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Abstract (230/250 words) 20 

Human decision making is accompanied by a sense of confidence. According to Bayesian decision 21 

theory, confidence reflects the learned probability of making a correct response, given available data 22 

(e.g., accumulated stimulus evidence and response time). Although optimal, independently learning 23 

these probabilities for all possible combinations of data is computationally intractable. Here, we 24 

describe a novel model of confidence implementing a low-dimensional approximation of this optimal 25 

yet intractable solution. Using a low number of free parameters, this model allows efficient 26 

estimation of confidence, while at the same time accounting for idiosyncrasies, different kinds of 27 

biases and deviation from the optimal probability correct. Our model dissociates confidence biases 28 

resulting from individuals’ estimate of the reliability of evidence (captured by parameter α), from 29 

confidence biases resulting from general stimulus-independent under- and overconfidence (captured 30 

by parameter β). We provide empirical evidence that this model accurately fits both choice data 31 

(accuracy, response time) and trial-by-trial confidence ratings simultaneously. Finally, we test and 32 

empirically validate two novel predictions of the model, namely that 1) changes in confidence can be 33 

independent of performance and 2) selectively manipulating each parameter of our model leads to 34 

distinct patterns of confidence judgments. As the first tractable and flexible account of the 35 

computation of confidence, our model provides concrete tools to construct computationally more 36 

plausible models, and offers a clear framework to interpret and further resolve different forms of 37 

confidence biases. 38 

 39 

Significance statement (119/120 words) 40 

Mathematical and computational work has shown that in order to optimize decision making, humans 41 

and other adaptive agents must compute confidence in their perception and actions. Currently, it 42 

remains unknown how this confidence is computed. We demonstrate how humans can approximate 43 

confidence in a tractable manner. Our computational model makes novel predictions about when 44 

confidence will be biased (e.g., over- or underconfidence due to selective environmental feedback). 45 

We empirically tested these predictions in a novel experimental paradigm, by providing continuous 46 

model-based feedback. We observed that different feedback manipulations elicited distinct patterns 47 

of confidence judgments, in ways predicted by the model. Overall, we offer a framework to both 48 

interpret optimal confidence and resolve confidence biases that characterize several psychiatric 49 

disorders.  50 
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Introduction 51 

Decision confidence refers to a subjective feeling reflecting how confident agents feel about 52 

the accuracy of their decisions. This feeling of confidence closely tracks the objective accuracy (1): 53 

people usually report high confidence for correct trials and low confidence for errors. This 54 

observation is in line with the theoretical proposal that confidence reflects the Bayesian posterior 55 

probability that a decision is correct given available data (1–3). As such, confidence represents 56 

valuable information that is taken into account to guide adaptive behavior, including learning (4–6); 57 

speed-accuracy tradeoff adjustments (7, 8); and information seeking (9). Therefore, having an 58 

accurate sense of confidence that best matches one’s accuracy is of utmost importance to maintain 59 

adaptive behavior. Dissociations between confidence and accuracy are widespread, however, most 60 

prominently in cases of blindsight (10), change blindness (11) and patients with anterior prefrontal 61 

lesions (12). Such dissociations pose a serious challenge for the Bayesian interpretation of 62 

confidence. More importantly, estimating the Bayesian probability with limited data is 63 

computationally intractable. In this work, we reconcile these findings by proposing and empirically 64 

validating a low-dimensional approximation to the Bayesian probability, offering both a tractable and 65 

flexible model for the computation of decision confidence.  66 

Most attempts at modeling decision confidence have done so within the context of existing 67 

models of decision making. One highly influential account is based on the idea that decision making 68 

reflects a process of noisy accumulation of evidence until a decision boundary is reached (13). For 69 

example, the drift-diffusion model (DDM) describes the decision-making process as the noisy 70 

accumulation of evidence in favor of one of two options. Here, evidence accumulates with a certain 71 

drift rate (representing the efficiency of evidence accumulation) until reaching a decision threshold, 72 

at which point a response is issued. Several approaches have been put forward to account for 73 

confidence within the DDM framework (14–16). The most prominent approach relies on the Bayesian 74 

interpretation of confidence, modeling it as the probability of a choice being correct given the 75 

available data. Within the drift diffusion model, the available data to participants is the amount of 76 

accumulated evidence and the time spent accumulating, which are then combined into a probability 77 

that the decision was correct (2, 15). Such formalization of decision confidence is sometimes referred 78 

to as the “Bayesian readout” (17). This Bayesian readout can be represented as a heatmap on the 79 

two-dimensional (data) space formed by both evidence and time. In Figure 1A, it can be seen that the 80 

Bayesian readout hypothesis predicts that confidence will be higher for trials with more accumulated 81 

evidence (reflected on the y-axis) and lower for trials with a longer decision duration (reflected on 82 

the x-axis). Consistent with these predictions, confidence indeed depends on evidence strength (1, 2) 83 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532729doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532729
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

and on elapsed decision time (14). More generally, this modeling approach has been successful in 84 

explaining a wealth of data (17–19). 85 

To compute confidence by reading out the probability correct given evidence and time, 86 

humans must have an accurate representation of the entire space created by crossing these two 87 

variables (i.e. the heatmap shown in Figure 1A). Previous accounts propose that individuals learn this 88 

mapping via experience (2). However, learning all positions on this heatmap would either take a lot 89 

of time or yield very noisy estimates. Thus, tractability is a key issue that needs to be addressed in 90 

order to understand how humans learn the probability correct given evidence and time. Therefore, in 91 

the current work we propose the Low-Dimensional Confidence (LDC) model, a simple yet efficient 92 

low-dimensional approximation of the optimal yet intractable Bayesian readout. In the following 93 

sections, we describe how LDC allows to tractably compute the mapping from evidence and time to 94 

confidence. Using simulated data, we show that LDC provides a close approximation of Bayesian 95 

confidence. We then proceed to test and validate our model with human data.  96 

Results 97 

The Low-Dimensional approximation of Confidence model (LDC model) 98 

Constructing an accurate representation of confidence based on a limited number of samples 99 

is infeasible. However, under standard DDM assumptions, the probability of a correct choice given 100 

accumulated evidence and elapsed time can be expressed as the probability of drift rate v being 101 

positive in case of upper boundary hit (and conversely ��� � 0� in the lower boundary hit case). 102 

Such probability is characterized as (15): 103 

��� � 0|�, 	
 � �  �
�√	� (1) 

where e is the accumulated evidence, t is the elapsed time, � is the cumulative distribution function 104 

of the standard normal distribution and � is the within-trial noise of the DDM accumulator Given 105 

that � is an integral without closed-form solution, it requires an infinite number of standard 106 

operations to be computed. We propose to approximate � with a more tractable logistic function 107 

