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Abstract 
 
 Keypoint tracking algorithms have revolutionized the analysis of animal behavior, 
enabling investigators to flexibly quantify behavioral dynamics from conventional video 
recordings obtained in a wide variety of settings. However, it remains unclear how to 
parse continuous keypoint data into the modules out of which behavior is organized. 
This challenge is particularly acute because keypoint data is susceptible to high 
frequency jitter that clustering algorithms can mistake for transitions between behavioral 
modules. Here we present keypoint-MoSeq, a machine learning-based platform for 
identifying behavioral modules (“syllables”) from keypoint data without human 
supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise 
from behavior, enabling it to effectively identify syllables whose boundaries correspond 
to natural sub-second discontinuities inherent to mouse behavior. Keypoint-MoSeq 
outperforms commonly used alternative clustering methods at identifying these 
transitions, at capturing correlations between neural activity and behavior, and at 
classifying either solitary or social behaviors in accordance with human annotations. 
Keypoint-MoSeq therefore renders behavioral syllables and grammar accessible to the 
many researchers who use standard video to capture animal behavior.   
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Introduction 
 

Work from ethology demonstrates that behavior — a chain of actions traced by 
the body’s movement over time — is both continuous and discrete1-3. Keypoint tracking 
methods (which including SLEAP4, DeepLabCut5 and others6,7) enable users to specify 
and track points corresponding to body parts in videos of behaving animals, and thereby 
to quantify movement kinematics. These methods are simple to implement and 
applicable to a wide range of video data; because of their ease of use and generality, 
keypoint tracking approaches are revolutionizing our access to the continuous dynamics 
that underlie many aspects of animal behavior in a wide variety of settings8.  

 
In contrast, it remains less clear how to best cluster behavioral data into the 

discrete modules of movement that serve as building blocks for more complex patterns 
of behavior9-11. Identifying these modules is essential to the creation of an ethogram, 
which describes the order in which behavioral modules are expressed in a particular 
context or experiment. While several methods exist that can automatically transform 
high-dimensional behavioral data into an ethogram12-17, their underlying logic and 
assumptions differ, with different methods often giving distinct descriptions of the same 
behavior13,16. An important gap therefore exists between our access to movement 
kinematics and our ability to understand how these kinematics are organized to impart 
structure upon behavior; filling this gap is essential if we are to understand how the 
brain builds complex patterns of action.  

 
One widely deployed and well validated method for identifying behavioral 

modules and their temporal ordering is Motion Sequencing (MoSeq)17. MoSeq uses 
unsupervised machine learning methods to transform its inputs — which are not 
keypoints, but instead data from depth cameras that “see” in three dimensions from a 
single axis of view — into a set of behavioral motifs (like rears, turns and pauses) called 
syllables. MoSeq identifies behavioral syllables through a probabilistic generative model 
that instantiates the ethological hypothesis that behavior is composed of repeatedly 
used modules of action that are stereotyped in form and placed flexibly into at least 
somewhat predictable sequences. One important aspect of MoSeq is that it seeks to 
identify syllables by searching for discontinuities in behavioral data at a timescale that is 
set by the user; this timescale is specified through a “stickiness” hyperparameter that 
influences the frequency with which syllables can transition. In the mouse, where 
MoSeq has been most extensively applied, pervasive discontinuities at the sub-second-
to-second timescale mark the boundaries between syllables, and the stickiness 
hyperparameter is explicitly set to capture this timescale. Given a timescale and a depth 
dataset to analyze, MoSeq automatically identifies the set of syllables out of which 
behavior is composed in an experiment without human supervision.  
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MoSeq-based analysis has captured meaningful changes in spontaneous, 

exploratory rodent behaviors induced by genetic mutations, changes in the sensory or 
physical environment, direct manipulation of neural circuits and pharmacological 
agents17-20. Importantly, MoSeq does not simply provide a useful description of 
behavior, but also reveals biologically important brain-behavior relationships. For 
example, the behavioral transitions identified by MoSeq correspond to systematic 
fluctuations in neural activity in both dopaminergic neurons and their targets in 
dorsolateral striatum (DLS)18, and the behavioral syllables identified by MoSeq have 
explicit neural correlates in DLS spiny projection neurons19. Furthermore, dopamine 
fluctuations in DLS causally influence the use and sequencing of MoSeq-identified 
syllables over time, and individual syllables can be reinforced (without any alteration in 
their underlying kinematic content) through closed-loop dopamine manipulations18.   
 

However, MoSeq has a significant constraint: as currently formulated MoSeq is 
tailored for input data from depth cameras, which are typically placed over simple 
behavioral arenas in which single mice are recorded during behavior. Although depth 
cameras afford a high dimensional view of ongoing pose dynamics, they are also often 
difficult to deploy, suffer from high sensitivity to reflections, and have limited temporal 
resolution21. In principle these limits could be overcome by applying MoSeq to keypoint 
data. However, attempts to do so have thus far failed: researchers applying MoSeq-like 
models to keypoint data have reported flickering state sequences that switch much 
faster than the animal's actual behavior13,22.  

 
Here we confirm this finding and identify its cause: jitter in the keypoint estimates 

themselves, which is mistaken by MoSeq for behavioral transitions. To address this 
challenge, we reformulated the model underlying MoSeq to simultaneously infer correct 
pose dynamics (from noisy or even missing data) and the set of expressed behavioral 
syllables. We benchmarked the new model, called “keypoint-MoSeq”, by comparing it to 
both standard depth camera-based MoSeq and to alternative behavioral clustering 
methods (including B-SOiD12, VAME13 and MotionMapper23). We find that keypoint-
MoSeq identifies similar sets of behavioral transitions as depth MoSeq and preserves 
important information about behavioral timing, despite being fed behavioral data that are 
relatively lower dimensional; furthermore, keypoint-MoSeq outperforms alternative 
methods at demarcating behavioral transitions in kinematic data, capturing systematic 
fluctuations in neural activity, and identifying complex features of solitary and social 
behavior highlighted by expert observers. Keypoint-MoSeq is flexible, and works on 
datasets from different labs, using overhead or bottom-up camera angles, with 2D or 3D 
keypoints, and in both mice and rats.  
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Given that keypoint tracking can be applied in diverse settings (including natural 
environments), requires no specialized hardware, and affords direct control over which 
body parts to track and at what resolution, we anticipate that keypoint-MoSeq will serve 
as a general tool for understanding the structure of behavior in a wide variety of 
settings. To facilitate broad adoption of this approach, we have built keypoint-MoSeq to 
be directly integrated with widely-used keypoint tracking methods (including SLEAP and 
DeepLabCut), and have made keypoint-MoSeq code freely accessible for academic 
users at www.MoSeq4all.org; this modular codebase includes novice-friendly Jupyter 
notebooks to enable users without extensive computational experience to use keypoint-
MoSeq, methods for motif visualization in 2D and 3D, a pipeline for post-hoc analysis of 
the outputs of keypoint-MoSeq, and a hardware-accelerated and parallelization-enabled 
version of the code for analysis of large datasets.   
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Results 
 

Simple inspection of depth-based behavioral video data reveals a block-like 
structure organized at the sub-second timescale17 (Fig. 1); this observation previously 
inspired the development of MoSeq, which posits that these blocks encode serially-
expressed behavioral syllables. To ask whether keypoint data possess a similar  
block-like structure, we recorded simultaneous depth and conventional two-dimensional 
(2D) monochrome videos at 30 Hz (using the Microsoft Azure, which has depth and IR-
sensitive sensors that operate in parallel) while mice explored an open field arena; we 
then used a convolutional neural network to track eight keypoints in the 2D video (two 
ears and six points along the dorsal midline; Fig 1a). 
 

 

Figure 1: Keypoint trajectories exhibit sub-

second to second structure during 

spontaneous behavior. a) Left: sample frame 
from simultaneous depth and 2D infrared 
recordings. Right: centered and aligned pose 
representations using the depth data (top) or 
infrared (bottom, tracked keypoints indicated). b-

c) Features extracted from depth or 2D keypoint 
data within a 4-second window. All rows are 
temporally aligned. b) Top: Representation of 
the mouse’s pose based on depth video. Each 
row shows a random projection of the high-
dimensional depth time-series. Discontinuities in 
the visual pattern capture abrupt changes in the 
mouse’s movement. Middle: Rate of change in 
the depth signal as quantified by a change score 
(see Methods). Bottom: color-coded syllable 
sequence from MoSeq applied to the depth data 
[referred to as “MoSeq (depth)”]. c) Position of 
each keypoint in egocentric coordinates; vertical 
lines mark changepoints, defined as peaks in the 
keypoint change score. d) Left: average 
keypoint change score (z-scored) aligned to 
MoSeq (depth) transitions (gray), or to 
changepoints in the depth signal (black). Middle: 
cross-correlation between depth- and keypoint-
change scores, shown for the whole dataset 
(black line) and for each session (gray lines). 
Right: Distribution of syllable durations, based 
either on modeling or changepoint analysis. 
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Analysis of the depth videos (independent of MoSeq) revealed the familiar sub-

second blocks of smooth behavioral dynamics punctuated by sharp transitions, and 
applying MoSeq to these videos segmented these blocks into a series of stereotyped 
behavioral syllables (Fig. 1b). Block-like structure was also apparent in the keypoint 
data; changepoint analysis (which identifies discontinuities in the underlying data) 
revealed that block durations were similar for the keypoint data, the depth data, and the 
syllables identified by MoSeq; furthermore, changepoints in the keypoint data matched 
both changepoints in the depth data and transitions in behavior identified by MoSeq (Fig 
1c-d). This structure is not an accident of camera or keypoint placement, as similar 
results were obtained when tracking 10 keypoints (including the limbs and ventral 
midline) using a camera placed below the mouse (Extended Data Fig. 1). The 
reappearance of a common sub-second organization across depth and keypoint data 
suggests that this temporal structure is intrinsic to mouse behavior. 

 
MoSeq models behavior as sequence of discrete states, where each state is 

defined as an autoregressive (AR) trajectory through pose space (corresponding to a 
syllable), and transitions between states are specified by a modified hidden Markov 
model (HMM). MoSeq therefore identifies syllables as repeated trajectories through 
pose space, and transitions between syllables as discontinuities in the pose dynamics. 
MoSeq includes a stickiness hyperparameter that in effect allows it to foveate on a 
single timescale at which it seeks to explain behavior; this feature enables MoSeq to 
identify syllables from depth data whose average duration is ~400ms, although there is 
a broad distribution of mean durations across syllables, and each syllable is associated 
with its own duration distribution.  

