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The map of synaptic connectivity among neurons in the brain
shapes the computations that neural circuits may perform. In-
ferring the design principles of neural connectomes is, there-
fore, fundamental for understanding brain development and ar-
chitecture, neural computations, learning, and behavior. Here,
we learn probabilistic generative models for the connectomes of
the olfactory bulb of zebrafish, part of the mouse visual cortex,
and of C. elegans. We show that, in all cases, models that rely
on a surprisingly small number of simple biological and phys-
ical features are highly accurate in replicating a wide range of
properties of the measured circuits. Specifically, they accurately
predict the existence of individual synapses and their strength,
distributions of synaptic indegree and outdegree of the neurons,
frequency of sub-network motifs, and more. Furthermore, we
simulate synthetic circuits generated by our model for the ol-
factory bulb of zebrafish and show that they replicate the com-
putation that the real circuit performs in response to olfactory
cues. Finally, we show that specific failures of our models reflect
missing design features that we uncover by adding latent fea-
tures to the model. Thus, our results reflect surprisingly simple
design principles of real connectomes in three different systems
and species, and offer a novel general computational framework
for analyzing connectomes and linking structure and function in
neural circuits.
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Introduction
The ability to reconstruct the detailed connectivity maps be-
tween neurons at unprecedented scale and resolution (1–5)
opens the door for the quantitative analysis of the organi-
zation of real neural networks, the inference of their struc-
tural design principles, and the uncovering of the relations be-
tween structure and function in neural circuits (6–8). Analy-
ses of the detailed architecture of brain networks have shown
that synaptic connectivity is structured at different scales:
from the enrichment of reciprocal connections (9) and net-
work motifs (10–12), through the structured organization of
the retina (13), to cortical columns (14–16), and other ner-
vous systems and brain areas (1, 17–19). A wide range of ge-
netic (20–23), morphological (24, 25), biochemical (26), and
economical (27) mechanisms have been implied or shown to
play a significant role in shaping the structure of these net-

works, but the interplay between these mechanisms is still
not well understood. Moreover, it remains unclear to what
extent the large-scale organization of brain networks can be
explained by simple and local connectivity rules. Comple-
mentary to this “bottom-up” approach, network theory tools
(28, 29) have been used to study the design of networks of
neurons (30, 31), yielding models able to reproduce global
properties, such as “small-worldness" (32) and modular or-
ganizations (33). However, it is unclear how these properties
would emerge from local synaptic formation mechanisms,
such as the ones described above. Here, we merge these two
viewpoints of network analysis and design by learning gen-
erative models of large connectomes whose basic building
blocks correspond to simple and natural biological structural
features and physical constraints.
Inferring and understanding the the design principles of net-
works and their organization require a modeling formalism
that would allow us to bring together local rules, global net-
work structures, and the inherent stochastic nature of indi-
vidual networks. This is because any given connectome is
the result of genetic instructions, developmental processes,
and learning throughout the lifetime of the organism – which
are all noisy biophysical processes that also depend on other
external conditions. It is clear then that the detailed connec-
tivity of the same areas across animals would be probabilistic
in nature, and no two circuits would have exactly the same
neurons or connections (except, maybe, for specialized cir-
cuits with “identified" neurons). So, to describe and evalu-
ate connectomes, we must rely on statistical models over the
possible connectivity maps. Such maps of connections be-
tween neurons are naturally described as a directed graph or
a matrix G, where each entry Gij reflects the synaptic con-
nections from neuron i to neuron j. A statistical model of
connectomes would then be a probability distribution over
connectivity matrices, G, that depends on a set of parameters
◊.
Learning such accurate models for connectomes, P◊(G),
would allow us to (1) evaluate the likelihood of a particular
connectivity map, (2) generate synthetic connectomes that re-
semble the observed ones, by sampling from the model, (3)
quantify the expected values of different features of the con-
nectome and their variability, and (4) explore the functional
design of connectomes, by simulating the neural dynamics
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of the sampled networks. From a computational perspective,
we would seek models that recapitulate the observed struc-
ture as accurately as possible, and identify the minimal set
of features that would be needed. From a biological perspec-
tive, we would like to find models that rely on biologically-
plausible or “understandable" features. Learning such sta-
tistical models is a challenging computational task,to which
should be added in this study the hurdle of having only a
few examples of reconstructed connectomes. Consequently,
we aim to learn models based on the observed values of a
small number of simple and biologically-plausible features
or statistics of the connectome, as summarized in Fig. 1, and
evaluate these models using a range of statistical and struc-
tural measures that we did not use for learning the models –
at the level of individual synapses, individual neurons, small
sub-circuits, and the circuit as a whole. We then ask how
well these models predict the function of the circuit, what
they might reveal about the design principles that we are still
missing, and how we might find them.