(20) : 108 

�� �
�√	
 �  1

1 � exp ��� �
�√	
 

(2) 

 109 

where � � 1.7 is a constant that optimizes the approximation (20). In its current form, the 110 

formalization of confidence proposed in Eq. (2) cannot account for idiosyncrasies (21), diverse types 111 
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of confidence biases and deviations from the optimal probability of a correct choice typically 112 

observed in empirical work (22–24). In order to make the formulation of confidence more flexible we 113 

thus further parameterize confidence in the following way: 114 

���� !��"� �  1
1 � exp �� 1

√	 �#$� � %


 

(3) 

where � 	 
�1; 1� is the choice. The two free parameters of this equation capture how strongly 115 

individuals weigh evidence in their computation of confidence (α); and a stimulus-independent 116 

confidence bias (β). A positive confidence bias (β > 0) implies that the model has a general tendency 117 

to be overconfident. If β = 0, the model is unbiased and bases its confidence purely on the evidence 118 

accumulated and the time spent accumulating. A negative confidence bias (β < 0) indicates overall 119 

underconfidence. 120 

As a weighting parameter on evidence, α can be interpreted as individuals’ estimate of the 121 

reliability of evidence. Intuitively, if one thinks that the accumulated evidence is not reliable, one will 122 

need more evidence to be sure that the decision was correct.  When α is decreased, one puts less 123 

importance on accumulated evidence to compute confidence. In the extreme case where α = 0, the 124 

model completely ignores evidence and the computation of confidence is entirely driven by β and 125 

time. If additionally β = 0, then confidence will always be .5. At the other end of the spectrum, if α 126 

tends to infinity, then the smallest amount of evidence will lead to extreme confidence judgments 127 

(i.e. either confidence = 1 if ev > 0 or confidence = 0 if ev < 0). Given that accumulated evidence is 128 

noisy, an individual with an overly high α likely treats evidence as more reliable than it actually is. 129 

Simulations: The LDC model closely resembles Bayesian confidence 130 

The aim of the current work is to provide a tractable and flexible approximation of the 131 

Bayesian readout of confidence. A first test of the LDC model is whether it can effectively 132 

approximate the Bayesian readout of confidence. For this sake, we generated data from 100 133 

simulated participants from a range of typically observed DDM parameters. Our model was then fit 134 

to the true Bayesian posterior probability correct conditional on evidence, time and choice. LDC-135 

predicted confidence almost perfectly correlated with the true probability of being correct 136 

(Spearman r(999998) = .99, p < .001). This close resemblance can be appreciated visually by 137 

comparing the model-based heatmap (created based on the estimated parameters; Figure 1B) to the 138 

heatmap based on the simulations (Figure 1A).  139 

To further show that our model closely tracks the Bayesian readout of confidence, we tested 140 

its ability to reproduce three statistical signatures that confidence should adhere to if it does reflect a 141 
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Bayesian probability (Sanders et al., 2016). The three qualitative signatures are 1) confidence predicts 142 

choice accuracy, 2) confidence increases with evidence strength for correct trials, but decreases with 143 

evidence strength for error trials (commonly called the folded X-pattern; 25, 26) and 3) for any level 144 

of evidence strength above 0, high confidence trials should be linked with higher accuracy than low 145 

confidence trials. As can be assessed on Figure 1C, the simulated data showed an excellent fit to the 146 

signatures. 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

Figure 1. A. Confidence is thought to represent the Bayesian probability of a choice being correct conditional 159 
on evidence, time and choice. Within this theory, confidence is quantified as this probability, represented by 160 
the color on the heatmap. B. Because this optimal solution is intractable, the LDC model proposes a low-161 
dimensional parametrization of this framework, which allows efficient estimation of confidence, while 162 
accounting for idiosyncrasies and confidence biases. The LDC model can generate a heatmap representing 163 
confidence which closely approximates the optimal Bayesian probability. Values of α and β were obtained by 164 
fitting the LDC model to the Bayesian probability of being correct over 1 000 000 simulated trials. Confidence 165 
for the trial plotted on top of the heatmap is given by Eq. (3). Here, confidence = .85. C. To show the 166 
effectiveness of the LDC model we generated three statistical signatures of confidence (Sanders et al. 2016) 167 
based on the Bayesian read-out of confidence (error bars reflecting SEM, simulated N = 100) and based on the 168 
LDC model fits (shaded lines reflecting SEM).  169 

 170 

Empirically testing predictions of the LDC model 171 

Having demonstrated that the LDC model can closely approximate the Bayesian readout of 172 

confidence on synthetic data, we next turned to empirical data from human participants. We tested 173 

two key predictions of the LDC model. First, the LCD model predicts that changes in confidence can 174 

t = 1,8 s 

ev = 0.15 

A B 

C 

p(correct) confidence 
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be independent of performance. The two free parameters only describe how evidence and time are 175 

combined into a confidence judgment, but they do not affect the process that leads to specific levels 176 

of accumulated evidence and elapsed time. Any manipulation that selectively targets confidence 177 

while leaving performance unaffected should thus be captured by changes in α and/or β. A second 178 

novel prediction is that selective changes in each parameter of our model should lead to distinct 179 

modulations of confidence judgments. Thus, a manipulation targeting reliability (α) should lead to 180 

qualitatively distinct changes in confidence ratings compared to a manipulation targeting confidence 181 

bias (β).  182 

Experiment 1: The LDC model accounts for performance-independent changes in confidence 183 

We first tested a crucial prediction of our model, namely that changes in confidence can 184 

occur independent of changes in performance (9, 27–29). Although such dissociations have been 185 

observed since several decades (e.g., blindsight; Weiskrantz et al., 1974), they pose a serious 186 

challenge for most current models of confidence. The LDC model naturally accounts for such 187 

dissociations. One particularly strong dissociation was observed in our recent work (19), in which a 188 

manipulation of participants’ prior belief about their ability to perform a task selectively influenced 189 

their reported levels of confidence. In Experiment 1 of that paper, participants performed three 190 

perceptual tasks consecutively, each divided into a training and a testing phase (Figure 2). During the 191 

training phase, participants received feedback about their performance every 24 trials. Although 192 

participants were told that the feedback indicated how well they performed the task compared to a 193 

reference group, in reality the feedback was made up. Within each task, feedback indicated that 194 

performance was worse than of most other participants (negative condition); that it was on average 195 