 
However, when applied to keypoint data, MoSeq failed to identify syllables at this 

characteristic ~400ms timescale, instead producing a set of brief syllables (<100 ms) 
together with a small number of aberrantly long syllables that merged multiple 
behaviors; furthermore, the transitions between these syllables aligned poorly to 
changepoints derived from the keypoint data (Fig. 2a-b). These observations are 
consistent with prior work demonstrating that feeding keypoints to MoSeq generates 
behavioral representations that are less informative than those generated by alternative 
clustering methods13,22.  
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Figure 2: Keypoint tracking noise challenges syllable inference. a) Applying traditional MoSeq 
to keypoint trajectories [referred to as “MoSeq (keypoints)”] produces abnormally brief syllables 
when compared to MoSeq applied to depth data [“MoSeq (depth)”]. b) Keypoint change scores (left) 
or low-confidence detection scores (right, see Methods for how low-confidence keypoint detection 
was quantified), relative to the onset of MoSeq transitions (x-axis) derived from either depth (grey) or 
keypoint data (black). c) Left: example of keypoint detection errors, including high-frequency 
fluctuations in keypoint coordinates (top row) that coincide with low keypoint detection confidence 
(bottom row). Right: keypoint coordinates before (frame1) and during (frame2) an example keypoint 
position assignment error. This assignment error (occurring in the tail base keypoint) causes a shift 
in egocentric alignment, leading to coordinate changes across the other tracked keypoints. d) A five 
second example behavioral interval in which the same keypoints are tracked using three different 
methods (indicated in the inset) reveal pervasive jitter during stillness. Left: egocentrically aligned 
keypoint trajectories. Right: path traced by each keypoint during the 5-second interval. e) Variability 
in keypoint positions assigned by eight human labelers (see Methods). f) Cross-correlation between 
various features and keypoint fluctuations at a range of frequencies. Each heatmap represents a 
different scalar time-series (such as “transition rate” – the likelihood of a syllable transition on each 
frame), each row shows the cross-correlation between that time-series and the time-varying power 
of keypoint fluctuations at a given frequency. g) Timing of syllable transitions when MoSeq is applied 
to smoothed keypoint data, from most smoothed (top) to least smoothed (bottom). Each row shows 
the cross-correlation of MoSeq transition rates between keypoints and depth (i.e., the relative timing 
and degree of overlap between syllable transitions from each model). 
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We wondered whether the poor performance of MoSeq could be explained by 

noise in the keypoint data, which in principle could introduce subtle discontinuities that 
are falsely recognized by MoSeq as behavioral transitions. Indeed, mouse keypoint data 
exhibited high-frequency (>8Hz) jitter in position regardless of whether we tracked 
keypoints with our custom neural network or with commonly used platforms like 
DeepLabCut (DLC) and SLEAP (Fig. 2c-d, see Methods). Inspection of videos revealed 
that high frequency keypoint jitter is often associated with local tracking errors or rapid 
switching in the inferred location of an ambiguously positioned keypoint, rather than 
discernable changes in pose (Fig 2d, Extended Data Fig. 2a, Suppl. Movie 1). Indeed, 
frame-to-frame fluctuations in the keypoints had a similar scale as the variability in 
human labeling and as the test error in heldout image annotations (Fig 2e, Extended 
Data Fig. 2b-d). We confirmed that keypoint flicker was unrelated to true movement by 
tracking the same body part using multiple cameras; though overall movement 
trajectories were almost identical across cameras, the high-frequency fluctuations 
around those trajectories were uncorrelated, suggesting that the fluctuations are an 
artifact of tracking (Extended Data Fig. 2e-f). Consistent with the possibility that keypoint 
noise dominates MoSeq’s view of behavior, syllable transitions derived from keypoints – 
but not depth – frequently overlapped with jitter and low-confidence estimates of 
keypoint position (Fig. 2f). Though one might imagine that simple smoothing could 
ameliorate this problem, application of a low-pass filter had the additional consequence 
of blurring actual transitions, preventing MoSeq from identifying syllable boundaries (Fig 
2g). Median filtering and Gaussian smoothing similarly yielded no improvement 
(Extended Data Fig 2g). These data reveal that high-frequency tracking noise can be 
pervasive across point-tracking algorithms and demonstrate that this noise impedes the 
ability of MoSeq to accurately segment behavior.  
 
Hierarchical modeling of keypoint trajectories decouples noise from behavior  
 
 MoSeq syllables reflect keypoint jitter because MoSeq assumes that each 
keypoint is a faithful and accurate representation of the position of a point on the animal. 
We therefore sought an alternative approach that could treat the keypoints as noisy 
observations rather than the truth. Switching linear dynamical systems (SLDS), which 
extend the AR-HMM model that underlies MoSeq, offer a principled way to decouple 
keypoint noise from behavior24,25. We therefore formulated an SLDS-based version of 
MoSeq whose architecture enables joint inference of pose and syllable structure. This 
new SLDS model has three hierarchical levels (Fig. 3a): a discrete state sequence (top 
level) that governs the dynamics of keypoint trajectories in a low-dimensional pose 
space (middle level), which is then projected into the keypoint space itself (bottom 
level). The three levels of this model therefore correspond to syllables, pose dynamics, 
and keypoint coordinates respectively.  
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Figure 3: Hierarchical modeling of keypoint trajectories decouples noise from pose 

dynamics. a) Graphical models illustrating traditional and keypoint-MoSeq. In both models, a 
discrete syllable sequence governs pose dynamics; these pose dynamics are either described 
using PCA (as in “MoSeq”, left) or are inferred from keypoint observations in conjunction with the 
animal’s centroid and heading, as well as a noise scale that discounts keypoint detection errors 
(as in “keypoint-MoSeq”, right). b) Example of error correction by keypoint-MoSeq. Left: Before 
fitting, all variables (y axis) are perturbed by incorrect positional assignment of the tail base 
keypoint (whose erroneous location is shown in the bottom inset). Right: Keypoint-MoSeq infers 
plausible trajectories for each variable (shading represents the 95% confidence interval). The 
inset shows several likely keypoint coordinates for the tail base inferred by the model. c) Top: 

Average values of various features aligned to syllable transitions from keypoint-MoSeq (red) vs. 
traditional MoSeq applied to keypoint data (black). Bottom: cross-correlation of syllable transition 
rates between each model and depth MoSeq. Peak height represents the relative frequency of 
overlap in syllable transitions.  d) Duration distribution of the syllables from each of the indicated 
models. e) Average pose trajectories for example keypoint-MoSeq syllables. Each trajectory 
includes ten poses, starting 165ms before and ending 500ms after syllable onset.  
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We further adapted the SLDS model to keypoint data by adding three additional 
variables: centroid and heading (which capture the animal’s overall position in 
allocentric coordinates) and a noise estimate for each keypoint in each frame26. When fit 
to data, the SLDS model estimates for each frame the animal’s location and pose, as 
well as the identity and content of the current behavioral syllable (Fig. 3b). Because of 
its structure, when a single keypoint implausibly jumps from one location to another, the 
SLDS model can attribute the sudden displacement to noise and preserve a smooth 
pose trajectory; if all the keypoints suddenly rotate within the egocentric reference 
frame, the model can adjust the inferred heading for that frame and restore a plausible 
sequence of coordinates. Since in the special case of zero keypoint noise our new 
model reduces to the same AR-HMM used in depth MoSeq17, we refer to this new 
method as “keypoint-MoSeq” for the remainder of the paper.  
 
 Unlike traditional MoSeq, keypoint-MoSeq appeared to effectively identify 
behavioral syllables rather than noise in the keypoint data. State transitions identified by 
keypoint-MoSeq overlapped with transitions in the raw depth data, with depth MoSeq-
derived syllable transitions, and with transitions in the keypoints as identified by 
changepoint analysis; syllable boundaries identified by keypoint-MoSeq also overlapped 
less with low-confidence neural network detections for individual keypoints (Fig. 3c). 
Furthermore, the duration distribution of syllables identified by keypoint-MoSeq more 
closely matched that generated by conventional MoSeq using depth data (Fig 3d, 
Extended Data Fig 3a). From a modeling perspective the output of MoSeq was 
sensible: cross-likelihood analysis revealed that keypoint-based syllables were 
mathematically distinct trajectories in pose space, and submitting synthetic keypoint 
data that lacked any underlying block structure resulted in keypoint-MoSeq models that 
failed to identify distinct syllables (Extended Data Fig 3b,c). These analyses suggest 
that keypoint-MoSeq effectively addresses the syllable switching problem, nominating it 
as a candidate for parsing keypoint data obtained from conventional 2D cameras into 
syllables.   
 

For our open field data, keypoint-MoSeq identified 25 syllables (Extended Data 
Fig 3d, Suppl Movie 2). Inspection of movies depicting multiple instances of the same 
syllable revealed that each syllable was a distinct, stereotyped motif of behavior that 
could be easily labeled by human observers (Suppl Movie 3). Keypoint-MoSeq 
differentiated between categories of behavior (e.g., rearing, grooming, walking), and 
variations within each category (e.g., turn angle, speed) (Fig 3e). Importantly, keypoint-
MoSeq preserves access to the kinematic and morphological parameters that underlie 
each behavioral syllable (Extended Data Fig 3e), thereby enabling explicit comparisons 
and analysis. These data demonstrate that keypoint-MoSeq provides an interpretable 
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segmentation of behavior captured by standard 2D videos, which are used in most 
behavioral neuroscience experiments.   
 
Keypoint-MoSeq better captures the fast temporal structure of behavior than 
alternative behavioral clustering methods 
 

Although there is no single agreed-upon metric that can be used to validate an 
unsupervised segmentation of behavior, we reasoned that keypoint-MoSeq would be 
useful to behavioral neuroscientists if it identified boundaries between behavioral states 
that correspond to recognizable transitions in animal behavior, and if its outputs 
meaningfully relate to neural activity. As part of the validation process we also 
compared keypoint-MoSeq to alternative unsupervised methods for clustering 
keypoints, in the hopes that these comparisons might highlight strengths and 
weaknesses that are particular to each method. Such alternative methods include 
VAME, MotionMapper and B-SOiD, all of which first transform keypoint data into a 
feature space that reflects the dynamics in a small window around each frame, and then 
cluster those features to distinguish a set of behavioral states12,13,23,27.  

 
As mentioned above, by design MoSeq identifies boundaries between behavioral 

syllables that correspond to abrupt transitions in the keypoint or depth data. To ask 
whether alternative behavioral clustering methods identify similar boundaries between 
discrete behaviors, we applied them to the identical 2D keypoint dataset. Behavioral 
states from VAME, B-SOiD and MotionMapper were usually brief (median duration 33-
100ms, compared to ~400ms for keypoint-MoSeq) and their transitions aligned 
significantly less closely with changepoints in keypoint data than did syllable transitions 
identified by keypoint-MoSeq (Fig 4a-c). To ensure these results were the consequence 
of the methods themselves rather than specific parameters we chose, we performed a 
comprehensive parameter scan for all methods, including up to an order of magnitude 
dilation of the temporal windows used by B-SOiD and MotionMapper, as well as scans 
over latent dimension, state number, clustering mode, and preprocessing options 
across all methods (where applicable); this analysis revealed some parameter 
combinations that yielded longer state durations, but these combinations tended to have 
a similar or worse alignment to changepoints in the keypoint data, a finding we 
replicated for both overhead and bottom-up camera angles (Extended Data Figure 4a).  
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Figure 4: Keypoint-MoSeq captures the temporal structure of behavior. a) Example behavioral 
segmentations from four methods applied to the same 2D keypoint dataset. Keypoint-MoSeq 
transitions (fourth row) are sparser than those from other methods and more closely aligned to 
peaks in keypoint change scores (bottom row). b) Distribution of state durations for each method in 
(a). c) Average keypoint change scores (z-scored) relative to transitions identified by the indicated 
method (“MMper” refers to MotionMapper). d) Median mouse height (measured by depth camera) 
for each unsupervised behavior state. Rear-specific states (shaded bars) are defined as those with 
median height > 6cm. e) Accuracy of models designed to decode mouse height, each of which 
were fit to state sequences from each of the indicated methods. f) Bottom: state sequences from 
keypoint-MoSeq and B-SOiD during a pair of example rears. States are colored as in (d). Top: 

mouse height over time with rears shaded gray. Callouts show depth- and IR-views of the mouse 
during two example frames. g) Average mouse height aligned to the onsets (solid line) or offsets 
(dashed line) of rear-specific states defined in (d). h) Signals captured from a head-mounted inertial 
measurement unit (IMU), including absolute 3D head-orientation (top) and relative linear 
acceleration (bottom). Each signal and its rate of change, including angular velocity (ang. vel.) and 
jerk (the derivative of acceleration), is plotted during a five second interval. i) IMU signals aligned to 
the onsets of each behavioral state. Each heatmap row represents a state. Line plots show the 
median across states for angular velocity and jerk.   
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Rearing affords a particularly clear example of the differences between 

unsupervised behavioral methods with respect to time. B-SOiD and keypoint-MoSeq 
both learned a specific set of rear states/syllables from 2D keypoint data (Fig 4d; no 
rear-specific states were identified by VAME or MotionMapper) and each encoded the 
mouse’s height with comparable accuracy (B-SOiD: R=0.73, keypoint-MoSeq: R=0.74 
for correlation between predicted and true mouse height; Fig 4e). Yet the rear states 
from each method differed dramatically in their dynamics. Whereas keypoint-MoSeq 
typically detected two syllable transitions that surrounded each rearing behavior (one 
entering the rearing syllable, the second exiting the rearing syllable), B-SOiD typically 
detected five to ten different transitions during the execution of a single rear, including 
switches between distinct rear states as well as flickering between rear- and non-rear-
states (Fig 4f; Extended Data Fig 4b). This difference was made further apparent when 
we aligned mouse height to rearing states identified by the different methods (Fig 4g). 
Mouse height increased at transitions into keypoint-MoSeq’s rear state and fell at 
transitions out of it, producing a pair of height trajectories into and out of the rearing 
syllable that differed from each other and were asymmetric in time. In contrast, height 
tended to peak at transitions into and out of B-SOiD’s rear states, with a temporally 
symmetric trajectory that was only slightly different for ingoing versus outgoing 
transitions; this observation suggests that — at least in this example — B-SOiD does 
not effectively identify the boundaries between syllables, but instead tends to fragment 
sub-second behaviors throughout their execution.  
 
