














Fig. 5. Connectome models accurately predict neuronal and circuit level properties in zebrafish, mouse, and C. elegans. (a) The Indegree distributions predicted by
the selected models for all three connectomes. Black line - empirical indegree/outdegree distributions. Colored histograms - the 5th and 95th percentile computed from 500
samples from each model. (b) Same as in (a) but for the outdegree distribution. (c) Predictions of triplet network motifs. Error bars correspond to the 5% and 95% quantiles
across 500 samples from each model.

in shaping the function of the network. We found that models
that included the reciprocity in connectivity between neurons
were very different than those that did not in their ability to
perform the whitening computation (Fig. 6f, top). Interest-
ingly, this was also the case for the likelihood values of the
models. Out of the models that include reciprocity, the ones
that also include preferential attachment within glomeruli
showed stronger decorrelation than those that did not (Fig. 6f,
bottom). Therefore, our results reflect the importance of
these two structural properties in the context of the whiten-
ing computation.

Model inaccuracies reveal new design features of the
connectome. The selected feature-based models we pre-
sented offer a highly accurate “working draft" of the design
principles of the connectomes we studied, yet they can prob-
ably be improved, up to the inherent biophysical noise in

neuronal wiring and biological diversity across individuals.
Improving such models could be achieved by assuming or
guessing which new features one might add to the model.
However, a particular strength of our framework is that the
discrepancies between the model and the data must rely on
“orthogonal" or independent features (see below), and this
can be used to generate new hypotheses of additional design
mechanisms. As an example, we focus here on the connec-
tivity between 69 ventral cord motor neurons in C. elegans,
which are connected by 352 chemical synapses. The left
panel in Fig. 7a shows that when this connectivity matrix is
ordered by the names of the neurons, distinct diagonal con-
nectivity patterns within specific sub-matrices are apparent.
The model we presented for the connectome of the whole
worm in Fig. 3 captures some of these structures (namely, the
blocks within the matrix that show a higher synaptic proba-
bility on the diagonal of each block), but fails to differentiate
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Fig. 6. Connectome model generates neural circuits that recapitulate the computation performed by the olfactory bulb in zebrafish. (a) Simple model of the
transformations of MC activity patterns by feedback inhibition (following (34): Input activity patterns (MC activity at t1) were multiplied by the feed-forward connectivity matrix
MCæIN, then normalized, with the result thresholded at 2.8. The resultant IN activity patterns were multiplied by the feedback connectivity matrix INæMC, yielding odor-
specific patterns of feedback inhibition, which were subtracted from the MC activation patterns. Scaling factors and thresholds were adjusted such that the effects on the
mean activity were small (adapted from Extended Data Figure 5 in (34)). (b) The distribution of the mean correlation at t2 (averaged across all six odor pairs) of 500 samples
from the selected model (left), as well as the least decorrelating model (middle) and most decorrelating model (right). (c) The correlation matrix between four different odors,
predicted by the simulation using (from left to right) the observed connectome, the selected model, and the most decorrelating and least decorrelating models. (d) The mean
RMSE between the empirical pairwise correlations, computed from calcium traces, and the ones predicted by the model, for all models in the ensemble. For each model, the
RMSE values were averaged over 500 samples from that model. Black vertical line shows the mean RMSE of the selected model; red vertical line corresponds to the RMSE
computed using the empirical connectivity data. (e) The average RMSE (same as in (d)) vs. the log-likelihood of the data for each of the models in the ensemble. (f) The
mean correlation values at t2 for all the models in the OB ensemble. Top - models are colored by whether they control for reciprocity (green) or not (orange). Bottom - models
that control for reciprocity are colored by whether they also control for preferential attachment within glomeruli (dark green) or not (light green). Black vertical line corresponds
to the empirical correlation at t2.

between blocks that contain synapses and blocks that do not
(Fig. 7a, middle).

Because our model is a maximum entropy one, it gives the
unique minimal structured network given the features it uses,
and does not assume or imply other structural features. Thus,
any discrepancies between a model based on some set of fea-

tures and the data means that the model is missing some
features. We, therefore, asked whether the observed struc-
ture of this part of the connectome corresponds to sub-types
among the ventral cord motor neurons. We inferred such la-
tent classes directly from the connectivity data by maximiz-
ing the likelihood of a model of the connectome, by itera-
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Fig. 7. Inaccuracies of the models can be used to reveal missing design features of the connectome. (a) Connectivity between 69 ventral cord motor neurons in
the worm: empirical connectivity data (left), synaptic probabilities according to the selected model (middle), and synaptic probabilities according to a distance+latent-types
model of the circuit (right). (b) 2D histogram of motor neuron classes and inferred latent classes. Each entry in the matrix corresponds to the number of neurons of a given
motorneuron type (x-axis) that were assigned by the optimization procedure to the same latent type (y-axis). Darker colors correspond to a larger number of neurons.

