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Abstract 
 
 Keypoint tracking algorithms have revolutionized the analysis of animal behavior, 
enabling investigators to flexibly quantify behavioral dynamics from conventional video 
recordings obtained in a wide variety of settings. However, it remains unclear how to 
parse continuous keypoint data into the modules out of which behavior is organized. 
This challenge is particularly acute because keypoint data is susceptible to high 
frequency jitter that clustering algorithms can mistake for transitions between behavioral 
modules. Here we present keypoint-MoSeq, a machine learning-based platform for 
identifying behavioral modules (“syllables”) from keypoint data without human 
supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise 
from behavior, enabling it to effectively identify syllables whose boundaries correspond 
to natural sub-second discontinuities inherent to mouse behavior. Keypoint-MoSeq 
outperforms commonly-used alternative clustering methods at identifying these 
transitions, at capturing correlations between neural activity and behavior, and at 
classifying either solitary or social behaviors in accordance with human annotations. 
Keypoint-MoSeq therefore renders behavioral syllables and grammar accessible to the 
many researchers who use standard video to capture animal behavior.   
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Introduction 
 

Work from ethology demonstrates that behavior — a chain of actions traced by 
the body’s movement over time — is both continuous and discrete. Keypoint tracking 
methods (which including SLEAP1, DeepLabCut2 and others3,4) enable users to specify 
and track points corresponding to body parts in videos of behaving animals, and thereby 
to quantify movement kinematics. These methods are simple to implement and 
applicable to a wide range of video data; because of their ease of use and generality, 
keypoint tracking approaches are revolutionizing our access to the continuous dynamics 
that underlie many aspects of animal behavior in a wide variety of settings5.  

 
In contrast, it remains less clear how to best cluster behavioral data into the 

discrete modules of movement that serve as building blocks for more complex patterns 
of behavior6-8. Identifying these modules is essential to the creation of an ethogram, 
which describes the order in which behavioral modules are expressed in a given context 
or experiment. While several methods exist that can automatically transform high-
dimensional behavioral data into an ethogram9-14, their underlying logic and 
assumptions differ, with different methods often giving distinct descriptions of the same 
behavior10,13. An important gap therefore exists between our access to movement 
kinematics and our ability to understand how these kinematics are organized to impart 
structure upon behavior; filling this gap is essential if we are to understand how the 
brain builds complex patterns of action.  

 
One widely deployed and well validated method for identifying behavioral 

modules and their sequencing is Motion Sequencing (MoSeq)14. MoSeq uses 
unsupervised machine learning methods to transform its inputs — which are not 
keypoints, but instead data from depth cameras that “see”  in three dimensions from a 
single axis of view — into a set of behavioral motifs (like rears, turns and pauses) called 
syllables. MoSeq identifies behavioral syllables through a probabilistic generative model 
that instantiates the ethological hypothesis that behavior is composed of repeatedly 
used modules of action that are stereotyped in form and placed flexibly into at least 
somewhat predictable sequences. One important aspect of MoSeq is that it seeks to 
identify syllables by searching for discontinuities in behavioral data at a timescale that is 
set by the user; this timescale is specified through a “stickiness” hyperparameter that 
influences the frequency with which syllables can transition. In the mouse, where 
MoSeq has been most extensively applied, pervasive discontinuities at the sub-second-
to-second timescale mark the boundaries between syllables, and the stickiness 
hyperparameter is explicitly set to match this timescale. Given a timescale and a depth 
dataset to analyze, MoSeq automatically identifies the set of syllables out of which 
behavior is composed in a given experiment without human supervision.  
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MoSeq-based analysis has been shown to capture meaningful changes in 

spontaneous, exploratory rodent behaviors induced by genetic mutations, changes in 
the sensory or physical environment, direct manipulation of neural circuits and 
pharmacological agents14-17. Importantly, MoSeq does not simply provide a useful 
description of behavior, but also reveals biologically important brain-behavior 
relationships. For example, the behavioral transitions identified by MoSeq correspond to 
systematic fluctuations in neural activity in both dopaminergic neurons and their targets 
in dorsolateral striatum (DLS)15, and the behavioral syllables identified by MoSeq have 
explicit neural correlates in DLS spiny projection neurons16. Furthermore, dopamine 
fluctuations in DLS causally influence the use and sequencing of MoSeq-identified 
syllables over time, and individual syllables can be reinforced (without any alteration in 
their underlying kinematic content) through closed-loop dopamine manipulations15.   
 

However, MoSeq has a significant constraint: as currently formulated MoSeq is 
tailored for input data from depth cameras, which are typically placed over simple 
behavioral arenas in which single mice are recorded during behavior. Although depth 
cameras afford a high dimensional view of ongoing pose dynamics, they also suffer 
from high sensitivity to reflections, limited temporal resolution, and are often difficult to 
deploy18. In principle these limits could be overcome if MoSeq could instead be applied 
to keypoint data, which can much more flexibly be derived from recordings using 
standard video cameras. However, attempts to do so have thus far failed, with 
researchers reporting flickering state sequences that switch much faster than the 
animal's actual behavior10,19.  

 
Here we confirm this finding and identify its cause: jitter in the keypoint estimates 

themselves, which is mistaken by MoSeq for behavioral transitions. To address this 
challenge, we have reformulated the model underlying MoSeq to simultaneously infer 
correct pose dynamics (from noisy or even missing data) and the set of expressed 
behavioral syllables. We benchmark keypoint-MoSeq by comparing its performance on 
2D keypoint data to both standard depth camera-based MoSeq and to alternative 
behavioral clustering methods (including B-SOiD9, VAME10 and MotionMapper20). We 
find that keypoint-MoSeq preserves important information about behavioral timing 
— despite being fed behavioral data that are relatively low dimensional — and identifies 
similar sets of behavioral transitions as depth MoSeq; furthermore, keypoint-MoSeq 
outperforms alternative methods at demarcating behavioral transitions in kinematic 
data, capturing systematic fluctuations in neural activity, and identifying complex 
features of solitary and social behavior highlighted by expert observers. We also 
demonstrate that keypoint-MoSeq works on either 2D or 3D keypoints, with increasing 
dimensionality of the input data yielding richer sets of behavioral syllables.  
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Our results demonstrate that the ethograms articulated by keypoint-MoSeq 

effectively identify the natural boundaries present in both neural and behavioral data at 
the syllable timescale. Given that keypoint tracking can be applied in diverse settings 
(including natural environments), requires no specialized hardware, and affords direct 
control over which body parts to track and at what resolution, we anticipate that 
keypoint-MoSeq will serve as a general tool for understanding the structure of behavior 
in a wide variety of settings. To facilitate broad adoption of this approach, we have built 
keypoint-MoSeq to be directly integrated with widely-used keypoint tracking methods 
(including SLEAP and DeepLabCut), and have made keypoint-MoSeq code freely 
accessible for academic users at www.MoSeq4all.org; this modular codebase includes 
novice-friendly Jupyter notebooks to enable users without extensive computational 
experience to use keypoint-MoSeq, methods for motif visualization in 2D and 3D, a 
pipeline for post-hoc analysis of the outputs of keypoint-MoSeq, and a hardware-
accelerated and parallelization-enabled version of the code for analysis of large 
datasets.   

 
 

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Results 
 

Simple inspection of depth-based behavioral video data reveals a block-like 
structure organized at the sub-second timescale14 (Fig. 1); this observation previously 
inspired the development of MoSeq, which posits that these blocks encode serially-
expressed behavioral syllables. To ask whether keypoint data possess a similar  
block-like structure, we recorded simultaneous depth and conventional two-dimensional 
(2D) monochrome videos (using the Microsoft Azure, which has depth and IR-sensitive 
sensors that operate in parallel to acquire data at 30 Hz) while mice explored an open 
field arena; we then used a convolutional neural network to track eight keypoints in the 
2D video (two ears and six points along the dorsal midline; Fig 1a). 
 

Analysis of the depth videos (independent of MoSeq) revealed the familiar sub-
second blocks of smooth behavioral dynamics punctuated by sharp transitions, and 
applying MoSeq to these videos segmented these blocks into a series of stereotyped 
behavioral syllables (Fig. 1b). Block-like structure was also apparent in the keypoint 
data; changepoint analysis (which identifies discontinuities in the underlying data) 
revealed that block durations were similar for the keypoint data, the depth data, and the 
syllables identified by MoSeq; furthermore, changepoints in the keypoint data matched 
both changepoints in the depth data and transitions in behavior identified by MoSeq (Fig 
1c-d). This structure is not an accident of camera or keypoint placement, as similar 
results were obtained when tracking 10 keypoints (including the limbs and ventral 
midline) using a camera placed below the mouse (Extended Data Fig. 1). The 
reappearance of a common sub-second organization across depth and keypoint data 
suggests that this temporal structure is intrinsic to mouse behavior. 

 
MoSeq models behavior as sequence of discrete states, where each state is 

defined as an autoregressive (AR) trajectory through pose space (corresponding to a 
syllable), and transitions between states are specified by a modified hidden Markov 
model (HMM). MoSeq therefore identifies syllables as repeated trajectories through 
pose space, and transitions between syllables as discontinuities in the pose dynamics. 
MoSeq includes a stickness hyperparameter that in effect allows it to foveate on a 
single timescale at which it seeks to explain behavior; this feature enables MoSeq to 
identify syllables from depth data whose average duration is ~400ms, although there is 
a broad distribution of mean durations across syllables, and each syllable is associated 
with its own duration distribution.  

 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
However, when applied to keypoint data, MoSeq failed to identify syllables at this 

characteristic ~400ms timescale, instead producing a set of brief syllables whose 
durations were often just one or two frames, and a prominent tail of aberrently long 
syllables that merged multiple behaviors; futhermore, the transitions between these 
syllables aligned poorly to changepoints derived from the keypoint data (Fig. 2a-b). 
These observations are consistent with prior work demonstrating that feeding keypoints 
to MoSeq generates behavioral representations that are less informative than those 
generated by alternative clustering methods10,19.  
 