 The observation that keypoint-MoSeq effectively identifies behavioral boundaries 
has so far relied exclusively on analysis of video data. We therefore sought to validate 
keypoint-MoSeq and compare it to other unsupervised behavioral algorithms using a 
more direct measure of movement kinematics. To carefully address this issue, we 
asked about the relationship between algorithm-identified behavioral transitions and 
behavioral changepoints identified by head-mounted inertial measurement units (IMUs), 
which allow us to capture precise 3D head orientation and linear acceleration while we 
record mice exploring an open field arena using an overhead 2D camera (Fig 4h). 
Behavioral transitions were identifiable in the IMU data as transient increases in the 
rates of change for acceleration (quantified by jerk) and orientation (quantified by 
angular velocity). Both measures correlated with state transitions identified by keypoint-
MoSeq but failed to match transitions in behavioral states identified by B-SOiD, 
MotionMapper and VAME (Fig. 4i). Furthermore, IMU-extracted behavioral features (like 
head pitch or acceleration) typically rose and fell symmetrically around B-SOiD, 
MotionMapper and VAME-identified transitions, while keypoint-MoSeq identified 
asymmetrical changes in these features. For example, acceleration tended to be 
highest in the middle of B-SOiD-identified behavioral states, while acceleration tended 
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to sharply change at the boundaries of keypoint-MoSeq-identified behavioral syllables 
(Fig 4i; Extended Data Fig 5a-b).  
 
 The fact that keypoint-MoSeq more clearly identifies behavioral boundaries does 
not necessarily mean that it is better at capturing the instantaneous content of behavior. 
Indeed, a spline-based linear encoding model was able to effectively reconstruct a 
panel of coarse kinematic parameters from all four of the explored methods with 
comparable accuracy (Extended Data Fig 4c). However, the fact that movement 
parameters – as measured by accelerometry – change suddenly at the onset of 
keypoint-MoSeq syllables, but not at the onset of B-SOiD, VAME or MotionMapper 
states, provide evidence that these methods afford fundamentally different views of 
temporal structure in behavior. The coincidence of behavioral transitions identified by 
keypoint-MoSeq (which are ultimately based on video data) and IMU data (which is 
based in movement per se) further validates the segmentation of behavior generated by 
keypoint-MoSeq.  
 
Keypoint-MoSeq state transitions align with fluctuations in neural data 
 

Understanding the relationship between brain and behavior requires timestamps 
that enable researchers to align neural and behavioral data to moments of change. 
During traditional head-fixed behavioral tasks, such timestamps naturally arise out of 
task structure, in which time is divided up into clear, experimenter-specified epochs 
relating to e.g., the presentation of sensory cues or reward, the moment of behavioral 
report, etc. One of the main use cases for unsupervised behavioral classification is to 
understand how the brain generates spontaneous behaviors that arise outside of a rigid 
task structure9; in this setting, the boundaries between behavioral states serve as 
surrogate timestamps to allow alignment of neural data.  
 

We have recently used depth MoSeq to show that the levels of the 
neuromodulator dopamine fluctuate within the dorsolateral striatum (DLS) during 
spontaneous behavior, and that these fluctuations are temporally aligned to syllable 
transitions18: On average, dopamine levels rise rapidly at the onset of each syllable, and 
then decline toward the end of the syllable. Furthermore, the average magnitude of 
dopamine fluctuations varies across syllables. We wondered whether we could 
recapitulate these previously observed relationships between syllable transitions and 
dopamine fluctuations using keypoint-MoSeq or alternative methods for fractionating 
keypoint data into behavioral states (Fig 5a).  
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Figure 5: Keypoint-MoSeq syllable transitions align with fluctuations in striatal dopamine. 
a) Illustration depicting simultaneous recordings of dopamine fluctuations in dorsolateral striatum 
(DLS) obtained from fiber photometry (top) and unsupervised behavioral segmentation of 2D 
keypoint data (bottom). b) Derivative of the dopamine signal aligned to state transitions from 
each method. c) Average dopamine signal (z-scored DF/F) aligned to the onset of example states 
identified by keypoint-MoSeq and VAME. Shading marks the 95% confidence interval around the 
mean. d) Distributions capturing the magnitude of state-associated dopamine fluctuations across 
states from each method, where magnitude is defined as mean total absolute value in a one-
second window centered on state onset. e) Distributions capturing the temporal asymmetry of 
state-associated dopamine fluctuations, where asymmetry is defined as the difference in mean 
dopamine signal during 500ms after versus 500ms before state onset. f) Temporal randomization 
affects keypoint-MoSeq identified neuro-behavioral correlations, but not those identified by other 
methods. Top: schematic of randomization. The dopamine signal was either aligned to the 
onsets of each state, as in (c), or to random frames throughout the execution of each state. 
Bottom: distributions capturing the correlation of state-associated dopamine fluctuations before 
vs. after randomization.   
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Syllable-associated dopamine fluctuations (as captured by dLight photometry) 

were remarkably similar between depth MoSeq and keypoint-MoSeq; aligning the 
derivative of the dopamine signal to syllable transitions revealed a trajectory that was 
almost identical between depth MoSeq and keypoint-MoSeq, with a shallow dip prior to 
syllable onset and sharp rise after onset (Fig 5b). State-related dopamine fluctuations 
were much lower in amplitude (or non-existent), however, when assessed using B-
SOiD, VAME and MotionMapper (Fig 5b). Given the association between striatal 
dopamine release and movement28, it is possible that method-to-method variation can 
be explained by differences in how each method represents stationary vs. locomotory 
behavior. Yet, the transition-associated dopamine fluctuations highlighted by keypoint-
MoSeq remained much more prominent than those from other methods when analysis 
was restricted to high or low velocity states (Extended Data Fig 6a).  
  

We wondered whether the inability of alternative clustering methods to identify a 
clear relationship between spontaneous behavior and dopamine could be explained by 
differences in how they represent the temporal structure of behavior. If, as we have 
shown, B-SOiD, VAME and MotionMapper can capture the content of behavior but not 
the timing of transitions, then one might expect average dopamine levels to vary 
consistently across the different behavioral states identified by these alternative 
methods. To test this prediction, we computed the average dopamine trace aligned to 
state onset separately for each state (Fig 5c). Across all methods almost every state 
was associated with a consistent average increase or decrease in dopamine levels (Fig 
5c-d, Extended Data Fig 6b).  

 
However, the specific pattern of fluctuation identified by each method 

substantially varied. Dopamine tended to increase at the initiation of keypoint-MoSeq-
identified behavioral syllables, with dopamine baselines and amplitudes varying across 
syllables. In contrast, dopamine signals were typically at a peak or nadir at the 
beginning of each state identified by alternative methods, forming a trajectory that was 
symmetric around state onset (Fig 5c). This symmetry tended to wash out dopamine 
dynamics, with the average change in the dopamine signal before vs. after syllable 
onset being approximately three times larger for keypoint-MoSeq than for alternative 
methods (Fig 5e). Similarly, the number of states where the z-scored dopamine signal 
changed sign before vs. after state onset was ~2-fold greater for keypoint-MoSeq than 
for alternatives. Furthermore, aligning the dopamine signal to randomly-sampled times 
throughout the execution of each behavioral state – rather than its onset – radically 
altered the state-associated dopamine dynamics observed using keypoint-MoSeq, but 
made little difference for alternative methods (Fig 5f, Extended Data Fig 6c-d), a result 
that could not be explained simply by differences in each state’s duration (Extended 
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Data Fig 6c). These results suggest that the onsets of keypoint-MoSeq-identified 
behavioral syllables are meaningful landmarks for neural data analysis, while state 
onsets identified by alternative methods are often functionally indistinguishable from 
timepoints randomly chosen from throughout the duration of a behavior. 
 
 
Keypoint-MoSeq generalizes across pose representations and behaviors 
 

Keypoint tracking is a powerful means of pose estimation because it is so 
general: available methods can be flexibly applied to a wide variety of experimental 
setups, can capture diverse behaviors, and afford the experimenter broad latitude in the 
choice of which parts to track and at what resolution. To test the ability of keypoint-
MoSeq to generalize across laboratories — and to better understand the mapping 
between syllables and human-identified behaviors — we used keypoint-MoSeq and 
alternative methods to analyze a pair of published benchmark datasets29,30. The first 
dataset included conventional 2D videos of a single mouse behaving in an open field, 
with human annotations for four commonly occurring behaviors (locomote, rear, face 
groom and body groom) (Fig 6a-c). To identify keypoints in this dataset we used 
DeepLabCut, specifically the TopViewMouse SuperAnimal network from the DLC Model 
Zoo31, which automatically identifies keypoints without the need for annotation data or 
training. The second dataset (part of the CalMS21 benchmark30) included a set of three 
manually annotated social behaviors (mounting, investigation, and attack) as well as 
keypoints for a pair of interacting mice (Fig 6d-f).  

 
Changepoints analysis of keypoint data from both datasets identified block-like 

structure whose mean duration was ~400ms, consistent with the presence of a 
behavioral rhythm organized at the sub-second timescale (Extended Data Fig 7a-b). 
Consistent with this, Keypoint-MoSeq recovered syllables from both datasets whose 
average duration was ~400ms while, as before, the B-SOiD, MotionMapper and VAME 
identified behavioral states that were much shorter (Extended Data Fig 7c-d). Keypoint-
MoSeq was also better at conveying information about which human-identified 
behavioral states were occurring at each moment than alternative methods; that said, 
the different methods were not dramatically different in terms of quantitative 
performance, consistent with each doing a reasonable job of capturing broad 
information about behavior (Fig 6c,f, Extended Data Fig 7e-f). However, there were 
some important differences: in the CalMS21 dataset, for example, MotionMapper, B-
SOiD and VAME only identified a single behavior consistently (by defining a state 
specific to that behavior); B-SOiD and VAME only captured mounting and 
MotionMapper only captured investigation in 100% of model fits. Keypoint-MoSeq, in 
contrast, defined at least one state specific to each of the three behaviors in 100% of 
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model fits (Extended Data Fig 7g). These results demonstrate that keypoint-MoSeq can 
identify temporal structure in diverse 2D keypoint datasets and reveal consistency 
between keypoint-MoSeq and supervised labels for behavioral states.  
 
 The above benchmark datasets differ widely in the number of keypoints tracked 
(7 for CalMS21 vs. 21 for the TopViewMouse model; Fig 6a,d), raising the question of 
how the pose representation fed to keypoint-MoSeq influences its outputs. Comparing 
keypoints to depth offers one clue: we noted that the number of syllables (~25) identified 
in our open field data by keypoint-MoSeq using 2D keypoints was substantially fewer 
than the number identified by depth MoSeq (~50). These findings suggest that higher 
dimensional input data – such as depth – affords MoSeq more information about pose 
during spontaneous behavior, which in turn yields a richer behavioral description. To 
test this hypothesis rigorously, we used multiple cameras to estimate the position of 
keypoints in 3D (including 6 keypoints that were not visible in the overhead camera 2D 
dataset) (Fig 6g). Compared to the 2D data, the new 3D keypoint pose representation 
was higher dimensional, had smoother trajectories and exhibited oscillatory dynamics 
related to gait (Extended Data Fig 8a-b). Yet the temporal structure of both the data and 
the syllables that emerged from keypoint-MoSeq was surprisingly similar: the 3D data 
contained similar changepoints to both the 2D and depth data (Extended Data 8c-d), 
and after processing with keypoint-MoSeq the resulting syllable duration distributions 
were almost identical between the 2D, 3D and depth datasets, and syllable transitions 
tended to occur at the same moments in time (Fig 6h).  
 