Results
Learning accurate generative models of connectomes
based on simple biological and physical features. We
first consider the connectome of part of the olfactory bulb
(OB) of a zebrafish larva, taken from (34). This reconstructed
network comprises more than 40% of the entire OB, contain-
ing 208 excitatory mitral cells (MCs) and 238 inhibitory in-
terneurons (INs) that are connected by 9919 synapses (out of
198,470 possible ones), and the activity of its principal neu-
rons has been measured (as we will see below). We start by
using the unweighted version of the connectome (Fig. 2a; see
Methods), as the estimation of synaptic strengths from struc-
tural data is sometimes partial or noisy (35). The connectome
in this case corresponds to a binary matrix, G, where Gij = 1
designates the existence of a synapse or multiple synapses
from neuron i to neuron j.
To identify the design principles of the OB connectome, we
asked how well would models that rely on simple struc-
tural and biophysical features successfully replicate the ob-
served connectivity. The simplest connectome model is one
that relies solely on one structural feature – the total num-
ber of synapses in the network – and would adjust the over-
all sparsity of synaptic connections to match the observed
one (4.9%). This is the well-known Erdős-Reńyi (ER) ran-
dom graph model (28), which assigns the same probability to
all potential synapses between neurons in the network. Be-
cause of its inherent homogeneity, this model gives a proba-
bility map for synaptic connections (i.e., a matrix containing
the probabilities of synaptic connections between all pairs of
neurons) that does not show any structure, (Supplementary
Fig. S1), and is clearly a poor model of the real connectome .
We then learn eight models for the connectome, that in ad-
dition to retaining the total number of synapses that were
observed in the data, each model relies on a different set of
features, and the model parameters are learned so that the
expected feature values are consistent with their measured
ones. Each of the eight feature-sets has a clear biological

or physical interpretation: (1) cell-type-specific connectiv-
ity, (2) distance-dependent connectivity between neurons, (3)
reciprocity of connections between pairs of neurons, (4) the
dependence of incoming synapses on the location of the post-
synaptic neuron, (5) the dependence of outgoing synapses
on the spatial locations of the presynaptic neuron, (6) pref-
erential attachment between Glomeruli, (7) the effect of den-
dritic tree sizes on the number of incoming synapses, and (8)
the effect of dendritic tree sizes on the number of outgoing
synapses (see Methods). Thus, for example, the model that
relies on cell-type specific connectivity has 4 specific features
– corresponding to the 2◊2 values of the probability of a neu-
ron of one type to have a synapse with a neuron of another
type (as the neurons in this data set were identified as either
MCs or INs). To assess the effect of each feature-set, we learn
in each case the most random or least structured probabilistic
model over networks, P◊(G), which matches the observed
values of the corresponding features. Thus, given a set of
features {fµ(G)}, we find the maximum entropy distribution
over networks such that the average values of these features
over the model and over the given connectome agree, namely,
Èfµ(G)ÍP = Èfµ(G)Ídata. This model is given by

