variety of features at the connectome graph level:789

1. Node Attributes: a wide range of global properties measured for the individual cells (compartment skeletal lengths,790

synapses, bounding box, spine densities, synapse densities, average width, cell type, etc).791

2. Edges: connections between neurons with a valid presynaptic connection and postsynaptic connection where neither792

were filtered away in the auto-proofreading stage793

3. Edge Attributes: properties for each of the presynaptic and postsynaptic neurons (compartment, skeletal/euclidean794

distance to neuron’s soma, size, spine label) and properties of the entire synaptic connection between neurons (eu-795

clidean/skeletal distance from soma of presynaptic neuron to soma of postsynaptic neuron, etc).796
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GNN Cell Typing. Using PyTorch geometric software (Fey and Lenssen, 2019) we implemented a Graph Neural Network797

architecture to build a supervised cell type classifier (including subclasses of excitatory and inhibitory cells) from dendritic798

graph structure in the NEURD decompositions. We trained this classifier using manual cell types from the Allen Institute799

for Brain Science (Schneider-Mizell et al., 2023). To create an input graph for the classifier we first removed the soma node800

and filtered away the axonal subgraph and any dendritic stems with less than 25 µm of total skeletal length. Each node was801

annotated with the following feature set:802

1. Skeleton features, where theta and phi refer to polar coordinates of the skeleton vector in 3-D (skeleton_length,803

skeleton_vector_upstream_theta, skeleton_vector_upstream_phi, skeleton_vector_downstream_theta,804

skeleton_vector_downstream_phi)805

2. Width features (width, width_upstream, width_downstream synapse)806

3. Spine features (n_spines, spine_volume_sum, n_synapses_post, n_synapses_pre, n_synapses_head_postsyn,807

n_synapses_neck_postsyn, n_synapses_shaft_postsyn, n_synapses_no_head_postsyn,808

synapse_volume_shaft_postsyn_sum, synapse_volume_head_postsyn_sum, synapse_volume_no_head_postsyn_sum,809

synapse_volume_neck_postsyn_sum, synapse_volume_postsyn_sum)810

For the whole neuron classifier, the soma volume and number of soma synapses for the neuron are added to each node’s811

feature vector and also the starting stem angle (2-D angle between the vector from the soma center to the stem’s root skeleton812

point and the vector in the direction of the pia) is added to each node in every stem. For the stem-based classifier, these three813

soma features are not included, and classification is performed on each stem individually.814

The GNN architecture used as a 2 layer Graph Convolutional Network (128 hidden units for each layer, ReLU activation815

function) followed with one linear layer. The aggregation and update steps were implemented using self loops and symmetric816

normalization as shown here:817

h(k)
u = σ

W(k)
∑

v∈N (u)∪{u}

hv√
|N (u)||N (v)|


where h(k)

u is the embedding for node u at layer k, N (u) are the neighbors for node u, W(k) is the learned weight matrix818

at layer k and σ is the chosen non-linearity. For graph pooling (to get one learned vector for each graph), the weighted average819

of all nodes after the final hidden layer was taken (weighted by the skeletal length of the node). A 60%, 20%, 20% split for820

training, validation and test sets was used for labeled datasets of n = 873 whole neurons and n = 4,114 stems (Fig.19)821

Proximities. Identifying axon-dendrite proximities makes it possible to determine how often a pair of neurons capitalizes on an822

opportunity to form a synaptic connection. Proximities are regions where the axon of one neuron passes within a few microns823

of the dendrite of another neuron. They can be annotated with the same features (dendritic compartment, neural subtype)824

as synapses, regardless of whether a connection was formed (Fig. 6b). Proximities are identified for all neuron pairs in the825

volume. To reduce the number of pairwise computations, NEURD first checks whether the bounding box of the presynaptic826

axon skeleton and postsynaptic dendrite skeleton have any overlap. In order to reduce computation time in the the MICrONS827

dataset, presynaptic neurons are further restricted to those with at least five axonal synapses, and in the MICrONS volume828

postsynaptic neurons are restricted to neurons with at least 1 mm of dendritic length (this restriction excludes approximately829