There was a bigger change, however, in the way syllables were categorized 
when comparing 2D and 3D data. Keypoint-MoSeq tended to distinguish more syllable 
states in the 3D data (33±2 syllables for 3D keypoints vs. 27±2 syllables for 2D 
keypoints and 52±3 syllables for depth MoSeq; Fig 6h, Suppl Movie 4), especially for 
behaviors in which height varied (Fig 6i). Turning, for example, was grouped as a single 
state with the 2D keypoint data but partitioned into three states with different head 
positions with the 3D keypoint data (nose to the ground vs. nose in the air), and seven 
different states in the depth data (Fig 6j-l). Rearing was even more fractionated, with a 
single 2D syllable splitting six ways based on body angle and trajectory in the 3D 
keypoint data (rising vs. falling) and 8 ways in the depth data. These data demonstrate 
that keypoint-MoSeq works well on both 2D and 3D keypoint data; furthermore, our 
analyses suggest that higher-dimensional sources of input data to MoSeq give rise to 
richer descriptions of behavior, but that even relatively low-dimensional 2D keypoint 
data can be used to usefully identify behavioral transitions.  
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Figure 6: Keypoint-MoSeq generalizes across pose representations, behaviors, and rodent 

species. a) Example frame from a benchmark open field dataset (Bohnslav, 2019). b) Overall 
frequency of each human-annotated behavior (as %) and conditional frequencies across states 
inferred from unsupervised analysis of 2D keypoints. c) Normalized mutual information (NMI, see 
Methods) between human annotations and unsupervised behavior labels from each method. d) 

Example frame from the CalMS21 social behavior benchmark dataset, showing 2D keypoint 
annotations for the resident mouse. e-f) Overlap between human annotations and unsupervised 
behavior states inferred from 2D keypoint tracking of the resident mouse, as b-c. g) Multi-camera 
arena for simultaneous recording of 3D keypoints (3D kps), 2D keypoints (2D kps) and depth  
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Finally, to test if keypoint-MoSeq generalizes across species, we analyzed 
previously published 3D motion capture data derived from rats. In this dataset, rats were 
adorned with reflective body piercings and recorded in a circular home cage arena with 
a lever and water spout for operant training (Fig 6m; Rat7M dataset32). As with mice, 
changepoint analysis identified sub-second blocks of continuous kinematics (Fig 6n; 
Extended Data Fig 9a). Keypoint-MoSeq captured this temporal structure, and identified 
syllables whose transitions that aligned with changepoints in the keypoint data (Fig 6n). 
As was true in the mouse data, rat syllables included a diversity of behaviors, including 
a syllable specific to lever-pressing in the arena (Fig 6o; Extended Data Fig 9b; Suppl 
Movie 5). 
 
  

videos. h) Comparison of model outputs across tracking modalities. 2D and 3D keypoint data were 
modeled using keypoint-MoSeq, and depth data were modeled using original MoSeq. Left: cross-
correlation of transition rates, comparing 3D keypoints to 2D keypoints and depth respectively. 
Middle: distribution of syllable durations; Right: number of states with frequency > 0.5%. Boxplots 
represent the distribution of state counts across 20 independent runs of each model. i) Probability 
of syllables inferred from 2D keypoints (left) or depth (right) during each 3D keypoint-based 
syllable. j-l) Average pose trajectories for the syllables marked in (i). k) 3D trajectories are plotted 
in side view (first row) and top-down view (second row). l) Average pose (as depth image) 100ms 
after syllable onset. m) Location of markers for rat motion capture. n) Left: Average keypoint 
change score (z) aligned to keypoint-MoSeq transitions. Right: Duration distributions for keypoint-
MoSeq states and inter-changepoint intervals. o) Average pose trajectories for example syllables 
learned from rat motion capture data. 
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Discussion 
 
 MoSeq is a well-validated method for behavioral segmentation that leverages 
natural sub-second discontinuities in rodent behavior to automatically identify the 
behavioral syllables out of which spontaneous behavior is assembled17-20. However, the 
conventional MoSeq platform is unable to directly accept keypoint data, as pervasive 
keypoint jitter (a previously-characterized limitation of neural network-based pose 
tracking5,22) causes MoSeq to identify false behavioral transitions13,22. To address this 
challenge, here we describe keypoint-MoSeq, an SLDS model that enables joint 
inference of keypoint positions and associated behavioral syllables. Keypoint-MoSeq 
effectively estimates syllable structure in a wide variety of circumstances (e.g., in mice 
or rats, in video shot from above or below, in data capturing 2D or 3D keypoints, in 
animals behaving alone or during social interactions, in mice with or without headgear 
or neural implants). We validate keypoint-MoSeq by demonstrating that identified 
behavioral syllables are interpretable; that their transitions match changepoints in depth 
and kinematic data; and that the syllables capture systematic fluctuations in neural 
activity and complex behaviors identified by expert observers. Thus keypoint-MoSeq 
affords much of the same insight into behavioral structure as depth MoSeq, while 
rendering behavioral syllables and grammar accessible to researchers who use 
standard video to capture animal behavior.   
 

There are now many techniques for unsupervised behavior segmentation9,33. The 
common form of their outputs – a sequence of discrete labels – belies profound 
variation in how they work and the kinds of biological insight one might gain from 
applying them. To better understand their relative strengths and weaknesses when 
applied to mouse keypoint data, here we perform a detailed head-to-head comparison 
between keypoint-MoSeq and three alternative methods (B-SOiD12, MotionMapper23 
and VAME13). All these methods similarly encode the kinematic content of mouse 
behavior. The methods differed radically, however, in the temporal structure of their 
outputs. Keypoint-MoSeq syllables lasted almost an order of magnitude longer on 
average than states identified by alternative clustering methods, and transitions 
between B-SOiD, MotionMapper and VAME states often occurred in the middle of what 
a human might identify as a behavioral module or motif (e.g., a rear). Our analysis 
suggests two possible reasons for this difference. First, unlike alternative methods, 
MoSeq can discretize behavior at a particular user-defined timescale, and therefore is 
better able to identify clear boundaries between behavioral elements that respect the 
natural sub-second rhythmicity in mouse movement and neural activity. The resulting 
parsimony prevents over-fractionation of individuals behaviors, as we observed when 
clustering keypoint data using alternative methods. Second, the hierarchical structure of 
keypoint-MoSeq’s underlying generative model means it can detect noise in keypoint 
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noise trajectories and distinguish this noise from actual behavior without smoothing 
away meaningful behavioral transitions. 
 

The fact that MoSeq is a probabilistic generative model means that its 
descriptions of behavior are constrained by the model structure and its parameters: it 
seeks to describe behavior as composed of auto-regressive trajectories through a pose 
space with switching dynamics organized at a single main timescale. Because MoSeq 
instantiates an explicit model for behavior, there are many tasks in behavioral analysis 
for which keypoint-MoSeq may be ill-suited. For example, as has been previously noted, 
keypoint-MoSeq cannot integrate dynamics across a wide range of timescales, as 
would be possible with methods such as MotionMapper34,35. In addition, some behaviors 
— like the leg movements of walking flies — may be better captured by methods whose 
design emphasizes oscillatory dynamics. It is important to note that, despite its 
structural constraints, MoSeq is not only useful for capturing fine timescale structure in 
behavior; indeed, MoSeq has repeatedly been shown to be performant at tasks that 
pervasively influence the structure of behavior, including changes in behavior due to 
genetic mutations or drug treatments17,20. That said, we stress that there is no one 
“best” approach for behavioral analysis, as all methods involve trade-offs: methods that 
work for one problem (for example, identifying fast neurobehavioral correlates) may not 
be well suited for another problem.  
 
 The outputs of MoSeq depend upon the type of data it is fed. While similar 
behavioral boundaries are identified from 2D keypoints, 3D keypoints and depth data, 
increasing the dimensionality of the input data also increases the richness of the 
syllables revealed by MoSeq. Though directly modeling the raw pixel intensities of 
depth17 or 2D video36 recordings provides the most detailed access to spontaneous 
behavior, technical challenges (ranging from reflection sensitivity to relatively low 
temporal resolution) can make depth cameras difficult to use in many experimental 
settings. Similarly, occlusions and variation in perspective and illumination remain a 
challenge for direct 2D video modeling. The development of keypoint-MoSeq 
— together with the extraordinary advances in markerless pose tracking — should 
enable MoSeq to be used in a variety of these adversarial circumstances, such as when 
mice are obstructed from a single axis of view, or when the environment changes 
dynamically. In addition, keypoint-MoSeq can also be applied to the petabytes of legacy 
data sitting fallow on the hard drives of investigators who have already done painstaking 
behavioral experiments using conventional video cameras. Going forward, increasingly 
sophisticated pose tracking approaches22,37 and methods that combine keypoint 
tracking with direct video analysis38 may eventually close the gap in dimensionality 
between keypoint- and (depth) video-based pose tracking.  
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To facilitate the adoption of keypoint-MoSeq we have built a website 
(www.MoSeq4all.org) that includes free access to the code for academics as well as 
extensive documentation and guidance for implementation. As demonstrated by this 
paper, the model underlying MoSeq is modular and therefore accessible to extensions 
and modifications that can increase its alignment to behavioral data. For example, 
Costacurta et al., recently reported a time-warped version of MoSeq that incorporates a 
term to explicitly model variation in movement vigor39. We anticipate that the application 
of keypoint-MoSeq to a wide variety of experimental datasets will both yield important 
information about the strengths and failure modes of model-based methods for 
behavioral classification, and prompt continued innovation.  
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EXPERIMENTAL METHODS 
 

Animal care and behavioral experiments 

Unless otherwise noted, behavioral recordings were performed on 8–16-week-old 
C57/BL6 mice (The Jackson Laboratory stock no. 000664). Mice were transferred to our 
colony at 6-8 weeks of age and housed in a reverse 12-hour light/12-hour dark cycle. 
We single-housed mice after stereotactic surgery, and group-housed them otherwise. 
On recording days, mice were brought to the laboratory, habituated in darkness for at 
least 20 minutes, and then placed in an open field arena for 30-60 mins. We recorded 6 
male mice for 10 sessions (6 hours) in the initial round of open field recordings; and 5 
male mice for 52 sessions (50 hours) during the accelerometry recordings. The 
dopamine photometry recordings were obtained from a recent study1. They include 6 
C57/BL6 mice and 8 DAT-IRES-cre (The Jackson Laboratory stock no. 006660) mice of 
both sexes, recorded for 378 sessions. Of these, we selected a random subset of 95 
sessions (~50 hours) for benchmarking keypoint-MoSeq.  
 

Stereotactic surgery procedures 

For all stereotactic surgeries, mice were anaesthetized using 1–2% isoflurane in 
oxygen, at a flow rate of 1 L/min for the duration of the procedure. Anterior-posterior 
(AP) and medial-lateral (ML) coordinates were zeroed relative to bregma, the dorso-
ventral (DV) coordinate was zeroed relative to the pial surface, and coordinates are in 
units of mm. For dopamine recordings, 400nL of AAV5.CAG.dLight1.1 (Addgene 
#111067, titer: 4.85 × 1012) was injected at a 1:2 dilution into the DLS (AP 0.260; ML 
2.550; DV −2.40) and a single 200-μm diameter, 0.37–0.57 NA fiber cannula was 
implanted 200 μm above the injection site (see ref1 for additional details). For 
accelerometry recordings, we surgically attached a millmax connector (DigiKey 
ED8450-ND) and head bar to the skull and secured it with dental cement (Metabond). A 
9 degree-of-freedom absolute orientation inertial measurement unit (IMU; Bosch 
BN0055) was mounted on the millmax connector using a custom printed circuit board 
(PCB) with a net weight below 1g.  
 