tively adding features that correspond to k = 2, . . . ,10 poten-
tial sub-classes of neurons, while using the same distance-
decay parameter as the selected model (see Methods). We
found a highly accurate model for the motor neurons’ con-
nectivity (Fig. 7a, right), with a maximum AUROC of 0.92
for k = 7 sub-types. Our latent classes could correspond to
different cell types, morphological structures, as well as other
synaptic specificity mechanisms. To identify the biological
nature of the inferred latent classes, we inspected the spe-
cific neurons that were assigned to each latent class (Fig. 7b).
It was particularly satisfying to find a clear correspondence
between the latent classes and a subdivision of the neurons
of the circuit according to their ventral/dorsal position, as
well as their class (A/B/D class ventral cord motor neurons).
Thus, our modeling approach allowed us to identify specific
parts of the connectome where design features were missing
from the model, and then to predict which biological features
might be missing – which in this particular case, we could
actually corroborate.

Discussion
We present a family of generative statistical models for con-
nectomes of three different neural circuits in three different
species. In all cases, a small set of local biological and phys-
ical features were enough to accurately predict a range of
structural measures of the real connectomes at the level of
synaptic, neuronal, sub-circuit, and whole-network proper-
ties. In one case, measurements of the circuit before its struc-
tural reconstruction allowed us to show that the connectomes
that the model generates replicate the computation performed
by the real circuit.
Our results reflect that a surprisingly small set of features
shapes much of the architectural design of connectomes.
Moreover, given the stochastic nature of individual connec-
tomes, our models may be even better than our results seem
to suggest, since their accuracy is bounded by the biologi-
cal variability between individuals. Importantly, the frame-
work we present can be naturally extended to learning mod-
els of individual and populations of animals, once such data
becomes available.
It is clear that at least part of the inaccuracies of the current

models are due to the models missing some biological, regu-
latory, or physical features that play important roles in shap-
ing connectomes. Measurements of additional morphologi-
cal features or the delineation of more cell-types will proba-
bly result in even more accurate models. We note, however,
that the fact that our models are generative allowed us to use
them to identify where our models fail, and find latent fea-
tures to add to the model and predict their biological nature –
as we have shown here for the motor neurons of the worm.
We emphasize that while the features we used accurately de-
scribe the observed structure, this does not mean we have
identified the true underlying mechanisms that control net-
works’ development and structure. Specifically, different
subsets of features can define very similar probability dis-
tributions (as we have seen), in the same sense that different
sets of vectors can span the same space. Thus, our model-
ing approach identifies potential sets of features that shape
the connectome, but direct experimental characterization is
needed to conclusively validate them or identify their alter-
natives.
Our modeling approach could be used to predict how experi-
mental perturbations to synaptic formation mechanisms or to
morphological properties of cells might affect large-scale or-
ganization and functional properties of the circuit (45). Prob-
abilistic network models could also be used to predict which
parameters are “stiff” and which are “sloppy” (46, 47), cor-
responding to different degrees of biological regulation, and
how perturbations to one mechanism may be compensated by
other mechanisms (48).
The networks we studied here are “snapshots” of the con-
nectivity in one particular time point, and a natural extension
would be to construct generative statistical models for the de-
velopment of the connectome over time. While tracking the
connectome of the same neural circuit over time is currently
impossible (but see (5)), first steps have been made in analyz-
ing connectomes of different individuals across development
(49).
While we here focus on identifying design principles of the
architecture of neural circuits, the ultimate goal is to identify
the function these designs aim to achieve, which is often only
partially known to external observers, and sometimes not at
all. Extending our generative models beyond capturing the
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architectural design, to include computational goals for the
circuits would be paramount for understanding the relations
between the structure and function of neural networks – both
biological and artificial ones. Ultimately, such models would
allow the study and understanding of the structural basis of
functional pathology in neural circuits and how to fix them.
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Methods
Feature-based maximum entropy models of connectomes
The maximum entropy framework defines the most random
distribution p(x) that obeys a set of constraints of the form
ÈfµÍp = ÈfµÍdata. The solution is given by solving the con-
strained optimization problem (50):

p(x) = argmax
pœP

H(p) subject to: ÈfµÍp = ÈfµÍdata,

where H(p) is the Shannnon entropy H(p) =
≠

q
x p(x) logp(x) and P is the space of all the proba-

bility distributions over the relevant support. The optimal
solution then takes the form of an exponential distribution:

p(x) Ã exp

S

U
kÿ

µ=1
◊µfµ (x)

T

V .

Exponential Random Graph Models (ERGMs) are a class of
statistical network models for specifying a maximum entropy
probability distribution over a set of random graphs of N

nodes. An ERGM specifies the probability of a given net-
work as a function of a set of structural features of the net-
work, weighted by the model parameters. Importantly, for a
given set of structural features, there is a one-to-one mapping
from the set of parameter vectors {◊|◊ œ Rk} to the set of
realizable expectation values of the features {Èf1Í, . . . ,ÈfkÍ}.
Learning the parameters of a model, given a set of structural
features and their values for a given graph, means finding the
vector of parameters that would reproduce the expectation
values of the observed features (50).