Figure 1: Keypoint trajectories exhibit 
sub-second to second structure during 
spontaneous behavior. a) Left: sample 
frame from simultaneous depth and 
infrared recordings. Right: centered and 
aligned pose representations featurized by 
depth (top) or keypoints (bottom). b-c) 
Features extracted from depth or 2D 
keypoint data within a 4-second window. 
All rows are temporally aligned. b) Top: 
Representation of the mouse’s pose based 
on depth video. Each row shows a random 
projection of the high-dimensional depth 
time-series. Discontinuities in the visual 
pattern capture abrupt changes in the 
mouse’s movement. Middle: Overall rate 
of change in the depth signal. Bottom: 
color-coded syllable sequence from 
MoSeq applied to the depth data [referred 
to as “MoSeq (depth)”]. c) Position of each 
keypoint in egocentric coordinates, 
plotted above the keypoint change-score. 
Vertical lines mark changepoints, defined 
as peaks in the change-score. d) Left: 
average keypoint change-score (z-scored) 
aligned to MoSeq (depth) transitions 
(gray), or to changepoints in the depth 
signal (gray). Middle: cross-correlation 
between depth- and keypoint-change 
scores, shown for the whole dataset (black 
line) and for each session (gray lines). 
Right: Distribution of syllable durations, 
based either on modeling or changepoint 
analysis. 
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We wondered whether the poor performance of MoSeq could be explained by 

noise in the keypoint data, which in principle could introduce subtle discontinuities that 
are falsely recognized by MoSeq as behavioral transitions. Indeed, mouse keypoint data 
exhibited high-frequency (>8Hz) jitter in position regardless of whether we tracked 
keypoints with our custom neural network or commonly used platforms like DeepLabCut 

Figure 2: Keypoint tracking noise challenges syllable inference . a) Applying MoSeq to keypoint 
trajectories [referred to as “MoSeq (keypoints)”] produces abnormally brief syllables when compared to 
MoSeq applied to depth data [“MoSeq (depth)”]. b) Z-scored keypoint change-score (left) and a low-
confidence detection score (right) relative to MoSeq transitions derived from either keypoints or depth. 
The low-confidence score is computed from neural network confidences on each frame as the mean of 
− log!"(confidence#)	across keypoints 𝑘. c) Left: example of keypoint detection errors, including high-
frequency fluctuations in keypoint coordinates (top row) that coincide with low neural network 
confidence (bottom row). Right: detected keypoint coordinates before the error (frame1) and during the 
error (frame2). Displacement of the tail-base keypoint causes a shift in egocentric alignment, leading to 
coordinate changes across the other keypoints. d) Example of keypoint jitter from three different 
keypoint tracking methods over a 5-second interval during which the mouse was motionless. Left: 
egocentrically aligned keypoint trajectories. Right: path traced by each keypoint during the 5-second 
interval. e) Variability across eight human labelers. f) Cross-correlations with keypoint fluctuations at a 
range of frequencies. Each heatmap represents a different time-series (see Methods section “Spectral 
Analysis” for detailed descriptions). g) Cross-correlation of transitions rates, comparing MoSeq (depth) 
and MoSeq applied to keypoints with various levels of smoothing by a low-pass filter. Transition rate is 
defined as the posterior probability of a transition occurring on each frame.  
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(DLC) and SLEAP (Fig. 2c-d, see Methods). Inspection of videos revealed that high 
frequency keypoint jitter is often associated with local tracking errors or rapid switching 
in the inferred location of an ambiguously positioned keypoint, rather than discernable 
changes in pose (Fig 2d, Extended Data Fig. 2a). Indeed, frame-to-frame fluctuations in 
the keypoints had a similar scale as the variability in human labeling (Fig 2e, Extended 
Data Fig. 2b). We confirmed that keypoint flicker was unrelated to true movement by 
tracking the same body part using multiple cameras; though overall movement 
trajectories were almost identical, the high-frequency fluctuations around these 
trajectories were uncorrelated across cameras (Extended Data Fig. 2c-d). Consistent 
with the possibility that keypoint noise dominates MoSeq’s view of behavior, syllable 
transitions derived from keypoints – but not depth – frequently overlapped with jitter and 
low-confidence estimates of keypoint position (Fig. 2f). Though one might imagine that 
simple smoothing could ameliorate this problem, application of a low-pass filter had the 
additional consequence of blurring actual transitions, preventing MoSeq from identifying 
syllable boundaries (Fig 2g). Median filtering and Gaussian smoothing similarly yielded 
no improvement (Extended Data Fig 2e). These data reveal that high-frequency tracking 
noise can be pervasive across point-tracking algorithms and demonstrate that this noise 
impedes the ability of MoSeq to accurately segment behavior.  
 
Hierarchical modeling of keypoint trajectories decouples noise from behavior  
 
 MoSeq syllables reflect keypoint jitter because MoSeq assumes that each 
keypoint is a faithful and accurate representation of the position of a point on the animal. 
We therefore sought an alternative approach that could treat the keypoints as noisy 
observations rather than the truth. Switching linear dynamical systems (SLDS), which 
extend the AR-HMM model that underlies MoSeq, offer a principled way to decouple 
keypoint noise from behavior21,22. We therefore formulated an SLDS-based version of 
MoSeq whose architecture enables joint inference of pose and syllable structure. This 
new SLDS model has three hierarchical levels (Fig. 3a): a discrete state sequence (top 
level) that governs the dynamics of keypoint trajectories in a low-dimensional pose 
space (middle level), which is then projected into the keypoint space itself (bottom 
level). The three levels of this model therefore correspond to syllables, pose states, and 
keypoint coordinates respectively.  
 

We further adapted the SLDS model to keypoint data by adding three additional 
variables: centroid and heading (which capture the animal’s overall position in 
allocentric coordinates) and a noise metric for each keypoint in each frame23. When fit 
to data, the SLDS model estimates for each frame the animal’s location and pose, as 
well as the identity and content of the current behavioral syllable (Fig. 3b). Because of 
its structure, when a single keypoint implausibly jumps from one location to another, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


SLDS model can attribute the sudden displacement to noise and preserve a smooth 
pose trajectory; if all the keypoints suddenly rotate within the egocentric reference 
frame, the model can adjust the inferred heading for that frame and restore a plausible 
sequence of coordinates. Since in the special case of zero keypoint noise our new 
model reduces to the same AR-HMM used in depth MoSeq14, we refer to this new 
method as “keypoint-MoSeq” for the remainder of the paper.  
 

 

 

Figure 3: Hierarchical modeling of keypoint trajectories decouples noise from pose dynamics. a) 
Graphical models illustrating MoSeq and a novel hierarchical model called “keypoint-MoSeq”. In both 
models, a discrete syllable sequence governs the dynamics of a low-dimensional pose state. The pose 
state is either fixed using PCA (as in “MoSeq”, left) or inferred from keypoint observations in 
conjunction with the animal’s centroid and heading, as well as a noise scale that discounts keypoint 
detection errors (as in “keypoint-MoSeq”, right). b) Example of error-correction by keypoint-MoSeq. 
Left: Before fitting, all variables are perturbed by displacement of the tail-base keypoint, in the 
callout. Right: Keypoint-MoSeq infers plausible trajectories for each variable. Shading indicates 
uncertainty in the model posterior (95% confidence). The callout shows likely keypoint coordinates 
inferred by the model. c) Average trajectory of features aligned to transitions from each modeling 
approach. d) Durations distribution of syllables from each model. e) Average pose trajectories for 
example keypoint-MoSeq syllables. Each trajectory includes ten evenly timed poses from 165ms 
before to 500ms after syllable onset.  
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 Unlike traditional MoSeq, keypoint-MoSeq appeared to effectively identify 
behavioral syllables rather than noise in the keypoint data. State transitions identified by 
keypoint-MoSeq overlapped with transitions in the raw depth data, with depth MoSeq-
derived syllable transitions, and with transitions in the keypoints as identified by 
changepoint analysis; syllable boundaries identified by keypoint-MoSeq also overlapped 
less with low-confidence neural network detections for individual keypoints (Fig. 3c). 
Furthermore, the duration distribution of syllables identified by keypoint-MoSeq more 
closely matched that generated by conventional MoSeq using depth data (Fig 3d, 
Extended Data Fig 3a). From a modeling perspective the output of MoSeq was 
sensible: cross-likelihood analysis revealed that keypoint-based syllables were 
mathematically distinct trajectories in pose space, and submitting synthetic keypoint 
data that lacked any underlying block structure resulted in keypoint-MoSeq models that 
failed to identify distinct syllables (Extended Data Fig 3b,c). These analyses suggest 
that keypoint-MoSeq effectively addresses the syllable switching problem, nominating it 
as a candidate for parsing keypoint data obtained from conventional 2D cameras into 
syllables.   
 

For our open field data, keypoint-MoSeq identified 25 syllables (Extended Data 
Fig 3d). Inspection of movies depicting multiple instances of the same syllable revealed 
that each syllable was a distinct, stereotyped motif of behavior that could be easily 
labeled by human observers. Keypoint-MoSeq differentiated between categories of 
behavior (e.g., rearing, grooming, walking), and variations within each category (e.g., 
turn angle, speed) (Fig 3e). Importantly, keypoint-MoSeq preserves access to the 
kinematic and morphological parameters that underlie each behavioral syllable 
(Extended Data Fig 3e), thereby enabling explicit comparisons and analysis. These data 
demonstrate that keypoint-MoSeq provides an interpretable segmentation of behavior 
captured by standard 2D videos, which are used in most behavioral neuroscience 
experiments.   
 
Keypoint-MoSeq better captures the fast temporal structure of behavior than 
alternative behavioral clustering methods 
 
 We wished to validate keypoint-MoSeq by demonstrating that it generates the 
kinds of outputs that would be predicted for a time-series model of behavior, and by 
showing that this output is useful for addressing questions typically posed by users of 
unsupervised methods in behavioral classification. As part of this validation process, we 
compared keypoint-MoSeq to alternative unsupervised methods for clustering 
keypoints, reasoning that this comparison might highlight strengths and weaknesses 
that are particular to each method. Such alternative methods include VAME, 
MotionMapper and B-SOiD, all of which first transform keypoint data into a feature 
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space that reflects the dynamics in a small window around each frame, and then cluster 
those features to distinguish a set of behavioral states9,10,20,24.  
 

 
 

 

Figure 4: Keypoint-MoSeq captures the temporal structure of behavior. a) Example behavioral 
segmentations from four  methods applied to the same 2D keypoint dataset. Keypoint-MoSeq 
transitions (fourth row) are sparser than those from other methods and more closely aligned with 
peaks in the keypoint change-score (bottom row). b) Distribution of state durations for each method 
in (a). c) Average keypoint change-score (z-scored) relative to transitions from each method 
(“MMper” refers to MotionMapper). d) Median mouse height (measured by depth camera) for each 
unsupervised behavior state. Rear-specific states (shaded bars) are defined as those with median 
height > 6cm. e) Accuracy of mouse-height decoding models that were fit to state sequences from 
each method. f) Bottom: state sequences from keypoint-MoSeq and B-SOiD during a pair of rears. 
States are colored as in (d). Top: mouse height over time with rears shaded gray. Callouts show 
depth- and IR-views of the mouse at two example frames. g) Average mouse height aligned to the 
onsets (solid line) or offsets (dashed line) of rear-specific states defined in (d). h) Signals captured  
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.  

As mentioned above, by design MoSeq identifies boundaries between behavioral 
syllables that correspond to abrupt transitions in the keypoint or depth data. To ask 
whether these alternative methods identify similar boundaries between discrete 
behaviors, we applied them to the identical 2D keypoint dataset. Behavioral states from 
VAME, B-SOiD and MotionMapper were usually brief (median duration 33-100ms, 
compared to ~400ms for keypoint-MoSeq) and their transitions aligned significantly less 
closely with changepoints in keypoint data than did syllable transitions identified by 
keypoint-MoSeq (Fig 4a-c). To ensure these results were the consequence of the 
methods themselves rather than specific parameters we chose, we performed a 
comprehensive parameter scan for all methods, including up to an order of magnitude 
dilation of the temporal windows used by B-SOiD and MotionMapper, as well as scans 
over latent dimension, state number, clustering mode, and preprocessing options 
across all methods (where applicable); this analysis revealed some parameter 
combinations that yielded longer state durations, but these combinations tended to have 
a similar or worse alignment to changepoints in the keypoint data, a finding we 
replicated for both overhead and bottom-up camera angles (Extended Data Figure 4a).  
 

