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Abstract 23 

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the 24 

prediction of complex traits and diseases. However, most existing PRS are primarily trained on 25 

European ancestry populations, limiting their transferability to non-European populations. In 26 

this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres 27 

based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-28 

wide association studies (GWAS) summary statistics from diverse populations to develop 29 

ancestry-specific PRS with improved predictive power for minority populations. The method 30 

uses a combination of ℒ1 (lasso) and ℒ2 (ridge) penalty functions, a parsimonious specification 31 

of the penalty parameters across populations, and an ensemble step to combine PRS generated 32 

across different penalty parameters. We evaluate the performance of PROSPER and other 33 

existing methods on large-scale simulated and real datasets, including those from 23andMe 34 

Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can 35 

substantially improve multi-ancestry polygenic prediction compared to alternative methods 36 

across a wide variety of genetic architectures. In real data analyses, for example, PROSPER 37 

increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a 38 

state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, 39 

PROSPER is computationally highly scalable for the analysis of large SNP contents and many 40 

diverse populations.  41 

  42 
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 43 

Introduction 44 

 45 

Tens of thousands of single nucleotide polymorphisms (SNP) have been mapped to human 46 

complex traits and diseases through genome-wide association studies (GWAS) 1, 2. Though each 47 

SNP only explains a small fraction of variation of the underlying phenotype, polygenetic risk 48 

scores (PRS), which aggregate the genetic effects of many loci, can have a substantial ability to 49 

predict traits and stratify populations by underlying disease risks 3-12. However, as existing 50 

GWAS to date have been primarily conducted in European ancestry populations (EUR) 13-16, 51 

recent studies have consistently shown that the transferability of EUR-derived PRS to non-EUR 52 

populations often is less than ideal and in particular poor for African Ancestry populations 17-22.  53 

 54 

Despite growing efforts of conducting genetic research on minority populations 23-26, the gap in 55 

sample sizes between EUR and non-EUR populations is likely to persist in the foreseeable 56 

future. As the performance of PRS largely depends on the sample size of training GWAS 3, 27, 57 

using single ancestry methods 28-32 to generate PRS for a minority population, using data from 58 

that population alone may not achieve ideal results. To address this issue, researchers have 59 

developed methods for generating powerful PRS by borrowing information across diverse 60 

ancestry populations. For example, Weighted PRS 33 combines single-ancestry PRS generated 61 

from each population using weights that optimize performance for a target population. 62 

Bayesian methods have also been proposed that generate improved PRS for each population by 63 

jointly modeling the effect-size distribution across populations 34, 35. Recently, our group 64 
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proposed a new method named CT-SLEB 22, which extends the clumping and thresholding (CT) 65 

36 method to multi-ancestry settings. The method uses an empirical-Bayes (EB) approach to 66 

estimate effect sizes by borrowing information across populations and a super learning model 67 

to combine PRSs under different tuning parameters. However, the optimality of the methods 68 

depends on many factors, including the ability to account for heterogeneous linkage 69 

disequilibrium (LD) structure across populations and the adequacy of the models for underlying 70 

effect-size distribution 3, 27. In general, our extensive simulation studies and data analyses 71 

suggest that no method is uniformly the most powerful, and exploration of complementary 72 

methods will often be needed to derive the optimal PRS in any given setting 22.  73 

 74 

In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres 75 

based on an enSemble PEnalized Regression (PROSPER) using GWAS summary statistics and 76 

validation datasets across diverse populations. The method incorporates ℒ1 penalty functions 77 

for regularizing SNP effect sizes within each population, an ℒ2 penalty function for borrowing 78 

information across populations, and a flexible but parsimonious specification of the underlying 79 

penalty parameters to reduce computational time. Further, instead of selecting a single optimal 80 

set of tuning parameters, the method combines PRS generated across different populations and 81 

tuning parameters using a final ensemble regression step. We compare the predictive 82 

performance of PROSPER with a wide variety of single- and multi-ancestry methods using 83 

simulation datasets from our recent study22 across five populations (EUR, African (AFR), 84 

American (AMR), East Asian (EAS), and South Asian (SAS))22. Furthermore, we evaluate these 85 

methods using a variety of real datasets from 23andMe Inc. (23andMe), the Global Lipids 86 
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Genetics Consortium (GLGC) 37, All of Us (AoU) 38, and the UK Biobank study (UKBB) 39. Results 87 

from these analyses indicate that PROSPER is a highly promising method for generating the 88 

most powerful multi-ancestry PRS across diverse types of complex traits. Computationally, 89 

PROSPER is also exceptionally scalable compared to other advanced methods. 90 

 91 

Results 92 

 93 

Method overview  94 

 95 

PRSOSPER is a method designed to improve prediction performance for PRS across distinct 96 

ancestral populations by borrowing information across ancestries (Figure 1). It can integrate 97 

large EUR GWAS with smaller GWAS from non-EUR populations. Ideally, individual-level tuning 98 

data are needed for all populations, because the method needs optimal parameters from 99 

single-ancestry analysis as an input; however, even when data is only available for a target 100 

population, PRSOSPER can still be performed, and the PRS will be optimized and validated 101 

towards the target population. The method can account for population-specific genetic 102 

variants, allele frequencies, and LD patterns and use computational techniques for penalized 103 

regressions for fast implementation. 104 

 105 

PROSPER 106 

 107 
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Assuming a continuous trait, we first consider a standard linear regression model for underlying 108 

individual-level data for describing the relationship between trait values and genome-wide 109 

genetic variants across 𝑀 distinct populations. Let 𝒀𝑖  denote the 𝑛𝑖 × 1 vector of trait values, 110 

𝑿𝑖 denote the 𝑛𝑖 × 𝑝𝑖  genotype matrix, 𝜷𝑖 denote the 𝑝𝑖 × 1 vector of SNP effects, and 𝝐𝑖 111 

denote the 𝑛𝑖 × 1 vector of random errors for the 𝑖th population. We assume underlying linear 112 

regression models of the form 𝒀𝑖 = 𝑿𝑖𝜷𝑖 + 𝝐𝑖 , 𝑖 = 1, … 𝑀; and intend to solve the linear 113 

regression system by least square with a combination of ℒ1 (lasso) 40 and ℒ2 (ridge) 41 penalties 114 

in the form 115 

∑
1

𝑛𝑖

(𝒀𝑖 − 𝑿𝑖𝜷𝑖)
𝑇(𝒀𝑖 − 𝑿𝑖𝜷𝑖)