P◊(G) = 1
Z

exp{≠
ÿ

µ

◊µfµ(G)},

where the ◊µs are found numerically and Z is a normaliza-
tion term or partition function (see Methods). These models,
also known as Exponential Random Graph Models (36), not
only allow us to compute the likelihood of any given connec-
tome, but also serve as generative models that can be used to
sample connectomes that are consistent with their respective
features. Importantly, because these are maximum entropy
models (37), the solution is unique and assumes no other
structure beyond the measured features. These models, there-
fore, capture the full predictive power of their respective set
of features. Fig. 2b shows the probability maps over the full
connectivity matrix of synapses for each of the these models.
As is evident, they each capture some aspects of the connec-
tivity matrix, but none of them is particularly accurate on its
own.
The generality of this mathematical framework means that
we can naturally extend it to learn a model for the connec-
tome that relies on any combination of the different feature-
sets simultaneously (as in (38)). Fig. 2c shows the synap-
tic probability map of this model and its similarity to the
data (shown in Fig. 2a). Importantly, while predictions of
the model may reflect high variance or uncertainty regarding
individual synapses, existing synapses were assigned higher
probabilities, despite the fact that the model was only trained
on the aggregate summary statistics of the connectivity ma-
trix (Fig. 2d).
We next quantify the performance of the different models
by their ability to predict individual synapses, as well as
the connectivity profiles of individual neurons, sub-circuit
properties, and the likelihood of the connectivity map of
the whole circuit. We first asked how accurately they pre-
dict the existence of individual synapses. This was assessed
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Fig. 1. Learning and evaluating feature-based generative models for neural connectomes. (a) A complete 3D reconstruction of a neural tissue containing N neurons
(adapted with permission from (3)). (b) The network of synaptic connections is represented as a N ◊ N binary connectivity matrix, augmented by additional neuron-level
data, such as the spatial positions of individual cells, cell types, etc. (c) A set of simple structural features is computed from the connectivity matrix and the neuron-level data.
(d) The chosen features are used to construct the maximum entropy probability distribution over the space of graphs, which reproduces the observed values of the features
in the data, but is otherwise maximally random. Generated connectomes are sampled from the distribution and compared against the empirical connectivity, and, where
available, simulations of activity of the sampled connectomes are compared with the recorded neural activity of the real circuit.

using the Receiver-Operating Characteristic (ROC) curve,
which shows the rate of correctly predicting the existence
of a synaptic connection vs. the rate of incorrectly predict-
ing one, for different threshold classification values of the
model (Fig. 2e, Methods). Critically, to avoid over-fitting, we
trained the models on the connectivity matrix between only
half of the neurons (randomly chosen), and used the other
half as test data on which we assessed the accuracy of each
model. Notably, these models proved to be highly robust,
as evidenced by the observation that learning a model using
only ≥ 10% of the neurons sufficed to predict the connectiv-
ity of the rest of the network at a similar level (Fig. 2f, Meth-
ods). We summarize the predictions of each model by the
mean area under the ROC curve (AUROC), averaged across

different train and test splits of the data – which quantifies
the ability of models to assign higher probabilities to exist-
ing synapses compared to non-existing ones (Methods). The
models that rely on a single set of features have a limited pre-
dictive power,ranging from AUROC values of 0.5 (no pre-
dictive power) to 0.67. For comparison, the AUROC values
obtained after training and testing the models on the whole
connectome were effectively the same for all eight models
(Supplementary Fig. S3).

But the ROC curve of the model that combined all the fea-
tures, shown in Fig. 2e-f, gives an AUROC value of 0.79.
The high accuracy of this model raises two obvious ques-
tions: First, do we need all the features that we used for the
model to achieve this level of accuracy? Second, what fea-
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Fig. 2. Accuracy of models based on different features in predicting individual synapses in the connectome of the olfactory bulb of zebrafish.(a) Synaptic
connectivity map between 208 excitatory mitral cells (MCs) and 238 inhibitory interneurons (INs) from the olfactory bulb of the Zebrafish larva (34). (b) The synaptic
probabilities predicted by the eight different tested models of the OB connectome, each defined using a different biological feature-set. Same ordering of the cells as in (a);
numbers in parentheses correspond to the number of features in each feature-set (c) Synaptic probabilities predicted by the model that combines all eight feature-sets. See
Supplementary Fig. S2 for individual samples from the models. (d) Distributions of synaptic probabilities assigned by the full model for empirically observed synapses (red)
versus pairs of neurons that were not connected in the data (gray). (e) ROC curves for all single-feature models (same colors as in (b)), as well as the model that combines
all the features (black). (f) Cross-validated AUROC of the full model as a function of the percentage of data used for training.

tures are we still missing?

Redundancy among structural features implies that a
small set of them shapes the connectome. The differ-
ent feature-sets that we explored are related to one another, as
can be gleaned, for example, from the spatial locations of dif-
ferent types of neurons (Fig. 3a). This redundancy is clearly
reflected by the ability of a model based on one feature-set to
predict the observed values of the other feature-sets, shown
in Supplementary Fig. S4. Fig. 3b further shows the pairwise
correlation between the predicted connectivity matrices of all
eight tested models – demonstrating that the probabilities as-
signed to the synaptic connections by the different models are
often correlated.
Given this redundancy between features, we assess directly
their necessity and sufficiency. This entailed comparing a
large ensemble of models that are based on all the possible
combinations of the different feature-sets, totalling 28 = 256
different generative models. We find that while, in general,
a greater number of features resulted in a higher accuracy of
predicting synaptic connections, measured by their AUROC
values (Fig. 3c), different combinations of features had very
different values.
To go beyond predicting individual synapses, we also exam-
ine the performance of all 256 models on the full connectiv-
ity matrix. Using the log-likelihood values over the empirical
connectome, logP◊(G), we find that also at the level of the