1% of all MICrONS neurons).830

The proximity calculation is performed by converting the axonal skeleton of the presynaptic neuron and the postsynaptic831

skeleton to an array of coordinates without edges (at one micron skeletal walk resolution). A local width and compartment label832

is associated with every point, and the soma of the postsynaptic neuron is converted to a uniform sampling of the surface mesh833

face centers for its skeletal representation. The cleaned synaptic connections between the pre and post neuron are retrieved (if834

there were any) and then the main proximity loop begins.835

1. The closest distance between a presynaptic coordinate and postsynaptic coordinate is computed (where the distances can836

be adjusted for postsynaptic width by subtracting the local width from the euclidean distance). This minimum distance837

is the current proximity distance. If the current proximity distance exceeds the thresholded maximum proximity distance838

(set at 5 µm for both the MICrONS and H01 dataset), then the loop is exited and no more proximities are computed, but839

otherwise the workflow proceeds.840

2. The following metrics are computed or collected for each proximity: The presynaptic and postsynaptic coordinate of841

the minimum distance pair, the distance between these coordinates (the proximity distance), the compartment labels and842

width at the postsynaptic coordinate, the presynaptic and postsynaptic skeletal walk distance, the number of spines and843

synaptic connections within a three micron radius of the presynaptic and postsynaptic coordinates.844
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3. After these features are collected, the skeleton points within a set radius (10 microns) of the presynaptic proximity845

coordinate are filtered away from the array of axon presynaptic coordinates.846

4. All proximity information is saved and the loop continues until the current proximity distance exceeds the threshold.847

Functional Connectomics. We considered pairs of synaptically-connected functionally-matched cells available in the MI-848

CrONS dataset, restricting to pairs where both neurons met a minimal set of functional quality criteria (test score greater than849

0.2 and an oracle score greater than 0.3, see Ding et al. 2023; Wang and Tolias 2023). Synaptic connections were discarded850

if they were not onto postsynaptic spines (to help guard against possible inhibitory merge errors resulting in increased con-851

nectivity between neurons). We then divided the pairs into groups based on whether they had 1, 2, 3 or 4+ synapses between852

them. The final number of functionally matched pyramidal pairs available from automatic proofreading alone were as follows:853

1 synapse (5350), 2 synapses (280), 3 synapses (34) and 4+ synapses (11). We then investigated how the mean functional854

response correlation varies as a function of the four different multi-synaptic groups. The response correlation was calculated as855

detailed in (Ding et al., 2023; Wang and Tolias, 2023) through the in silico response correlation of their model.856
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Supplementary Figures1140

Fig. 8. Mesh Processing Pipeline Validation a) (MICrONS) Validation scores of automatic submesh (compartment) identifica-
tion in comparison to human labels. This data set was produced by randomly presenting processed mesh segments to human
annotators who evaluated automatic labels as true positive, true negative, false positive, or false negative (TP,TN,FP,or FN) for
each structure. Only glia merges larger than the volume of a 5 µm sphere were considered glia merges in this processing step.
The “spine (> 0.7 um)” row reports the agreement between the automatic spine detection and human spine labeling for spines
with a skeletal length greater than 0.7 um. Below this threshold there was disagreement even among human proofreaders about
whether small protrusions should be classified as a spine or not. b) Identical validation scores for H01 dataset.

