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Abstract11

Quantum computers have demonstrated advantage in tackling problems considered12

hard for classical computers and hold promise for tackling complex problems in molec-13

ular mechanics such as mapping the conformational landscapes of biomolecules. This14

work attempts to explore a few ways in which classical data, relating to the Cartesian15

space representation of biomolecules, can be encoded for interaction with empirical16

quantum circuits not demonstrating quantum advantage. Using the quantum circuit17

in a variational arrangement together with a classical optimizer, this work deals with18

the optimization of spatial geometries with potential application to molecular assem-19

blies. Additionally this work uses quantum machine learning for protein side-chain20

rotamer classification and uses an empirical quantum circuit for random state gener-21

ation for Monte Carlo simulation for side-chain conformation sampling. Altogether,22

this novel work suggests ways of bridging the gap between conventional problems in23

life sciences and how potential solutions can be obtained using quantum computers.24

It is hoped that this work will provide the necessary impetus for wide-scale adoption25

of quantum computing in life sciences.26
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Introduction27

Three-dimensional (3D) [1] protein structures, experimentally determined using bio-28

physical techniques like nuclear magnetic resonance (NMR) and X-Ray crystallog-29

raphy [2], enable in-silico characterization of protein function. Routine techniques,30

like molecular dynamics (MD) simulations [3], Monte Carlo (MC) simulations [3] and31

molecular docking [4], build on 3D protein structure data and allow for determination32

of protein dynamics and substrate binding. This insight, achieved from in-silico meth-33

ods [5, 6, 7], is crucial in setting the course of, what is usually expensive, biochemical34

characterization carried out using laboratory assays.35

Given that in-silico characterization is now an established aspect in translational36

studies, going from molecular effect prediction to laboratory-based verification, it is all37

the more important that algorithms utilize the existing hardware to the maximum and38

evolve with the advancements in hardware. An example of this can be seen with the39

adoption of artificial intelligence/machine learning (AI/ML) based methods in nearly40

all computational areas, especially drug discovery; one of the primary drivers of which41

is the advancements in graphics processing units (GPUs) [8]. Development of new42

algorithms in non-AI/ML areas utilizing the parallel-compute capability of GPUs, has43

allowed for advancements in other areas e.g, exponential speed-up of MD simulations44

[9, 10, 11] which now allow for large molecular assemblies to be observed over longer45

time-scales, offering better insights into the dynamics of these biomolecules.46

Based on the fundamental principles of quantum mechanics, quantum computing47

is an emerging area which demonstrates potential to tackle hard problems, which are48

beyond the current capabilities of classical computers [12, 13]. Current state-of-the-49

art includes efforts in the area of quantum chemistry simulations [14, 15], machine50

learning [16, 17] and finance [18], with new algorithms, continuously being added to51

extend current capabilities e.g., QPacker [19], tackling the protein design problem52

and others [20, 21] for protein folding. Unlike scalability in the classical computing53

ecosystem, where new technologies are easily integrated and algorithms easily scaled54

to utilize the advance e.g., in the case of the use of GPUs with classical algorithms55

in the area of molecular dynamics simulations and machine learning to name a few,56

integration of existing algorithms with quantum computing is non-trivial. While57
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advancing at a significant rate, requiring a radical rethink about how algorithms are58

designed and deployed, quantum computing at present remains non-intuitive for the59

classical programming fraternity.60

Quantum algorithms aim to achieve quantum advantage, which simply put, is61

the ability to solve problems that classical computers struggle with [22, 23, 24]. A62

quantum algorithm can broadly be decomposed into three parts, a) the data encoding63

step, b) the use of the quantum hardware to solve a particular problem of interest64

and lastly, c) converting the results into a form which is readily understandable, with65

steps “a” and “c” being inextricably linked. All aspects of quantum algorithms face66

challenges due to the non-intuitive nature of the hardware executing these.67

In this work the area of molecular geometry optimization is explored. The work68

focuses on illustrating, without quantum advantage, encoding of classical molecular69

data for use with quantum hardware. Problem areas where classical data can inter-70

act with quantum hardware are demonstrated. In particular, this work demonstrates,71

using an empirical quantum circuit, optimization of positions of atoms and distances72

between them, a task frequently carried out in classical molecular mechanics, which73

demonstrates all three parts of a quantum algorithm. Dihedral data is used with74

a quantum support vector classifier to introduce machine learning capabilities. Ad-75

ditionally, empirical rotamer sampling is demonstrated using quantum Monte Carlo76

simulations.77

To the best of our knowledge, this work is a first in presenting quantum mod-78

els that work with data from the area of classical molecular mechanics. Although79

achieving quantum advantage is beyond the scope of this work currently, it is ex-80

pected that this work will act as a primer for new users. By introducing a method to81

translate classical molecular data for use with quantum computers and giving exam-82

ples of problem areas where classical data can interact with quantum hardware, it is83

assumed that this work will help achieve solutions to classical problems beyond the84

capabilities of classical computers.85
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ŷ
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−ẑ = |1〉

|ψ〉

(b) Bloch sphere

Figure 1: Coordinate systems and the Bloch sphere. a) Any cartesian coordinate (x, y, z)
can be uniquely expressed as a spherical coordinate (r, θ, φ) , where r is the length of the
line segment, and θ and φ are angles measured from the z and x-axes respectively.b) The
Bloch sphere showing the state of a qubit ψ given by Equation 1 and can be set by using
the UGate gate in the Qiskit SDK by setting the respective angles (θ and phi).