(average condition); or that it was better than of most other participants (positive condition). During 196 

the testing phase, participants no longer received feedback; instead, they rated their confidence at 197 

the end of each trial. We observed a direct influence of the feedback manipulation on confidence, 198 

with more positive feedback leading to higher confidence, F(2,47) = 16.65, p < .001. Importantly, this 199 

effect of feedback on confidence was not explained by objective performance, as reaction time (RT)  200 
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 201 

Figure 2. Experimental design. In both experiments, participants performed three different perceptual 202 

decision-making tasks (only one shown here). Each task started with a training phase during which a different 203 

feedback manipulation was induced. A. In Experiment 1, participants received fake feedback after each training 204 

block, framed as a comparison between their performance and the performance of a reference group. B. In 205 

Experiment 2, participants additionally rated their confidence before receiving trial-by-trial feedback reflecting 206 

their probability of making the correct choice. Unknown to participants, the feedback was actually generated 207 

by the LDC model behind the curtain. To do so, the evidence accumulation process for each trial was estimated 208 

using the mean drift rate and boundary from a previous pilot session (see Methods for full details). Feedback 209 

conditions differed in the α (resp. β) value used to generate feedback in Experiment 2A (resp. Experiment 2B). 210 

C. In both experiments, after each training phase participants completed a test phase during which they no 211 

longer received feedback but rated their decision confidence after each decision.  212 

 213 

A B 

C 
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and accuracy did not change as a function of feedback (accuracy: Х2(2) = 0.3, p = .863; RT: F(2,48) = 214 

2.06, p = .14).  215 

We fitted the LDC model to the performance (accuracy and RT) and confidence reports in the 216 

test phase of this experiment, separately for each participant. LDC model predictions were then 217 

generated using the best fitting parameters for each individual. As can be seen in Figure 3, the LDC 218 

model provided an excellent fit to the data. Similar to the empirical data, feedback significantly 219 

influenced model-generated confidence ratings (F(2,48) = 9.79, p < .001), but did not influence the 220 

performance data (RT: F(2,48) = 1.19, p = .31; Accuracy: Х2(2) = .75, p = .69). Thus, our model was 221 

able to capture the data pattern, namely that confidence reports can be influenced independently 222 

from behavioral performance.  223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

Figure 3. A key prediction of the LDC model is that confidence can vary independent from task performance. A. 232 
In Experiment 1, providing participants with fake feedback telling them their performance was better, equal or 233 
worse than a reference group indeed left RT unaffected. B. Same with accuracy. C. On the other hand, fake 234 
feedback selectively influenced the reported level of confidence on correct trials. These results were closely 235 
captured by fitting the LDC model to these data. Note: Solid lines represent empirical data. Shades and error 236 
bars represent standard error of the mean for predictions of the LDC model and empirical data, respectively. 237 

We next investigated the estimated parameters of the model. Given that feedback 238 

selectively influenced confidence ratings, we expected a significant change in the confidence-specific 239 

parameters (i.e., α or β), but no variation in the DDM parameters (non-decision time, drift rate, 240 

decision threshold). Indeed, feedback had an influence on estimated α (F(2,382) = 6.56, p = .0016) 241 

and β (F(2,382) = 8.32, p < .001). Tukey’s test for multiple comparisons found that estimated α was 242 

lower in the negative condition than in the other two conditions (negative vs average: p = .01; 243 

negative vs positive: p = .002), whereas there was no difference in α between the average and 244 

positive conditions (p = .88). In a similar vein, β was higher in the positive condition compared to the 245 

other two (positive vs average: p = .004; positive vs negative: p < .001), whereas there was no 246 

A 

B 

C 
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difference between the negative and average conditions (p = .83). Finally, as expected estimated 247 

DDM parameters did not vary with feedback condition (drift rate: F(2,48) = .18, p = .84; non-decision 248 

time: F(2,382) = 0.99, p = .37) except for a minor effect on decision threshold (F(2,382) = 3.30, p = 249 

.038). Post-hoc tests for the decision threshold revealed a slightly higher threshold in the negative 250 

condition compared to the positive condition and no difference with the other contrasts (negative - 251 

average: p = .14; negative - positive: p = .04; average - positive: p = .85).  252 

Experiment 2: Dissociating parameter-specific effects on confidence ratings 253 

Our final aim was to demonstrate that humans are sensitive to the specific parameterization 254 

of decision confidence proposed by the LDC framework. If confidence is computed using a low-255 

dimensional solution, it should be possible to independently manipulate its parameters. Therefore, in 256 

a new set of two experiments, we aimed to induce selective changes in each parameter (reliability 257 

(α) or bias (β)) of the model.  258 

The general design of both experiments was similar to Experiment 1: we manipulated the 259 

feedback during a training phase and investigated the impact of that manipulation on confidence 260 

ratings reported in a subsequent testing phase. Rather than presenting fake feedback every 24 trials, 261 

we adopted a novel approach where feedback during the training phase was presented after each 262 

trial in the form of a continuous value (Figure 2). Participants were told that this value reflected the 263 

probability that their response was correct (e.g., .8 vs .4 indicating that there was a high vs low 264 

probability that they just made a correct choice). Unknown to participants the exact feedback value 265 

was generated by LDC behind the curtain (see Methods for full details). Both experiments comprise a 266 

baseline condition (α = 18; β = 0) in which the feedback presented to participants reflected the 267 

model-approximated probability of a choice being correct. In Experiment 2A, the value of α that was 268 

used to generate the feedback was selectively manipulated between conditions. In addition to the 269 

baseline condition there was a minus condition where α was decreased (α = 9), and a plus condition 270 

where α was increased (α = 36). In Experiment 2B, the same procedure was used except that now the 271 

value of β was selectively manipulated between conditions (β = -1 in the minus condition and β = 1 in 272 

the plus condition). 273 

A dissociable effect of manipulated feedback on confidence according to the parameter 274 

manipulated. As previously described, the reliability parameter α reflects how strongly individuals 275 

weigh evidence in their computation of confidence. Given that accuracy is closely related to the 276 

amount of available evidence, correct trials tend to have considerable supporting evidence when 277 

reporting confidence, whereas error trials usually have little to no supporting evidence. Given that α 278 

weighs evidence, a decrease (in the α-minus condition) or an increase (in the α-plus condition) of α is 279 
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therefore expected to differently impact confidence for correct trials (strong influence) than for error 280 

trials (little to no influence). In contrast, the parameter β reflects a stimulus-independent confidence 281 

bias, so providing participants with β-manipulated feedback is expected to lead to changes in 282 

confidence irrespective of choice accuracy. The reasoning for this prediction is that β is not 283 

concerned with the evidence provided by the stimulus (nor by the response), as it simply adds (in the 284 