1≤𝑖≤𝑀

+ ∑ 2𝜆𝑖‖𝜷𝑖‖1
1

1≤𝑖≤𝑀

+ ∑ 𝑐𝑖1𝑖2
‖ 𝜷𝑖1

𝑠𝑖1𝑖2 − 𝜷𝑖2

𝑠𝑖1𝑖2 ‖
2

2

1≤𝑖1<𝑖2≤𝑀

 116 

where 𝜆𝑖 , 𝑖 = 1, … , 𝑀 are the population-specific tuning parameters associated with the lasso 117 

penalty; 𝜷𝑖1

𝑠𝑖1𝑖2  and 𝜷𝑖2

𝑠𝑖1𝑖2  denote the vectors of effect-sizes for SNPs for the 𝑖1-th and 𝑖2-th 118 

populations, respectively, restricted to the set of shared SNPs (𝑠𝑖1𝑖2
) across the pair of the 119 

populations; and 𝑐𝑖1𝑖2
, 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑀 are the tuning parameters associated with the ridge 120 

penalty imposing effect-size similarity across pairs of populations.  121 

 122 

In the above, the first part, ∑ 2𝜆𝑖‖𝜷𝑖‖1
1

1≤𝑖≤𝑀  , uses a lasso penalty. Lasso can produce sparse 123 

solution 40 and recent PRS studies that have implemented the lasso penalty in the single-124 

ancestry setting have shown its promising performance 29, 30. The second part, 125 

∑ 𝑐𝑖1𝑖2
‖𝜷𝑖1

𝑠𝑖1𝑖2 − 𝜷𝑖2

𝑠𝑖1𝑖2‖
2

2

1≤𝑖1<𝑖2≤𝑀  , uses a ridge penalty. As it has been widely shown that the 126 

causal effect sizes of SNPs tend to be correlated across populations 42, 43, we propose to use the 127 

ridge penalty to induce genetic similarity across populations. Compared to the fused lasso 44, 128 
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which uses lasso penalty for the differences, we use ridge penalty instead, which allows a small 129 

difference in SNP effects across populations rather than truncating them to zero. In addition, 130 

the ridge penalty is also computationally more efficient due to its continuous derivative. The 131 

solutions for population-specific effect size using the combined lasso and ridge penalties can be 132 

sparse. 133 

 134 

The estimate of 𝜷𝑖 , 𝑖 = 1, … , 𝑀 in the above individual-level linear regression systems can be 135 

obtained by minimizing the above least square objective function. Following the derivation of 136 

lassosum 29, a single-ancestry method for fitting the lasso model to GWAS summary statistics 137 

data, we show that the objective function for individual-level data can be approximated using 138 

GWAS summary statistics and LD reference matrices by substituting 
1

𝑛𝑖
𝑿𝑖

𝑇𝑿𝑖 by 𝑹𝑖  , where 𝑹𝑖  is 139 

the estimated LD matrix based on a reference sample from the 𝑖-th population , and 
1

𝑛𝑖
𝑿𝑖

𝑇𝒚𝑖, by 140 

𝒓𝑖, where 𝒓𝑖 is the GWAS summary statistics in the 𝑖-th population. Therefore, the objective 141 

function of the summary-level model can be written as 142 

∑ (𝜷𝑖
𝑇(𝑹𝑖 + 𝛿𝑖𝑰)𝜷𝑖 − 𝟐𝜷𝑖

𝑇𝒓𝑖 + 2𝜆𝑖‖𝜷𝑖‖1
1)

1≤𝑖≤𝑀

+ ∑ 𝑐𝑖1𝑖2
‖𝜷𝑖1

𝑠𝑖1𝑖2 − 𝜷𝑖2

𝑠𝑖1𝑖2 ‖
2

2

1≤𝑖1<𝑖2≤𝑀

 143 

where the additional tuning parameters 𝛿𝑖, 𝑖 = 1, … , 𝑀 , are introduced for regularization of 144 

the LD matrices across the different populations 30. For a fixed set of tuning parameters, the 145 

above objective function can be solved using fast coordinate descent algorithms 45 by iteratively 146 

updating each element of 𝜷𝑖, 𝑖 = 1, … , 𝑀 (see the section of Obtain PROSPER solution in 147 

Methods). 148 

 149 
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Reducing tuning parameters 150 

 151 

For the selection of tuning parameters, we assume we have access to individual-level data 152 

across the different populations which are independent of underlying GWAS from which 153 

summary statistics are generated. The above setting involves three sets of tuning parameters, 154 

{𝛿𝑖}𝑖=1
𝑀  , {𝜆𝑖}𝑖=1

𝑀 , and {𝑐𝑖1𝑖2
}1≤𝑖1<𝑖2≤𝑀, totaling to the number of 𝑀 + 𝑀 +

𝑀(𝑀−1)

2
. As grid search 155 

across many combinations of tuning parameter values can be computationally intensive, we 156 

propose to reduce the search range by a series of steps. First, we use lassosum2 30 to analyze 157 

GWAS summary statistics and tuning data from each ancestry population by itself and obtain 158 

underlying values of optimal tuning parameters, (𝛿𝑖
0, 𝜆𝑖

0) for 𝑖 = 1, … , 𝑀; if tuning data is only 159 

available for the target population, the (𝛿𝑖
0, 𝜆𝑖

0) for non-target 𝑖 can be optimized towards the 160 

target population. For fitting PROSPER, we fix 𝛿𝑖 = 𝛿𝑖
0 for 𝑖 = 1, … , 𝑀 as these are essentially 161 

used to regularize estimates of population-specific LD matrices. We note that the optimal 162 

{𝜆𝑖}𝑖=1
𝑀  depend on sample sizes of underlying GWAS (Supplementary Figure 1), and thus should 163 

not be arbitrarily assumed to be equal across all populations. Considering that the optimal 164 

tuning parameters associated with the ℒ1 penalty function from the single-ancestry analyses 165 

should reflect the characteristics of GWAS data, which includes underlying sparsity of effect 166 

sizes and sample sizes, we propose to specify the ℒ1-tuning parameters in PROSPER as 𝜆𝑖 =167 

𝜆𝜆𝑖
0, i.e. they are determined by the corresponding tuning parameters from the ancestry-168 

specific analysis except for the constant multiplicative factor 𝜆 . Finally, for further 169 

computational simplification, we assume that effect sizes across all pairs of populations have a 170 

similar degree of homogeneity and thus set all {𝑐𝑖1𝑖2
}1≤𝑖1<𝑖2≤𝑀 to be equal to 𝑐. By using the 171 
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above assumptions, the objective function to minimize with respect to 𝜷𝑖 , 𝑖 = 1, … , 𝑀, 172 

becomes 173 

∑ (𝜷𝑖
𝑇(𝑹𝑖 + 𝛿𝑖

0𝑰)𝜷𝑖 − 𝟐𝜷𝑖
𝑇𝒓𝑖 + 2𝜆𝜆𝑖

0‖𝜷𝑖‖1
1)

1≤𝑖≤𝑀

+ ∑ 𝑐 ‖𝜷𝑖1

𝑠𝑖1𝑖2 − 𝜷𝑖2

𝑠𝑖1𝑖2 ‖
2

2

1≤𝑖1<𝑖2≤𝑀

 174 

where 𝜆 and 𝑐 are the only two tuning parameters needed for lasso penalty and genetic 175 

similarity penalty, respectively. 176 

 177 

Ensemble 178 

 179 

Using an ensemble method to combine PRS has been shown to be promising in CT-type 180 

methods as opposed to picking an optimal threshold 22, 36. In general, a specific form of the 181 

penalty function, or equivalently a model for prior distribution in the Bayesian framework, may 182 

not be able to adequately capture the complex nature of the underlying distribution of the 183 