Rearing affords a particularly clear example of the differences between 
unsupervised behavioral methods with respect to time. B-SOiD and keypoint-MoSeq 
both learned a specific set of rear states/syllables (Fig 4d; no rear-specific states were 
identified by VAME or MotionMapper) and each encoded the mouse’s height with 
comparable accuracy (B-SOiD: R=0.73, keypoint-MoSeq: R=0.74 for correlation 
between predicted and true mouse height; Fig 4e). Yet the rear states from each 
method differed dramatically in their dynamics. Whereas keypoint-MoSeq typically 
detected two syllable transitions that surrounded each rearing behavior (one entering 
the rearing syllable, the second exiting the rearing syllable), B-SOiD typically detected 
five to ten different transitions during the execution of a single rear, including switches 
between distinct rear states as well as flickering between rear- and non-rear-states (Fig 
4f; Extended Data Fig 4b). This difference was made further apparent when we aligned 
mouse height to rearing states identified by the different methods (Fig 4g). Mouse 
height increased at transitions into keypoint-MoSeq’s rear state and fell at transitions 
out of it, producing a pair of height trajectories into and out of the rearing syllable that 
differed from each other and were asymmetric in time. In contrast, height tended to 
peak at transitions into and out of B-SOiD’s rear states, with a temporally symmetric 

from a head-mounted inertial measurement unit (IMU), including absolute 3D head-orientation 
(top) and relative linear acceleration (bottom). Each signal and its rate of change, including angular 
velocity (ang. vel.) and jerk (the derivative of acceleration), is plotted during a five second interval. 
i) IMU signals aligned to the onsets of each behavioral state. Each heatmap row represents a state. 
Line plots show the median across states for angular velocity and jerk.   
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trajectory that was only slightly different for ingoing versus outgoing transitions; this 
observation suggests that — at least in this example — B-SOiD does not effectively 
identify the boundaries between syllables, but instead tends to fragment sub-second 
behaviors throughout their execution.  
 
 The observation that keypoint-MoSeq effectively identifies behavioral boundaries 
has so far relied exclusively on analysis of video data. We therefore sought to validate 
keypoint-MoSeq and compare it to other unsupervised behavioral algorithms using a 
more direct measure of movement kinematics. To carefully address this issue, we 
asked about the relationship between algorithm-identified behavioral transitions and 
behavioral changepoints identified by head-mounted inertial measurement units (IMUs), 
which allow us to capture precise 3D head orientation and linear acceleration while we 
record mice exploring an open field arena using an overhead 2D camera (Fig 4h). 
Behavioral transitions were identifiable in the IMU data as transient increases in the 
rates of change for acceleration (quantified by jerk) and orientation (quantified by 
angular velocity). Both measures correlated with state transitions identified by keypoint-
MoSeq but failed to match transitions in behavioral states identified by B-SOiD, 
MotionMapper and VAME (Fig. 4i). Furthermore, IMU-extracted behavioral features (like 
head pitch or acceleration) typically rose and fell symmetrically around B-SOiD, 
MotionMapper and VAME-identified transitions, while keypoint-MoSeq identified 
asymmetrical changes in these features. For example, acceleration tended to be 
highest in the middle of B-SOiD-identified behavioral states, while acceleration tended 
to sharply change at the boundaries of keypoint-MoSeq-identified behavioral syllables 
(Fig 4i; Extended Data Fig 5a-b).  
 
 The fact that keypoint-MoSeq more clearly identifies behavioral boundaries does 
not necessarily mean that it is better at capturing the instantaneous content of behavior. 
Indeed, a spline-based linear encoding model was able to effectively reconstruct a  
panel of coarse kinematic parameters from all four of the explored methods with 
comparable accuracy (Extended Data Fig 4c). However, the fact that movement 
parameters – as measured by accelerometry – change suddenly at the onset of 
keypoint-MoSeq syllables, but not at the onset of B-SOiD, VAME or MotionMapper 
states, provide additional evidence that these methods afford fundamentally different 
views of temporal structure in behavior. The coincidence of behavioral transitions 
identified by keypoint-MoSeq (which are ultimately based on video data) and IMU data 
(which is based in movement per se) further validates the segmentation of behavior 
generated by keypoint-MoSeq.  
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Keypoint-MoSeq state transitions align with fluctuations in neural data 
 

Understanding the relationship between brain and behavior requires timestamps 
that enable researchers to align neural and behavioral data to moments of change. 
During traditional head-fixed behavioral tasks, such timestamps naturally arise out of 
task structure, in which time is divided up into clear, experimenter-specified epochs 
relating to e.g., the presentation of sensory cues or reward, the moment of behavioral 
report, etc. One of the main use cases for unsupervised behavioral classification is to 
understand how the brain generates spontaneous behaviors that arise outside of a rigid 
task structure6; in this setting, the boundaries between behavioral states serve as 
surrogate timestamps to allow alignment of neural data.  
 

We have recently used depth MoSeq to show that the levels of the 
neuromodulator dopamine fluctuate within the dorsolateral striatum (DLS) during 
spontaneous behavior, and that these fluctuations are temporally aligned to syllable 
transitions15: On average, dopamine levels rise rapidly at the onset of each syllable, and 
then decline toward the end of the syllable. Furthermore, the average magnitude of 
dopamine fluctuations varies across syllables. We wondered whether we could 
recapitulate these previously observed relationships between syllable transitions and 
dopamine fluctuations using keypoint-MoSeq or alternative methods for fractionating 
keypoint data into behavioral states (Fig 5a).  

 
Syllable-associated dopamine fluctuations (as captured by dLight photometry) 

were remarkably similar between depth MoSeq and keypoint-MoSeq; aligning the 
derivative of the dopamine signal to syllable transitions revealed a trajectory that was 
almost identical between depth MoSeq and keypoint-MoSeq, with a shallow dip prior to 
syllable onset and sharp rise after onset (Fig 5b). State-related dopamine fluctuations 
were much lower in amplitude (or non-existent), however, when assessed using B-
SOiD, VAME and MotionMapper (Fig 5b). Given the association between striatal 
dopamine release and movement25, it is possible that method-to-method variation can 
be explained by differences in how each method represents stationary vs. locomotory 
behavior. Yet, the transition-associated dopamine fluctuations highlighted by keypoint-
MoSeq remained much more prominent than those from other methods when analysis 
was restricted to high or low velocity states (Extended Data Fig 6a).  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
Figure 5: Keypoint-MoSeq syllable transitions align with fluctuations in striatal dopamine. a) 
Neural-behavioral dataset, including dopamine fluctuations in the dorsolateral striatum (DLS) 
obtained from fiber photometry (top) and unsupervised behavioral segmentations of 2D keypoint 
data (bottom). b) Derivative of the dopamine signal aligned to state transitions from each method. 
c) Average dopamine signal (z-scored DF/F) aligned to the onset of example states identified by 
keypoint-MoSeq and VAME. Shading marks the 95% confidence interval around the mean. d) 
Distributions capturing the magnitude of state-associated dopamine fluctuations across states 
from each method, where magnitude is defined as mean total absolute value in a one-second 
window centered on state onset. e) Distributions capturing the temporal asymmetry of state-
associated dopamine fluctuations, where asymmetry is defined as the difference in mean 
dopamine signal during 500ms after versus 500ms before state onset. f) Top: schematic of 
randomization. The dopamine signal was either aligned to the onsets of each state, as in (c), or to 
random frames throughout the execution of each state. Right: distributions capturing the 
correlation of state-associated dopamine fluctuations before vs. after randomization.   
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
We wondered whether the inability of alternative clustering methods to identify a 

clear relationship between behavior and dopamine could be explained by differences in 
how they represent the temporal structure of behavior. If, as we have shown, B-SOiD, 
VAME and MotionMapper can capture the content of behavior but not the timing of 
transitions, then one might expect average dopamine levels to vary consistently across 
the different behavioral states identified by these alternative methods. To test this 
prediction, we computed the average dopamine trace aligned to state onset separately 
for each state (Fig 5c). Across all methods almost every state was associated with a 
consistent average increase or decrease in dopamine levels (Fig 5c-d, Extended Data 
Fig 6b).  

 
However, the specific pattern of fluctuation identified by each method 

substantially varied. Dopamine tended to increase at the initiation of keypoint-MoSeq-
identified behavioral syllables, with dopamine baselines and amplitudes varying across 
syllables. In contrast, dopamine signals were typically at a peak or nadir at the 
beginning of each state identified by alternative methods, forming a trajectory that was 
symmetric around state onset (Fig 5c). This symmetry tended to wash out dopamine 
dynamics, with the average change in the dopamine signal being approximately three 
times larger for keypoint-MoSeq than for alternative methods (Fig 5e). Similarly, the 
number of states where the dopamine signal changed sign before vs. after state onset 
was ~2-fold greater for keypoint-MoSeq than for alternatives. Furthermore, aligning the 
dopamine signal to randomly-sampled times throughout the execution of each 
behavioral state – rather than its onset – radically altered the state-associated 
dopamine dynamics observed using keypoint-MoSeq, but made little difference for 
alternative methods (Fig 5f, Extended Data Fig 6c-d), a result that could not be 
explained simply by differences in each state’s duration (Extended Data Fig 6c). These 
results suggest that the onsets of keypoint-MoSeq-identified behavioral syllables are 
meaningful landmarks for neural data analysis, while state onsets identified by 
alternative methods are often functionally indistinguishable from timepoints randomly 
chosen from throughout the duration of a behavior. 
 
 
Keypoint-MoSeq generalizes across pose representations and behaviors 
 

Keypoint tracking is a powerful means of pose estimation because it is so 
general: available methods can be flexibly applied to a wide variety of experimental 
setups, can capture diverse behaviors, and afford the experimenter broad latitude in the 
choice of which parts to track and at what resolution. To test the ability of keypoint-
MoSeq to generalize across laboratories — and to better understand the mapping 
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between syllables and human-identified behaviors — we used keypoint-MoSeq and 
alternative methods to analyze a pair of published benchmark datasets26,27. The first 
dataset included conventional 2D videos of a single mouse behaving in an open field, 
with human annotations for four commonly occurring behaviors (locomote, rear, face 
groom and body groom) (Fig 6a-c). To identify keypoints in this dataset we used 
DeepLabCut, specifically the TopViewMouse SuperAnimal network from the DLC Model 
Zoo28, which automatically identifies keypoints without the need for annotation data or 
training. The second dataset (part of the CalMS21 benchmark27) included a set of three 
manually annotated social behaviors (mounting, investigation, and attack) as well as 
keypoints for a pair of interacting mice (Fig 6d-f).  

 
Changepoints analysis of keypoint data from both datasets identified block-like 

structure whose mean duration was ~400ms, consistent with the presence of a 
behavioral rhythm organized at the sub-second timescale (Extended Data Fig 7a-b). 
Consistent with this, Keypoint-MoSeq recovered syllables from both datasets whose 
average duration was ~400ms while, as before, the B-SOiD, MotionMapper and VAME 
identified behavioral states that were much shorter (Extended Data Fig 7c-d). Keypoint-
MoSeq was also better at conveying information about which human-identified 
behavioral states were occuring at each moment than alternative methods; that said, 
the different methods were not dramatically different in terms of quantitative 
performance, consistent with each doing a reasonable job of capturing broad 
information about behavior (Fig 6c,f, Extended Data Fig 7e-f). However, there were 
some important differences: in the CalMS21 dataset, for example, neither VAME nor B-
SOiD ever defined an attack-specific state, and VAME only defined an investigation-
specific state in 53% of model fits. Keypoint-MoSeq, in contrast, defined at least one 
state specific to each of these behaviors in 100% of model fits (Extended Data Fig 7g). 
These results demonstrate that keypoint-MoSeq can identify temporal structure in 
diverse 2D keypoint datasets and reveal consistency between keypoint-MoSeq and 
supervised labels for behavioral states.  
 