β-plus condition) or subtracts (in the β-minus condition) a constant to the (logit of the) confidence 285 

judgment regardless of what happens during the trial. 286 

These intuitions are further illustrated in Figure 4A and 4B, which show the actual (i.e., 287 

manipulated) feedback that was presented to participants during the training phase of our 288 

experiments. Confirming the above intuition, there was an interaction in Experiment 2A between 289 

accuracy and the value of α (F(2,12623) = 76.73, p <.001): feedback was more positive when 290 

generated by a higher α when considering correct trials only (F(2,9911) = 723.77, p < .001), but did 291 

not change when considering error trials only, F(2,44) = 1.41, p = .25. For Experiment 2B, although 292 

there was a significant interaction between β value and accuracy (F(2,10589) = 43.11, p <.001), 293 

feedback was more positive when generated by a higher β both when taking corrects (F(2,8420) = 294 

2260.84, p < .001) and errors (F(2,35) = 183.56, p < .001) separately. 295 

Behavioral results. We now turn to the effects of the feedback manipulations on the testing phase 296 

data. The results concerning task performance were as expected: we found no effect of feedback 297 

condition on performance (RT and accuracy) in the testing phase of Experiment 2A (RT: F(2,40) = .15, 298 

p = .86; Accuracy: Х
2
(2) = 3.54, p = .17) and Experiment 2B (RT: F(2,32) = .24, p = .79; Accuracy: Х

2
(2) = 299 

1.09, p = .58). There was, however, the expected effect of trial difficulty on performance both in 300 

Experiment 2A (accuracy: Х
2(2) = 1023.00, p < .001; RT: F(2,25619) = 164.34, p < .001) and 301 

Experiment 2B (accuracy: Х
2(2) = 767.30, p < .001; RT: F(2,21189) = 170.16, p < .001), with lower 302 

accuracy and higher RT when trial difficulty was higher (all post-hoc comparisons: ps < .02). There 303 

was no interaction between feedback condition and trial difficulty on RT and accuracy in either 304 

Experiment 2A or 2B (all ps > .05).  305 

After demonstrating that the feedback did not influence task performance itself, we next 306 

turn towards confidence ratings. In line with the feedback presented during the training phase 307 

(Figure 4A and 4B), the data of the testing phase revealed that α-manipulated feedback in 308 

Experiment 2A had an effect on confidence ratings within correct trials (F(2,39) = 4.86, p = .01), but 309 

not within error trials (F(2,45) = .87, p = .43; Figure 4C). Note that this finding should be interpreted 310 

with caution, since the interaction between accuracy and feedback was not significant (F(2,44) = .62, 311 

p = .54). Turning to Experiment 2B, in line with the predictions there was an effect of feedback 312 

condition on confidence ratings in both correct trials (F(2,33) = 8.86, p < .001) and in error trials 313 
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(F(2,36) = 4.28, p = .02; Figure 4D). Here again, no interaction between accuracy and feedback 314 

condition was found (F(2,35) = .29, p = .75). Lastly, trial difficulty had an effect on confidence ratings 315 

in both Experiment 2A (F(2,25633) = 75.21, p < .001) and 2B (F(2,253) = 33.49, p < .001). We found no 316 

interaction between trial difficulty and feedback condition (Experiment 2A: F(4,25625) = 2.37, p = 317 

.05; Experiment 2B: F(4,20385) = 1.70, p = .15). Overall, these results corroborate the predicted 318 

pattern and show a clearly dissociable effect of feedback on confidence ratings according to the 319 

parameter manipulated in the feedback generation. 320 

LDC model fits. We next performed model comparison to explore whether the different patterns of 321 

confidence ratings observed in Experiment 2A and 2B would be best explained by a change in the 322 

targeted parameter (i.e. a change in α in Experiment 2A and a change in β in Experiment 2B). Two 323 

candidate LDC models were fit to the accuracy, RT and confidence data of both experiments. Each 324 

model differed in whether α or β was fixed between feedback conditions: in the α-free model, only α 325 

was allowed to vary between feedback conditions, whereas in the β-free model, only β was allowed 326 

to vary between feedback conditions. As recommended in Palminteri et al. (2017), we investigated 327 

how well simulations from the best-fitting parameters from both the α-free and the β-free models 328 

were able to reproduce the observed behavioral effects. Specifically, we defined a confidence 329 

contrast that captured the qualitative signatures seen in the feedback presented. Since the 330 

difference in feedback between the baseline and the plus condition was negligible relative to how 331 

both conditions differed from the minus condition in both experiments, we computed our confidence 332 

contrast as average confidence in the minus condition subtracted from average confidence in the 333 

baseline and the plus condition. Figure 4E-F show the empirical confidence contrast as well as the 334 

distribution of the mean predicted confidence contrast for both the α-free and the β-free model 335 

obtained via bootstrapping. In Experiment 2A, the confidence contrasts predicted by both the α-free 336 

and the β-free model was highly similar for correct trials, and both matched well to the empirical 337 

data. However, while the α-free model closely captured the confidence contrast in errors and hence 338 

the interaction, the β-free model overestimated the effect in errors, which led it to underestimate 339 

the interaction. Similarly, in Experiment 2B, both models accurately captured the empirical 340 

confidence contrast in correct trials. Additionally, the β-free model nicely reproduced both the 341 

empirical confidence contrast in error trials and the interaction, whereas the α-free model clearly 342 

underestimated the confidence contrast in error trials, which led to predicting an interaction that 343 

was not present in the empirical data. 344 
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 345 

Figure 4. A key prediction of the LDC model is that participants should be sensitive to the specific 346 

parametrization of confidence proposed by the model. To test this, Experiment 2 provided participants with 347 

probabilistic feedback generated by the LDC model. Critically, LDC based feedback was generated using 348 

different levels of α or different levels of β. A. Changing α influences the confidence for correct trials but not 349 

for errors. B. Changing β influences feedback for both corrects and errors. The pattern that we saw in the 350 

feedback (which effectively are our predictions) was also seen in the behavioral data. C. α-manipulated 351 

feedback influenced confidence reports for correct but not error trials. D. β-manipulated feedback influenced 352 

confidence reports on both correct and error trials. E. Fitting the LDC model to the empirical data of 353 

Experiment 2 revealed that data in the α-manipulated feedback was best explained by a model in which α was 354 