SNPs across diverse populations. We conjecture that when effect size distribution is likely to be 184 

mis-specified, an ensemble method, which combines PRS across different values of tuning 185 

parameters instead of choosing one optimal set, is likely to improve prediction. Therefore, as a 186 

last step, we obtain the final PROSPER model using an ensemble method, super learning 46-48, 187 

implemented in the SuperLearner R package, to combine PRS generated from various tuning 188 

parameter settings and optimized using tuning data from the target population. The super 189 

learner we use here was based on three supervised learning algorithms, including lasso 40, ridge 190 

41, and linear regression (see Methods). 191 

 192 
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Results 193 

 194 

Methods comparison on simulated data 195 

 196 

We conducted simulation analyses on continuous traits under various genetic architectures 22 197 

to evaluate the performance of different methods that can be categorized into five groups: 198 

single-ancestry methods trained from target GWAS data (single-ancestry method), single-199 

ancestry methods trained from EUR GWAS data (EUR PRS based method), simple multi-ancestry 200 

methods by weighting single-ancestry PRS (weighted PRS), recently published multi-ancestry 201 

methods (existing multi-ancestry methods), and our proposed method, PROSPER. Single-202 

ancestry methods include CT 36, LDpred2 31, and lassosum2 30. Existing multi-ancestry methods 203 

include PRS-CSx 34 and CT-SLEB 22. The performance of the methods is evaluated by R2 204 

measured on validation samples independent of training and tuning datasets. Analyses in this 205 

and the following sections are restricted to a total of 2,586,434 SNPs, which are included in 206 

either HapMap 3 (HM3) 49 or the Multi-Ethnic Genotyping Arrays (MEGA) chips array 50. LD 207 

reference samples for all five ancestries, EUR, AFR, AMR, EAS, and SAS, in this and the following 208 

sections, are from 1000 Genomes Project (Phase 3) 51 (1000G).  209 

 210 

The results (Figure 2, Supplementary Figure 2-6, Supplementary Table 1.1-1.5) show that 211 

multi-ancestry methods generally exhibit superior performance compared to single-ancestry 212 

methods. Weighted PRS generated from methods modeling LD (LDpred2 and lassosum2) can 213 

lead to a noticeable improvement in performance (green bars in Figure 2). Notably, PROSPER 214 
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shows robust performance uniformly across different scenarios. When the sample size of the 215 

target non-EUR population is small (𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 15K) (Figure 2a), PROSPER has comparable 216 

performance with other multi-ancestry methods under a high degree of polygenicity (𝑝𝑐𝑎𝑢𝑠𝑎𝑙 =217 

0.01). However, under the same sample size setting and lower (𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01 and 5 × 10−4), 218 

PRS-CSx and CT-SLEB outperform PROSPER, with the margin of improvement increasing as the 219 

strength of negative selection decreases (strong negative selection in Figure 2a, mild strong 220 

negative selection in Supplementary Figure 2a, and no negative selection in Supplementary 221 

Figure 3a). When the sample size of the target population is large (𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 80K) (Figure 2b, 222 

and Supplementary Figure 2-5 b), PROSPER almost uniformly outperforms all other methods, 223 

particularly for the AFR population.  224 

 225 

We further compare the computational efficiency of PROSPER in comparison to PRS-CSx, the 226 

state-of-the-art Bayesian method available for generating multi-ancestry PRS. We train PRS 227 

models for the two methods using simulated data for chromosome 22 using a single core with 228 

AMD EPYC 7702 64-Core Processors running at 2.0 GHz. We observe (Supplementary Table 2) 229 

that PROSPER is 37 times faster than PRS-CSx (3.0 vs. 111.1 minutes) in a two-ancestry analysis 230 

including AFR and EUR; and 88 times faster (6.8 vs. 595.8 minutes) in the analysis of all five 231 

ancestries. The memory usage for PRS-CSx is about 2.8 times smaller than PROSPER (0.78 vs. 232 

2.24 Gb in two-ancestry analysis, and 0.84 vs. 2.35 Gb in five-ancestry analysis).  233 

 234 

23andMe data analysis 235 

 236 
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We applied various methods to GWAS summary statistics available from the 23andMe, Inc. to 237 

predict two continuous traits, heart metabolic disease burden and height; as well as five binary 238 

traits, any cardiovascular disease (any CVD), depression, migraine diagnosis, morning person, 239 

and sing back musical note (SBMN). The datasets are available for all five ancestries, African 240 

American (AA), Latino, EAS, EUR, and SAS. The methods are tuned and validated on a set of 241 

independent individuals of the corresponding ancestry from the 23andMe participant cohort 242 

(see the section of Real data analysis in Methods for data description, and Supplementary 243 

Table 3-4 for sample sizes used in training, tuning and validation).  244 

 245 

From the analysis of two continuous traits (Figure 3 and Supplementary Table 5.1), we observe 246 

that lassosum2 and its related methods (EUR lassosum2 and weighted lassosum2) generally 247 

perform better than CT and LDpred2, and their related methods. On the basis of the advantage 248 

of lassosum2, PROSPER further improves the performance, and for most of the settings, 249 

outperforms all alternative methods, including PRS-CSx and CT-SLEB. PROSPER demonstrates 250 

particularly remarkable improvement for both traits in AA and Latino (26.9 % relative 251 

improvement in R2 over the second-best method on average, yellow cells in Supplementary 252 

Table 5.2) (first two panels in Figure 3a-b). For EAS and SAS, PROSPER is slightly better than 253 

other methods, except for heart metabolic disease burden of SAS (the last panel in Figure 3a), 254 

which has the smallest sample size (~20K). 255 

 256 

The results from the analysis of the binary traits (Figure 4 and Supplementary Table 5.1) show 257 

that PROSPER generally exhibits better performance (7.8% and 12.3% relative improvement in 258 
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logit-scale variance (see Supplementary Notes) over CT-SLEB and PRS-CSx, respectively, 259 

averaged across populations and traits) (blue and red cells, respectively, in Supplementary 260 

Table 5.2). A similar trend is observed for the analyses of AA and Latino, where PROSPER 261 

usually has the best performance (first two panels in Figure 4a-e). In general, no single method 262 

can uniformly outperform others. Weighted lassosum2 has outstanding performance for 263 

depression (Figure 4b), while PROSPER is superior for morning person (Figure 4d). PRS-CSx 264 

shows a slight improvement in the analysis of migraine diagnosis for EAS populations (last 265 

second panel in Figure 4c), and CT-SLEB performs the best in the analysis of any CVD for SAS 266 

population (last panel in Figure 4a). 267 

 268 

GLGC and AoU data analysis 269 

 270 

Considering the uncommonly huge sample sizes from 23andMe, we further applied alternative 271 

methods for the analysis of two other real datasets, GLGC and AoU. The GWAS summary 272 

statistics from GLGC for four blood lipid traits, high-density lipoprotein (HDL), low-density 273 

lipoprotein (LDL), log-transformed triglycerides (logTG), and total cholesterol (TC), are publicly 274 

downloadable and available for all five ancestries, African/Admixed African, Hispanic, EAS, EUR, 275 

and SAS (see Methods for data description, and Supplementary Table 3 for sample sizes). 276 