whole connectome, adding features improves the likelihood
values (Fig. 3d). Again, we emphasize that we trained the
models on half of the connectome and predicted the connec-
tions in the other half (see SI for the performance on all the
training data). For both measures, the “diminishing return"
of adding features reflects the redundancy between features
in shaping the connectome. Over the different models, likeli-
hood values and AUROC values are highly correlated (Sup-
plementary Fig. S5), but some of the outliers show the im-
portance of individual features. For example, while the reci-
procity does not contribute much to the AUROC score, it is
critical for the likelihood of the model of the OB – reflecting
the highly symmetrical nature of the connectivity.

We identify among all the feature combinations a model
whose likelihood value is in the top 10% of all the models
and is less than 5% away from the one that relies on all the
features in terms of AUROC. This model is based on 5 of the
feature sets: reciprocity, cell types, preferential attachment
between Glomeruli, the effect of dendritic tree sizes on the
number of incoming synapses, and the effect of spatial loca-
tion on the number of outgoing synapses. We proceed with
this particular set of features to explore other properties of the
connectomes that this model generates, and ask would com-
pact models of connectomes similarly apply to other species
and neural systems.
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A small number of features accurately predict synap-
tic connectivity in different species. We perform a sim-
ilar analysis on the reconstructed connectivity maps from
two other species: (1) 334 L2/3 excitatory neurons from the
mouse visual cortex (39). (2) chemical synapses of the neu-
rons in the hermaphrodite C. elegans (40) (Methods).

As in the zebrafish analysis, we fit an ensemble of mod-
els that rely on all the combinations of the measured fea-
tures: The mouse connectome had 1734 synapses, and the
measured features were the spatial locations of the neurons
and the distances between them, but no additional informa-
tion on cell-types (Fig. 4a, green). For C. elegans, we used
the connectome of 279 neurons (all non-pharyngal neurons),
3520 synapses, 15 cell-types, the 3D position of each neuron
(Fig. 4a, blue) and its time of birth. For the cortical connec-
tome, we did not use reciprocity or the dependence of incom-
ing synapses on the spatial locations of neurons.

In both the mouse and the worm, as in the fish, models based
on small sets of features proved to be highly accurate: In
the case of the cortical circuit, a model based on distance-
dependent connectivity and a quadratic dependence of out-
going synapses on the spatial locations of the cells achieved
an AUROC score of 0.88 (on cross-validated data). As for

the C. elegans connectome, a model that relied on cell-type-
specific connectivity, reciprocity, distance between cells, and
the effect of membership in the C. elegans “rich-club" neu-
rons (41) was enough to achieve an AUROC score of 0.84.
Again, the redundancy between features allowed us to pick
for each of the connectomes a compact combination of fea-
tures that were in the top 10% of the models in terms of both
their log-likelihood and AUROC value (normalized with re-
spect to the model with the maximum AUROC) (Fig. 4c; see
also SI).

The specific feature-sets that emerged as those that shape the
connectome in each of the three systems we studied partially
overlap but are not identical (Fig. 4b). This is partly due to
the available experimental data information (e.g., informa-
tion on the dendritic tree length was only available for the
OB data), but, potentially, also due to differences in the net-
work structure in these circuits. For example, the OB connec-
tome in the fish is highly reciprocal, whereas the cortical data
from the mouse is not. Moreover, we found cell-type-specific
connectivity to be the most important feature for accurately
predicting the connectome of C. elegans, while reciprocity
and preferential attachment within glomeruli were the dom-
inant features in the OB ensemble. The connectivity in the
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mouse visual cortex connectome was highly directional (i.e.,
spatially-modulated) and asymmetric, and was accurately de-
scribed by a model that includes a quadratic relation between
a neuron’s spatial coordinates and its incoming and outgoing
synapses (Methods).
We further validated our models by comparing their predic-
tions of synaptic connectivity and the experimental estimates
of the synaptic weights of the reconstructed connections. As
our models relied only on the existence or absence of synap-
tic connections (i.e., binary connectivity matrices), we asked
how well did the predictions of our models for the existence
of a connection agree with the empirical estimations of in-
dividual synaptic strength. As shown in Fig. 4d, in all three
species, the probability that our models assigned to a synapse
strongly correlated with the measured weights.
Given the ability of our models to accurately predict individ-
ual synapses, we proceeded to test their accuracy in predict-
ing the connectivity patterns of individual neurons and those
of small subnetworks.

