Abstract
Molecular clocks are the basis for dating the divergence between lineages over macro-evolutionary timescales (~105-108 years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes possess a clock-like behavior. This ‘epimutation-clock’ is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation-clocks recapitulate known topologies and branching times of intra-species phylogenetic trees in the selfing plant A. thaliana and the clonal seagrass Z. marina, which represent two major modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.
Competing Interest Statement
The authors have declared no competing interest.