Further, we generated GWAS summary statistics data from the AoU study for two 277 

anthropometric traits, body mass index (BMI) and height, for individuals from three ancestries, 278 

AFR, EUR, and Latino/Admixed American (see Methods for data description, and 279 

Supplementary Table 3 for sample sizes). Both the blood lipid traits and anthropometric traits 280 
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have corresponding phenotype data available in the UKBB, which we use to perform tuning and 281 

validation (see the section of Real data analysis in Methods for the ancestry composition, and 282 

Supplementary Table 4 for sample sizes). Given the limited sample sizes of genetically inferred 283 

AMR ancestry individuals in UKBB, we do not report the performance of PRS on AMR 284 

individuals in UKBB. 285 

 286 

Results from analysis of four blood lipid traits (Figure 5 and Supplementary Table 6.1) from 287 

GLGC and UKBB show that PRS generated by lasso-type methods substantially outperform 288 

alternative methods. In particular, we observe that the weighted lassosum2 always 289 

outperforms the other two weighted methods. Furthermore, our proposed method, PROSPER, 290 

shows improvement over weighted lassosum2 in both AFR and SAS (13.1% and 12.3% relative 291 

improvement in R2, respectively, averaged across traits) (green and orange cells, respectively, in 292 

Supplementary Table 6.2), but not in EAS. Notably, PROSPER outperforms PRS-CSx and CT-SLEB 293 

in most scenarios (34.2% and 37.7% relative improvement in R2, respectively, averaged across 294 

traits and ancestries) (blue and red cells, respectively, in Supplementary Table 6.2), with the 295 

improvement being particularly remarkable for the AFR population in which PRS development 296 

tends to be the most challenging. 297 

 298 

The results from AoU and UKBB (Figure 6 and Supplementary Table 7.1) show that PROSPER 299 

generates the most predictive PRS for the two analyzed anthropometric traits for the AFR 300 

population. It appears that Bayesian and penalized regression methods that explicitly model LD 301 

tend to outperform corresponding CT-type methods (CT, EUR CT, and weighted CT) which 302 
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excluded correlated SNPs. Among weighted methods, both LDpred2 and lassosum2 show major 303 

improvement over the corresponding CT method. Further, for both traits, PROSPER shows 304 

remarkable improvement over the best of the weighted methods and the two other advanced 305 

methods, PRS-CSx and CT-SLEB (91.3% and 76.5% relative improvement in R2, respectively, 306 

averaged across the two traits) (blue and red cells, respectively, in Supplementary Table 7.2).  307 

 308 

Discussion 309 

 310 

In this article, we propose PROSPER as a powerful method that can jointly model GWAS 311 

summary statistics from multiple ancestries by an ensemble of penalized regression models to 312 

improve the performance of PRS across diverse populations. We show that PROSPER is a 313 

uniquely promising method for generating powerful PRS in multi-ancestry settings through 314 

extensive simulation studies, analysis of real datasets across a diverse type of complex traits, 315 

and considering the most recent developments of alternative methods. Computationally, the 316 

method is an order of magnitude faster compared to PRS-CSx 34, an advanced Bayesian method, 317 

and comparable to CT-SLEB 22, which derives the underlying PRS in closed forms. We have 318 

packaged the algorithm into a command line tool based on the R programming language 319 

(https://github.com/Jingning-Zhang/PROSPER).  320 

 321 

We compare PROSPER with a number of alternative simple and advanced methods using both 322 

simulated and real datasets. The simulation results show that PROSPER generally outperforms 323 

other existing multi-ancestry methods when the target sample size is large (Figure 2b). 324 
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However, when the sample size of the target population is small (Figure 2a), no method 325 

performed uniformly the best. In this setting, when the degree of polygenicity is the lowest 326 

(𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 5 × 10−4), CT-SLEB outperforms other methods by a noticeable margin, and 327 

PROSPER performs slightly worse than PRS-CSx. Simulations also show that in the scenario of a 328 

highly polygenic trait (𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01), irrespective of sample size, both weighted lassosum2 329 

and PROSPER tend to enjoy superiority compared to all other methods. In terms of 330 

computational time and memory usage, PROSPER is an order of magnitude than PRS-CSx in a 331 

five-ancestry analysis. The memory usage for PRS-CSx is smaller than PROSPER, but both are 332 

acceptable (Supplementary Table 2).  333 

 334 

We observe that for the analysis of both continuous and binary traits using 23andMe Inc. data, 335 

PROSPER demonstrates a substantial advantage over all other methods for the AA and Latino 336 

populations, which have the largest sample sizes among all minority groups. The result is 337 

consistent with the superior performance of PROSPER observed in simulation settings when the 338 

sample size of the target population is large. However, it is worth noting that even for the two 339 

other populations, EAS and SAS, which have much smaller sample sizes, PROSPER still performs 340 

the best in half of the settings (the last two panels in Figure 3a-b and Figure 4a-e). For the 341 

prediction of blood lipid traits, methods built upon the lasso penalty (lassosum2, weighted 342 

lassosum2, PROSPER) perform substantially better than all other alternative methods. 343 

Intuitively, this might result from the robustness of the heavy-tail lasso penalty function in 344 

dealing with large-effect loci that tend to be present for molecular traits, such as lipid levels 345 

(Supplementary Table 8), and sometimes for complex traits as well. For the analysis of two 346 
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anthropometric traits using training data from AoU, we observe that methods that explicitly 347 

model and account for LD differences (e.g. lassosum2, LDpred2, and their corresponding 348 

weighted methods) generally achieve higher predictive accuracy than CT-based methods which 349 

discard correlated SNPs. In addition, we observe major improvement in PRS performance using 350 

PROSPER over weighted lassosum2 and all other existing multi-ancestry methods. The result is 351 

consistent with what we have observed in simulation settings under extreme polygenic 352 

architectures as expected for complex traits like height and BMI. In conclusion, our results show 353 

that PROSPER is a promising method for handling complex traits of diverse genetic 354 

architectures.  355 

 356 

PROSPER, while showing promising results in our simulations and real data analyses, does have 357 

several limitations. Specifically, when the sample size for the training sample for a target 358 

population is small, particularly for traits with low polygenicity, the method may not perform as 359 

well as some of the other existing methods (Figure 2a). Additionally, the use of a super learning 360 

step in PROSPER can lead to poorer performance compared to weighted lassosum2 when the 361 

sample size for the tuning dataset is not adequately large. In the analysis of lipid traits for EAS, 362 

for example, we observe lower predictive accuracy of PROSPER than weighted lassosum2 (the 363 

middle panel in Figure 5b and d). This can be attributed to overfitting in the tuning sample, as 364 

the number of tuning samples of EAS origin in the UKBB is only ~1000, while the number of 365 