Models accurately predict neuronal and circuit level
properties. We evaluated the ability of our models to go be-
yond individual synapses, and predict the indegree and out-
degree profiles of neurons in all three connectomes. We gen-
erated 500 synthetic connectomes from each of the selected
models for each species, and compared their indegree and
outdegree distributions to the empirical distributions in the
experimental data. We found high agreement between the
model predictions and the empirical degree distributions for
all three connectomes, with empirical degree counts falling
within the 90% confidence interval of the model. There was
some discrepancy in the case of low-degree neurons in the
OB connectome, which were predicted to be less common
than the measured ones (Fig. 5a,b). Our models also pre-
dicted the existence of high-degree nodes or “hub neurons".
For example, according to the model, the probability of find-
ing OB neurons whose indegree was equal or larger than the
90% percentile of indegrees in the data was between 4.0%-
6.7% (compared with 0% for the ER model). Importantly,
this prediction of the models did not rely on any specific fea-
ture for “hubbiness"; rather, it emerged from the more local
and simple features of the model.
We then evaluated the ability of our models to predict prop-
erties beyond those of single neurons. We first computed the
distribution of all the connectivity patterns among triplets of
neurons (“network motifs") for each of the connectomes and
models, as the frequency of these motifs has been suggested
to be important for the kind of computations biological net-
works perform (10). We found that our models accurately
predict the frequency of small network motifs, despite none
of the models being constrained to reproduce them directly
(the median normalized difference between the motif counts
predicted by the model and the empirical counts was 18%;
see Fig. 5c and Methods). We also estimated the distribu-
tion of the shortest-path distances between neurons, which
describes how quickly information can flow between differ-
ent parts of the network. We found high agreement between
the shortest-path predictions of the models and the empirical

data (Supplementary Fig. S8), including an accurate predic-
tion of the number of pairs without a directed synaptic path
between them (i.e., infinite shortest path distance). Thus, re-
lying on a small set of physical and biological features of
single neurons and pairwise relations, our models replicate,
across species, a wide range of network properties – from dis-
tributions of indegrees and outdegrees, through the shortest-
distance between neurons, to triplet motifs. Given this degree
of accuracy, we next asked whether our models capture not
just the structure of real connectomes but also the computa-
tion carried out by real circuits.

Connectomes synthesized by the model reproduce
the computation of real circuits. The OB circuit in the ze-
brafish is known to decorrelate the population activity repre-
senting odors and to normalize activity across the population
(42–44). A two-step model based on the measured connec-
tivity reproduces the “whitening" computation (34): the first
step uses the activity of the MC neurons after stimulus pre-
sentation (time t1) to simulate the activity of the inhibitory
population and the connectivity from MCæIN; the second
step uses the predicted response of the inhibitory neurons,
after thresholding and renormalization, and the connectivity
from the INæMC to simulate the activity of the excitatory
population at the next time point, t2 (Fig. 6a). As the decorre-
lation between the predicted responses of the excitatory cells
to different stimuli according to this model matches the ex-
perimentally measured one, we asked here whether networks
synthesized by our generative models for the OB connectome
would perform this whitening computation. In addition to fo-
cusing on our model of choice, we also asked how would net-
works synthesized by connectome models based on different
features perform in response to olfactory stimuli.
For each of the models in the above ensemble of 256 OB
models (Fig. 3), we sampled 500 connectomes, and then sim-
ulated each network’s response to stimuli. For each net-
work, we computed the correlation between the activity of
the MC neurons at time t2 over different stimuli. Our results
show that the models varied substantially in their ability to
reproduce the observed decorrelation of MC neurons: Net-
works synthesized by some models showed no decorrelation,
whereas others decorrelated more than what was observed
empirically. We found, however, that the OB model we used
to accurately predict the connectome was on par with the em-
pirical connectome in its ability to decorrelate stimulus rep-
resentations (Fig. 6b). Moreover, the networks synthesized
by this model replicated the empirical decorrelation pattern
– not only on average but also at the level of individual odor
pairs (Fig. 6c-d, Supplementary Fig. S9). We further found
that the ability of each of the models to replicate the measured
connectome, as measured by the model’s likelihood, strongly
correlated (Pearson correlation of 0.03, p-value < 10≠6) with
the similarity of the model’s responses to the empirical decor-
relation of the network’s response to stimuli (Fig. 6e). Thus,
the more accurate our structural model was, the better it repli-
cated the computation that the circuit performed.
Comparing the performances of the different models also al-
lowed us to identify the role of individual structural features
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Fig. 5. Connectome models accurately predict neuronal and circuit level properties in zebrafish, mouse, and C. elegans. (a) The Indegree distributions predicted by
the selected models for all three connectomes. Black line - empirical indegree/outdegree distributions. Colored histograms - the 5th and 95th percentile computed from 500
samples from each model. (b) Same as in (a) but for the outdegree distribution. (c) Predictions of triplet network motifs. Error bars correspond to the 5% and 95% quantiles
across 500 samples from each model.