Fig. 9. Automatic Submesh (Compartment) Labeling Validation a) (MICrONS) Confusion matrix comparing automatic sub-
mesh labeling to human labels (random sampling of 158 processed cells). Here the TP,FP,TN,FN metrics are computed using
skeletal length agreement for each compartment. Therefore, cells with longer stems or cells with more stems of a certain com-
partment type more heavily influenced the scores due to the skeletal length weighting. b) (H01) Confusion Matrix comparing
automatic submesh labeling to human labeled submeshes (random sampling of 89 processed cells). Across both datasets, com-
partment labeling was nearly perfect for axon, basal, and apical compartments, but was less consistent for sub-compartments
of the apical stem.
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Fig. 10. Proofreading Validation All validation was performed by the proofreading team at Johns Hopkins University Applied
Physics Laboratory (APL). In an initial round of validation, suggested error locations were evaluated in the context of splitting
multi-soma cells in the MICrONS volume. As a result we were able to measure both the accuracy of these proofreading rules
and the speed benefits of a semi-supervised approach compared to fully-manual proofreading. Additionally, the accuracy of a
two automatic proofreading rules with high-confidence parameters (axon on dendrite, high degree axon on axon merges) were
evaluated. a) Validation of split locations predicted by automatic multi-split algorithm. "Yes" (indicates that the proposed split can
be executed immediately), "Error Nearby" indicates that the split location is correct within 20 µm, but that the human proofreader
slightly modified the suggested split points, and "No" indicates that the true split location was far from the predicted location
or no merge error was detected by the human proofreader.). The heuristic splitting rules are applied in the order indicated by
the legend. The automated proofreading accuracy varied substantially over the different heuristic rules with an overall accuracy
of 76.12 % when yes and Error Nearby are considered true positives. The best-performing rules can be selected for different
datasets. b) Even for a single rule, thresholds can be tuned to optimize performance. Manual Classification of split locations
predicted by the "Double Back" rule as a function of the angle measured at each predicted location illustrates that a higher
accuracy could be achieved by setting a higher threshold for this algorithm. c) Manual Classification of split locations predicted
by the width jump rule as a function of the width jump at each predicted location illustrating another example where interpretable
thresholds can be adjusted for higher precision. d) Time statistics collected as humans performed manual tasks of splitting
multi-soma neurons either using a tool that showed the path along the mesh between two somas or using the suggested split
locations from our automatic multi-split algorithm. The speed at which humans could apply cuts in the correct locations more
than tripled when using suggestions provided by the NEURD multi-split algorithm. Note: The validation is measured as the
average amount of time for a single edit in the multi-soma splitting process; a single multi-soma split might require 20 or more
edits to completely resolve the merge. e) Accuracy of two automatic proofreading rules with high-confidence parameters (high
degree axon on axon, axon on dendrite).
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Fig. 11. Counts and total skeletal length of merge errors corrected during automated proofreading. The different heuristic
rules are presented from top to bottom in the order that they are implemented in the automated proofreading workflow. Note that
errors identified by rules later in the workflow are excluded from these statistics if they are found on already-errored segments
identified earlier in the workflow. a) (MICrONS) Total number of separate locations where a specific heuristic rule corrected a
merge error. b) (MICrONS) Total skeletal length eliminated by each heuristic rule. c) (H01) Total number of separate locations
where a specific heuristic rule corrected a merge error. d) (H01) Total skeletal length eliminated by each heuristic rule.
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Fig. 12. Spatial Distribution of MICrONS Merge Edit Locations. The distribution of locations show biases in the volume
for certain types of merge edits. These spatial biases may be due to segmentation or slicing defects, or differences in the
concentration of different kinds of neuropil throughout the volume. a - f) X,Y merge edit locations for different heuristic rules g -
l) X,Z merge edit locations for different heuristic rules
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Fig. 13. Spatial Distribution of H01 Merge Edit Locations. The distribution of locations show biases in the volume for certain
types of merge edits. These spatial biases may be due to segmentation or slicing defects, or differences in the concentration of
different kinds of neuropil throughout the volume. a - g) X,Y merge edit locations for different heuristic rules h - n) X,Z merge
edit locations for different heuristic rules
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Fig. 14. Supplemental MICrONS Auto Proofreading Validation. Validation metrics and visualizations of the automatic proof-
reading step when comparing the edits made by the automatic proofreading algorithm to edits made by human proofreaders.
Metrics reported for “With Ext” refer to the skeleton or synapse validation compared to a human proofreader who both cleaned
the existing cell of merge errors and added back missing axon and dendrite segments, whereas “Without Ext” refers to a com-