PRSs combined in the super learning step is close to 500.  366 

 367 
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PROSPER and a number of other recent methods have been developed for modeling summary 368 

statistics data across discrete populations typically defined by self-reported ancestry 369 

information. However, there is an emerging need to consider the underlying continuum of 370 

genetic diversity across populations in both the development and implementational of PRS in 371 

diverse populations in the future 52. Towards this goal, a recent method called GAUDI 53 has 372 

been proposed based on the fused lasso penalty for developing PRS in admixed population 373 

using individual-level data. While GAUDI shares similarities with PROSPER in terms of the use of 374 

the lasso-penalty function, the two methods are distinct in terms of the specification of tuning 375 

parameters and use of the ensemble step. Future studies are merited to extend PROSPER for 376 

handling data with continuous genetic ancestry information.  377 

 378 

To conclude, we have proposed PROSPER, a statistically powerful and computationally scalable 379 

method for generating multi-ancestry PRS using GWAS summary statistics and additional tuning 380 

and validation datasets across diverse populations. While no method is uniformly powerful in 381 

all settings, we show that PROSPER is the most robust among a large variety of recent methods 382 

proposed across a wide variety of settings. As individual-level data from GWAS of diverse 383 

populations becomes increasingly available, PROSPER and other methods will require additional 384 

considerations for incorporating continuous genetic ancestry information, both global and local, 385 

into the underlying modeling framework.  386 

  387 
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Online Methods 576 

 577 

Data preparation and formatting in PROSPER. We match SNPs and their alleles in GWAS 578 

summary statistics and genotypes of individuals for tuning and validation purposes to that in 579 

1000G reference data (phase 3) 51. To simplify computing huge-dimensional LD matrix, we use 580 

existing LD block information from EUR 29 to divide the whole genome, and assume the blocks 581 

to be independent. We use PLINK1.9 54 with flag --r bin4 to compute the LD matrix within each 582 

block in each ancestry for common SNPs (MAF>0.01) either in HM3 49 or the MEGA 50. For SNPs 583 

not common in all populations, we only model them in the populations where they are 584 

common; if an SNP is population-specific that is only common in one population, we model it 585 

only using the lasso penalty without the genetic similarity penalty. The parameter path of the 586 

tuning parameter 𝜆 for the scale factor in lasso penalty is set to a sequence evenly spaced on a 587 

logarithmic scale from  𝜆max = min
1≤𝑖≤𝑚

(
max

1≤𝑘≤𝑝
(|𝑟𝑖𝑘|)

𝜆𝑖
0 )  to 𝜆min = 0.001 × 𝜆max which is set to 588 

guarantee non-zero solutions, where 𝑟𝑖𝑘 is the GWAS summary statistics for the 𝑘-th SNP in the 589 

𝑖-th population, and 𝜆𝑖
0 is the underlying values of optimal tuning parameter 𝜆 for the 𝑖-th 590 

population. The parameter path for the tuning parameter 𝑐 for the genetic similarity penalty is 591 

set to a sequence of that evenly spaced on a quad-root scale from 𝑐min = 0.5 to 𝑐max = 100. 592 

For all analyses excluding 23andMe, the length of sequences of both parameters are set to be 593 

10, while for the analysis of 23andMe, it is set to be 5 to reduce the computation workload 594 

caused by the confidential requirements of the 23andMe dataset. 595 

 596 
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Obtain PROSPER solution. For 𝑀 populations, the objective function to minimize for 𝑝𝑖-597 

dimentional vector of SNP effect, 𝜷𝑖 , 𝑖 = 1, … , 𝑀, is  598 

𝑳(𝜷1, … , 𝜷𝑚) = ∑ (𝜷𝑖
𝑇(𝑹𝑖 + 𝛿𝑖𝑰)𝜷𝑖 − 𝟐𝜷𝑖

𝑇𝒓𝑖 + 2𝜆𝑖‖𝜷𝑖‖1
1)

1≤𝑖≤𝑀

599 

+ ∑ 𝑐𝑖1𝑖2
‖𝜷

𝑖1

𝑠𝑖1𝑖2 − 𝜷
𝑖2

𝑠𝑖1𝑖2‖
2

2

1≤𝑖1<𝑖2≤𝑀

 600 

where 𝑹𝑖  is an estimate of 𝑝𝑖-by-𝑝𝑖 LD matrix based on a reference sample from the 𝑖-th 601 

population, 𝒓𝑖 is the 𝑝𝑖-dimentional vector of GWAS summary statistics in the 𝑖-th population, 602 

𝜷𝑖1

𝑠𝑖1𝑖2  and 𝜷𝑖2

𝑠𝑖1𝑖2  denote the effect vectors for the SNPs shared across 𝑖1-th and 𝑖2-th 603 

populations (the set of SNPs is denoted by 𝑠𝑖1𝑖2
); 𝛿𝑖, 𝜆𝑖 and 𝑐𝑖1𝑖2

 are tuning parameters as 604 

defined in above sections.  605 

This optimization can be solved using coordinate descent algorithms by iteratively updating 606 

each element in the vectors. We take derivative for SNP 𝑘 in 𝑖-th population, 𝑘 = 1, … , 𝑝𝑖, 𝑖 =607 

1, … , 𝑀 608 

𝜕𝑳(𝜷1, … , 𝜷𝑚)

𝜕𝛽𝑖𝑘
609 

= 2 (1 + 𝛿𝑖 + ∑ 𝑐𝑖𝑖′

𝑖′≠𝑖,1≤𝑖′≤𝑀

) 𝛽𝑖𝑘 + 2𝜆𝑖

𝜕|𝛽𝑖𝑘|

𝜕𝛽𝑖𝑘
610 

− 2 (𝑟𝑖𝑘 − ∑ 𝑅𝑖,𝑘′𝑘𝛽𝑖𝑘′

𝑘′≠𝑘,1≤𝑘′≤𝑝

+ ∑ 𝑐𝑖𝑖′𝛽𝑖′𝑘

1≤𝑖′≤𝑀,s.t.𝑘∈𝑆𝑖,𝑖′

) 611 

where 𝛽𝑖𝑘  denotes the SNP 𝑘 in 𝜷𝑖, 𝑟𝑖𝑘 denotes the SNP 𝑘 SNP in 𝒓𝑖, and 𝑅𝑖,𝑘′𝑘  denotes LD 612 

between the SNP 𝑘 and the SNP 𝑘′ in 𝑹𝑖 .  613 
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By solving 
𝜕𝑳(𝜷1,…,𝜷𝑚)

𝜕𝛽𝑖𝑘
= 0 after the (𝑡)-th iteration, we can get the updating rule for the (𝑡 +614 

1)-th iteration 615 

𝛽𝑖𝑘
(𝑡+1)

=
sign(𝑢𝑖𝑘) ⋅ max {0, |𝑢𝑖𝑘| − 𝜆𝑖}

1 + 𝛿𝑖 + ∑ 𝑐𝑖𝑖′1≤𝑖′≤𝑀,s.t.𝑘∈𝑆𝑖,𝑖′

 616 

where  617 

𝑢𝑖𝑘 = 𝑟𝑖𝑘 − ∑ 𝑅𝑖,𝑘′𝑘𝛽
𝑖𝑘′
(𝑡)