in shaping the function of the network. We found that models
that included the reciprocity in connectivity between neurons
were very different than those that did not in their ability to
perform the whitening computation (Fig. 6f, top). Interest-
ingly, this was also the case for the likelihood values of the
models. Out of the models that include reciprocity, the ones
that also include preferential attachment within glomeruli
showed stronger decorrelation than those that did not (Fig. 6f,
bottom). Therefore, our results reflect the importance of
these two structural properties in the context of the whiten-
ing computation.

Model inaccuracies reveal new design features of the
connectome. The selected feature-based models we pre-
sented offer a highly accurate “working draft" of the design
principles of the connectomes we studied, yet they can prob-
ably be improved, up to the inherent biophysical noise in

neuronal wiring and biological diversity across individuals.
Improving such models could be achieved by assuming or
guessing which new features one might add to the model.
However, a particular strength of our framework is that the
discrepancies between the model and the data must rely on
“orthogonal" or independent features (see below), and this
can be used to generate new hypotheses of additional design
mechanisms. As an example, we focus here on the connec-
tivity between 69 ventral cord motor neurons in C. elegans,
which are connected by 352 chemical synapses. The left
panel in Fig. 7a shows that when this connectivity matrix is
ordered by the names of the neurons, distinct diagonal con-
nectivity patterns within specific sub-matrices are apparent.
The model we presented for the connectome of the whole
worm in Fig. 3 captures some of these structures (namely, the
blocks within the matrix that show a higher synaptic proba-
bility on the diagonal of each block), but fails to differentiate
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between blocks that contain synapses and blocks that do not
(Fig. 7a, middle).

Because our model is a maximum entropy one, it gives the
unique minimal structured network given the features it uses,
and does not assume or imply other structural features. Thus,
any discrepancies between a model based on some set of fea-

tures and the data means that the model is missing some
features. We, therefore, asked whether the observed struc-
ture of this part of the connectome corresponds to sub-types
among the ventral cord motor neurons. We inferred such la-
tent classes directly from the connectivity data by maximiz-
ing the likelihood of a model of the connectome, by itera-
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tively adding features that correspond to k = 2, . . . ,10 poten-
tial sub-classes of neurons, while using the same distance-
decay parameter as the selected model (see Methods). We
found a highly accurate model for the motor neurons’ con-
nectivity (Fig. 7a, right), with a maximum AUROC of 0.92
for k = 7 sub-types. Our latent classes could correspond to
different cell types, morphological structures, as well as other
synaptic specificity mechanisms. To identify the biological
nature of the inferred latent classes, we inspected the spe-
cific neurons that were assigned to each latent class (Fig. 7b).
It was particularly satisfying to find a clear correspondence
between the latent classes and a subdivision of the neurons
of the circuit according to their ventral/dorsal position, as
well as their class (A/B/D class ventral cord motor neurons).
Thus, our modeling approach allowed us to identify specific
parts of the connectome where design features were missing
from the model, and then to predict which biological features
might be missing – which in this particular case, we could
actually corroborate.