A B 

C D 

E F 
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allowed to vary. F. Data from the β-manipulated feedback was best explained by a model in which β was 355 
allowed to vary. To visualize this, we computed confidence contrasts for the empirical data (black lines), as well 356 
as for the α-free (yellow distribution) and β-free (blue distribution) model fit, separately for corrects and errors. 357 
“Interaction” refers to the difference between the confidence contrast in corrects and errors. Note: black dots 358 
correspond to the average empirical contrast, distributions correspond to the bootstrapped mean predicted 359 
confidence contrasts. Error bars and shaded areas represent empirical and model-simulated SEM, respectively.  360 

To further confirm that the α-free (resp. β-free) model is the most likely to explain the results 361 

of Experiment 2A (resp. 2B), we additionally quantified the goodness-of-fit of each model using 362 

Bayesian information criterion (BIC). Two additional candidate models were included in that analysis: 363 

a null model where neither α nor β varied between feedback conditions and a full model where both 364 

α and β were free to vary between conditions. Table 1 reports the difference in BIC of each candidate 365 

model compared to the best model, separately for both experiments. A first conclusion that can be 366 

drawn, is that both the α-free and β-free model outperformed the null model (i.e., providing strong 367 

evidence for a change in the parameters) as well as the full model (i.e., providing strong evidence for 368 

a selective change in the parameters). Second, as expected the α-free model showed the lowest BIC 369 

for the data of Experiment 2A. Surprisingly though, the α-free model also slightly outperformed the 370 

β-free model in Experiment 2B. Overall, the difference in BIC between the α-free and the β-free 371 

models appears marginal compared to how strongly they each outperformed the null and full 372 

models. Additionally, the difference in BIC between the α-free and the β-free models was bigger in 373 

Experiment 2A (Δ��� � 4.15), where the α-free model was expected to be the best performing 374 

model, compared to the difference observed in Experiment 2B (Δ��� � 2.54). Applying categorical 375 

cutoffs to describe the magnitude of the evidence in favor of the α-free model in both experiments, 376 

such as the rule of thumb proposed by Burnham & Anderson (2004), leads to conclude that the α-377 

free model has considerably more support than the β-free model in Experiment 2A, but only weak 378 

support in Experiment 2B. Taken together, these results suggest that theoretically motivated 379 

confidence manipulations can lead to specific and theoretically predicted changes in confidence. 380 

Model 

ΔBIC 

Experiment 2A Experiment 2B 

Null 21.02 23.81 

α-free 0 0 

β-free 4.15 2.54 

Full 19.58 19.42 

Table 1. Model comparison expressed in distance in BIC from the best-fitting model.  381 

 382 
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Discussion 383 

How to incorporate the sense of confidence in models of decision-making has been the focus 384 

of much recent work. An influential framework is based on the Bayesian interpretation of confidence 385 

(3, 32–34), namely that confidence reflects the probability of being correct given both accumulated 386 

evidence and elapsed time (14, 15, 17). In order to accurately compute this probability, it is 387 

necessary to know how to compute confidence based on the available data (evidence and time). 388 

Currently, a computationally plausible account describing how individuals learn this mapping is 389 

lacking. In the current work, we introduced the LDC model, which provides a tractable and flexible 390 

account of decision confidence. Using simulations, we first showed that LDC provides a highly reliable 391 

approximation of the true probability correct. Fitting this model to empirical data revealed that LDC 392 

accounts very well for human confidence ratings. Critically, using a novel feedback manipulation, we 393 

validated two key predictions from the model, namely that 1) changes in confidence can be 394 

independent of performance and 2) independently manipulating the reliability (α) and bias (β) 395 

parameters elicit clearly dissociable and identifiable effects on confidence.  396 

Introducing tractability and flexibility to decision confidence modelling 397 

 The LDC model belongs to the family of DDM-based models of decision confidence. Here, 398 

confidence is conceptualized as a (Bayesian) readout of the probability of a correct choice given 399 

evidence, time and choice. Existing models following that approach have been successful in 400 

explaining a wealth of data, including the link between confidence and RT (14, 17), and deviations 401 

from accuracy through the contribution of priors (18, 19). Estimating the probability correct based on 402 

the available data, however, is computationally intractable. The LDC model therefore proposes to 403 

approximate the Bayesian readout with a logistic function, offering a tractable approach of how 404 

humans compute confidence.  405 

To increase flexibility and account for deviations from optimality, the LDC model relies on 406 

two free parameters, which control the reliability of evidence (α) and general biases (β) in the 407 

computation of confidence. A different class of confidence models that can account for biases and 408 

deviations between confidence and accuracy is based on Signal Detection Theory (SDT) framework 409 

(35–40). These models typically either assume the existence of metacognitive noise (37–39), and/or 410 

consider that confidence is not entirely derived from the same signal as the primary decision (35–38, 411 

40). A recent study comparing the different SDT models of confidence on simple perceptual tasks 412 

showed that confidence is simply computed as a noisy readout of the evidence used for the primary 413 

decision (41). Although the LDC model is grounded within the DDM tradition which conceptualizes 414 

confidence as the Bayesian probability correct, it does not critically hinge upon the specifics of the 415 
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DDM. It would be straightforward to construct a simplified version of the LDC model which ignores 416 

the element of time. This would allow to directly compare the LDC approach to recent SDT models of 417 

confidence. Crucially, with its parameters, our model can flexibly account the different types of 418 

idiosyncrasies, biases and deviation from the optimal Bayesian readout (21–24), which are all merged 419 

into a single metacognitive noise parameter in most SDT frameworks.   420 

Confidence can vary independently from task performance  421 

In both Experiments, we observed that decision confidence was influenced by the feedback 422 

manipulation, whereas objective performance was not. This rules out an interpretation whereby the 423 

feedback influenced task performance and changes in confidence simply reflect this change in 424 

performance. Indeed, some previous work has shown that changes in confidence can be explained by 425 

subtle differences in RT (14, 42). This was not the case in the current experiments. As such, it is 426 

unlikely that Bayesian read-out models can account for the effects observed in the current work, as 427 

they do not allow for confidence-specific parameters (14–16; for a counterexample see 17). In 428 

contrast, LDC nicely captured the effect of feedback on confidence in the absence of changes in 429 

objective performance, thus attesting to the flexible nature of the LDC model. Previous studies have 430 

unraveled several other factors that influence the reported level of decision confidence, while 431 

leaving task performance unaffected, for example emotional states (27, 43), working memory 432 

content (29) and age (44, 45). More broadly, dissociations between performance and metacognition 433 

have long been reported in cases such as blindsight (10, 46), where individuals with lesions in primary 434 

visual cortex show above chance level performance at visual tasks despite reporting no awareness of 435 

the stimuli. At the opposite end of the spectrum, change blindness (i.e. failure to detect major 436 

differences between two images while they flicker off and on) is a typical example of a metacognitive 437 

error where individuals believe they would be able to detect such major changes, despite being 438 

unable to do so (11). These examples highlight how ubiquitous dissociations between performance 439 

and metacognition are. By incorporating free parameters controlling for evidence reliability and bias 440 

into the computation of confidence, the LDC model is in principle flexible enough to account for all 441 

these dissociations reported in the literature. 442 

Humans can independently tune evidence reliability and bias in confidence 443 

In Experiment 2A and 2B, we aimed to selectively manipulate confidence ratings according to 444 

each parameter of the LDC. By providing model-generated feedback from different α’s in Experiment 445 