Data acquisition from the IMU 

The IMU was connected to a Teensy microcontroller, which was programmed using the 
Adafruit BNO055 library with default settings (sample rate: 100 Hz, units: m/s2). To 
synchronize the IMU measurements and video recordings, we used an array of near 
infrared LEDs to display a rapid sequence of random 4-bit codes that updated 
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throughout the recording. The code sequence was later extracted from the behavioral 
videos and used to fit a piecewise linear model between timestamps from the videos 
and timestamps from the IMU. 
 

Recording setup 

For the initial set of open field recordings (Fig 1-3, 4a-g Fig 6g-l), mice were recorded in 
a square arena with transparent floor and walls (30cm length and width). Microsoft 
Azure Kinect cameras captured simultaneous depth and near-infrared video at 30Hz. 
Six cameras were used in total: one above, one below, and four side cameras at right 
angles at the same height as the mouse. For the accelerometry recordings, we used a 
single Microsoft Azure Kinect camera placed above the mouse, and an arena with 
transparent floor and opaque circular walls (45cm diameter). Data was transferred from 
the IMU using a light-weight tether attached to a custom-built active commutator. For 
the dopamine perturbation experiments, we used a slightly older camera model – the 
Microsoft Kinect 2 – to capture simultaneous depth and near-infrared at 30Hz. The 
recording arena was circular with opaque floor and walls (45cm diameter). Photometry 
signals were conveyed from the mouse using a fiber-optic patch cord attached to a 
passive commutator. 
 
 

COMPUTATIONAL METHODS 
 

Processing depth videos 

Applying MoSeq to depth videos involves: (1) mouse tracking and background 
subtraction; (2) egocentric alignment and cropping; (3) principal component analysis 
(PCA); (4) probabilistic modeling. We applied steps (2-4) as described in the MoSeq2 
pipeline2. For step (1), we trained a convolutional neural network (CNN) with a Unet++3 
architecture to segment mouse from background using ~5000 hand-labeled frames as 
training data.  
 

Keypoint tracking 

We used CNNs with an HRNet4 architecture (https://github.com/stefanopini/simple-
HRNet) with a final stride of 2 for pose tracking. The networks were trained on ~1000 
hand-labeled frames each for the overhead, below-floor, and side-view camera angles. 
Frame-labelling was crowdsourced through a commercial service (Scale AI). For the 
overhead camera, we tracked two ears and 6 points along the dorsal midline (tail base, 
lumbar spine, thoracic spine, cervical spine, head, and nose). For the below-floor 
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camera, we tracked the tip of each forepaw, the tip and base of each hind paw, and four 
points along the ventral midline (tail base, genitals, abdomen, and nose). For the side 
cameras, we tracked the same eight points as for the overhead camera, and also 
included the six limb points that were used for the below-floor camera (14 total). We 
trained a separate CNN for each camera angle. Target activations were formed by 
centering a Gaussian with 10px standard deviation on each keypoint. We used the 
location of the maximum pixel in each output channel of the neural network to determine 
keypoint coordinates and used the value at that pixel to set the confidence score. The 
resulting mean absolute error (MEA) between network detections and manual 
annotations was 2.9 pixels (px) for the training data and 3.2 px for heldout data. We also 
trained DeepLabCut and SLEAP models on the overhead-camera and below-floor-
camera datasets. For DeepLabCut, we used version 2.2.1, setting the architecture to 
resnet50 architecture and the “pos_dist_thresh” parameter to 10, resulting in train and 
test MEAs of 3.4 px and 3.8 px respectively. For SLEAP, we used version 1.2.3 with the 
baseline_large_rf.single.json configuration, resulting in train and test MEAs of 3.5 px 
and 4.7 px.  
 

3D pose inference 

Using 2D keypoint detections from six cameras, 3D keypoint coordinates were 
triangulated and then refined using GIMBAL, a model-based approach that leverages 
anatomical constraints and motion continuity5. To fit GIMBAL, we computed initial 3D 
keypoint estimates using robust triangulation (i.e. by taking the median across all 
camera pairs, as in 3D-DeepLabCut6) and then filtered to remove outliers using the 
EllipticEnvelope method from sklearn; We then fit the skeletal parameters and 
directional priors for GIMBAL using expectation maximization with 50 pose states (see 
ref5 for details). Finally, we applied the fitted GIMBAL model to each recording, using 
the following parameters for all keypoints: obs_outlier_variance=1e6, 
obs_inlier_variance=10, pos_dt_variance=10. The latter parameters were chosen based 
on the accuracy of the resulting 3D keypoint estimates, as assessed from visual 
inspection.  
 

Inferring model-free changepoints 

We defined changepoints as sudden, simultaneous shifts in the trajectories of multiple 
keypoints. We detected them using a procedure similar to the filtered derivative 
algorithm described in ref7, but with changes to emphasize simultaneity across multiple 
keypoints. The changes account for the lower dimensionality of keypoint data compared 
to depth videos, and for the unique noise structure of markerless keypoint tracking, in 
which individual keypoints occasionally jump a relatively large distance due to detection 
errors. Briefly, the new procedure first defines a continuous change score by: (1) 
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calculating the rate of each in each keypoint coordinate; (2) quantifying simultaneity in 
the change-rates across keypoints; (3) transforming the signal based on statistical 
significance with respect to a temporally shuffled null distribution; (4) identifying local 
peaks in the resulting significance score. The details of each step are as follows.  
 

1) Calculating rates of change: We transformed the keypoint coordinates on each 
frame by centering and aligned them along the tail-nose axis. We then computed 
the derivative of each coordinate for each keypoint, using a sliding window of 
length 3 as shown below, where !! denotes the value of a coordinate at time ". 
 

!̇! ≈
"

#
	(!!%# + !!%& + !!%" − !!'" − !!'& − !!'#) 

 
2) Quantifying simultaneous changes: The derivatives for each keypoint were Z-

scored and then binarized with a threshold. We then counted the number of 
threshold crossings on each frame and smoothed the resulting time-series of 
counts using a Gaussian filter with a one-frame kernel. The value of the threshold 
was chosen to maximize the total number of detected changepoints. 
 

3) Comparing to a null distribution: We repeated step (2) for 1000 shuffled 
datasets, in which each keypoint trajectory was cyclically permuted by a random 
interval. Using the shuffles as a null distribution, we computed a P-value for each 
frame and defined the final change score as − log"((pval)  
 

4) Identifying local peaks in the change score: We identified local peaks in the 
change score /!, i.e., times	"	for which /!'" < /! > /!%". Peaks were classified as 
statistically significant when they corresponded to a p-value below 0.01, which 
was chosen to control the false-discovery rate at 10%. The statistically significant 
peaks were reported as changepoints for downstream analysis. 

 

Spectral Analysis 

To analyze keypoint jitter, we quantified the magnitude of fluctuations across a range of 
frequencies by computing a spectrogram for each keypoint along each coordinate axis. 
Spectrograms were computed using the python function scipy.signal.spectrogram with 
nperseg=128 and noverlap=124. The spectrograms were then combined through 
averaging: each keypoint was assigned a spectrogram by averaging over the two 
coordinate axes, and the entire animal was assigned a spectrogram by averaging over 
all keypoints.  
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We used the keypoint-specific spectrograms to calculate cross-correlations with 
−log"((neural	network	detection	confidence), as well as the “error magnitude” (Fig 2f). 
Error magnitude was defined as the distance between the detected 2D location of a 
keypoint (based on a single camera angle) and a reprojection of its 3D position (based 
on consensus across six camera angles; see “3D pose inference” above). We also 
computed the cross-correlation between nose- and tail-base-fluctuations at each 
frequency, as measured by the overhead and below-floor cameras respectively. Finally, 
we averaged spectral power across keypoints to compute the cross-correlation with 
model transition rates (Fig 2f), defined as the per-frame probability of a state transitions 
across 20 model restarts. 
 

Applying keypoint-MoSeq 

The initial open field recordings (Fig 1-4), as well as the accelerometry, dopamine, and 
two benchmark datasets were modeled separately. Twenty models with different 
random seeds were fit for each dataset (except for the accelerometry data, in which 
case one model was fit).  
 
Modeling consisted of two phases: (1) Fitting an autoregressive hidden Markov model 
(AR-HMM) to a fixed pose trajectory derived from PCA of egocentric-aligned keypoints; 
(2) Fitting a full keypoint-MoSeq model initialized from the AR-HMM. References in the 
text to “MoSeq applied to keypoints” or “MoSeq (keypoints)”, e.g., in Figs 2-3, refer to 
output of step (1). Both steps are described below, followed by a detailed description of 
the model and inference algorithm in the mathematical modeling section. In all cases, 
we excluded rare states (frequency < 0.5%) from downstream analysis. We have made 
the code available as a user-friendly package, available at Moseq4all.org.  
 

1) Fitting an initial AR-HMM:  
 
We first modified the keypoint coordinates, defining keypoints with confidence 
below 0.5 as missing data and in imputing their values via linear interpolation, 
and then augmenting all coordinates with a small amount of random noise; The 
noise values were uniformly sampled from the interval [-0.1, 0.1] and helped 
prevent degeneracy during model fitting. Importantly, these preprocessing steps 
were only applied during AR-HMM fitting – the original coordinates were used 
when fitting the full keypoint-MoSeq model. 
 
Next, we centered the coordinates on each frame, aligned them using the tail-
nose angle, and then transformed them using PCA with whitening. The number 
of principal components (PCs) was chosen for each dataset as the minimum 
required to explain 90% of total variance. This resulted in 4 PCs for the overhead 
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camera 2D datasets, 6 PCs for the below-floor-camera 2D datasets, and 6 PCs 
for the 3D dataset.  
 
We then used Gibbs sampling to infer the states and parameters of an AR-HMM, 
including the state sequence >, the autoregressive parameters ?, A, B, and the 
transition parameters C, D. The hyper-parameters for this step, listed in the 
mathematical modeling section below, were generally identical to those in the 
original depth-MoSeq model7. The one exception was E which we adjusted 
separately for each dataset to ensure a median state duration of 400ms.  

 
2) Fitting a full keypoint-MoSeq model:  

 
We next fit the full set of variables for keypoint-MoSeq, which include the AR-
HMM variables mentioned above, as well as the location F and heading ℎ, latent 
pose trajectory !, per-keypoint noise level H&, and per-frame/per-keypoint noise 
scale /. Fitting was performed using Gibbs sampling for 500 iterations, at which 
point the log joint probability appeared to have stabilized. 

 
The hyper-parameters for this step are enumerated in the mathematical modeling 
section below. In general, we used the same hyper-parameter values across 
datasets. The two exceptions were E, which again had to be adjusted to maintain 
a median state duration of 400ms, and /(, which determines a prior on the noise 
scale. Since low-confidence keypoint detections often have high error, we set /( 
using a logistic curve that transitions between a high-noise regime (/( = 100) for 
detections with low confidence and a low-noise regime (/( = 1) for detections 
with high confidence: 
 

/( = 1 + 	100L1 +	M&((*+,-./0,*0'(.2)N
'" 

 

Trajectory plots 

To visualize the modal trajectory associated with each syllable (Fig 3e), we (1) 
computed the full set of trajectories for all instances of all syllables (2) used a local 
density criterion to identify a single representative instance of each syllable (3) 
computed a final trajectory using the nearest neighbors of the representative trajectory. 
 

1) Computing the trajectory of individual syllable instances: Let O!, F!, and ℎ! denote 
the keypoint coordinates, centroid and heading of the mouse at time ", and let 
P(F, ℎ; O) denote the rigid transformation that egocentrically aligns O using 
centroid F and heading ℎ. Given a syllable instance with onset time R, we 
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computed the corresponding trajectory S4 by centering and aligning the 
sequence of poses (O4'5, … , O4%"5) using the centroid and heading on time R. In 
other words, 
 

S4 = [P(F4 , ℎ4; O4'5), … , P(F4 , ℎ4; O4%"5)] 
 

2) Identifying a representative instance of each syllable: The collection of 
trajectories computed above can be thought of as a set of points in a high 
dimensional trajectory space (for W keypoints in 2D, this space would have 
dimension 40W). Each point has a syllable label, and the segregation of these 
labels in the trajectory space represents the kinematic differences between 
syllables. To capture these differences, we computed a local probability density 
function for each syllable, and a global density function across all syllables. We 
then selected a representative trajectory S for each syllable by maximizing the 
ratio: 

 
local	density(S)

global	density(S)
 

 
The density functions were computed as the mean distance from each point to its 
50 nearest neighbors. For the global density, the nearest neighbors were 
selected from among all instances of all syllables. For the local densities, the 
nearest neighbors were selected from among instances of the target syllable.  