Discussion
We present a family of generative statistical models for con-
nectomes of three different neural circuits in three different
species. In all cases, a small set of local biological and phys-
ical features were enough to accurately predict a range of
structural measures of the real connectomes at the level of
synaptic, neuronal, sub-circuit, and whole-network proper-
ties. In one case, measurements of the circuit before its struc-
tural reconstruction allowed us to show that the connectomes
that the model generates replicate the computation performed
by the real circuit.
Our results reflect that a surprisingly small set of features
shapes much of the architectural design of connectomes.
Moreover, given the stochastic nature of individual connec-
tomes, our models may be even better than our results seem
to suggest, since their accuracy is bounded by the biologi-
cal variability between individuals. Importantly, the frame-
work we present can be naturally extended to learning mod-
els of individual and populations of animals, once such data
becomes available.
It is clear that at least part of the inaccuracies of the current

models are due to the models missing some biological, regu-
latory, or physical features that play important roles in shap-
ing connectomes. Measurements of additional morphologi-
cal features or the delineation of more cell-types will proba-
bly result in even more accurate models. We note, however,
that the fact that our models are generative allowed us to use
them to identify where our models fail, and find latent fea-
tures to add to the model and predict their biological nature –
as we have shown here for the motor neurons of the worm.
We emphasize that while the features we used accurately de-
scribe the observed structure, this does not mean we have
identified the true underlying mechanisms that control net-
works’ development and structure. Specifically, different
subsets of features can define very similar probability dis-
tributions (as we have seen), in the same sense that different
sets of vectors can span the same space. Thus, our model-
ing approach identifies potential sets of features that shape
the connectome, but direct experimental characterization is
needed to conclusively validate them or identify their alter-
natives.
Our modeling approach could be used to predict how experi-
mental perturbations to synaptic formation mechanisms or to
morphological properties of cells might affect large-scale or-
ganization and functional properties of the circuit (45). Prob-
abilistic network models could also be used to predict which
parameters are “stiff” and which are “sloppy” (46, 47), cor-
responding to different degrees of biological regulation, and
how perturbations to one mechanism may be compensated by
other mechanisms (48).
The networks we studied here are “snapshots” of the con-
nectivity in one particular time point, and a natural extension
would be to construct generative statistical models for the de-
velopment of the connectome over time. While tracking the
connectome of the same neural circuit over time is currently
impossible (but see (5)), first steps have been made in analyz-
ing connectomes of different individuals across development
(49).
While we here focus on identifying design principles of the
architecture of neural circuits, the ultimate goal is to identify
the function these designs aim to achieve, which is often only
partially known to external observers, and sometimes not at
all. Extending our generative models beyond capturing the
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architectural design, to include computational goals for the
circuits would be paramount for understanding the relations
between the structure and function of neural networks – both
biological and artificial ones. Ultimately, such models would
allow the study and understanding of the structural basis of
functional pathology in neural circuits and how to fix them.
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Methods
Feature-based maximum entropy models of connectomes
The maximum entropy framework defines the most random
distribution p(x) that obeys a set of constraints of the form
ÈfµÍp = ÈfµÍdata. The solution is given by solving the con-
strained optimization problem (50):

p(x) = argmax
pœP

H(p) subject to: ÈfµÍp = ÈfµÍdata,

where H(p) is the Shannnon entropy H(p) =
≠

q
x p(x) logp(x) and P is the space of all the proba-

bility distributions over the relevant support. The optimal
solution then takes the form of an exponential distribution:

p(x) Ã exp

S

U
kÿ

µ=1
◊µfµ (x)

T

V .

Exponential Random Graph Models (ERGMs) are a class of
statistical network models for specifying a maximum entropy
probability distribution over a set of random graphs of N

nodes. An ERGM specifies the probability of a given net-
work as a function of a set of structural features of the net-
work, weighted by the model parameters. Importantly, for a
given set of structural features, there is a one-to-one mapping
from the set of parameter vectors {◊|◊ œ Rk} to the set of
realizable expectation values of the features {Èf1Í, . . . ,ÈfkÍ}.
Learning the parameters of a model, given a set of structural
features and their values for a given graph, means finding the
vector of parameters that would reproduce the expectation
values of the observed features (50).

Mathematical definitions of structural features The struc-
tural features used to construct the various models in this pa-
per (see main text) are described by the following mathemat-
ical formulas (where G is a binary N ◊ N matrix with zeros
on the main diagonal):

• Number of synapses:
q

i ”=j Gij

• Number of reciprocal synapses:
q

i>j GijGji

• Distance between connected neurons:q
i ”=j d(i, j) ·Gij , where d(i, j) is the distance

between neuron i and neuron j.

• Number of synapses between neurons of type A and
type B:

q
i ”=j type(i)=A,type(j)=B ·Gij ; each combina-

tion of cell types has a different model parameter ( is
the indicator function).