𝑘′≠𝑘,1≤𝑘′≤𝑝

+ ∑ 𝑐𝑖𝑖′𝛽
𝑖′𝑘

(𝑡)

1≤𝑖′≤𝑀,s.t.𝑘∈𝑆𝑖,𝑖′

 618 

 619 

Super learning. After getting PRSs for all populations under all tuning parameter settings, we 620 

further apply super learning to combine them to be trained on the tuning samples to get the 621 

final PROSPER model and tested on the validation samples. We use the function “SuperLearner” 622 

implemented in the R package with the same name, and include three linear prediction 623 

algorithms: lasso, ridge, and linear regression for continuous outcomes; and two prediction 624 

algorithms: lasso and linear regression for binary outcomes. We did not include ridge for binary 625 

outcomes due to the unavailability of ridge for binary outcomes in the function. For the 626 

included algorithms which have parameters: (1) in lasso, we use 100 values in lambda path 627 

calculated in the default setting in glmnet package; (2) in ridge, we use a lambda path of 628 

sequence from 1 to 20 incrementing by 0.1. We use Area under the ROC curve (AUC) as the 629 

objective function for binary outcomes and thus use the flag “method = method. AUC” in the 630 

function.  631 

 632 
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Existing PRS methods. We compare five groups of PRS methods. The first group is: single-633 

ancestry method, which contains commonly known single-ancestry methods, including CT, 634 

LDpred2, and lassosum2, that are trained from the GWAS data from the target population. The 635 

second group is: EUR PRS based method, which is the three above single-ancestry methods 636 

trained from EUR GWAS data. The third group is: weighted PRS, which uses the weights 637 

estimated from a linear regression to combine the PRSs estimated from the corresponding 638 

single-ancestry method from all populations. The fourth group is: existing multi-ancestry 639 

methods, which includes two recently published and well-performed multi-ancestry methods, 640 

PRS-CSx and CT-SLEB. The last group is our proposed PROSPER. For all algorithms that have 641 

tuning parameters or weights, the optimal ones are determined based on predictive R2 or AUC 642 

on tuning samples and finally evaluated on validation samples.  643 

CT is implemented in our analysis by using r2-cutoff of 0.1 in the clumping step and then 644 

thresholding by treating p-value-cutoff as a tuning parameter and being chosen from 645 

5 × 10−8, 1 × 10−7, 5 × 10−7, 1 × 10−6, … , 5 × 10−1, 1.0.  646 

LDpred2 is a PRS method that uses a spike-and-slab prior on GWAS summary statistics and 647 

modeling LD across SNPs. We implement LDpred2 by the function “snp_ldpred2_grid” in the R 648 

package “bigsnpr”. The two tuning parameters in the algorithm include: the proportion of 649 

causal SNPs, which is chosen from a sequence of length 17 that are evenly spaced on a 650 

logarithmic scale from 10−4 to 1; per-SNP heritability, which is chosen from 0.7, 1, or 1.4 times 651 

the total heritability estimated by LD score regression divided by the number of causal SNPs. 652 

We fix the additional “sparse” option (for truncating small effects to zero) to FALSE.  653 
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lassosum2 is a PRS method that uses lasso regression on GWAS summary statistics for a single 654 

ancestry. We implement lassosum2 by the function “snp_lassosum2” in the R package 655 

“bigsnpr”. The two tuning parameters in the algorithm include: tuning parameter for the lasso 656 

penalty, which is chosen from a sequence of length 20 that are evenly spaced on a logarithmic 657 

scale from 0.01 × max
1≤𝑘≤𝑝

(|𝑟𝑘|) to max
1≤𝑘≤𝑝

(|𝑟𝑘|); and regularization parameter for LD matrix, which 658 

is chosen from a sequence of length 10 that are evenly spaced on a cube-root scale from 0.01 659 

to 100.  660 

EUR PRS are the PRSs trained from EUR GWAS using the above single-ancestry methods, CT, 661 

LDpred2, and lassosum2, that are then applied to individuals of the target population. There is 662 

no need to perform tuning for them because the models have been tuned in EUR tuning 663 

samples. When computing scores for EUR PRS based method, we exclude SNPs that are not 664 

presented in the validation samples from the target population. 665 

Weighted PRS linearly combines the corresponding single-ancestry method trained from all 666 

populations. The weights in the linear combination are estimated by a simple linear regression 667 

in the tuning samples from the target population.  668 

PRS-CSx is a Bayesian multi-ancestry PRS method that jointly models GWAS summary statistics 669 

and LD structures across multiple populations using a continuous shrinkage prior. It has a 670 

further step to linearly combine the posterior effect-sizes estimates for EUR and the target 671 

population using weights in a simple linear regression in the tuning samples from the target 672 

population. We implement PRS-CSx using their python-based command line tool “PRS-CSx”. The 673 

parameter phi was chosen from the default candidate values, 1, 10−2, 10−4 and 10−6. Due to 674 

the package restriction, the models are fitted with only HM3 SNPs.  675 
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CT-SLEB is a multi-ancestry PRS method that starts from clumping and thresholding, then uses 676 

Empirical-Bayes (EB) method to estimate the coefficients of PRS, and finally combines PRS by a 677 

super learning model. The three tuning parameters in the algorithm include: r2-cutoff and base 678 

size of the clumping window size used in the clumping step, which are chosen from (0.01, 0.05, 679 

0.1, 0.2, 0.5) and (50kb, 100kb), respectively; and p-value cutoffs for EUR and the target 680 

population, which are chosen from 5 × 10−8, 5 × 10−7, 5 × 10−6, … , 5 × 10−1 and 1.0. 681 

 682 

Computational time and memory usage. The computational time and memory usage of 683 

PROSPER and PRS-CSx are compared based on the analysis using simulated data on 684 

chromosome 22. The analysis starts from inputting all required data into the algorithms, such as 685 

summary statistics and LD reference data, and ends with outputting the final PRS coefficients 686 

from the algorithms. PROSPER requires an input of optimal parameters in single-ancestry 687 

analysis, so we also include the step of running the single-ancestry analysis, lassosum. The 688 

analyses are performed using a single core with AMD EPYC 7702 64-Core Processors running at 689 

2.0 GHz. The reported results are averaged over 10 replicates. The sample size for training 690 

GWAS summary statistics is 15,000 for non-EUR populations and 100,000 for EUR population. 691 

The sample size for the tuning dataset is 10,000 for each population.  692 

 693 

Real data analysis. Training GWAS summary statistics are from 23andMe, GLGC, and AoU. 694 

Tuning and validation individual-level data are from 23andMe and UKBB. Detailed descriptions 695 

of those datasets are listed below.  696 
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23andMe Data. We analyzed two continuous traits, heart metabolic disease burden and height; 697 

and five binary traits, any CVD, depression, migraine diagnosis, morning person and SBMN, 698 

using GWAS summary statistics obtained from 23andMe Inc.. The information of individuals 699 

included in our analyses from the 23andMe participant cohort has consent and answered 700 

surveys online according to the human subject protocol reviewed and approved by Ethical & 701 