 
3) Computing final trajectories for each syllable: For each syllable and its 

representative trajectory S, we identified the 50 nearest neighbors of S from 
among other instanes of the same syllable and then computed a final trajectory 
as the mean across these nearest neighbors. The trajectory plots in Fig 3e 
consist of 10 evenly-space poses along this trajectory, i.e., the poses at times 
R − 5, R − 3,… , R + 13. 

 

Cross-syllable likelihoods 

We defined each cross-syllable likelihood7 as the probability (on average) that instances 
of one syllable could have arisen based on the dynamics of another syllable. The 
probabilities were computed based on the discrete latent states >!, continuous latent 
states !!, and autoregressive parameters ?, A, B output by keypoint-MoSeq. The 
instances ^(_) of syllable _ were defined as the set of all sequences ("6, … , "7) of 
consecutive timepoints such that >! = _ for all "6 ≤ " ≤ "7 and >!!'"	 ≠ _ ≠ >!"%".  For 
each such instance, one can calculate the probability bL!!! , … , !!"c?8, A8, B8)	that the 
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corresponding sequence of latent states arose from the autoregressive dynamics of 
syllable d. The cross-syllable likelihood e98 is defined in terms of these probabilities as  

e98 =
1

|^(_)|
g

L!!! , … , !!"c?8, A8, B8)

L!!! , … , !!"c?9, A9, B9)(!!,…,!")∈=(,)

 

 

Generating synthetic keypoint data 

To generate the synthetic keypoint trajectories used for Extended Data Fig 3c, we fit a 
linear dynamical system (LDS) to egocentrically aligned keypoint trajectories and then 
sampled randomly generated outputs from the fitted model. The LDS was identical to 
the model underlying keypoint-MoSeq (see mathematical modeling section below), 
except that it only had one discrete state, lacked centroid ad heading variables, and 
allowed separate noise terms for the x- and y- coordinates of each keypoint.  
 

Applying B-SOiD 

B-SOiD is an automated pipeline for behavioral clustering that: (1) preprocesses 
keypoint trajectories to generate pose and movement features; (2) performs 
dimensionality reduction on a subset of frames using UMAP; (3) clusters points in the 
UMAP space; (4) uses a classifier to extend the clustering to all frames8. We fit B-SOiD 
separately for each dataset. In each case, steps 2-4 were performed 20 times with 
different random seeds, and the pipeline was applied with standard parameters; 50,000 
randomly sampled frames were used for dimensionality reduction and clustering, and 
the min_cluster_size range was set to 0.5% - 1%. Since B-SOiD uses a hardcoded 
window of 100ms to calculate pose and movement features, we re-ran the pipeline with 
falsely inflated framerates for the window-size scan in Extended Data Fig 4a. In all 
analyses involving B-SOiD, rare states (frequency < 0.5%) were excluded from analysis.  
 

Applying VAME 

VAME is a pipeline for behavioral clustering that: (1) preprocesses keypoint trajectories 
and transforms them into egocentric coordinates; (2) fits a recurrent neural network 
(RNN); (3) clusters the latent code of the RNN9. We applied these steps separately to 
each dataset, in each case running step (3) 20 times with different random seeds. For 
step (1), we used the same parameters as in keypoint-MoSeq – egocentric alignment 
was performed along the tail-nose axis, and we set the pose_confidence threshold to 
0.5. For step (2), we set time_window=30 and zdims=20 for all datasets, except for the 
zdim-scan in Extended Data Fig 4a. VAME provides two different options for step (3): 
fitting an HMM (default) or applying K-Means (alternative). We fit an HMM for all 
datasets and additionally applied K-Means to the initial open dataset. In general, we 
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approximately matched the number of states/clusters in VAME to the number identified 
by keypoint-MoSeq, except when scanning over state number in Extended Data Fig 4a. 
In all analyses involving VAME, rare states (frequency < 0.5%) were excluded from 
analysis.  

 

Applying MotionMapper 

MotionMapper performs unsupervised behavioral segmentation by: (1) applying a 
wavelet transform to preprocessed pose data; (2) nonlinearly embedding the 
transformed data in 2D; (3) clustering the 2D data with a watershed transform10. We 
applied MotionMapper separately to each dataset using the python package 
https://github.com/bermanlabemory/motionmapperpy. In general, the data were 
egocentrically aligned along the tail-nose axis and then projected into 8 dimensions 
using PCA. 10 log-spaced frequencies between 0.25 and 15Hz were used for the 
wavelet transform, and dimensionality reduction was performed using tSNE. The 
threshold for watershedding was chosen to produce at least 25 clusters, consistent with 
keypoint-MoSeq for the overhead camera data. Rare states (frequency < 0.5%) were 
excluded from analysis. For the parameter scan in Extended Data Fig 4a, we varied the 
each of these parameters while holding the others fixed, including the threshold for 
watershedding, the number of initial PCA dimensions, and the frequency range of 
wavelet analysis. We also repeated a subset of these analyses using an alternative 
autoencoder-based dimensionality reduction approach, as described in the 
motionmapperpy tutorial 
(motionmapperpy/demo/motionmapperpy_mouse_demo.ipynb). 
 

Predicting kinematics from state sequences 

We trained decoding models based on spline regression to predict kinematic 
parameters (height, velocity, turn speed) from state sequences output by keypoint-
MoSeq and other behavior segmentation methods (Fig 4e, Extended Data Fig 4c). Let 
>! represent an unsupervised behavioral state sequence and let h denote a spline 
basis, where h!,> is the value of spline i and frame ". We generated such a basis using 
the “bs” function from the python package “patsy”, passing in five log-spaced knot 
locations (1.0, 2.0, 3.9, 7.7, 15.2, 30.0) and obtaining basis values over a 300-frame 
interval. This resulted in a 300-by-5 basis matrix h. The spline basis and state sequence 
were combined to form a 5j-dimensional design matrix, where j is the number of 
distinct behavioral states. Specifically, for each instance ("6, … , "7) of state _ (see 
“Cross-syllable likelihoods” section above for a definition of state instances), we inserted 
the first "7 − "6 frames of h into dimensions 5_,… ,5_ + 5 of the design matrix, aligning 
the first frame of h to frame "6 in the design matix. Kinematic features were regressed 
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against the design matrix using Ridge regression from scikit-learn and 5-fold cross-
validation. We used a range of values from 10-3 to 103 for the regularization parameter k 
and reported the results with greatest accuracy.  
 

Rearing analysis 

To compare the dynamics of rear-associated states across methods, we systematically 
identified all instances of rearing in our initial open field dataset. During a stereotypical 
rear, mice briefly stood on their hindlegs and extended their head upwards, leading to a 
transient increase in height from its modal value of 3cm-5cm to a peak of 7cm-10cm. 
Rears were typically brief, with mice exiting and then returning to a prone position within 
a few seconds. We encoded these features using the following criteria. First, rear 
onsets were defined as increases in height from below 5cm to above 7cm that occurred 
within the span of a second, with onset formally defined as the first frame where the 
height exceeded 5cm. Next, rear offsets were defined as decreases in height from 
above 7cm to below 5cm that occurred within the span of a second, with offset formally 
defined as the first frame where the height fell below 7cm. Finally, we defined complete 
rears as onset-offset pairs defining an interval with length between 0.5 and 2 seconds. 
Height was determined from the distribution of depth values in cropped, aligned and 
background-segmented videos. Specifically, we used the 98th percentile of the 
distribution in each frame.    
 

Accelerometry processing 

From the IMU we obtained absolute rotations	l? , l@, lA (yaw, pitch, and roll) and 
accelerations mB , m? , mC (dorsal/ventral, posterior/anterior, left/right). To control for subtle 
variations in implant geometry and chip calibration, we centered the distribution of 
sensor readings for each variable on each session. We defined total acceleration as the 
norm of the 3 acceleration components: 
 

|m| = nmB
& + m?

& + mC
& 

 
Similarly, we defined total angular velocity as the norm |o| of rotation derivative: 
 

o = p
ql?

q"
,
ql@

q"
,
qlA

q"
r	 
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Finally, to calculate jerk, we smoothed the acceleration signal with a 50ms Gaussian 
kernel, generating a time-series ms, and then computed the norm of its derivative: 
 

jerk = u
qms

q"
u 

 

Aligning dopamine fluctuations to behavior states 

For a detailed description of photometry data acquisition and preprocessing, see ref1. 
Briefly, photometry signals were: (1) ΔF/F0-normalized using a 5-second window; (2) 
adjusted against a reference to remove motion artefacts and other non-ligand-
associated fluctuations; (3) z-scored using a 20-second sliding window; (4) temporally 
aligned to the 30Hz behavioral videos. 
 
Given a set of state onsets (either for a single state or across all states), we computed 
the onset-aligned dopamine trace by averaging the dopamine signal across onset-
centered windows. From the resulting traces, each of which can be denoted as a time-
series of dopamine signal values (q'4 , … , q4) we defined the total fluctuation size (Fig 
5d) and temporal asymmetry (Fig 5e) as  
 

temporal	asymmetry = 	
1

15
gq!

"5

!D(

−
1

15
g q!

(

!D'"5

, AUC = 	 g |q!|

"5

!D'"5

 

 
A third metric – the average dopamine during each state (Extended Data Figure 6b) – 
was defined simply as the mean of the dopamine signal across all frames bearing that 
state label. For each metric, shuffle distributions were generated by repeating the 
calculation with a temporally reversed copy of the dopamine times-series.  
 

Supervised behavior benchmark 

Videos and behavioral annotations for the supervised open field behavior benchmark 
(Fig 4a-c) were obtained from (Bohnslav, 2019)11. The dataset contains 20 videos that 
are each 10-20 minutes long. Each video includes frame-by-frame annotations of five 
possible behaviors: locomote, rear, face groom, body groom, and defecate. We 
excluded “defecate” from the analysis because it was extremely rate (< 0.1% of frames).  
 
For pose tracking we used DLC's SuperAnimal inference API that performs inference on 
videos without the need to annotate poses in those videos. Specifically, we used 
SuperAnimal-TopViewMouse that applies DLCRNet-50 as the pose estimation 
model11.  Keypoint detections were obtained using DeepLabCut's API function 
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deeplabcut.video_inference_superanimal. The API function uses a pretrained model 
called SuperAnimal-TopViewMouse and performs video adaptation that applies multi-
resolution ensemble (i.e., the image height resized to 400, 500, 600 with a fixed aspect 
ratio) and rapid self-training (model trained on zero shot predictions with confidence 
above 0.1) for 1000 iterations to counter domain shift and reduce jittering predictions. 
The code to reproduce this analysis is: 
 

videos = ['path_to_video'] 
superanimal_name = 'superanimal_topviewmouse' 
scale_list = [400, 500, 600] 

 
deeplabcut.video_inference_superanimal(videos,  
  superanimal_name,  
  videotype=".mp4",  
  video_adapt = True,  
  scale_list = scale_list) 

 
Keypoint coordinates and behavioral annotations for the supervised social behavior 
benchmark (Fig 4d-f) were obtained from the CalMS21 dataset12 (task1). The dataset 
contains 70 videos of resident-intruder interactions with frame-by-frame annotations of 
four possible behaviors: attack, investigate, mount, or other. All unsupervised behavior 
segmentation methods were fit to 2D keypoint data for the resident mouse.  
 
We used four metrics9 to compare supervised annotations and unsupervised states 
from each method. These included normalized mutual information, homogeneity, 
adjusted rand score, and purity. All metrics besides purity were computed using the 
python library scikit-learn (i.e., with the function normalized_mutual_info_score, 
homogeneity_score, adjusted_rand_score). The purity score was defined as in ref9.  
 