• Effect of single-cell properties on a neuron’s tendency
to receive incoming synapses:

q
i ”=j h(j) ·Gij , where

h(j) is a property of the j-th neuron. The properties we
considered are the spatial coordinates of the neurons,
the size of their dendritic trees, and their time of birth.

• Effect of single-cell properties on a neuron’s tendency
to form outgoing synapses - same equation as the pre-
vious one, with h(i) instead of h(j).

• Number of synapses whose pre-synaptic and post-
synaptic neurons belong to the same glomerulus:q

i ”=j glom(i)=glom(j) ·Gij . A similar feature was used
to assigned the microdomain of pre- and post-synaptic
neurons.

Connectomics data preprocessing The full connectome of
the olfactory bulb of the zebrafish, previously reported in
(34), consists of 1003 cells. Of these, 467 neurons were used
in this study: the 208 MCs for which activity data were avail-
able and the 259 INs connected to these MCs. After remov-
ing disconnected cells and cells whose dendritic tree size was
not reconstructed, 446 cells remained. Rows and columns
were ordered as in (34). The connectome of C.elegans was
based on data from (40). Our analysis focused on the con-
nectivity of chemical synapses (and not electric gap junc-
tions) in the hermaphrodite. For the purposed of the anal-
ysis, we omitted from the original data, which consisted of
300 neurons, the pharyngeal neurons, focusing on 279 sen-
sory neurons, inter-neurons and motor neurons for which we
had additional neuron-level data (e.g., spatial position; see
main text). Rows and columns were ordered as in (40). 3D
cell positions were obtained from (51). The connectome of
the mouse was based on a publicly available dataset, previ-
ously reported in (39). Rows and columns were ordered by
optimal leaf ordering for hierarchical clustering. Autapses
were excluded in all 3 datasets. For additional details, see
the accompanying GitHub repository: https://github.
com/adamhaber/ergm_for_connectomics

Fitting and sampling All models were fitted using the
ERGM R library, version 4.1.2 (52). Finding the maximum-
likelihood estimator (MLE) of a model that assumes in-
dependence between different edges, given the covariates
of the model, is equivalent to solving a logistic-regression
(53). Similarly, such models are amenable to exact sampling,
since synapses are sampled independently according to the
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marginal synaptic probabilities, which can be computed ana-
lytically. Finding the MLE of a model that assumes edges are
dependent (e.g., all models that control for the observed level
of reciprocity) is done via Monte Carlo maximum likelihood
estimation (MCMLE), a likelihood-based approach that re-
lies on Markov Chain Monte Carlo (MCMC) sampling for
estimating the parameters of the model. Similarly, sampling
is done via the Metropolis-Hastings algorithm, as described
in (54).

Computing the matrix of synaptic probabilities For inde-
pendent models, the matrix of synaptic probabilities can be
computed analytically, as the predicted probabilities accord-
ing to the logistic regression model that is used to infer the
MLE (53). For dependent models (e.g., models with a reci-
procity term), we used MCMC to sample 500 networks, us-
ing 10,000,000 burn-in iterations (number of proposals be-
fore any sampling is done) and an interval of 1,000,000 pro-
posals between sampled networks. The connectivity matrices
of the sampled networks were averaged to obtain the empiri-
cal matrix of synaptic probabilities.

Cross-validation using subnetworks For each connec-
tome, we randomly assigned each neuron to one of two
equally sized groups (of size N

2 , where N is the total number
of neurons) - a train subnetwork and a test subnetwork. We
fitted the model to the train network, and used the inferred
MLE to compute the log-likelihood of the test network. We
note that this required us to re-evaluate the normalizing con-
stant, as the exogenous covariates (such as cell types) of the
test network were generally different from those of the train
network. We conducted 10-fold cross-validations for each
model, for each dataset.

Inferring latent motor neuron classes To infer latent mo-
tor neuron classes, we employed a simple greedy optimiza-
tion procedure. We began by randomly assigning each of
the 69 motor neurons to one of k latent classes (we con-
sidered values of k between 2 and 10). A single iteration
of the optimization procedure consisted of randomly choos-
ing a single neuron and finding its latent class assignment
that would maximally increase the log-likelihood of the data,
while keeping the class assignment of all other 68 neurons
fixed. The model’s performance was evaluated using the la-
tent classes obtained after 10,000 optimization steps.
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