parison of only cleaning away merge errors. The number of cells in the test set were 122 excitatory and 75 inhibitory. Metrics
reported for “No Proofreading” refer to how the raw cells without any proofreading would compare to after human proofreading,
thus giving a sense of error rates of the raw segmentation. Histograms (panels e - p) give a visual representation of the metrics
reported in the precision/recall tables (panels a - d). FN classifications can exist before automatic proofreading because of drop-
ping axon/dendritic segments in the mesh and graph processing pipeline prior to the automatic proofreading step. Note: neurons
with multi-soma merges are included in these visualizations and metrics. a) The precision/recall metrics comparing the skeleton
length of cells after automatic proofreading for the Axon/Dendrite compartments and for different exc/inh cell types when com-
pared to human proofreading with extension and without. b) The precision/recall metrics comparing the skeleton length of cells
with no automatic proofreading. c) The precision/recall metrics comparing the synapse counts of cells with automatic proofread-
ing. d) The precision/recall metrics comparing the synapse counts of cells with no proofreading. e - h) TP/FN/FP classification
of each test cell’s skeletons before and after automatic proofreading for both excitatory and inhibitory cells, demonstrating a
large percentage of the FP skeleton segments are removed after the process. i - l) TP/FN/FP classification of each test cell’s
dendrite synapses (postsyns) before and after automatic proofreading for both excitatory and inhibitory cells, demonstrating a
large percentage of the FP postsyns are removed after the application of dendrite proofreading heuristics. m - p) TP/FN/FP
classification of each test cell’s axon synapses (presyn) before and after automatic proofreading for both excitatory and inhibitory
cells, demonstrating a large percentage of the FP presyns are removed after the application of axon proofreading heuristics.
Those axon presyns located not on the main axon but on dendritic segments are filtered away and designated as “Presyn From
Dendrite”, which does not include the heuristic rule of “Axon on Dendrite” but instead just filters away any presyns located on
dendritic segments that were not filtered away using the heuristic rules.
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Fig. 15. Supplemental MICrONS Multi-Soma Auto Proofreading Validation. The precision/recall metrics comparing the
synapse counts of cells before and after automatic proofreading for the Axon/Dendrite compartments and for different excita-
tory/inhibitory cell types when compared to human proofreading. a) Validation when only considering neurons with at least one
soma merge to the main segment (19 excitatory, 12 inhibitory). b) Validation when only considering neurons with no soma
merged to the main segment (103 excitatory, 76 inhibitory).
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Fig. 16. Supplemental H01 Auto Proofreading Validation. Validation metrics and visualizations of the automatic proofreading
step when comparing the edits made by the automatic proofreading algorithm to edits made by human proofreaders. Metrics
reported for “With Ext” refer to the skeleton or synapse validation compared to a human proofreader who both cleaned the ex-
isting cell of merge errors and added back missing axon and dendrite segments, whereas “Without Ext” refers to a comparison
of only cleaning away merge errors. The number of cells in the test set were 49 excitatory and 18 inhibitory. Metrics reported
for “No Proofreading” refer to how the raw cells without any proofreading would compare to after human proofreading, thus
giving a sense of error rates of the raw segmentation. Histograms (panels e - p) give a visual representation of the metrics
reported in the precision/recall tables (panels a - d). FN classifications can exist before automatic proofreading because of
dropping axon/dendritic segments in the mesh and graph processing pipeline prior to the automatic proofreading step. Note:
While perfectly extending all axonal and dendritic processes is not yet possible, the extent to which neurons were extended in
the manually proofread set from the H01 dataset are much less extensively extended in comparison to those of the MICrONS
dataset; therefore, the recall numbers for the "With Ext" categories in the H01 validation are much more likely an over-estimate
in comparison with those of the MICrONS dataset. a) The precision/recall metrics comparing the skeleton length of cells after
automatic proofreading for the Axon/Dendrite compartments and for different exc/inh cell types when compared to human proof-
reading with extension and without. b) The precision/recall metrics comparing the skeleton length of cells with no automatic
proofreading. c) The precision/recall metrics comparing the synapse counts of cells with automatic proofreading. d) The preci-
sion/recall metrics comparing the synapse counts of cells with no proofreading. e - h) TP/FN/FP classification of each test cell’s
skeletons before and after automatic proofreading for both excitatory and inhibitory cells, demonstrating a large percentage of
the FP skeleton segments are removed after the process. i - l) TP/FN/FP classification of each test cell’s dendrite synapses
(postsyns) before and after automatic proofreading for both excitatory and inhibitory cells, demonstrating a large percentage of
the FP postsyns are removed after the application of dendrite proofreading heuristics. m - p) TP/FN/FP classification of each