 Finally, we noted that the number of syllables identified in our open field data by 
keypoint-MoSeq using 2D keypoints (25) was substantially fewer than the number 
identified by depth MoSeq (52). Furthermore, the most rarely used syllables identified 
by depth MoSeq were used relatively more than the most rarely used syllables identified 
by keypoint-MoSeq (i.e., the distribution describing how often each syllable is used 
during an experiment is right shifted for depth data). These findings suggest that the 
higher dimensionality of the depth data (relative to the 8 keypoints identified in the 2D 
data) affords MoSeq more information about pose during spontaneous behavior, which 
in turn yields a richer behavioral description. To test this hypothesis, we used multiple 
cameras to estimate the position of keypoints in 3D (including 6 keypoints that were not 
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visible in the overhead camera 2D dataset) (Fig 6g). Compared to the 2D data, the new 
3D keypoint pose representation was higher dimensional, had smoother trajectories and 
exhibited oscillatory dynamics related to gait (Extended Data Fig 8a-b). Yet the temporal 
structure of both the data and the syllables that emerged from keypoint-MoSeq was 
surprisingly similar: the 3D data contained similar changepoints to both the 2D and 
depth data (Extended Data 8c-d), and after processing with keypoint-MoSeq the 
resulting syllable duration distributions were almost identical between the 2D, 3D and 
depth datasets, and syllable transitions tended to occur at the same moments in time 
(Fig 6h).  
 

 

 

Figure 6: Keypoint-MoSeq generalizes across pose representations and behaviors. a) Example 
frame from a benchmark open field dataset (Bohnslav, 2019). b) Frequency of human-annotated 
behaviors during states inferred from unsupervised analysis of 2D keypoints. c) Normalized mutual 
information (NMI) between human annotations and unsupervised behavior labels from each 
method. d) Example frame from the CalMS21 social behavior benchmark dataset, showing 2D  
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There was a bigger change, however, in the way syllables were categorized 

when comparing 2D and 3D data. Keypoint-MoSeq tended to distinguish more syllable 
states in the 3D data (52±3 syllables for depth MoSeq, 33±2 syllables for 3D keypoints 
vs. 27±2 syllables for 2D keypoints; Fig 6h), especially for behaviors that varied in the 
mouse’s height (Fig 6i). Turning, for example, was grouped as a single state with the 2D 
keypoint data but partitioned into three states with different head positions with the 3D 
keypoint data (nose to the ground vs. nose in the air), and seven different states in the 
depth data (Fig 6j-l). Rearing was even more fractionated, with a single 2D syllable 
splitting six ways based on body angle and trajectory in the 3D keypoint data (rising vs. 
falling) and 8 ways in the depth data. These data demonstrate that keypoint-MoSeq 
works well on both 2D and 3D keypoint data; furthermore, our analyses suggest that 
higher-dimensional sources of input data to MoSeq give rise to richer descriptions of 
behavior, but that even relatively low-dimensional 2D keypoint data can be used to 
usefully identify behavioral transitions.  
 
 
 
  

keypoint annotations for the resident mouse. e-f) Overlap between human annotations and 
unsupervised behavior states inferred from 2D keypoint tracking of the resident mouse. g) Multi-
camera arena for simultaneous recording of 3D keypoints (3D kps), 2D keypoints (2D kps) and depth 
videos. h) Comparison of model outputs across tracking modalities. 2D and 3D keypoint data were 
modeled using keypoint-MoSeq, and depth data were modeled using original MoSeq. Left: cross 
correlation of transition rates, comparing 3D keypoints to 2D keypoints and depth respectively. 
Middle: distribution of syllable durations; Right: number of states with frequency > 0.5%. Boxplots 
represent the distribution of state counts across 20 independent runs of each model. i) Propability 
of syllables inferred from 2D keypoints (left) or depth (right) during each 3D keypoint-based syllable. 
j-l) Average pose trajectories for the syllables marked in (i). k) 3D trajectories are plotted in side 
view (first row) and top-down view (second row). l) Average pose (as depth image) 100ms after 
syllable onset.  
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Discussion 
 
 MoSeq is a well-validated method for behavioral segmentation that leverages 
natural sub-second discontinuities in rodent behavior to automatically identify the 
behavioral syllables out of which spontaneous behavior is assembled14-17. However, the 
conventional MoSeq platform is unable to directly accept keypoint data, as pervasive 
keypoint jitter (a previously-characterized limitation of neural network-based pose 
tracking2,19) causes MoSeq to identify false behavioral transitions10,19. To address this 
challenge, here we reformulate MoSeq as an SLDS model, which enables joint 
inference of keypoint positions and associated behavioral syllables. Keypoint-MoSeq 
effectively estimates syllable structure in a variety of datasets, including mice with 
implants, filmed from above or below, using either 2D or 3D keypoints. We validate 
keypoint-MoSeq by demonstrating that the identified behavioral syllables are 
interpretable; that the identified behavioral transitions match changepoints in depth and 
kinematic data; and that the identified syllables capture systematic fluctuations in neural 
activity and complex behaviors identified by expert observers. Thus keypoint-MoSeq 
affords much of the same insight into behavioral structure as depth MoSeq, while 
rendering behavioral syllables and grammar accessible to researchers who use 
standard video to capture animal behavior.   
 

There are now many techniques for unsupervised behavior segmentation6,29. The 
common form of their outputs – a sequence of discrete labels – belies profound 
variation in how they work and the kinds of biological insight one might gain from 
applying them. To better understand their relative strengths and weaknesses when 
applied to mouse keypoint data, here we perform a detailed head-to-head comparison 
between keypoint-MoSeq and three alternative methods (B-SOiD9, MotionMapper20 and 
VAME10). All these methods similarly encode the kinematic content of mouse behavior. 
The methods differed radically, however, in the temporal structure of their outputs. 
Keypoint-MoSeq syllables lasted almost an order of magnitude longer on average than 
states identified by alternative clustering methods, and transitions between B-SOiD, 
MotionMapper and VAME states often occurred in the middle of what a human might 
identify as a behavioral module or motif (e.g., a rear). Our analysis suggest three 
possible reasons for this difference. First, unlike alternative methods, MoSeq seeks to 
explain behavior at a particular timescale, and therefore is better able to identify clear 
boundaries between behavioral elements that respect the natural sub-second 
rhythmicity in both neural activity and mouse behavior itself. Second, MoSeq assumes 
that syllables are continuous trajectories through pose space, which prevents the kind of 
within-module fractionation observed when keypoint data is clustered using alternative 
methods. Finally, the formulation of MoSeq as a probabilistic generative model means it 
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can infer keypoint noise and distinguish this noise from actual behavior without 
smoothing away meaningful behavioral transitions. 
 

The fact that MoSeq is a probabilistic generative model means that its 
descriptions of behavior are constrained by the model structure and its parameters: it 
seeks to describe behavior as composed of auto-regressive trajectories through a pose 
space with switching dynamics organized at a single main timescale. Because MoSeq 
instantiates an explicit model for behavior, there are certainly problems in behavioral 
analysis for which keypoint-MoSeq may be ill-suited. For example, as has been 
previously noted, keypoint-MoSeq cannot integrate dynamics across a wide range of 
timescales, as would be possible with methods such as MotionMapper30,31. In addition, 
some behaviors — like the leg movements of walking flies — may be better captured by 
methods whose design emphasizes oscillatory dynamics. It is important to note that, 
despite its structural constraints, MoSeq-based methods are not only useful for 
capturing fine timescale structure in behavior; indeed, MoSeq has repeatedly been 
shown to be performant at tasks that pervasively influence the structure of behavior, 
including changes in behavior due to genetic mutations or drug treatments17,32. That 
said, we stress that there is no one “best” approach for behavioral analysis, as all 
methods involve trade-offs: methods that work for one problem (for example, identifying 
fast neurobehavioral correlates) may not be well suited for another problem.  
 
 The outputs of MoSeq depend upon the type of data it is fed. While similar 
behavioral boundaries are identified from 2D keypoints, 3D keypoints and depth data, 
increasing the dimensionality of the input data also increases the richness of the 
syllables revealed by MoSeq. Though directly modeling the raw pixel intensities of 
depth14 or 2D video33 recordings provides the most detailed access to spontaneous 
behavior, there are significant technical challenges (ranging from reflection sensitivity to 
relatively low temporal resolution) that make depth cameras difficult to use in many 
experimental settings. Similarly, occlusions and variation in perspective and illumination 
remain a challenge for direct 2D video modeling. The development of keypoint-MoSeq 
— together with the extraordinary advances in markerless pose tracking — should 
enable MoSeq to be used in a variety of these adversarial circumstances, such as when 
mice are obstructed from a single axis of view, or when the environment changes 
dynamically. Keypoint-MoSeq could therefore be an important tool moving forward in 
our collective attempts to explore brain-behavior relationships in increasingly 
ethologically relevant settings. Conversely, keypoint-MoSeq can also be applied to the 
petabytes of legacy data sitting fallow on the hard drives of investigators who have 
already done painstaking behavioral experiments using conventional video cameras. 
Going forward, increasingly sophisticated pose tracking approaches19,34 and methods 
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that combine keypoint tracking with direct video analysis35 may eventually close the gap 
in dimensionality between keypoint- and (depth) video-based pose tracking.  
 

To facilitate the adoption of keypoint-MoSeq we have built a website 
(www.MoSeq4all.org) that includes free access to the code for academics as well as 
extensive documentation and guidance for implementation. As demonstrated by this 
paper, the model underlying MoSeq is modular and therefore accessible to extensions 
and modifications that can increase its alignment to behavioral data. For example, 
Costacurta et al., recently reported a time-warped version of MoSeq that incorporates a 
term to explicitly model variation in movement vigor36. We anticipate that the application 
of keypoint-MoSeq to a wide variety of experimental datasets will both yield important 
information about the strengths and failure modes of model-based methods for 
behavioral classification, and prompt continued innovation.  
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Extended Data 
 
  