Independent Review Services, a private institutional review board 702 

(http://www.eandireview.com) as described in a previous paper 22. Data on the seven traits are 703 

available for all five populations: AA, EAS, EUR, Latino, and SAS. The LD reference panels used 704 

for the five populations, respectively, are unrelated individuals from 1000G of AFR, EAS, EUR, 705 

AMR, and SAS origins. The tuning and validation are performed on a set of independent 706 

individuals of the corresponding ancestry from 23andMe participant cohort. Please see 707 

Supplementary Table 3 for training sample sizes and Supplementary Table 4 for tuning and 708 

validation sample sizes. The details of the data, including genotyping, quality control, 709 

imputation, removing related individuals, ancestry determination, and the preprocessing of 710 

GWAS, are also described in the previous paper 22. For continuous traits, we evaluate PRS 711 

performance by the predictive R2 of the PRS for residualized trait values obtained from 712 

regressing the traits on covariates. For binary traits, we evaluated PRS performance by the AUC 713 

by using the roc.binary function in the R package RISCA version 1.0 55. To compare the PRS 714 

performance for two different methods, we used the relative increase of logit-scale variance. 715 

The logit-scale variance of binary traits is converted from AUC by the formula 𝜎2 =716 

2𝜙−1(𝐴𝑈𝐶), where 𝜙 is the cumulative distribution function of the standard normal 717 

distribution. 718 
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GLGC Data. We analyzed four blood lipid traits, LDL, HDL, logTG and TC, using GWAS summary 719 

statistics computed without UKBB samples that are publicly available from GLGC 720 

(http://csg.sph.umich.edu/willer/public/glgc-lipids2021/). Detailed information about the 721 

design of the study, genotyping, quality control, and GWAS is described in Graham, S. E. et al. 722 

(2021) 37. Data on the four traits are available for all five populations: admixed African or 723 

African, EAS, EUR, Hispanic, and SAS. The LD reference panels used for the five populations, 724 

respectively, are unrelated individuals from 1000G of AFR, EAS, EUR, AMR, and SAS origins. The 725 

tuning and validation are performed on UKBB individuals (as described below) from the same 726 

reference ancestry label as the LD reference panel. Please see Supplementary Table 3 for 727 

sample sizes and the number of SNPs included in the analysis. The cleaning and preprocessing 728 

of the GWAS data are described in a previous paper 22. 729 

AoU Data. We analyzed two anthropometric traits, BMI and height, using GWAS summary 730 

statistics trained from AoU. The information of individuals included in our analyses has been 731 

collected according to All of Us Research Program Operational Protocol 732 

(https://allofus.nih.gov/sites/default/files/aou_operational_protocol_v1.7_mar_2018.pdf). 733 

Details of the data and GWAS summary statistics are previously described22. Data for the two 734 

traits are available for three ancestries: AFR, Latino/Admixed American, and EUR. The LD 735 

reference panel used for the three populations, respectively, are 1000G unrelated individuals of 736 

AFR, AMR, and EUR origins. The tuning and validation are performed using UKBB individuals (as 737 

described below) from the same reference ancestry label as the LD reference panel. Please see 738 

Supplementary Table 3 for sample sizes and the number of SNPs included in the analysis. The 739 

cleaning and preprocessing of the GWAS data are described in a previous paper 22. 740 
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UKBB data. We used UKBB data only for tuning and validation purposes. The four blood lipid 741 

traits and two anthropometric traits mentioned above have direct measurements in UKBB. The 742 

ancestry label of UKBB individuals is determined by genetically predicted ancestry, which are 743 

described in a previous paper 22. Tuning and validation are based on R2 of the PRS regressed on 744 

the residuals of the phenotypes adjusted by sex, age and PC1-10. Please see Supplementary 745 

Table 4 for sample sizes. We note that for PRS we tested in UKBB validation samples, we use 746 

the ancestry labels in UKBB (AFR, AMR, EAS, EUR or SAS), instead of ancestry labels in the 747 

GWAS training data, to report the R2 in the figures, result, and discussion sections of this paper. 748 

 749 
 750 
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Figure 1: Detailed flowchart of PROSPER. The analysis of M populations in PROSPER involves 759 
three key steps: 1. Separate single-ancestry analysis for all populations 𝑖 = 1, … , 𝑀; 2. Joint 760 
analysis across populations using penalized regression; 3. Ensemble regression. In step 1, the 761 
training GWAS data is used to train lassosum2 models, and the tuning data is used to obtain the 762 
optimal tuning parameters in a single-ancestry analysis. In step 2, the training GWAS and the 763 
optimal tuning parameter values from step 1 are used to train the joint cross-population 764 
penalized regression model, and obtain solution 𝜷𝜆,𝑐,𝑖 for each 𝜆 and 𝑐. In step 3, the tuning 765 
data is used to train the super learning model for the ensemble of PRSs computed from the 766 

solutions in step 2, 𝑷𝑹𝑺𝜆,𝑐,𝑖 = 𝑿𝜷𝜆,𝑐,𝑖. The final PRS is computed as 𝑷𝑹𝑺 = 𝑿(∑ 𝑤𝜆,𝑐,𝑖𝜷𝜆,𝑐,𝑖), 767 