test cell’s axon synapses (presyn) before and after automatic proofreading for both excitatory and inhibitory cells, demonstrating
a large percentage of the FP presyns are removed after the application of axon proofreading heuristics. Those axon presyns
located not on the main axon but on dendritic segments are filtered away and designated as “Presyn From Dendrite”, which does
not include the heuristic rule of “Axon on Dendrite” but instead just filters away any presyns located on dendritic segments that
were not filtered away using the heuristic rules.
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Fig. 17. Proofread Neuron Examples with Merge Errors Labeled Examples of excitatory and inhibitory neurons from both the
MICrONS and H01 dataset after automatic proofreading (green) with the removed merge errors shown (red). a,b) (MICrONS)
Example excitatory cells in the 50th and 90th percentile of merge error skeletal length removed. c,d) (MICrONS) Example
inhibitory cells in the 50th and 90th percentile of merge error skeletal length removed. e,f) (H01) Example excitatory cells in
the 50th and 90th percentile of merge error skeletal length removed. g,h) (H01) Example inhibitory cells in the 50th and 90th
percentile of merge error skeletal length removed.
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Fig. 18. GNN Classifier Whole Neuron UMAP Embeddings. a) Embeddings before the final linear layer and softmax function
with hand labeled cells from (Schneider-Mizell et al., 2023) overlaid (these labels were used for the training and validation
process of GNN). Cell-type separation is evident at this stage indicating that the classifier has learned useful features prior to
the readout. b) Embeddings after the final linear layer with cell type labels from (Schneider-Mizell et al., 2023).
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Fig. 19. GNN Classifier Train/Validation/Test Confusion. Confusion matrix of predicted and actual neuron counts from each of
the 60:20:20 Train/Validation/Test splits used in the supervised training process of the Graph Neural Network cell type classifier.
All ground truth labels were from hand-annotated classes described in (Schneider-Mizell et al., 2023). Color intensities are from
normalized values in reference to the summation of a given row. a-c) Confusion matrix (neuron counts) for the GNN Classifier
using the entire neuron graph including the somatic root node. d-f) Confusion matrix (stem counts) for the GNN Classifier applied
to a single stem (a single projection from the soma), without any information about the soma itself.
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Fig. 20. Various morphological features computed by NEURD. Histograms and bar graphs of a variety of salient features
computed by NEURD, colored by the labels generated from the GNN classifier. Some plots are replicating previous work
from (Elabbady et al., 2022). a) Spine density (number of spines per µm of skeletal length) distributions from automatic spine
detection. As has been previously reported (Azouz et al., 1997), layer 2/3 pyramidal cells are more densely spiny than layer
4, and MC spine density is higher than other inhibitory cells. b) Soma volume computed during the soma detection step in the
NEURD mesh processing pipeline. As expected, 5P-NP, 4P and BPC generally have smaller somas than other cells from their
same excitatory or inhibitory class while 5P-ET and BC are larger than other cells in the same class (Elabbady et al., 2022).
c) Width measurements generated from the average distance of the inner skeleton to the mesh surface (radius approximation)
at the beginning of the apical trunk protrusion. Compared to other cell types, 4P and 5P-NP cells have smaller trunks, while
5P-ET are larger. d) Average number of synapses onto the axon initial segment (AIS) for different cell types. As expected, 23P,
5P-ET, and 5P-IT cell types are more densely innervated on their AIS (Schneider-Mizell et al., 2021) AIS is defined as within 10
µm - 40 µm skeletal distance of the soma, and error bars are standard deviation. e) Average skeletal length of non-branching
dendritic segments for stems of different cell type subclasses, illustrating that NGC have significantly shorter distances between
branch points in their dendrites than other inhibitory cells. f) Distributions of synapses onto the soma illustrating the expected
larger average number of soma synapses for 5P-ET and BC and smaller numbers for 5P-NP and NGC (Elabbady et al., 2022).
g) Distributions of radius approximation for the start of the axon protrusion from either a dendrite or the soma, showing smaller
typical widths for 5P-NP and BPC and larger starting widths for 5P-ET.
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Fig. 21. Synapses onto AIS and Soma Comparison a-b) Example neuron with synapses onto the axon (AIS synapses) in
yellow and synapses onto soma in blue. Example neurons are both in the 75th percentile of the number of AIS synapses in
their respective volumes. c) Distribution of the number of AIS synapses per cell compared across datasets, emphasizing the
increased innervation of the AIS for neurons in the H01 dataset in comparison to MICrONS. d) Distribution of the number of
soma synapses per cell. As expected, neurons in the MICrONS volume have more identified synapses onto their soma, despite
the smaller surface area of mouse somas compared to human (Wildenberg et al., 2021). e-f) Depth bins used for analysis of
both synapses onto AIS vs depth (Main Fig. 5f,g) and synapses onto soma vs. depth (this figure, panels g,h). g-h) Average
number of synapses onto the soma of cells varies across depth (mean +/- std), decreasing in deeper layers of the MICrONS
volume, but increasing in deeper layers of the H01 dataset.