 
Extended Data Figure 1: a) 2D keypoints tracked using infrared video from a camera viewing 
the mouse through a transparent floor. b) Egocentrically aligned keypoint trajectories (bottom) 
and change-score derived from those keypoints (top). Vertical dashed lines represent 
changepoints (peaks in the change-score). c) Distribution of inter-changepoint intervals. d) 
Keypoint change-score aligned to syllable transitions from depth MoSeq. Results in (c) and (d) 
are shown for the full dataset (black lines) and for each recording session (gray lines).   
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Extended Data Figure 2: a) Cross-correlation between the spectral content of keypoint 
fluctuations and either error magnitude (left) or a measure of low-confidence keypoint 
detections (right) (see Methods). b) Magnitude of fast fluctuations in keypoint position for 
three different tracking methods (top), calculated as the per-frame distance from the measured 
trajectory of a keypoint to a smoothened version of the same trajectory, where smoothing was 
performed using a gaussian kernel with width 100ms. The distribution of distances in between 
manually defined keypoint position across human annotators is shown on the bottom for 
comparison. and magnitude of variation in keypoint position across human annotators 
(bottom). c) Top: position of the nose and tail-base over a 10-second interval, shown for both 
the overhead and below-floor cameras. Bottom: fast fluctuations in each coordinate, obtained 
as residuals after median filtering. d) Cross-correlation between spectrograms obtained from 
two different camera angles for either the tail base or the nose, shown for each tracking 
method. e) Cross-correlation of transitions rates, comparing MoSeq (depth) and MoSeq applied 
to keypoints with various levels of smoothing using either a Gaussian or median filter. 
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Extended Data Figure 3: a) Relationship between mean and median syllable duration as the 
temporal stickiness hyper-parameter 𝜅 is varied.  b) Syllable cross-likelihoods, defined as the 
probability, on average, that time-intervals assigned to one syllable (column) could have arisen 
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from another syllable (row). Cross-likelihoods were calculated for keypoint-MoSeq and for 
depth MoSeq. The results for both methods are plotted twice, using either an absolute scale 
(left) or a log scale (right). c) Modeling results for synthetic keypoint data with a similar 
statistical structure as the real data but lacking in changepoints. Left: example of synthetic 
keypoint trajectories. Middle: autocorrelation of keypoint coordinates for real vs. synthetic 
data, showing similar dynamics at short timescales. Right: distribution of syllable frequencies 
for keypoint-MoSeq models trained on real vs. synthetic data. d) Average pose trajectories for 
syllables identified by keypoint-MoSeq. Each trajectory includes ten evenly-timed poses from 
165ms before to 500ms after syllable onset. e) Kinematic and morphological parameters for 
each syllable. 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
Extended Data Figure 4: a) Output of unsupervised behavior segmentation algorithms across a 
range of parameter settings, applied to 2D keypoint data from two different camera angles. The 
median state duration (left) and the average (z-scored) keypoint change-score aligned to state 
transitions (right) are shown for each method and parameter value. Gray pointers indicate 
default parameter values used for subsequent analysis. b) Distributions showing the number of 
transitions that occur during each rear. c) Accuracy of kinematic decoding models that were fit 
to state sequences from each method.  
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Extended Data Figure 5: a) IMU signals aligned to state onsets from several behavior 
segmentation methods. Each row corresponds to a behavior state and shows the average 
across all onset times for that state. b) As (a) for acceleration but showing the median across all 
states.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
Extended Data Figure 6: a) Derivative of the dopamine signal aligned to the onsets of high 
velocity or low velocity behvior states. States from each method were classified evenly as high 
or low velocity based on the mean centroid velocity during their respective frames.  b) 
Distributions capturing the average of the dopamine signal across states from each method. c) 
Relationship between state durations and correlations from Fig 5f, showing that the impact of 
randomization is not a simple function of state duration.  d) Average dopamine fluctuations 
aligned to state onsets (left), or aligned to random frames throughout the execution of each 
state (middle), as well as the absolute difference between the two alignment approaches 
(right), shown for each unsupervised behavior segmentation approach.  
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Extended Data Figure 7: a,b) Distribution of inter-changepoint intervals for the (Bohnslav, 
2019) open field dataset (a) and CalMS21 social behavior benchmark (b), shown respectively for 
the full datasets (black lines) and for each recording session (gray lines).  c,d) Distribution of 
state durations from each behavior segmentation method. e,f) Frequency of each human-
annotated behavior (left) and agreement between human-annotations and unsupervised 
behavior labels (right), quantified using three different metrics (see Methods). g) Number of 
unsupervised states specific to each human-annotated behavior in the CalMS21 dataset, shown 
for 20 independent fits of each unsupervised method. A state was defined as specific if > 50% of 
frames bore the annotation.  
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Extended Data Figure 8: a) Left: Keypoints tracked in 2D (top) or 3D (bottom) and 
corresponding egocentric coordinate axes. Right: example keypoint trajectories and transition 
rates from keypoint-MoSeq. Transition rate is defined as the posterior probability of a 
transition occurring on each frame. b) Cumul ative fraction of explained variance for increasing 
number of principal components (PCs). PCs were fit to egocentrically aligned 2D keypoints, 
egocentrically aligned 3D keypoints, or depth videos respectively. c) Distribution of inter-
changepoint intervals in the 3D keypoint dataset, shown. d) Cross-correlation between the 3D 
keypoint change-score and change-scores derived from 2D keypoints and depth respectively.  
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Experimental Methods 

 

Animal care and behavioral experiments 

Unless otherwise noted, behavioral recordings were performed on 8–16-week-old 

C57/BL6 mice (The Jackson Laboratory stock no. 000664). Mice were transferred to our 

colony at 6-8 weeks of age and housed in a reverse 12-hour light/12-hour dark cycle. 

We single-housed mice after stereotactic surgery, and group-housed them otherwise. 

On recording days, mice were brought to the laboratory, habituated in darkness for at 

least 20 minutes, and then placed in an open field arena for 30-60 mins. We recorded 6 

male mice for 10 sessions (6 hours) in the initial round of open field recordings; and 5 

male mice for 52 sessions (50 hours) during the accelerometry recordings. The 

dopamine photometry recordings were obtained from a recent study1. They include 6 

C57/BL6 mice and 8 DAT-IRES-cre (The Jackson Laboratory stock no. 006660) mice of 

both sexes, recorded for 378 sessions (180 hours). In a subset of these recordings, 

specific syllables (detected in real-time using depth video) were targeted for closed-loop 

reinforcement, as described in ref1. 

 

Stereotactic surgery procedures 

For all stereotactic surgeries, mice were anaesthetized using 1–2% isoflurane in 

oxygen, at a flow rate of 1 L/min for the duration of the procedure. Anterior-posterior 

(AP) and medial-lateral (ML) coordinates were zeroed relative to bregma, the dorso-

ventral (DV) coordinate was zeroed relative to the pial surface, and coordinates are in 

units of mm. For dopamine recordings, 400nL of AAV5.CAG.dLight1.1 (Addgene 

#111067, titer: 4.85 × 1012) was injected at a 1:2 dilution into the DLS (AP 0.260; ML 

2.550; DV −2.40) and a single 200-μm diameter, 0.37–0.57 NA fiber cannula was 

implanted 200 μm above the injection site (see ref1 for additional details). For 

accelerometry recordings, we surgically attached a millmax connector (DigiKey 

ED8450-ND) and head bar to the skull and secured it with dental cement (Metabond). A 

9 degree-of-freedom absolute orientation inertial measurement unit (IMU; Bosch 

BN0055) was mounted on the millmax connector using a custom printed circuit board 

(PCB) with a net weight below 1g.  

 

Data acquisition from the IMU 

The IMU was connected to a Teensy microcontroller, which was programmed using the 

Adafruit BNO055 library with default settings (sample rate: 100 Hz, units: m/s2). To 

synchronize the IMU measurements and video recordings, we used an array of near 

infrared LEDs to display a rapid sequence of random 4-bit codes that updated 

throughout the recording. The code sequence was later extracted from the behavioral 
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videos and used to fit a piecewise linear model between timestamps from the videos 

and timestamps from the IMU. 

 

Recording setup 

For the initial set of open field recordings (Fig 1-4), mice were recorded in a square 

arena with transparent floor and walls (30cm length and width). Microsoft Azure Kinect 

cameras captured simultaneous depth and near-infrared video at 30Hz. Six cameras 

were used in total: one above, one below, and four side cameras at right angles at the 

same height as the mouse. For the accelerometry recordings, we used a single 

Microsoft Azure Kinect camera placed above the mouse, and an arena with transparent 

floor and opaque circular walls (45cm diameter). Data was transferred from the IMU 

using a light-weight tether attached to a custom-built active commutator. For the 

dopamine perturbation experiments, we used a slightly older camera model – the 

Microsoft Kinect 2 – to capture simultaneous depth and near-infrared at 30Hz. The 

recording arena was circular with opaque floor and walls (45cm diameter). Photometry 

signals were conveyed from the mouse using a fiber-optic patch cord attached to a 

passive commutator. 
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Computational Methods 
 

Processing depth videos 

Applying MoSeq to depth videos involves: (1) mouse tracking and background 

subtraction; (2) egocentric alignment and cropping; (3) principal component analysis 

(PCA); (4) probabilistic modeling. We applied steps (2-4) as described in the MoSeq2 

pipeline2. For step (1), we trained a convolutional neural network (CNN) with a Unet++3 

architecture to segment mouse from background using ~5000 hand-labeled frames as 

training data.  

 

Keypoint tracking 

We used CNNs with an HRNet4 architecture (https://github.com/stefanopini/simple-

HRNet) with a final stride of 2 for pose tracking. The networks were trained on ~1000 

hand-labeled frames each for the overhead, below-floor, and side-view camera angles. 

Frame-labelling was crowdsourced through a commercial service (Scale AI). For the 

overhead camera, we tracked two ears and 6 points along the dorsal midline (tail base, 

lumbar spine, thoracic spine, cervical spine, head, and nose). For the below-floor 

camera, we tracked the tip of each forepaw, the tip and base of each hind paw, and four 

points along the ventral midline (tail base, genitals, abdomen, and nose). For the side 

cameras, we tracked the same eight points as for the overhead camera, and also 

included the six limb points that were used for the below-floor camera (14 total). We 

trained a separate CNN for each camera angle. Target activations were formed by 

centering a Gaussian with 10px standard deviation on each keypoint. We used the 

location of the maximum pixel in each output channel of the neural network to determine 

keypoint coordinates, and used the value at that pixel to set the confidence score. We 

also trained models from DeepLabCut (version 2.2.1, resnet50 architecture, otherwise 

default parameters) and SLEAP (version 1.2.3, with baseline_large_rf.single.json 

configuration) on the overhead-camera and below-floor-camera datasets.  

 

3D pose inference 

Using 2D keypoint detections from six cameras, 3D keypoint coordinates were 

triangulated and then refined using GIMBAL, a model-based approach that leverages 

anatomical constraints and motion continuity5. To fit GIMBAL, we computed initial 3D 

keypoint estimates using robust triangulation (i.e. by taking the median across all 

camera pairs, as in 3D-DeepLabCut6) and then filtered to remove outliers using the 

EllipticEnvelope method from sklearn; We then fit the skeletal parameters and 

directional priors for GIMBAL using expectation maximization with 50 pose states (see 

ref5 for details). Finally, we applied the fitted GIMBAL model to each recording, using 

the following parameters for all keypoints: obs_outlier_variance=1e6, 

obs_inlier_variance=10, pos_dt_variance=10. The latter parameters were chosen based 
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on the accuracy of the resulting 3D keypoint estimates, as assessed from visual 

inspection.  

 

Inferring model-free changepoints 

We defined changepoints as sudden, simultaneous shifts in the trajectories of multiple 

keypoints. We detected them using a procedure similar to the filtered derivative 

algorithm described in ref7, but with changes to emphasize simultaneity across multiple 

keypoints. The changes account for the lower dimensionality of keypoint data compared 

to depth videos, and for the unique noise structure of markerless keypoint tracking, in 

which individual keypoints occasionally jump a relatively large distance due to detection 

errors. Briefly, the new procedure first defines a continuous change-score by: (1) 

calculating the rate of each in each keypoint coordinate; (2) quantifying simultaneity in 

the change-rates across keypoints; (3) transforming the signal based on statistical 

significance with respect to a temporally shuffled null distribution; (4) identifying local 

peaks in the resulting significance score. The details of each step are as follows.  

 

1) Calculating rates of change: We transformed the keypoint coordinates on each 

frame by centering and aligned them along the tail-nose axis. We then computed 

the derivative of each coordinate for each keypoint, using a sliding window of 

length 3 as shown below, where 𝑥𝑡 denotes the value of a coordinate at time 𝑡. 

 

𝑥̇𝑡 ≈
1

3
 (𝑥𝑡+3 + 𝑥𝑡+2 + 𝑥𝑡+1 − 𝑥𝑡−1 − 𝑥𝑡−2 − 𝑥𝑡−3) 

 

2) Quantifying simultaneous changes: The derivatives for each keypoint were Z-

scored and then binarized with a threshold. We then counted the number of 

threshold crossings on each frame and smoothed the resulting time-series of 

counts using a Gaussian filter with a one-frame kernel. The value of the threshold 

was chosen to maximize the total number of detected changepoints. 