where 𝑤𝜆,𝑐,𝑖  are the weights from the super learning model. Refer to the “Method Overview” 768 
section in the main text for a full explanation of all notations in the flowchart.  769 
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Figure 2: Performance comparison of alternative methods on simulated data generated with 772 
different sample sizes and genetic architectures under strong negative selection and fixed 773 
common-SNP heritability. Data are simulated for continuous phenotype under a strong 774 
negative selection model and three different degrees of polygenicity (top panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01, 775 
middle panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001, and bottom panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 5 × 10−4). Common SNP 776 
heritability is fixed at 0.4 across all populations, and the correlations in effect sizes for share 777 
SNPs between all pairs of populations is fixed at 0.8. The sample sizes for GWAS training data 778 
are assumed to be (a) 15,000, and (b) 80,000 for the four non-EUR target populations; and is 779 
fixed at 100,000 for the EUR population. PRS generated from all methods are tuned in 10,000 780 
samples, and then tested in 10,000 independent samples in each target population. The PRS-781 
CSx package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from 782 
either HM3 or MEGA. 783 
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Figure 3: Performance comparison of alternative methods for prediction of two continuous 785 
traits in 23andMe. We analyzed two continuous traits, (a) heart metabolic disease burden and 786 
(b) height. PRS are trained using 23andMe data that available for five populations: African 787 
American, Latino, EAS, EUR, and SAS, and then tuned in an independent set of individuals from 788 
23andMe of the corresponding ancestry. Performance is reported based on adjusted R2 789 
accounting for sex, age and PC1-5 in a held-out validation sample of individuals from 23andMe 790 
of the corresponding ancestry. The ratio of sample sizes for training, tuning and validation is 791 
roughly about 7:2:1, and detailed numbers are in Supplementary Table 3-4. The PRS-CSx 792 
package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from 793 
either HM3 or MEGA. 794 
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Figure 4: Performance comparison of alternative methods for prediction of five binary traits 798 
in 23andMe. We analyzed five binary traits, (a) any CVD, (b) depression, (c) migraine diagnosis, 799 
(d) morning person and (e) SBMN. PRS are trained using 23andMe data that available for five 800 
populations: African American, Latino, EAS, EUR, and SAS, and then tuned in an independent 801 
set of individuals from 23andMe of the corresponding ancestry. Performance is reported based 802 
on adjusted AUC accounting for sex, age, PC1-5 in a held-out validation sample of individuals 803 
from 23andMe of the corresponding ancestry. The ratio of sample sizes for training, tuning and 804 
validation is roughly about 7:2:1, and detailed numbers are in Supplementary Table 3-4. The 805 
PRS-CSx package is restricted to SNPs from HM3, whereas other alternative methods use SNPs 806 
from either HM3 or MEGA.807 
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Figure 5: Performance comparison of alternative methods for prediction of four blood lipid 809 
traits (GLGC-training and UKBB-tuning/validation). We analyzed four blood lipid traits, (a) HDL, 810 
(b) LDL, (c) logTG and (d) TC. PRS are trained using GLGC data that available for five populations: 811 
admixed African or African, East Asian, European, Hispanic, and South, and then tuned in 812 
individuals from UKBB of the corresponding ancestry: AFR, EAS, EUR, AMR, and SAS (see the 813 
section of Real data analysis in Methods for ancestry composition). Performance is reported 814 
based on adjusted R2 accounting for sex, age, PC1-10 in a held-out validation sample of 815 
individuals from UKBB of the corresponding ancestry. Sample sizes for training, tuning and 816 
validation data are in Supplementary Table 3-4. Results for AMR are not included due to the 817 
small sample size of genetically inferred AMR ancestry individuals in UKBB. The PRS-CSx 818 
package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from 819 
either HM3 or MEGA. 820 
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Figure 6: Performance comparison of alternative methods for prediction of two 825 
anthropometric traits (AoU-training and UKBB-tuning/validation). We analyzed two 826 
anthropometric traits, (a) BMI and (b) height. PRS are trained using AoU data that are available 827 
for three populations: African, Latino/Admixed American, and European and then tuned in 828 
individuals from UKBB of the corresponding ancestry: AFR, AMR, and EUR (see the section of 829 
Real data analysis in Methods for ancestry composition). Performance is reported based on 830 
adjusted R2 accounting for sex, age, PC1-10 in a held-out validation sample of individuals from 831 
UKBB of the corresponding ancestry. Sample sizes for training, tuning and validation data are in 832 
Supplementary Table 3-4. Results for AMR are not included due to the small sample size of 833 
genetically inferred AMR ancestry individuals in UKBB. The number of SNPs analyzed in AoU 834 
analyses is much smaller than other analyses because the GWAS from AoU is on array data only 835 
(see Supplementary Table 3 for the number of SNPs). The PRS-CSx package is restricted to SNPs 836 
from HM3, whereas other alternative methods use SNPs from either HM3 or MEGA. 837 
 838 

 839 
 840 
  841 

a

b

AFR

B
M

I
H

e
ig

h
t

0.000

0.005

0.010

0.015

0.020

0.00

0.01

0.02

0.03

0.04

0.05

R
2
  
  

  
  
  

  
  
  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  

  
  

  
  

  
  
  

  
  

  
  

 R
2

Single ethnic method

CT

LDpred2

lassosum2

EUR PRS based method

EUR CT

EUR LDpred2

EUR lassosum2

Multi ethnic method
(weighted PRS)

weighted CT

weighted LDpred2

weighted lassosum2

Multi ethnic method
(existing methods)

PRS−CSx

CT−SLEB

PROSPER

PROSPER

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 1: Optimal tuning parameter lambda in lasso. The simulation is 842 
performed for design matrix with 1000 predictors (𝑝 = 1000), and 5% of them are randomly 843 
selected to be causal. Correlation structure of those predictors is AR1 with 𝜌 = 0.4. The total 844 
heritability is simulated to be 0.2.  845 
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Supplementary Figure 2: Performance of alternative methods on simulated data generated 848 
with different sample sizes and different genetic architectures. Data are simulated for 849 
continuous phenotype under a mild negative selection model and three different degrees of 850 
polygenicity (top panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01, middle panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001, and bottom panel: 851 
𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 5 × 10−4). Common SNP heritability is fixed at 0.4 across all populations, and the 852 
correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.8. The 853 
sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the four 854 
non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated 855 
from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples 856 
in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other 857 
alternative methods use SNPs from either HM3 or MEGA. 858 
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Supplementary Figure 3: Performance of alternative methods on simulated data generated 861 
with different sample sizes and different genetic architectures. Data are simulated for 862 
continuous phenotype under a no negative selection model and three different degrees of 863 
polygenicity (top panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01, middle panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001, and bottom panel: 864 
𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 5 × 10−4). Common SNP heritability is fixed at 0.4 across all populations, and the 865 
correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.8. The 866 
sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the four 867 
non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated 868 
from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples 869 
in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other 870 
alternative methods use SNPs from either HM3 or MEGA. 871 
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Supplementary Figure 4: Performance of alternative methods on simulated data generated 874 
with different sample sizes and different genetic architectures. Data are simulated for 875 
continuous phenotype under a strong negative selection model and three different degrees of 876 
polygenicity (top panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01, middle panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001, and bottom panel: 877 
𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 5 × 10−4). Per-SNP heritability is assumed to be the same across all populations and 878 
thus leads to the common SNP heritability value of 0.32, 0.21, 0.16, 0.19 and 0.17 for AFR, AMR, 879 
EAS, EUR and SAS, respectively. The correlations in effect sizes for share SNPs between all pairs 880 
of populations is fixed at 0.8. The sample sizes for GWAS training data are assumed to be (a) 881 
15,000, and (b) 80,000 for the four non-EUR target populations; and is fixed at 100,000 for the 882 
EUR population. PRS generated from all methods are tuned in 10,000 samples, and then tested 883 
in 10,000 independent samples in each target population. The PRS-CSx package is restricted to 884 
SNPs from HM3, whereas other alternative methods use SNPs from either HM3 or MEGA. 885 
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Supplementary Figure 5: Performance of alternative methods on simulated data generated 887 
with different sample sizes and different genetic architectures. Data are simulated for 888 
continuous phenotype under a strong negative selection model and three different degrees of 889 
polygenicity (top panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01, middle panel: 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001, and bottom panel: 890 
𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 5 × 10−4). Per-SNP heritability is assumed to be the same across all populations, and 891 
the correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.6. 892 
The sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the 893 
four non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated 894 
from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples 895 
in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other 896 
alternative methods use SNPs from either HM3 or MEGA. 897 
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