2A and different β’s in Experiment 2B, we revealed clearly distinct patterns of confidence ratings 446 

according to the parameter manipulated. Moreover, the empirically observed patterns were best 447 

captured by models where the manipulated parameter was set as a free parameter (e.g. α-free 448 
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model when feedback was α-manipulated). These results imply that individuals can change their 449 

computation of confidence consistently with our parameterization of confidence, providing strong 450 

validating evidence in favor of LDC. This observation raises the intriguing possibility that individuals 451 

might exert control over the parameters governing the computation of confidence in a way that 452 

maximizes utility. Intuitively, computing confidence in such a way that it closely matches the 453 

Bayesian readout seems like the rational strategy to optimize utility, as it would allow to optimize 454 

behavior based on the best possible internal evaluation of that behavior (5, 7, 9). In some contexts, 455 

however, other factors than informativeness play a role in the utility of confidence. When competing 456 

for shared limited resources, expressing overconfidence plays a key role in convincing other agents 457 

not to compete for the resource (i.e. “bluffing”; 47, 48). Errors caused by overconfidence, though, 458 

bear a high cost in such strategy. In such a context, the optimal way to compute confidence seems to 459 

be an increase in the evidence reliability estimate (α), which will lead to higher confidence for 460 

scenarios with much evidence (i.e., overconfidence when you are likely to win the competition) but 461 

lower confidence for scenarios with little evidence (i.e., when you are likely to lose the competition). 462 

Increasing β in this scenario is likely suboptimal because this produces overall high confidence, also 463 

for scenarios with little evidence. The opposite scenario might be true in a social decision-making 464 

context. If confidence is used to assert influence rather than to convey accuracy (49), the optimal 465 

strategy might be an overall increase in β, resulting in general overconfidence (i.e. irrespective of 466 

accuracy) to push forward one’s choice. These examples show that what is traditionally treated as 467 

deviations from the optimal Bayesian readout can sometimes be considered as optimal through the 468 

lenses of utility maximization.  469 

Beyond dichotomies with model-informed feedback 470 

In contrast with the binary “correct/error” feedback typically provided in lab experiments, 471 

feedback received in daily life is not always clear-cut. Individuals must often make sense of noisy and 472 

probabilistic feedback cues (e.g. how should a street-artist interpret a subtle nod from a spectator?). 473 

Continuous feedback has been used in the past to communicate performance relative to other 474 

(hypothetical) participants (19, 50) or to give average accuracy over several past trials (51, 52). 475 

However, in the current work we designed a novel feedback manipulation which provides continuous 476 

feedback about choice accuracy on a trial-by-trial basis. It is important to note that our instructions 477 

simply stated that feedback would reflect the probability of being correct on a single trial, without 478 

much more explanation as to how this proportion was calculated. A skeptical participant could 479 

reasonably doubt the trustworthiness of the feedback, since it might seem unlikely that we provide 480 

an “accurate” probability of being correct on a single trial basis (e.g. is a feedback of 80% vs 70% 481 

really informative, or are the values pure noise added by the experimenter). Despite these potential 482 
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obstacles, our feedback manipulation did produce the confidence patterns we predicted, hence 483 

validating our model-generated feedback approach. This nuanced way of providing feedback goes 484 

beyond the mere distinction between dichotomous valid versus invalid feedback (53), and offers a 485 

promising framework to control the level of ambiguity and informativeness of trial-by-trial feedback, 486 

allowing to study in a more fine-grained manner how individuals process and are impacted by more 487 

realistic, ambiguous feedback (54, 55). 488 

Interpreting the LDC parameters 489 

An appealing property of computational models is that their parameters often have clear 490 

interpretations, and can be selectively manipulated (13, 56), although it is subject of recent debate 491 

(57). Similarly, in LDC, evidence and time are mapped onto confidence by means of a reliability 492 

parameter, α, and a confidence bias parameter, β. Our reliability parameter, α, can be interpreted as 493 

an individual’s estimate of the precision of evidence. This interpretation is similar to the recently 494 

proposed concept of “meta-uncertainty”, which is described as “the subject’s uncertainty about the 495 

uncertainty of the variable that informs their decision” (58). In both the LDC model and Boundy-496 

Singer et al.’s CASANDRE model, one’s estimate of evidence reliability weighs how evidence is used 497 

to compute confidence. Note that an important difference is that in CASANDRE the estimate is 498 

assumed to be correct on average (i.e. individuals are assumed to have an uncertain, but on average 499 

correct estimate of evidence reliability), whereas one of the key points of the LDC model is that 500 

participants can have incorrect values of α.  501 

The second parameter of LDC, β, globally increases or decreases confidence. It 502 

straightforwardly relates to the metacognitive bias described in other models of confidence (59). In 503 

light of this interpretation of α and β, one can further interpret specific patterns in the data. For 504 

example, in Experiment 1, we observed a change in α in response to negative feedback (with a 505 

significantly lower estimated α compared to the other two conditions), indicating that participants 506 

judged evidence as less reliable after receiving negative feedback. On the contrary, we observed a 507 

change in β after positive feedback (with a significantly higher estimated β compared to the other 508 

two conditions), suggesting a general overconfidence bias after receiving positive feedback. This 509 

dissociation suggests that despite similar effects at the behavioral level, the LDC model allows to 510 

further tease apart the origins of confidence biases e.g. in response to positive vs negative feedback. 511 