Fig. 22. Neuron Dendritic Branching Characteristics. Measurements related to leaf nodes (terminating ends of the dendritic
stem) excluding apical dendrites. a) Distributions of the number of total leaf nodes for the non-apical dendrites of each neuron
separated by inhibitory cell type. As expected, NGC cells have the most leaf nodes of any inhibitory cell type, while BPC have
fewer leaf nodes compared to other interneurons. b-c) Histogram for all the non-apical dendritic stems of every neuron in the
volume comparing the initial width of the stem to the number of leaf nodes. For both the MICrONS (b) and H01 (c), there is a
significant positive correlation.
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Fig. 23. Postsynaptic Spine Feature Analysis Here we compare the distributions and correlations of certain spine features;
replicating and expanding on previous work. The MICrONS dataset is analyzed in a-f) and the same analysis is repeated for
H01 in g-l). a-b,g-h) As expected, for synapses onto the spine head, the size of the synaptic cleft and the volume of the spine
head mesh are strongly positively correlated, while cleft size and neck width are positively but more weakly correlated (Harris
and Stevens, 1989; Arellano et al., 2007). c,i) For synapses onto the spine neck, the width of the spine neck and the synaptic
cleft volume of synapses are positively correlated. d,j) KDE of the joint distribution of the spine neck synaptic cleft volume with
spine head synaptic cleft volume for different postsynaptic cell types (exc/inh), illustrating the different joint distributions for each
cell type. For synapses onto spine heads, synaptic size has a wider range for excitatory cell spines than inhibitory cell spines in
both volumes. For synapses onto spine necks, the range of synaptic size is larger for inhibitory cells in the MICrONS volume,
but similar in the H01 dataset. e,k) Spine head volume is positively correlated with spine head synaptic cleft volume for both
excitatory and inhibitory neurons in both datasets. f,l) Average number of synapses on all spines and spine heads for different
cell types, indicating that in both datasets inhibitory spines receive more synapses per spine than excitatory spines.
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Fig. 24. Spine and Synapse Connectivity Analysis. We revisted the spine analysis in Fig. 23 taking into account information
about the identity of the presynaptic neuron for each synapse. a-b) KDE distribution relating the postsynaptic spine head volume
and the synapse cleft volume for synapses onto excitatory cells given different presynaptic cell types. In both datasets a signifi-
cant positive correlation between spine head volume and synapse size is observed only when the source cell is excitatory but not
when the source is inhibitory. c-d) CDF of the spine head volume for postsynaptic excitatory cells given different presynaptic cell
types. For the MICrONS dataset, inhibitory presynaptic cells typically target larger spine heads but this trend is not significant in
H01. e-f) As a possible explanation of why inhibitory cells target larger spine heads, a plot of the average number of synapses on
a spine head conditioned on the presynaptic cell type shows that spine heads targeted by inhibitory neurons generally have two
synapses as opposed to a mean closer to one synapse per spine for excitatory synapses. g,h) Expanding on the observation
that inhibitory cells typically synapse onto spines with more than one synapse, for spines with multiple synapses, we plot the
relative size of a spine head synapse to the size of the largest synapse on that same spine head (mean +/- std) given different
presynaptic cell types. We observe that the synapse from an inhibitory source is typically much smaller than the largest synapse
on the spine head in both the MICrONS and H01 dataset. i,j) CDF of the distribution of synapse cleft volumes for different
connections types show a similar trend between the MICrONS and H01 dataset where the synapses with excitatory presynaptic
cells are typically larger than inhibitory cells and synapses onto inhibitory cells are typically smaller than those onto excitatory.
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Fig. 25. Connectome Network Statistics Table a) Network statistics of the MICrONS and H01 connectomes where "edges"
refer to synapses between neurons, "raw" refers to synaptic data before any processing with NEURD, and "auto" refers to the
connetome produced after the decomposition pipeline and automated proofreading.