 

3) Comparing to a null distribution: We repeated step (2) for 1000 shuffled 

datasets, in which each keypoint trajectory was cyclically permuted by a random 

interval. Using the shuffles as a null distribution, we computed a P-value for each 

frame and defined the final change-score as − log10(pval)  

 

4) Identifying local peaks in the change-score: We identified local peaks in the 

change-score 𝑠𝑡, i.e., times 𝑡 for which 𝑠𝑡−1 < 𝑠𝑡 > 𝑠𝑡+1. Peaks were classified as 

statistically significant when they corresponded to a p-value below 0.01, which 

was chosen to control the false-discovery rate at 10%. The statistically significant 

peaks were reported as changepoints for downstream analysis. 
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Spectral Analysis 

To analyze keypoint jitter, we quantified the magnitude of fluctuations across a range of 

frequencies by computing a spectrogram for each keypoint along each coordinate axis. 

Spectrograms were computed using the python function scipy.signal.spectrogram with 

nperseg=128 and noverlap=124. The spectrograms were then combined through 

averaging: each keypoint was assigned a spectrogram by averaging over the two 

coordinate axes, and the entire animal was assigned a spectrogram by averaging over 

all keypoints.  

 

We used the keypoint-specific spectrograms to calculate cross-correlations with 

−log10(neural network detection confidence), as well as the “error magnitude” (Fig 2f). 

Error magnitude was defined as the distance between the detected 2D location of a 

keypoint (based on a single camera angle) and a reprojection of its 3D position (based 

on consensus across six camera angles; see “3D pose inference” above). We also 

computed the cross-correlation between nose- and tail-base-fluctuations at each 

frequency, as measured by the overhead and below-floor cameras respectively. Finally, 

we averaged spectral power across keypoints to compute the cross-correlation with 

model transition rates (Fig 2f), defined as the per-frame probability of a state transitions 

across 20 model restarts. 

 

Applying keypoint-MoSeq 

The initial open field recordings (Fig 1-4), as well as the accelerometry, dopamine, and 

two benchmark datasets were modeled separately. Twenty models with different 

random seeds were fit for each dataset (except for the accelerometry data, in which 

case one model was fit).  

 

Modeling consisted of two phases: (1) Fitting an autoregressive hidden Markov model 

(AR-HMM) to a fixed pose trajectory derived from PCA of egocentric-aligned keypoints; 

(2) Fitting a full keypoint-MoSeq model initialized from the AR-HMM. References in the 

text to “MoSeq applied to keypoints” or “MoSeq (keypoints)”, e.g., in Figs 2-3, refer to 

output of step (1). Both steps are described below, followed by a detailed description of 

the model and inference algorithm in the mathematical modeling section. In all cases, 

we excluded rare states (frequency < 0.5%) from downstream analysis. We have made 

the code available as a user-friendly package, available at Moseq4all.org.  

 

1) Fitting an initial AR-HMM:  

 

We first modified the keypoint coordinates, defining keypoints with confidence 

below 0.5 as missing data and in imputing their values via linear interpolation, 
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and then augmenting all coordinates with a small amount of random noise; The 

noise values were uniformly sampled from the interval [-0.1, 0.1] and helped 

prevent degeneracy during model fitting. Importantly, these preprocessing steps 

were only applied during AR-HMM fitting – the original coordinates were used 

when fitting the full keypoint-MoSeq model. 

 

Next, we centered the coordinates on each frame, aligned them using the tail-

nose angle, and then transformed them using PCA with whitening. The number 

of principal components (PCs) was chosen for each dataset as the minimum 

required to explain 90% of total variance. This resulted in 4 PCs for the overhead 

camera 2D datasets, 6 PCs for the below-floor-camera 2D datasets, and 6 PCs 

for the 3D dataset.  

 

We then used Gibbs sampling to infer the states and parameters of an AR-HMM, 

including the state sequence 𝑧, the autoregressive parameters 𝐴, 𝑏, 𝑄, and the 

transition parameters 𝜋, 𝛽. The hyper-parameters for this step, listed in the 

mathematical modeling section below, were generally identical to those in the 

original depth-MoSeq model7. The one exception was 𝜅 which we adjusted 

separately for each dataset to ensure a median state duration of 400ms.  

 

2) Fitting a full keypoint-MoSeq model:  

 

We next fit the full set of variables for keypoint-MoSeq, which include the AR-

HMM variables mentioned above, as well as the location 𝑣 and heading ℎ, latent 

pose trajectory 𝑥, per-keypoint noise level 𝜎2, and per-frame/per-keypoint noise 

scale 𝑠. Fitting was performed using Gibbs sampling for 500 iterations, at which 

point the log joint probability appeared to have stabilized. 

 

The hyper-parameters for this step are enumerated in the mathematical modeling 

section below. In general, we used the same hyper-parameter values across 

datasets. The two exceptions were 𝜅, which again had to be adjusted to maintain 

a median state duration of 400ms, and 𝑠0, which determines a prior on the noise 

scale. Since low-confidence keypoint detections often have high error, we set 𝑠0 

using a logistic curve that transitions between a high-noise regime (𝑠0 = 100) for 

detections with low confidence and a low-noise regime (𝑠0 = 1) for detections 

with high confidence: 

 

𝑠0 = 1 +  100(1 +  𝑒20(confidence−0.4))
−1
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Trajectory plots 

To visualize the modal trajectory associated with each syllable (Fig 3e), we (1) 

computed the full set of trajectories for all instances of all syllables (2) used a local 

density criterion to identify a single representative instance of each syllable (3) 

computed a final trajectory using the nearest neighbors of the representative trajectory. 

 

1) Computing the trajectory of individual syllable instances: Let 𝑦𝑡, 𝑣𝑡, and ℎ𝑡 

denote the keypoint coordinates, centroid and heading of the mouse at time 𝑡, 

and let 𝐹(𝑣, ℎ; 𝑦) denote the rigid transformation that egocentrically aligns 𝑦 using 

centroid 𝑣 and heading ℎ. Given a syllable instance with onset time 𝑇, we 

computed the corresponding trajectory 𝑋𝑇 by centering and aligning the 

sequence of poses (𝑦𝑇−5, … , 𝑦𝑇+15) using the centroid and heading on time 𝑇. In 

other words, 

 

𝑋𝑇 = [𝐹(𝑣𝑇 , ℎ𝑇; 𝑦𝑇−5), … , 𝐹(𝑣𝑇 , ℎ𝑇; 𝑦𝑇+15)] 

 

2) Identifying a representative instance of each syllable: The collection of 

trajectories computed above can be thought of as a set of points in a high 

dimensional trajectory space (for 𝐾 keypoints in 2D, this space would have 

dimension 40𝐾). Each point has a syllable label, and the segregation of these 

labels in the trajectory space represents the kinematic differences between 

syllables. To capture these differences, we computed a local probability density 

function for each syllable, and a global density function across all syllables. We 

then selected a representative trajectory 𝑋 for each syllable by maximizing the 

ratio  

 

local density(𝑋)

global density(𝑋)
 

 

The density functions were computed as the mean distance from each point to its 

50 nearest neighbors. For the global density, the nearest neighbors were 

selected from among all instances of all syllables. For the local densities, the 

nearest neighbors were selected from among instances of the target syllable.  

 

3) Computing final trajectories for each syllable: For each syllable and its 

representative trajectory 𝑋, we identified the 50 nearest neighbors of 𝑋 from 

among other instanes of the same syllable and then computed a final trajectory 

as the mean across these nearest neighbors. The trajectory plots in Fig 3e 

consist of 10 evenly-space poses along this trajectory, i.e., the poses at times 

𝑇 − 5, 𝑇 − 3, … , 𝑇 + 13. 
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Cross-syllable likelihoods 

We defined each cross-syllable likelihood7 as the probability (on average) that instances 

of one syllable could have arisen based on the dynamics of another syllable. The 

probabilities were computed based on the discrete latent states 𝑧𝑡, continuous latent 

states 𝑥𝑡, and autoregressive parameters 𝐴, 𝑏, 𝑄 output by keypoint-MoSeq. The 

instances 𝐼(𝑛) of syllable 𝑛 were defined as the set of all sequences (𝑡𝑠, … , 𝑡𝑒) of 

consecutive timepoints such that 𝑧𝑡 = 𝑛 for all 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒 and 𝑧𝑡𝑠−1 ≠ 𝑛 ≠ 𝑧𝑡𝑒+1.  For 

each such instance, one can calculate the probability 𝑃(𝑥𝑡𝑠
, … , 𝑥𝑡𝑒

|𝐴𝑚 , 𝑏𝑚 , 𝑄𝑚) that the 

corresponding sequence of latent states arose from the autoregressive dynamics of 

syllable 𝑚. The cross-syllable likelihood 𝐶𝑛𝑚 is defined in terms of these probabilities as  

𝐶𝑛𝑚 =
1

|𝐼(𝑛)|
∑

(𝑥𝑡𝑠
, … , 𝑥𝑡𝑒

|𝐴𝑚 , 𝑏𝑚 , 𝑄𝑚)

(𝑥𝑡𝑠
, … , 𝑥𝑡𝑒

|𝐴𝑛, 𝑏𝑛, 𝑄𝑛)
(𝑡𝑠,…,𝑡𝑒)∈I(n)

 

 

Generating synthetic keypoint data 

To generate the synthetic keypoint trajectories used for Extended Data Fig 3c, we fit a 

linear dynamical system (LDS) to egocentrically aligned keypoint trajectories and then 

sampled randomly generated outputs from the fitted model. The LDS was identical to 

the model underlying keypoint-MoSeq (see mathematical modeling section below), 

except that it only had one discrete state, lacked centroid ad heading variables, and 

allowed separate noise terms for the x- and y- coordinates of each keypoint.  

 

Applying B-SOiD 

B-SOiD is an automated pipeline for behavioral clustering that: (1) preprocesses 

keypoint trajectories to generate pose and movement features; (2) performs 

dimensionality reduction on a subset of frames using UMAP; (3) clusters points in the 

UMAP space; (4) uses a classifier to extend the clustering to all frames8. We fit B-SOiD 

separately for each dataset. In each case, steps 2-4 were performed 20 times with 

different random seeds, and the pipeline was applied with standard parameters; 50,000 

randomly sampled frames were used for dimensionality reduction and clustering, and 

the min_cluster_size range was set to 0.5% - 1%. Since B-SOiD uses a hardcoded 

window of 100ms to calculate pose and movement features, we re-ran the pipeline with 

falsely inflated framerates for the window-size scan in Extended Data Fig 4a. In all 

analyses involving B-SOiD, rare states (frequency < 0.5%) were excluded from analysis.  

 

Applying VAME 

VAME is a pipeline for behavioral clustering that: (1) preprocesses keypoint trajectories 

and transforms them into egocentric coordinates; (2) fits a recurrent neural network 
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(RNN); (3) clusters the latent code of the RNN9. We applied these steps separately to 

each dataset, in each case running step (3) 20 times with different random seeds. For 

step (1), we used the same parameters as in keypoint-MoSeq – egocentric alignment 

was performed along the tail-nose axis, and we set the pose_confidence threshold to 

0.5. For step (2), we set time_window=30 and zdims=20 for all datasets, except for the 

zdim-scan in Extended Data Fig 4a. VAME provides two different options for step (3): 

fitting an HMM (default) or applying K-Means (alternative). We fit an HMM for all 

datasets and additionally applied K-Means to the initial open dataset. In general, we 

approximately matched the number of states/clusters in VAME to the number identidied 

by keypoint-MoSeq, except when scanning over state number in Extended Data Fig 4a. 