 

MATHEMATICAL MODELING 
 

Notation 
 

1. z'&({, |&) denotes the scaled inverse Chi-squared distribution. 

2. ⊗ denotes the Kronecker product. 

3. ~E is the j-dimensional simplex. 
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4. ^E is the j × j identity matrix. 

5. ÄE×G is the j ×Å matrix of ones. 

6. !!#:!$ denotes the concatenation Ç!!#!!#%", … , !!$É where "" < "&. 

 

Generative model 

Keypoint-MoSeq learns syllables by fitting a switching linear dynamical systems (SLDS) 
model13, which decomposes an animal’s pose trajectory into a sequence of stereotyped 
dynamical motifs. In general, SLDS models explain time-series observations O", . . . , O4 
through a hierarchy of latent states, including continuous states !! ∈ ℝG that represent 
the observations O! in a low-dimensional space, and discrete states >! ∈ {1, . . . , j} that 
govern the dynamics of !! over time. In keypoint-MoSeq, the discrete states correspond 
to syllables, the continuous states correspond to pose, and the observations are 
keypoint coordinates. We further adapted SLDS by (1) including a sticky Hierarchical 
Dirichlet prior (HDP); (2) excplicitly modeling the animal’s location and heading; (3) 
including a robust (heavy-tailed) observation distribution for keypoints. Below we review 
SLDS models in general and then describe each of the customizations implemented in 
keypoint-MoSeq. 

 

Switching linear dynamical systems 

The discrete states >! ∈ {1, . . . , j} are assumed to form a Markov chain, meaning 

>!%" ∣ >! ∼ CatLCC%N 

where C> ∈ ~E is the probability of transitioning from discrete state i to each other state. 
Conditional on the discrete states >!, the continuous states !! follow an ã-order vector 
autoregressive process with Gaussian noise. This means that the expected value of 
each !! is a linear function of the previous ã states !!'I:!'", as shown below, 

!! ∣ >! , !!'I:!'" ∼ åL?C%!!'I:!'" + AC% , BC%N 

where ?> ∈ ℝG×IG is the autoregressive dynamics matrix, A> ∈ ℝG is the dynamics bias 
vector, and B> ∈ ℝG×G is the dynamics noise matrix for each discrete state i = 1,… ,j. 
The dynamics parameters (?> , A> , B>) have a matrix normal inverse Wishart (MNIW) 
prior, 

[?> ∣ A>], B> ∼ MNIW({(, ç(, Å(, W() 
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where {( > Å − 1 is the degrees of freedom, ç( ∈ ℝG×G is the prior covariance matrix, 
Å( ∈ ℝ

G×(IG%") is the prior mean dynamics matrix, and W( ∈ ℝ(IG%")×(IG%") is the prior 
scale matrix. Finally, in the standard formulation of SLDS (which we modify for keypoint 
data, as described below), each observation O! ∈ ℝJ is a linear function of !! plus noise: 

O! ∣ >! , !! ∼ å(e!! + q, ç) 

Here we assume that the observation parameters e, q and ç do not depend on >!. 

 

Sticky hierarchical Dirichlet prior 

A key feature of depth Moseq7 is the use of a sticky HDP prior14 for the transition matrix. 
In general, HDP priors allow the number of distinct states in a hidden Markov model to 
be inferred directly from the data. The “sticky” variant of the HDP prior includes an 
additional hyper-parameter E that tunes the frequency of self-transitions in the discrete 
state sequence >!, and thus the distribution of syllable durations. As in depth MoSeq, 
we implement a sticky-HDP prior using the weak limit approximation14, as shown below: 

D ∼ Dir(é/j,… , é/j)
C> ∣ D ∼ Dir(kD", … , kDK + E… , kDE)

 

where E is being added in the ith position. Here D ∈ ~E is a global vector of augmented 
syllable transition probabilities, and the hyperparameters é, k, E control the sparsity of 
states, the weight of the sparsity prior, and the bias toward self-transitions respectively. 

 

SLDS for postural dynamics 

Keypoint coordinates reflect not only the pose of an animal, but also its location and 
heading. To disambiguate these factors, we define a canonical, egocentric reference 
frame in which the postural dynamics are modeled. The canonically aligned poses are 
then transformed into global coordinates using explicit centroid and heading variables 
that are learned by the model. 

Concretely, let ê! ∈ ℝL×J represent the coordinates of W keypoints at time ", where ë ∈

{2,3}. We define latent variables F! ∈ ℝJ and ℎ! ∈ [0,2C] to represent the animal’s 
centroid and heading angle. We assume that each heading angle ℎ! has an 
independent, uniform prior and that the centroid is autocorrelated as follows: 

ℎ! ∼ Unif(0,2C)
F! ∣ F!'" ∼ åLF!'", Hloc

& N
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At each time point ", the pose ê! is generated via rotation and translation of a centered 
and oriented pose êì! that depends on the current continuous latent state !!: 

ê! = êì!î(ℎ!) + ÄLF!
M	 where 	vecLêì!N ∼ åL(ï ⊗ ^J)(e!! + q), ç!N 

where î(ℎ!) is a matrix that rotates by angle ℎ! in the xy-plane, and ï ∈ îL×(L'") is 
defined by the truncated singular value decomposition ï~ïM = ^L − ÄL×L/W. Note that ï 
encodes a linear transformation that isometrically maps ℝ(L'")×J to the set of all 
centered keypoint arrangements in ℝL×J, and thus ensures that ñLêì!N is always 
centered15. The parameters e ∈ ℝ(L'")J×G, and q ∈ ℝ(L'")J are initialized using 
principal components analysis (PCA) applied to the transformed keypoint coordinates 
ï4êì!. In principle e and q can be adjusted further during model fitting, and we describe 
the corresponding Gibbs updates in the inference section below. In practice, however, 
we keep e and q fixed to their initial values when fitting keypoint-MoSeq.  

 

Robust observations 

To account for occasional large errors during keypoint tracking, we use the heavy-tailed 
Student’s t-distribution, which corresponds to a normal distribution whose variance is 
itself a random variable. Here, we instantiate the random variances explicitly as a 
product of two parameters: a baseline variance HN for each keypoint and a time-varying 
scale /!,N. We assume: 

HN
& ∼ z'&({O , H(

&)

/!,N
& ∼ z'&L{6, /(,!,NN

 

where {O > 0 and {6 > 0 are degrees of freedom, H(& > 0 is a baseline scaling 
parameter, and /(,!,N > 0 is a local scaling parameter, which encodes a prior on the 
scale of error for each keypoint on each frame. Where possible, we calculated the local 
scaling parameters as a function of the neural network confidences for each keypoint. 
The function was calibrated using the empirical relationship between confidence values 
and error sizes. The overall noise covariance ç! is generated from HN and /!,N as follows: 

ç! = diagLH"&/!,"& , … , HL&/!,L& N ⊗ ^J 

 

Related work 

Keypoint-MoSeq extends the model used in depth MoSeq7, where a low-dimensional 
pose trajectory !! (derived from egocentrically aligned depth videos) is used to fit an 
autoregressive hidden Markov model with a transition matrix C, autoregressive 
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parameters ?> , A> , B> and discrete states >! like those described here. Indeed, conditional 
on !!, the models for keypoin-MoSeq and depth MoSeq are identical. The main 
differences are that keypoint-MoSeq treats !! as a latent variable (i.e. updates it during 
fitting), includes explicit centroid and heading variables, and uses a robust noise model. 

Disambiguating pose from position and heading is a common task in unsupervised 
behavior algorithms, and researchers have adopted a variety of approaches. VAME9, 
for example, isolates pose by centering and aligning data ahead of time, whereas B-
SOiD8 transforms the keypoint data into a vector of relative distances and angles. The 
statistical pose model GIMBAL5, on the other hand, introduces latent heading and 
centroid variables that are inferred simultaneously with the rest of the model. Keypoint-
MoSeq adopts this latter approach, which is able to remove spurious correlations 
between egocentric features that can arise from errors in keypoint localization. 

 

Inference algorithm 
 
Our full model contains latent variables F, ℎ, !, >, / and parameters ?, A, B, e, q, H, D, C. We 
fit each of these variables – with the exception of e and q – using Gibbs sampling, in 
which each variable is iteratively resampled from its posterior distribution conditional on 
the current values of all the other variables. The posterior distributions b(C, D ∣ >) and 
b(?, A, B ∣ >, !) are unchanged from the original MoSeq paper and will not be be 
reproduced here (see ref7, pages 42-44, and note the changes of notation B → ò, > → !, 
and ! → O). ℎ are described below. 

 

Resampling b(e, q ∣ /, H, !, F, ℎ, ê) 

Let !s! represent !! with a 1 appended and define 

çô! = LïMdiagLH"&/!,", . . . , HL&/!,LNïN ⊗ ^J 

The posterior update is (e, q) ∼ å(vec(e, q) ∣ ö9, ò9) where 

ò9 = LHP
'&^ + çB,BN

'"
				 and 				ö9 = ò9ç?,B 

with 

çB,B =g!s!

4

!D"

!s!
M⊗ïMçô!

'"ï ⊗ ^J				 and 				ç?,B =gL!s!
M⊗çô'"ï ⊗ ^JN

4

!D"

vecLêì!N
M 
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Resampling b(/ ∣ e, q, H, !, F, ℎ, ê) 

Each /!,N is conditionally independent with posterior 

/!,N ∣ e, q, HN , !, ê ∼ z'& õ{6 + ë,	L{6/( + HN
'& ∥ (ï(e!! + q))N − êì!,N ∥

&N/({6 + ë)ù 

 

Resampling b(H ∣ e, q, /, !, F, ℎ, ê) 

Each HN is conditionally independent with posterior 

HN
& ∼ z'&L{O + ëR,	L{OH(

& + ç?N({O + ëR)
'"N 

where ç? = ∑ ∥E
!D" ï(e!! + q)N − êì!,N ∥

&//!,N 

 

Resampling b(F ∣ e, q, H, /, !, ℎ, ê) 

Since the translations F", . . . , F4 form a linear dynamical system, they can be updated by 
Kalman sampling. The observation potentials have the form å(F! ∣ ö, é

&^J) where 

ö =g
é!
&

HN
&/!,N

N

[ê!,N − î(ℎ!)
Mï(e!! + q)N], 			

1

é!
& =g

1

HN
&/!,N

N

 

 

Resampling b(ℎ ∣ e, q, H, /, !, F, ê) 

The posterior of ℎ! is the von-Mises distribution vM(ü, E) where E and ü ∈ [0,2C] are the 
unique parameters satisfying [Ecos(ü), Esin(ü)] = Çç"," + ç&,&, ç",& − ç&,"É for 

ç =g
1

/!,NHN
&

N

ï(e!! + q)NLê!,N − F!N
M

 

Resampling b(! ∣ e, q, H, /, F, ℎ, ê) 

To resample !, we first express its temporal dependencies as a first-order 
autoregressive process, and then apply Kalman sampling. The change of variables is 

?′ = °

^

^
^

?" ?& ⋯ ?I A

£ 		B′ = °

0
0

0
B

£ 		e′ = °

0 0

⋮ ⋮

0 0
e q

£		!!′ = •

!!'I%"
⋮
!!
1

¶ 

Kalman sampling can then be applied to the sample the conditional distribution, 
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bL!′":4 ∣ êì":4N ∝®å

4

!D"

L!′! ∣ ?′
(C%)!′!'", B′

(C%)N	åLvecLêì!N ∣ e′!′! , ç!N. 

(Assume !′ is left-padded with zeros for negative time indices.) 

 

Hyper-parameters 

We used the following hyper-parameter values throughout the paper. 