Fig. 26. Conversion Rate vs Proximity Relative Depth. Proximities are binned (approximate equal depth bins) in terms of
their relative depth to the presynaptic soma center (proximity depth - presynaptic soma depth) and then the mean conversion
rate (number of synapses/ number of proximities) for that bin is computed for different connection types. a) Conversion rate as
a function of relative proximity depth in the MICrONS volume, demonstrating that the conversion rate for excitatory connections
onto both excitatory and inhibitory postsynaptic cells is greater when the proximity is above the soma (for both connection types)
b) Same plot for H01; the conversion rate as a function of relative proximity depth, demonstrating a greater conversion rate above
the soma than below, but with an additional reduction in conversion rates close to the soma that is not seen in MICrONS.
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Fig. 27. Conversion Rate Cell Type Matrix The conversion rates (number of synapses / number of proximities) for different
presynaptic and postsynaptic cell type pairs. The cell type labels are determined by the GNN whole neuron classifier. Proximities
are filtered to only include those with the following features: less than 3 µm proximity distance, dendrite only postsynaptic
compartment, presynaptic proximity width less than 130 nm (to exclude myelinated axon), presynaptic and postsynaptic cell type
labels with at least a 70% confidence for each from the GNN classifier. a) Conversion rate for different cell type presynaptic and
postsynaptic combinations b) Number of proximities in dataset used to calculate conversion rate
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Fig. 28. Higher Order Triangle Motif Analysis. We count the number of directed triangle motifs in the synaptic and proximity
connectome and compare the observed ratios to null ratios from three different models: first, a model where synaptic degree
distribution is held the same but edges are shuffled (configuration model), second, a model where the synaptic edges are shuffled
only between neurons with an existing proximity edge, or third, a model where synapses are random shuffled between neurons
regardless of proximity. a) MICrONS dataset relative frequencies (duplicated from Fig. 6j) showing that the relative frequency
of higher motifs in the synaptic connectome decreases as the number of edges in the motif increases (more higher order),
but are consistently higher than the null model controls (250 random graph samples for each null distribution comparison). b)
H01 dataset relative frequencies showing that the relative frequency of higher motifs in the synaptic connectome decreases as
the number of edges in the motif increases. The observed motif frequencies are again higher than the null model, but many
of the motifs with more than three directed edges are not observed due to the more incomplete reconstruction of neurons in
H01 (400 random graph samples for each null distribution comparison, more samples were computed than MICrONS because
computation was faster with a smaller connectome).
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