In all analyses involving VAME, rare states (frequency < 0.5%) were excluded from 

analysis.  

 

Applying MotionMapper 

MotionMapper performs unsupervised behavioral segmentation by: (1) applying a 

wavelet transform to preprocessed pose data; (2) nonlinearly embedding the 

transformed data in 2D; (3) clustering the 2D data with a watershed transform10. We 

applied MotionMapper separately to each dataset using the python package 

https://github.com/bermanlabemory/motionmapperpy. In general, the data were 

egocentrically aligned along the tail-nose axis and then projected into 8 dimensions 

using PCA. 10 log-spaced frequencies between 0.25 and 15Hz were used for the 

wavelet transform, and dimensionality reduction was performed using tSNE. The 

threshold for watershedding was chosen so as to produce at least 25 clusters, 

consistent with keypoint-MoSeq for the overhead camera data. Rare states (frequency < 

0.5%) were excluded from analysis. For the parameter scan in Extended Data Fig 4a, 

we varied the each of these parameters while holding the others fixed, including the 

threshold for watershedding, the number of initial PCA dimensions, and the frequency 

range of wavelet analysis. We also repeated a subset of these analyses using an 

alternative autoencoder-based dimensionality reduction approach, as described in the 

motionmapperpy tutorial 

(motionmapperpy/demo/motionmapperpy_mouse_demo.ipynb). 

 

Predicting kinematics from state sequences 

We trained decoding models based on spline regression to predict kinematic 

parameters (height, velocity, turn speed) from state sequences output by keypoint-

MoSeq and other behavior segmentation methods (Fig 4e, Extended Data Fig 4c). Let 

𝑧𝑡 represent an unsupervised behavioral state sequence and let 𝐵 denote a spline 

basis, where 𝐵𝑡,𝑖 is the value of spline 𝑖 and frame 𝑡. We generated such a basis using 

the “bs” function from the python package “patsy”, passing in five log-spaced knot 

locations (1.0,  2.0,  3.9 ,  7.7 , 15.2,  30.0) and obtaining basis values over a 300-frame 
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interval. This resulted in a 300-by-5 basis matrix 𝐵. The spline basis and state sequence 

were combined to form a 5𝑁-dimensional design matrix, where 𝑁 is the number of 

distinct behavioral states. Specifically, for each instance (𝑡𝑠, … , 𝑡𝑒) of state 𝑛 (see 

“Cross-syllable likelihoods” section above for a definition of state instances), we inserted 

the first 𝑡𝑒 − 𝑡𝑠 frames of 𝐵 into dimensions 5𝑛, … ,5𝑛 + 5 of the design matrix, alinging 

the first frame of 𝐵 to frame 𝑡𝑠 in the design matix. Kinematic features were regressed 

against the design matrix using Ridge regression from scikit-learn and 5-fold cross-

validation. We used a range of values from 10-3  to 103 for the regularization parameter 

𝛼 and reported the results with greatest accuracy.  

 

Rearing analysis 

To compare the dynamics of rear-associated states across methods, we systematically 

identified all instances of rearing in our initial open field dataset. During a stereotypical 

rear, mice briefly stood on their hindlegs and extended their head upwards, leading to a 

transient increase in height from its modal value of 3cm-5cm to a peak of 7cm-10cm. 

Rears were typically brief, with mice exiting and then returning to a prone position within 

a few seconds. We encoded these features using the following criteria. First, rear 

onsets were defined as increases in height from below 5cm to above 7cm that occurred 

within the span of a second, with onset formally defined as the first frame where the 

height exceeded 5cm. Next, rear offsets were defined as decreases in height from 

above 7cm to below 5cm that occurred within the span of a second, with offset formally 

defined as the first frame where the height fell below 7cm. Finally, we defined complete 

rears as onset-offset pairs defining an interval with length between 0.5 and 2 seconds. 

Height was determined from the distribution of depth values in cropped, aligned and 

background-segmented videos. Specifically, we used the 98th percentile of the 

distribution in each frame.    

 

 

Accelerometry processing 

From the IMU we obtained absolute rotations 𝑟𝑦 , 𝑟𝑝, 𝑟𝑟 (yaw, pitch, and roll) and 

accelerations 𝑎𝑥, 𝑎𝑦 , 𝑎𝑧 (dorsal/ventral, posterior/anterior, left/right). To control for subtle 

variations in implant geometry and chip calibration, we centered the distribution of 

sensor readings for each variable on each session. We defined total acceleration as the 

norm of the 3 acceleration components: 

 

|𝑎| = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

 

Similarly, we defined total angular velocity as the norm |𝜔| of rotation derivative: 
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𝜔 = (
𝑑𝑟𝑦

𝑑𝑡
,
𝑑𝑟𝑝

𝑑𝑡
,
𝑑𝑟𝑟

𝑑𝑡
)  

 

    

Finally, to calculate jerk, we smoothed the acceleration signal with a 50ms Gaussian 

kernel, generating a time-series 𝑎̃, and then computed the norm of its derivative: 

 

jerk = |
𝑑𝑎̃

𝑑𝑡
| 

 

Aligning dopamine fluctuations to behavior states 

For a detailed description of photometry data acquisition and preprocessing, see ref1. 

Briefly, photometry signals were: (1) ΔF/F0-normalized using a 5-second window; (2) 

adjusted against a reference to remove motion artefacts and other non-ligand-

associated fluctuations; (3) z-scored using a 20-second sliding window; (4) temporally 

aligned to the 30Hz behavioral videos. 

 

Given a set of state onsets (either for a single state or across all states), we computed 

the onset-aligned dopamine trace by averaging the dopamine signal across onset-

centered windows. From the resulting traces, each of which can be denoted as a time-

series of dopamine signal values (𝑑−𝑇 , … , 𝑑𝑇) we defined the total fluctuation size (Fig 

5d) and temporal asymmetry (Fig 5e) as  

 

temporal asymmetry =  
1

15
∑ 𝑑𝑡

15

𝑡=0

−
1

15
∑ 𝑑𝑡

0

𝑡=−15

, AUC =  ∑ |𝑑𝑡|

15

𝑡=−15

 

 

A third metric – the average dopamine during each state (Extended Data Figure 6b) – 

was defined simply as the mean of the dopamine signal across all frames bearing that 

state label. For each metric, shuffle distributions were generated by repeating the 

calculation with a temporally reversed copy of the dopamine times-series.  

 

Supervised behavior benchmark 

Videos and behavioral annotations for the supervised open field behavior benchmark 

(Fig 4a-c) were obtained from (Bohnslav, 2019)11. The dataset contains 20 videos that 

are each 10-20 minutes long. Each video includes frame-by-frame annotations of five 

possible behaviors: locomote, rear, face groom, body groom, and defacate. We 

excluded “defacate” from the analysis because it was extremely rate (< 0.1% of frames).  

 

For pose tracking we used DLC's SuperAnimal inference API that performs inference on 
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videos without the need to annotate poses in those videos. Specifically, we used 

SuperAnimal-TopViewMouse that applies DLCRNet-50 as the pose estimation 

model11.  Keypoint detections were obtained using DeepLabCut's API function 

deeplabcut.video_inference_superanimal. The API function uses a pretrained model 

called SuperAnimal-TopViewMouse and performs video adaptation that applies multi-

resolution ensemble (i.e. the image height resized to 400, 500, 600 with a fixed aspect 

ratio) and rapid self-training (model trained on zeroshot predictions with confidence 

above 0.1) for 1000 iterations to counter domain shift and reduce jittering predictions. 

The code to reproduce this analysis is: 

 

videos = ['path_to_video'] 
superanimal_name = 'superanimal_topviewmouse' 
scale_list = [400, 500, 600] 
 
deeplabcut.video_inference_superanimal(videos,  
  superanimal_name,  
  videotype=".mp4",  
  video_adapt = True,  
  scale_list = scale_list) 
 

Keypoint coordinates and behavioral annotations for the supervised social behavior 

benchmark (Fig 4d-f) were obtained from the CalMS21 dataset12 (task1). The dataset 

contains 70 videos of resident-intruder interactions with frame-by-frame annotations of 

four possible behaviors: attack, investigate, mount, or other. All unsupervised behavior 

segmentation methods were fit to 2D keypoint data for the resident mouse.  

 

We used four metrics9 to compare supervised annotations and unsupervised states 

from each method. These included normalized mutual information, homogeneity, 

adjusted rand score, and purity. All metrics besides purity were computed using the 

python library scikit-learn (i.e. with the function normalized_mutual_info_score, 

homogeneity_score, adjusted_rand_score). The purity score was defined as in ref9.  
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Keypoint MoSeq mathematical model

1 Generative model

Switching Linear Dynamical System We previously found that mouse behavior evolves
through a sequence of short motifs that we call syllables [4]. Each motif is characterized by a
stable pattern of movement dynamics, and the boundaries between motifs correspond to sudden
changes in these dynamics. Switching linear dynamical systems (SLDS) are well-suited to identify
these dynamical patterns and the transitions between them. SLDS models the observed data using
a lower-dimensional latent time-series with linear autoregressive dynamics. The dynamics switch
over time, and the sequence of transitions are assumed to form a Markov chain. Formally, if yt,
xt, and zt represent the observed state, continuous latent state, and discrete latent state at time
t, SLDS defines the following generative model.

zt ∼ Categorical(πzt−1
) (1)

xt ∼ N (A(zt)[x⊤
t−L, ..., x

⊤
t−1]

⊤ + b(zt), Q(zt)) (2)

yt ∼ N (Cxt + d, St) (3)

In depth-based MoSeq, yt represents pixel values in a 3D depth map, and C, d, xt are fixed ahead of
time using PCA [4]. Here we relax these constraints and fit xt simultaneously with the rest of the
model. We use a matrix normal inverse Wishart (MNIW) prior for the autoregressive parameters

(A(i), b(i)), Q(i) ∼ MNIW(ν0, S0,M0,K0) (4)

and a sticky hierarchical Dirichlet process (HDP) prior for the transition matrix π, taking the
weak limit with maximum number of states N . In practice, this means π is generated via stacked
Dirichlet distributions as follows.

β ∼ Dir(γ/N, ..., γ/N) (5)

πi ∼ Dir(αβ1, ..., αβj + κδij , ..., αβN ) (6)

The hyperparameters γ, α, κ control the sparsity of states, the weight of the sparsity prior, and the
bias toward self-transitions respectively. The prior for St is given in Eq. 11. Note that in general,
SLDS models can have state dependent observation parameters (C, d, S) and time-varying input
signals. We have chosen to omit these features.

Keypoint-adapted SLDS When clustering kinematics into distinct behavior motifs, one usu-
ally wishes to ignore absolute location and heading angle. Common approaches for such affine
invariance include centering and aligning data ahead of time (as in VAME [3]), or using relative
distances or angles (as in B-SOiD [2]). One issue with these approaches is that they induce spu-
rious correlations between variables. When a single keypoint moves, it may shift the egocentric
reference frame, or perturb multiple distances and/or angles. To avoid this problem, we use an ap-
proach developed by Zhang et al., for the pose-inference tool GIMBAL [5]: We model the animal’s
centroid and heading explicitly, and then combine these variables with pose to predict keypoint
locations in absolute coordinates.
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Concretely, let Yt ∈ RK×D represent the coordinates of K keypoints at time t, where D ∈ {2, 3}.
Define latent variables vt ∈ RD and ht ∈ [0, 2π] to represent the animal’s location and heading
angle. At each time point, the pose Yt is generated via rotation and translation of a centered and
oriented pose Ỹt that depends on the current latent state xt, as follows, where R(ht) is a matrix
that rotates by angle ht in the xy-plane.