 

Transition matrix 

j = 100

é = 1000

k = 100

E 		fit to each dataset

 

 

Autoregressive process 

Å set using PCA explained variance curve
ã = 3

{( = Å + 2

ç( = 0.01^G
Å( = [0G×(I'") ^G 1G×"]

W( = 10^G(I%")

 

 

Observation process 

H(
& = 1

{O = 105

{6 = 5

/(,!,N set based on neural network confidence

 

 

Centroid autocorrelation 

Hloc
& = 0.4 
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Derivation of Gibbs updates 
 

Derivation of e, q updates 

To simply notation, define 

çô! = diagLH"&/!,", . . . , HL&/!,LN, 				!s! = (!! , 1), 				eô = (e, q) 

The likelihood of the centered and aligned keypoint locations êì  can be expanded as 
follows. 

bLêì ∣ eô, !s, çôN =®å

4

!D"

LvecLêì!N ∣ (ï ⊗ ^J)eô!s! , 	 çô! ⊗ ^JN

∝ exp ™−
1

2
gõ!s!

MeôMLïMçô!
'"ï ⊗ ^JNeô!s! − 2vecLêì!N

M
Lçô!

'"ï ⊗ ^JNeô!s!ù

4

!D"

´

∝ exp ™−
1

2
gõFM¨LeôN

M
L!s!!s!

M⊗ïMçô!
'"ï ⊗ ^JNFM¨LeôN

4

!D"

−2vecLeôNML!s!M⊗çô!
'"ï ⊗ ^JNvecLêì!N≠	Æ

∝ exp Ø−
1

2
õFM¨LeôN

M
çB,BFM¨LeôN − 2FM¨LeôN

M
çB,?ù∞

 

where 

çB,B =g!s!

4

!D"

!s!
M⊗ïMçô!

'"ï ⊗ ^J				 and 				çB,? =gL!s!
M⊗çô'"ï ⊗ ^JN

4

!D"

vecLêì!N 

Multiplying by the prior vecLeôN ∼ å(0, HP
&^) yields 

bLeô ∣ êì, !s, çôN ∝ åLvecLeôN ∣ ö9, ò9N 

where 

ò9 = LHP
'&^ + çB,BN

'"
				 and 				ö9 = ò9ç?,B 

 

Derivation of HN , /!,N updates 

For each time " and keypoint ±, let ê̄!,N = ï(e!! + q). The likelihood of the centered and 
aligned keypoint location êì!,N is 
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bLêì!,N ∣ ê̄!,N , /!,N , HNN = åLêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN ∝ LHN

&/!,NN
'J/&

exp ≥−
∥ êì!,N − ê‾!,N ∥

&

2HN
&/!,N

µ 

We can then calculate posteriors bL/!,N ∣ HNN and bLHN ∣ /!,NN as follows. 

bL/!,N ∣ HN , êì!,N , ê̄!,NN ∝ z'"L/!,N ∣ {6, /(NåLêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN

∝ /!,N
'"'(R!%J)/&exp ≥

−{6/(

2/!,N
−
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&

2HN
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'& ∥ êì!,N − ê‾!,N ∥
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'"N
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where ç? = ∑ ∥! êì!,N − ê‾!,N ∥
&//!,N 

 

Derivation of F! update 

We assume an improper uniform prior on F!, hence 

b(F! ∣ ê!) ∝ b(ê! ∣ F!)b(F!) ∝ b(ê! ∣ F!)

∝ åLFM¨L(ê! − ÄLF!
M)î(ℎ!)

MN ∣ ï(e!! + q),	ç!N

=®å

N
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=®å
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Derivation of ℎ! update 

We assume a proper uniform prior on ℎ!, hence 
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b(ℎ! ∣ ê!) ∝ b(ê! ∣ ℎ!)b(ℎ!) ∝ b(ê! ∣ ℎ!)

∝ exp ™g
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/!,NHN
&

N

´

= exp •
tr ∂î(ℎ!)ï(e!! + q)NLê!,N − F!N

M
Æ

/!,NHN
& ¶

∝ exptr[î(ℎ!)ç]				where			ç =gï

N

(e!! + q)NLê!,N − F!N
M
/L/!,NHN

&N

∝ expÇcos(ℎ!)Lç"," + ç&,&N + sin(ℎ!)Lç",& − ç&,"NÉ

 

Let [Ecos(ü), Esin(ü)] represent Çç"," + ç&,&, ç",& − ç&,"É in polar coordinates. Then 

b(ê! ∣ ℎ!) ∝ exp[Ecos(ℎ!)cos(ü) + sin(ℎ!)sin(ü)]

= exp[Ecos(ℎ! − ü)] ∝ vM(ℎ! ∣ ü, E)
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Extended Data 
 
  

 
 
Extended Data Figure 1: Mouse behavior exhibits sub-second syllable structure when 
keypoints are tracked from below. a) 2D keypoints tracked using infrared video from a camera 
viewing the mouse through a transparent floor. b) Egocentrically aligned keypoint trajectories 
(bottom) and change scores derived from those keypoints (top, see Methods). Vertical dashed lines 
represent changepoints (peaks in the change score). c) Distribution of inter-changepoint intervals. d) 
Keypoint change score aligned to syllable transitions from depth MoSeq. Results in (c) and (d) are 
shown for the full dataset (black lines) and for each recording session (gray lines).   
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Extended Data Figure 2: Markerless pose tracking exhibits fast fluctuations are that are 
independent of behavior yet affect MoSeq output. a) Noise-driven fast fluctuations are 
pervasive across camera angles and tracking methods. Cross-correlation between the spectral 
content of keypoint fluctuations and either error magnitude (left) or a measure of low-confidence 
keypoint detections (right) (see Methods). b-d) Tracking noise reflects ambiguity in keypoint 
locations. b) Magnitude of fast fluctuations in keypoint position for three different tracking methods, 
calculated as the per-frame distance from the measured trajectory of a keypoint to a smoothened 
version of the same trajectory, where smoothing was performed using a gaussian kernel with width 
100ms. c) Inter-annotator variability, shown as the distribution of distances between different 
annotations of the same keypoint. d) Train- and test- error distributions for each keypoint tracking 
method. e) Fast fluctuations are weakly correlated between camera angles. Top: position of the 
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nose and tail-base over a 10-second interval, shown for both the overhead and below-floor cameras. 
Bottom: fast fluctuations in each coordinate, obtained as residuals after median filtering. f) Cross-
correlation between spectrograms obtained from two different camera angles for either the tail base 
or the nose, shown for each tracking method. g) Filtering keypoint trajectories does not improve 
MoSeq output. Cross-correlation of transitions rates, comparing MoSeq (depth) and MoSeq applied 
to keypoints with various levels of smoothing using either a Gaussian or median filter. 
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Extended Data Figure 3: Keypoint-MoSeq partitions behavior into distinct, well-defined 
syllables. a) Keypoint-MoSeq and depth MoSeq yield similar duration distributions. 
Relationship between mean and median syllable duration as the temporal stickiness hyper-
parameter ! is varied, shown for keypoint-MoSeq (red dots), as well as original MoSeq applied to 
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depth (dashed line) or keypoints (solid line).  b) Keypoint-MoSeq syllables represent 
distinguishable pose trajectories. Syllable cross-likelihoods, defined as the probability, on 
average, that time-intervals assigned to one syllable (column) could have arisen from another 
syllable (row). Cross-likelihoods were calculated for keypoint-MoSeq and for depth MoSeq. The 
results for both methods are plotted twice, using either an absolute scale (left) or a log scale (right). 
Note that the off-diagonal cross-likelihoods apparent for keypoint-MoSeq on the log scale are 
practically negligible; we show them here to emphasize that MoSeq models have higher uncertainty 
when fed lower dimensional data like keypoints compared to depth data. c) Keypoint-MoSeq fails 
to distinguish syllables when input data lacks changepoints. Modeling results for synthetic 
keypoint data with a similar statistical structure as the real data but lacking in changepoints (see 
Methods). Left: example of synthetic keypoint trajectories. Middle: autocorrelation of keypoint 
coordinates for real vs. synthetic data, showing similar dynamics at short timescales. Right: 
distribution of syllable frequencies for keypoint-MoSeq models trained on real vs. synthetic data. d-e) 
Syllable-associated kinematics. d) Average pose trajectories for syllables identified by keypoint-
MoSeq. Each trajectory includes ten evenly timed poses from 165ms before to 500ms after syllable 
onset. e) Kinematic and morphological parameters for each syllable. 
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Extended Data Figure 4: Method-to-method differences in sensitivity to behavioral 
changepoints are robust to parameter settings. a) Output of unsupervised behavior 
segmentation algorithms across a range of parameter settings, applied to 2D keypoint data from two 
different camera angles. The median state duration (left) and the average (z-scored) keypoint 
change score aligned to state transitions (right) are shown for each method and parameter value. 
Gray pointers indicate default parameter values used for subsequent analysis. b) Distributions 
showing the number of transitions that occur during each rear. c) Accuracy of kinematic decoding 
models that were fit to state sequences from each method.  
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Extended Data Figure 5: Accelerometry reveals kinematic transitions at the onsets of 
keypoint-MoSeq states. a) IMU signals aligned to state onsets from several behavior segmentation 
methods. Each row corresponds to a behavior state and shows the average across all onset times 
for that state. b) As (a) for acceleration but showing the median across all states.  
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Extended Data Figure 6: Striatal dopamine fluctuations are enriched at keypoint-MoSeq 
syllable onsets. a) Keypoint-MoSeq best captures dopamine fluctuations for both high- and 
low-velocity behaviors. Derivative of the dopamine signal aligned to the onsets of high velocity or 
low velocity behavior states. States from each method were classified evenly as high or low velocity 
based on the mean centroid velocity during their respective frames.  b) Distributions capturing the 
average of the dopamine signal across states from each method. c-d) Keypoint-MoSeq syllable 
onsets are meaningful landmarks for neural data analysis. c) Relationship between state 
durations and correlations from Fig 5f, showing that the impact of randomization is not a simple 
function of state duration. d) Average dopamine fluctuations aligned to state onsets (left) or aligned 
to random frames throughout the execution of each state (middle), as well as the absolute difference 
between the two alignment approaches (right), shown for each unsupervised behavior segmentation 
approach.  
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Extended Data Figure 7: Supervised behavior benchmark. a-d) Keypoint-MoSeq captures sub-
second syllable structure in two benchmark datasets. a,b) Distribution of inter-changepoint 
intervals for the open field dataset (Bohnslav, 2019) (a) and CalMS21 social behavior benchmark 
(b), shown respectively for the full datasets (black lines) and for each recording session (gray lines).  
c,d) Distribution of state durations from each behavior segmentation method. e-g) Keypoint-MoSeq 
matches or outperforms other methods when quantifying the agreement between human-
annotations and unsupervised behavior labels. e,f) Three different similarity measures applied to 
the output of each unsupervised behavior analysis method (see Methods). g) Number of 
unsupervised states specific to each human-annotated behavior in the CalMS21 dataset, shown for 
20 independent fits of each unsupervised method. A state was defined as specific if > 50% of frames 
bore the annotation.  
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Extended Data Figure 8: 3D and 2D keypoints provide qualitatively distinct pose 
representations yet share sub-second temporal structure. a) 3D keypoints have smoother 
trajectories and exhibit oscillatory gate dynamics. Left: Keypoints tracked in 2D (top) or 3D 
(bottom) and corresponding egocentric coordinate axes. Right: example keypoint trajectories and 
transition rates from keypoint-MoSeq. Transition rate is defined as the posterior probability of a 
transition occurring on each frame. b) 2D keypoints, 3D keypoints and depth data provide 
increasingly high-dimensional pose representations. Cumulative fraction of explained variance 
for increasing number of principal components (PCs). PCs were fit to egocentrically aligned 2D 
keypoints, egocentrically aligned 3D keypoints, or depth videos respectively. c-d) 3D keypoints 
capture sub-second syllable structure. c) Distribution of inter-changepoint intervals in the 3D 
keypoint dataset, shown. d) Cross-correlation between the 3D keypoint change score and change 
scores derived from 2D keypoints and depth respectively.  
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Extended Data Figure 9: Keypoint-MoSeq analysis of rat motion capture data. a) Top: 3D 
marker positions in egocentric coordinates. Middle: change score derived from the marker 
trajectories. Bottom: keypoint-MoSeq syllables. b) Random sample of centroid locations during 
execution of the “lever-press” syllable shown in Fig 6o.  
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