Mathematical definitions of structural features The struc-
tural features used to construct the various models in this pa-
per (see main text) are described by the following mathemat-
ical formulas (where G is a binary N ◊ N matrix with zeros
on the main diagonal):

• Number of synapses:
q

i ”=j Gij

• Number of reciprocal synapses:
q

i>j GijGji

• Distance between connected neurons:q
i ”=j d(i, j) ·Gij , where d(i, j) is the distance

between neuron i and neuron j.

• Number of synapses between neurons of type A and
type B:

q
i ”=j type(i)=A,type(j)=B ·Gij ; each combina-

tion of cell types has a different model parameter ( is
the indicator function).

• Effect of single-cell properties on a neuron’s tendency
to receive incoming synapses:

q
i ”=j h(j) ·Gij , where

h(j) is a property of the j-th neuron. The properties we
considered are the spatial coordinates of the neurons,
the size of their dendritic trees, and their time of birth.

• Effect of single-cell properties on a neuron’s tendency
to form outgoing synapses - same equation as the pre-
vious one, with h(i) instead of h(j).

• Number of synapses whose pre-synaptic and post-
synaptic neurons belong to the same glomerulus:q

i ”=j glom(i)=glom(j) ·Gij . A similar feature was used
to assigned the microdomain of pre- and post-synaptic
neurons.

Connectomics data preprocessing The full connectome of
the olfactory bulb of the zebrafish, previously reported in
(34), consists of 1003 cells. Of these, 467 neurons were used
in this study: the 208 MCs for which activity data were avail-
able and the 259 INs connected to these MCs. After remov-
ing disconnected cells and cells whose dendritic tree size was
not reconstructed, 446 cells remained. Rows and columns
were ordered as in (34). The connectome of C.elegans was
based on data from (40). Our analysis focused on the con-
nectivity of chemical synapses (and not electric gap junc-
tions) in the hermaphrodite. For the purposed of the anal-
ysis, we omitted from the original data, which consisted of
300 neurons, the pharyngeal neurons, focusing on 279 sen-
sory neurons, inter-neurons and motor neurons for which we
had additional neuron-level data (e.g., spatial position; see
main text). Rows and columns were ordered as in (40). 3D
cell positions were obtained from (51). The connectome of
the mouse was based on a publicly available dataset, previ-
ously reported in (39). Rows and columns were ordered by
optimal leaf ordering for hierarchical clustering. Autapses
were excluded in all 3 datasets. For additional details, see
the accompanying GitHub repository: https://github.
com/adamhaber/ergm_for_connectomics

Fitting and sampling All models were fitted using the
ERGM R library, version 4.1.2 (52). Finding the maximum-
likelihood estimator (MLE) of a model that assumes in-
dependence between different edges, given the covariates
of the model, is equivalent to solving a logistic-regression
(53). Similarly, such models are amenable to exact sampling,
since synapses are sampled independently according to the
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marginal synaptic probabilities, which can be computed ana-
lytically. Finding the MLE of a model that assumes edges are
dependent (e.g., all models that control for the observed level
of reciprocity) is done via Monte Carlo maximum likelihood
estimation (MCMLE), a likelihood-based approach that re-
lies on Markov Chain Monte Carlo (MCMC) sampling for
estimating the parameters of the model. Similarly, sampling
is done via the Metropolis-Hastings algorithm, as described
in (54).

Computing the matrix of synaptic probabilities For inde-
pendent models, the matrix of synaptic probabilities can be
computed analytically, as the predicted probabilities accord-
ing to the logistic regression model that is used to infer the
MLE (53). For dependent models (e.g., models with a reci-
procity term), we used MCMC to sample 500 networks, us-
ing 10,000,000 burn-in iterations (number of proposals be-
fore any sampling is done) and an interval of 1,000,000 pro-
posals between sampled networks. The connectivity matrices
of the sampled networks were averaged to obtain the empiri-
cal matrix of synaptic probabilities.

Cross-validation using subnetworks For each connec-
tome, we randomly assigned each neuron to one of two
equally sized groups (of size N

2 , where N is the total number
of neurons) - a train subnetwork and a test subnetwork. We
fitted the model to the train network, and used the inferred
MLE to compute the log-likelihood of the test network. We
note that this required us to re-evaluate the normalizing con-
stant, as the exogenous covariates (such as cell types) of the
test network were generally different from those of the train
network. We conducted 10-fold cross-validations for each
model, for each dataset.

Inferring latent motor neuron classes To infer latent mo-
tor neuron classes, we employed a simple greedy optimiza-
tion procedure. We began by randomly assigning each of
the 69 motor neurons to one of k latent classes (we con-
sidered values of k between 2 and 10). A single iteration
of the optimization procedure consisted of randomly choos-
ing a single neuron and finding its latent class assignment
that would maximally increase the log-likelihood of the data,
while keeping the class assignment of all other 68 neurons
fixed. The model’s performance was evaluated using the la-
tent classes obtained after 10,000 optimization steps.
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