Yt = ỸtR(ht) + 1Kv⊤t where vec(Ỹt) ∼ N ((Γ⊗ ID)(Cxt + d), St) (7)

The matrix Γ is defined by the singular value decomposition Γ∆Γ⊤ = IK −1K×K/K, and ensures
that E(Ỹt) is always centered [1]. Γ encodes a linear transformation that isometrically maps
R(K−1)×D to the set of all centered keypoint arrangements in RK×D. The elements of C, d have
iid priors N (0, σ2

C) and each angle ht has an independent uniform prior. We assume that the
translations are autocorrelated as follows, where σloc is a hyper-parameter.

vt ∼ N (vt−1, σ
2
loc) (8)

Robust Observations To account for occasional large errors in keypoint tracking data, we use
a (heavy-tailed) Student’s-t distribution for keypoint coordinates, and assume that the noise in
these coordinates is independent and isotropic for each keypoint. These assumptions are encoded
in the following generative model for St (defined in Eq 3).

σk ∼ χ−2(νσ, σ
2
0) (9)

st,k ∼ χ−2(νs, s0) (10)

St = diag(σ2
1st,1...σ

2
Kst,K)⊗ ID (11)

2 Hyper-parameters

We used the following hyper-parameter values throughout the paper.

Transition matrix

N = 100 (12)

γ = 1000 (13)

α = 100 (14)

κ fit to each dataset (15)

Autoregressive process Let m = dim(x) and L = 3

ν0 = dim(x) + 2 (16)

S0 = 0.01Im (17)

M0 =
[
0m×(L−1) Im 1m×1

]
(18)

K0 = 10Im∗L+1 (19)

Observation process

σ2
0 = 1 (20)

νσ = 105 (21)

νs = 5 (22)

s0 set based on neural network confidence (23)
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Animal position

σ2
loc = 0.4 (24)

3 Inference algorithm

Our full model contains latent variables v, h, x, z, s and parameters A, b,Q,C, d, σ, β, π. We fit each
of these variables – with the exception of (C, d) using Gibbs sampling, wherein each variable is
resampled from its posterior distribution conditional on all the other variables and on the data
Y1, ..., YT . Here we describe Gibbs updates for (C, d) even though these variables are fixed at their
initial values (learned from PCA) for keypoint-MoSeq.

The posterior distributions P (π, β | z) and P (A, b,Q | z, x) are unchanged from the original MoSeq
paper and will not be be reproduced here (see ref [4], pages 42-44, and note the changes of notation
Q → Σ, z → x, and x → y). The Gibbs updates for C, d, σ, s, v and h are described below.

P (C,d | s, σ, x, v, h, Y ) Let x̃t represent xt with a 1 appended and define

S̃t = (Γ⊤diag(σ2
1st,1, ..., σ

2
Kst,K)Γ)⊗ ID (25)

The posterior update is (C, d) ∼ N (vec(C, d) | µn,Σn) where

Σn = (σ−2
C I + Sx,x)

−1 and µn = ΣnSy,x (26)

with

Sx,x =
T∑

t=1

x̃tx̃
⊤
t ⊗ Γ⊤S̃−1

t Γ⊗ ID and Sy,x =
T∑

t=1

(x̃⊤
t ⊗ S̃−1Γ⊗ ID)vec(Ỹt)

⊤ (27)

P (s | C,d,σ, x, v, h, Y ) Each st,k is conditionally independent with posterior

st,k | C, d, σk, x, Y ∼ χ−2
(
νs +D, (νss0 + σ−2

k ∥Γ(Cxt + d)k − Ỹt,k∥2)/(νs +D)
)

(28)

P (σ | C,d, s, x, v, h, Y ) Each σk is conditionally independent with posterior

σ2
k ∼ χ−2

(
νσ +DT, (νσσ

2
0 + Sy)(νσ +DT )−1

)
(29)

where Sy =
∑N

t=1 ∥Γ(Cxt + d)k − Ỹt,k∥2/st,k

P (v | C,d,σ, s, x, h,Y ) Since the translations v1, ..., vT form a linear dynamical system, they
can be updated by Kalman sampling. The transitions are defined by Eq. 8 and the observation
potentials have the form N (vt | µ, γ2ID) where

µ =
∑
k

γ2
t

σ2
kst,k

[
Yt,k −R(ht)

⊤Γ(Cxt + d)k
]
,

1

γ2
t

=
∑
k

1

σ2
kst,k

(30)

P (h | C,d,σ, s, x, v, Y ) The posterior of ht is the von-Mises distribution vM(θ, κ) where κ and
θ ∈ [0, 2π] are the unique parameters satisfying [κ cos(θ), κ sin(θ)] = [S1,1 + S2,2, S1,2 − S2,1] for

S =
∑
k

1

st,kσ2
k

Γ(Cxt + d)k(Yt,k − vt)
⊤ (31)
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P (x | C,d,σ, s, v, h, Y ) To resample x, we first express its temporal dependencies as a first-
order autoregressive process, and then apply Kalman sampling. The change of variables is

A′ =


I

I
I

A1 A2 · · · AL b

 Q′ =


0

0
0

Q

 C ′ =


0 0
...

...
0 0
C d

 x′
t =


xt−L+1

...
xt

1

 (32)

Kalman sampling can then be applied to the sample the conditional distribution,

P (x′
1:T | Ỹ1:T ) ∝

T∏
t=1

N (x′
t | A′(zt)x′

t−1, Q
′(zt)) N (vec(Ỹt) | C ′x′

t, St). (33)

(Assume x′ is left-padded with zeros for negative time indices.)

4 Derivation of Gibbs updates

Derivation of C,d updates To simply notation, define

S̃t = diag(σ2
1st,1, ..., σ

2
Kst,K), x̃t = (xt, 1), C̃ = (C, d) (34)

The likelihood of the centered and aligned keypoint locations Ỹ can be expanded as follows.

P (Ỹ | C̃, x̃, S̃) =
T∏

t=1

N (vec(Ỹt) | (Γ⊗ ID)C̃x̃t, S̃t ⊗ ID) (35)

∝ exp

[
− 1

2

T∑
t=1

(
x̃⊤
t C̃

⊤(Γ⊤S̃−1
t Γ⊗ ID)C̃x̃t − 2vec(Ỹt)

⊤(S̃−1
t Γ⊗ ID)C̃x̃t

)
(36)

∝ exp

[
− 1

2

T∑
t=1

(
vec(C̃)⊤(x̃tx̃

⊤
t ⊗ Γ⊤S̃−1

t Γ⊗ ID)vec(C̃) (37)

− 2vec(C̃)⊤(x̃⊤
t ⊗ S̃−1

t Γ⊗ ID)vec(Ỹt)
)]

(38)

∝ exp

[
− 1

2

(
vec(C̃)⊤Sx,xvec(C̃)− 2vec(C̃)⊤Sx,y

)]
(39)

where

Sx,x =
T∑

t=1

x̃tx̃
⊤
t ⊗ Γ⊤S̃−1

t Γ⊗ ID and Sx,y =
T∑

t=1

(x̃⊤
t ⊗ S̃−1Γ⊗ ID)vec(Ỹt) (40)

Multiplying Eq 39 by the prior vec(C̃) ∼ N (0, σ2
CI) yields

P (C̃ | Ỹ , x̃, S̃) ∝ N (vec(C̃) | µn,Σn) (41)

where

Σn = (σ−2
C I + Sx,x)

−1 and µn = ΣnSy,x (42)
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Derivation of σk, st,k updates For each time t and keypoint k, let Y t,k = Γ(Cxt + d). The

likelihood of the centered and aligned keypoint location Ỹt,k is

P (Ỹt,k | Y t,k, st,k, σk) = N (Ỹt,k | Y t,k, σ2
kst,kID) ∝ (σ2

kst,k)
−D/2 exp

[
− ∥Ỹt,k − Ȳt,k∥2

2σ2
kst,k

]
(43)

We can then calculate posteriors P (st,k | σk) and P (σk | st,k) as follows.

P (st,k | σk, Ỹt,k, Y t,k) ∝ χ−1(st,k | νs, s0)N (Ỹt,k | Y t,k, σ2
kst,kID) (44)

∝ s
−1−(νs+D)/2
t,k exp

[
−νss0
2st,k

− ∥Ỹt,k − Ȳt,k∥2

2σ2
kst,k

]
(45)

∝ χ−2
(
st,k | νs +D, (νss0 + σ−2

k ∥Ỹt,k − Ȳt,k∥2)(νs +D)−1
)

(46)

P (σk | {st,k, Ỹt,k, Y t,k}Tt=1) ∝ χ−1(σ2
k | νσ, σ2

0)
T∏

t=1

N (Ỹt,k | Y t,k, σ2
kst,kID) (47)

∝ σ−2−νσ−DT
k exp

[
−νσσ

2
0

2σ2
k

− 1

2σ2
k

T∑
t=1

∥Ỹt,k − Ȳt,k∥2

st,k

]
(48)

∝ χ−2
(
σ2
k | νσ +DT, (νσσ

2
0 + Sy)(νσ +DT )−1

)
(49)

where Sy =
∑

t ∥Ỹt,k − Ȳt,k∥2/st,k

Derivation of vt update We assume an improper uniform prior on vt, hence

P (vt | Yt) ∝ P (Yt | vt)P (vt) ∝ P (Yt | vt) (50)

∝ N
(
vec((Yt − 1Kv⊤t )R(ht)

⊤) | Γ(Cxt + d), St

)
(51)

=
∏
k

N (R(ht)(Yt,k − vt) | Γ(Cxt + d)k, st,kσ
2
kID

)
(52)

=
∏
k

N (vt | Yt,k −R(ht)
⊤Γ(Cxt + d)k, st,kσ

2
kID

)
(53)

= N (vt | µt, γ
2
t ID) (54)

where

µ =
∑
k

γ2
t

σ2
kst,k

(Yt,k −R(ht)
⊤Γ(Cxt + d)k),

1

γ2
t

=
∑
k

1

σ2
kst,k

(55)

Derivation of ht update We assume a proper uniform prior on ht, hence

P (ht | Yt) ∝ P (Yt | ht)P (ht) ∝ P (Yt | ht) (56)

∝ exp

[∑
k

(Yt,k − vt)
⊤R(ht)Γ(Cxt + d)k
st,kσ2

k

]
(57)

= exp

[
tr[R(ht)Γ(Cxt + d)k(Yt,k − vt)

⊤]

st,kσ2
k

]
(58)

∝ exp tr[R(ht)S] where S =
∑
k

Γ(Cxt + d)k(Yt,k − vt)
⊤/(st,kσ

2
k) (59)

∝ exp[cos(ht)(S1,1 + S2,2) + sin(ht)(S1,2 − S2,1)] (60)

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


Let [κ cos(θ), κ sin(θ)] represent [S1,1 + S2,2, S1,2 − S2,1] in polar coordinates. Then

P (Yt | ht) ∝ exp[κ cos(ht) cos(θ) + sin(ht) sin(θ)] (61)

= exp[κ cos(ht − θ)] ∝ vM(ht | θ, κ) (62)
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