Finally, we note that in the current parameterization of confidence, identical to the Bayesian 512 

readout, confidence always depends on √�. However, the influence of time on confidence might vary 513 

according to the task or individual. To account for such hypothetical sources of variability, one could 514 

expand the LDC model by further parameterizing the influence of time with a third parameter, γ,  515 
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and replace √� in Eq. (3) with ��. The model then has an accurate calibration of how time influences 516 

confidence when γ � 0.5, and overweighs (resp. underweighs) time in the computation of 517 

confidence when γ � 0.5 (resp. γ � 0.5). By doing so, future work might investigate whether 518 

variability in the relation between confidence and decision time can be captured by the extended 519 

LDC model. 520 

Conclusion 521 

We introduced the LDC model, a new model of decision confidence that offers a tractable 522 

and flexible approximation of confidence as the Bayesian probability of making the correct decision. 523 

The model provides a low-dimensional parametrization of decision confidence which allows efficient 524 

estimation of confidence, while at the same time accounting for idiosyncrasies and different kinds of 525 

confidence biases. This parameterization of confidence was validated in two experiments showing a 526 

distinct pattern of confidence ratings after specifically manipulating the mapping according to each 527 

parameter of the model.  528 

529 
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Methods 530 

Experiment 1 531 

Participants 532 

Fifty participants (eight men, one third gender, age: M = 19, SD = 4.9, range 17–52) took part 533 

in Experiment 1 (two excluded due to chance level performance). All participants participated in 534 

return for course credit and read and signed a written informed consent at the start of the 535 

experiment. All procedures were approved by the KU Leuven ethics committee. Detailed methods 536 

and analyses for Experiment 1 have already been reported in Van Marcke et al. (2022). We briefly 537 

report the general procedure here. 538 

Procedure 539 

Participants completed three decision-making tasks: a dot color task, a dot number task and 540 

a letter discrimination task. Each task started with 120 training trials. Feedback during training was 541 

presented at the end of blocks of 24 trials. Unknown to participants, feedback was predetermined to 542 

be either good, average or bad for a specific task, and feedback scores were randomly sampled 543 

according to the feedback condition. Each participant received good feedback on one task, average 544 

feedback on another task, and bad feedback on a third task (order and mapping with tasks 545 

counterbalanced between participants). After the training phase of a task, participants performed 546 

216 test trials where feedback was no longer provided. Instead, confidence ratings were queried at 547 

the end of each trial. For each task, there were three levels of stimulus difficulty (easy, average, or 548 

hard). 549 

Dot color task. On each trial, participants decided whether a box contained more (static) 550 

blue or red dots. The total number of dots was always 80, with differing proportions of red or blue 551 

dots depending on the difficulty condition. The position of dots was randomly generated on each 552 

trial.  553 

Dot number task. On each trial, two boxes were presented, one of which contained 50 dots 554 

and the other more or less than 50 dots. Participants decided which of the two fields contained the 555 

largest number of dots. The exact number of dots in the variable field differed depending on the 556 

difficulty condition. The position of dots was randomly generated on each trial.  557 

Letter discrimination task. On each trial, participants decided whether a field contained 558 

more X’s or O’s. The total number of X’s and O’s was always 80, with differing proportions of X’s or 559 

O’s depending on the difficulty condition. The position of the letters was randomly generated on 560 

each trial. 561 

Experiment 2 562 
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Participants 563 

Forty-three participants (8 male, age: M=18.49, SD=1.03, range 16-22) took part in Experiment 2A. 564 

Forty-two participants (9 male, age: M=18.83, SD = 2.05, range 17-29) took part in Experiment 2B. 565 

Due to chance performance on at least one of the tasks, we removed 3 participants from Experiment 566 

2A and 3 participants from Experiment 2B. Six additional participants were removed from 567 

Experiment 2B due to (almost) no variability in their confidence reports (i.e. used the same report on 568 

more than 90% of the trials). All participants took part in return for course credit and signed 569 

informed consent at the start of the experiment. All procedures were approved by the local ethics 570 

committee.  571 

Stimuli and apparatus 572 

All experiments were conducted on 22-inch DELL monitors with a 60 Hz refresh rate, using 573 

PsychoPy3 (Peirce et al., 2019). All stimuli were presented on a black background centered on the 574 

middle of the screen (radius 2.49° visual arc). Stimuli for the dot number task were presented in two 575 

equally sized boxes (height 20°, width 18°) at an equal distance from the center of the screen. Stimuli 576 

for all other tasks were presented in one box (height 22°, width 22°).  577 

Procedure 578 

In both experiments, participants completed three decision-making tasks: a dot color task, a 579 

shape discrimination task and a letter discrimination task. Each task started with 108 training trials. 580 

After each choice, participants rated their confidence level and then received (continuous) feedback 581 

about their performance. After the training phase of a task, a test phase of 216 trials followed which 582 

was identical to the training phase, except that feedback was omitted. Every trial was assigned one of 583 

three possible difficulty levels. The difficulty levels were matched between the three tasks based on a 584 

pilot staircase session. For all tasks, a trial started with a fixation cross that was presented for 500 585 

ms, after which the stimulus appeared for 200 ms or until a response was given. Participants 586 

indicated their choice using the C or N key using the thumbs of both hands. There was no time limit 587 

for responding, although participants were instructed to respond as fast and accurately as possible. 588 

After each choice, participants rated their confidence on a 6-point scale, labeled from left to right: 589 

‘sure error’, ‘probably error’, ‘guess error’, ‘guess correct’, ‘probably correct’, and ‘sure correct’ 590 

(reversed order for half the participants). Confidence was indicated using the 1, 2, 3, 8, 9 and 0 keys 591 

at the top of the keyboard with the ring, middle and index fingers of both hands. There was no time 592 

limit for indicating confidence. During the training phase only, a trial ended with a visual presentation 593 

of feedback. An empty horizontal rectangle was filled in white starting from the left end of the 594 

rectangle (reversed order for half the participants, matched to the confidence counterbalancing). The 595 

proportion filled corresponded to the probability that the response was correct (e.g. halfway filled if 596 
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feedback is 50%). Ticks at the 0, 25, 50, 75 and 100 percent marks were respectively labeled ‘sure 597 

error’, ‘probably error’, ‘random chance’, ‘probably correct’ and ‘sure correct’. 598 

On each trial, participants decided whether a box contained more elements from one out of two 599 

categories. In the letter discrimination task, elements were A's or B's, in the dot color task, blue or 600 

red dots and in the shape discrimination task, squares and circles. The total number of elements in a 601 

box was always 80, with the exact proportion of each element depending on the difficulty condition. 602 

The position of the elements was randomly generated on each trial. 603 

Model-generated feedback 604 

Instead of binary feedback (correct/error), feedback during the training phase after each trial 605 

was provided in the form of a continuous value. Participants were told that this probability reflected 606 

the probability that their response was correct. In reality, the feedback was generated by our model 607 

of confidence. To do so, we estimated the single-trial evidence accumulation process online (i.e., 608 

during the experiment). To do so, we assumed that performance was equivalent to the average 609 

performance observed in piloting sessions. In other words, we assumed that the current decision 610 

threshold and drift rate were equal to the average decision threshold and drift rate from piloting 611 

sessions. At the moment a decision was made, the evidence accumulation process just reached the 612 

decision threshold. We thus inferred that the amount of accumulated evidence at the time of 613 

decision was equal to the average decision threshold estimated from the pilot sessions. Then, to 614 

estimate the total amount of accumulated evidence at the time of the confidence report, we added 615 

the post-decisional evidence estimated by running a random-walk for a duration fixed to the 616 

observed confidence RT and with a drift rate set to the average drift rate estimated from the pilot 617 

sessions (the sign of which varied whether the response was correct or not). Feedback was thus 618 

equal to model confidence computed according to a fixed (α, β) pairing (the value of which depended 619 

on the condition and experiment one is in) from that total evidence and the total time (decision RT + 620 

confidence RT).  621 

Feedback conditions 622 

In a baseline condition, the feedback presented to participants reflected the actual model-623 

generated probability of a choice being correct. To get the value of α and β that best approximate 624 

the true probability of a choice being correct, we estimated both parameters based on the heatmap 625 

generated by the drift rates observed in the pilot sessions. In the baseline condition, α was thus set 626 

to 18 and β to 0. In Experiment 2A, for one task feedback was computed using a lower value of α 627 

(namely 9), and for another task feedback was computed using a higher value of α (namely 36; 628 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532729doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532729
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

termed “α-plus” condition). The association between the manipulation of α and the task was 629 

counterbalanced across participants. In Experiment 2B, feedback was provided according to the 630 

baseline condition in one task, using a lower value of β in another task (-1), and using a higher value 631 

of β in another task (1).  632 

Statistical analyses 633 

All data were analyzed using mixed effects models. We started from models including the 634 

fixed factors and their interaction(s), as well as a random intercept for each participant. These 635 

models were then extended by adding random slopes, only when this significantly improved model 636 

fit. Confidence ratings and RT were analyzed with linear mixed effects models, for which we report 637 

F statistics and the degrees of freedom as estimated by Satterthwaite’s approximation. Accuracy was 638 

analyzed using a generalized linear mixed model, for which we report Х
2 statistics. All model fit 639 

analyses were done using the lmerTest R package (60). 640 

Bounded evidence accumulation 641 

We modeled choice and RT data using the drift diffusion model (DDM), a popular variant of 642 

the wider class of accumulation-to-bound models. In the DDM, noisy evidence (representing the 643 

difference between the evidence for both options) is accumulated, the strength of which is 644 

controlled by a drift rate v, until one of two decision thresholds a or -a is reached. Non-decision 645 

components are captured by a non-decision time parameter ter. To simulate data from the model, 646 

random walks were used as a discrete approximation of the continuous diffusion process of the drift 647 

diffusion model. Each simulated random walk process started at z*a (here, z was an unbiased 648 

starting point fixed to 0). At each time step τ, accumulated evidence changed by Δ with Δ given in Eq. 649 

(3): 650 

∆ � �� � �√� 	
0,1� (3) 

Within-trial variability is given by σ. In all simulations, τ was set to 1 ms, and σ was fixed to .1.  651 

Model fitting 652 

Model predictions were obtained from the random-walk simulation described above. 653 

Evidence continued to accumulate after threshold crossing for a duration that was sampled from the 654 

confidence RT distribution of the trials being fitted. Note that this sampling was done without 655 

replacement, ensuring that the simulated confidence RT distribution exactly matched the empirically 656 

observed confidence RT distribution. The number of trials being simulated was equal to 20 times the 657 

number of empirical trials being fitted to ensure that every trial of the empirical confidence RT 658 
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distribution is being simulated an equal amount of time. Given that the model-generated confidence 659 

comes on a continuous scale from 0 to 1, we binned the model output into 6 equally-spaced bins. 660 

Accuracy and RT data of each task and participant was estimated using 5 DDM parameters: non-661 

decision time, decision threshold and three drift rate parameters (one for each trial difficulty level). 662 

Additionally, α and β were fitted to the confidence judgments, separately for each feedback 663 

condition. We implemented quantile optimization, and computed the proportion of trials falling 664 

within each of six groups formed by quantiles .1, .3, .5, .7 and .9 of RT, separately for corrects and 665 

errors. Similarly with confidence ratings, we computed the proportion of trials resulting at each of 666 

the 6 levels of confidence judgment separately for corrects and errors. The resulting objective 667 

function consisted in minimizing the sum of squared errors described in Eq (4): 668 

��� � � ������,� � ����,��� � ������,� � ����,���
���

���

��

����	
�;�

 

 

(4) 

with �� � ��� � 6 the number of RT groups/possible confidence value, ����,
 and ����,
 669 

respectively the proportions of observed and predicted trials falling within quantile � of RT, 670 

separately for corrects (� � 1) and errors (� � 0), and �� �,
 and �� �,
 reflecting their counterpart 671 

for confidence. Models were fitted using a differential evolution algorithm (61), as implemented in 672 

the DEoptim R package (62). The population size was set to 10 times the number of parameters to 673 

estimate. The algorithm stopped once no improvement of the objective function was observed for 674 

the last 100 generations.  675 

Model comparison 676 

All candidate models for the model comparison were based on the same estimated DDM parameters 677 

fitted separately to accuracy and RT data (i.e. minimizing the first term of the SSE in Eq. (4)). Each 678 

candidate model was then fit to confidence ratings (i.e. minimizing the second term of the SSE in Eq. 679 

(4)). BIC values for model comparison were computed as follows (63): 680 

��� � � ln
 � �  ln !���
 " 

(5) 

with k the number of free parameters and n the number of data points. BIC values for each model 681 

represented in Table 1 correspond to the mean BIC over participants. Bootstrapped 95% confidence 682 

intervals of confidence contrasts were obtained by simulating 500 datasets based on the fits of each 683 

participant and then computing the mean confidence contrasts of each repetition. The 95% 684 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532729doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532729
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

confidence interval was computed as the .025 and .975 quantiles of the distribution formed by the 685 

bootstrapping. 686 

Code availability  687 

All raw data and analysis code can be freely accessed at https://github.com/pledenmat/ldc_paper. 688 
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