Method86

This work makes use of the open-source software development kit (SDK), Qiskit87

[25], using Python 3.7 through Anaconda. All work was carried out using quantum88

simulators. VMD [26] and NAMD [27] are used for handling and analysis of protein89

structure data.90

In this work a number of models of quantum computation are presented. Briefly,91

these models demonstrate how classical molecular data can be encoded for use with92

quantum computers and how certain problems can be explored. These models are93

briefly introduced below.94

Model 1: Encoding classical molecular data and molecular mechanics95

Cartesian coordinates are commonly used when recording the positions of atoms,96

alone or constituting molecules. Three dimensional cartesian (x, y, z) coordinates can97

be readily converted to their equivalent spherical (r, θ, φ) coordinate forms, see Figure98

1(a), using empirical mathematical transformations.99

A qubit state, represented by the Bloch sphere, see Figure 1 (b) is denoted by100
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|ψ〉 = α|0〉+ β|1〉 (1)

where α and β are probability amplitudes.101

A qubit can be set to any arbitrary state, on the Bloch sphere using the generic102

single-qubit rotation gate, UGate, which accepts three Euler angles (θ, φ, λ) as inputs.103

Classical molecular mechanical algorithms optimize molecular geometries by intro-104

ducing variations in the observed state such that interatomic relationships converge105

to reference measures recorded, for the said atoms, in the force field [28]. These quan-106

tities comprise bonded terms, i.e., bonds, angles, dihedrals and non-bonded terms,107

i.e., van der Waal and electrostatic. This optimization can be reduced to a simple108

analogous problem where two vectors (a subject and a reference) are used to represent109

two points and both the magnitude and direction of the subject vector are modified110

to approach the magnitude and direction of the reference vector. For a multi-atom111

system represented by vectors, the convergence of the magnitude (distance between112

atoms) to a reference value alone (listed e.g., in the force field) approximates the opti-113

mization effect from the bond term or other quantities that require an ideal separation114

between atoms. Together with the vector direction, all interactions for three-atom or115

larger systems can be optimized.116

For the simple vector magnitude and direction convergence problem introduced,117

this work makes use of the CSwapGate to calculate the dot product of two qubit states118

[1, 29]. While different circuit topologies are possible, this work uses a variational119

circuit setup. Figure 2 shows the quantum circuit used.120

The pre-processing step, which prepares the data, starts with computing the mag-121

nitude and direction of the subject and reference vectors. The calculated magnitude122

is normalized to the unit scale for encoding as an angle using the UGate. This work123

arbitrarily chooses to normalize the magnitude using the scheme shown below124

f = max(‖R‖, ‖S‖) (2)

‖R‖norm =
‖R‖
f

(3)
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q0 : H • H

q1 : U (Sθ, 0, 0) U (Sδθ, 0, 0) ×
q2 : U (Rθ, 0, 0) ×

c : /1
0

��

Figure 2: Quantum circuit using the CSwapGate. The circuit uses three qubits, where q0
is the control line employing two Hadamard gates and from which measurement is made.
The encoded data is loaded as angles onto Sθ and Rθ, where Sθ takes the subject value and
Rθ takes the reference value. Sδθ acts as the variational parameter which is controlled by
the optimizer.

‖S‖norm =
‖S‖
f

(4)

where ‖R‖, such that {R ∈ R : R 6= 0}, and ‖S‖, such that {S ∈ R : S 6= 0}, are125

magnitudes of the reference and subject vectors and ‖R‖norm and ‖S‖norm are their126

normalized counterparts which are then directly used, in radians, as angle inputs for127

the UGate. In the case of direction, the angle quantity is directly used as input to128

the UGate without normalization.129

As the circuit is used in a variational form, the SPSA [30] optimizer available in130

Qiskit is used to perturb the variational parameter with the minimizer acting on the131

transformed dot product, see below. As introduced [1, 29], the equation to calculate132

the dot product is given by133

S = 1− 2 ∗ b
nShots

(5)

where “b” is the number of shots that result in the state “1” and nShots is the total134

number of shots attempted. The quantity “S” will approach “1” when the qubits are135

in the same state. This value is transformed by subtracting from one, see Equation136

6, for use with the minimizer.137

Sinv = 1− S (6)
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Model 2: Vector alignment for planar molecular geometry optimization138

The previously discussed method for magnitude optimization was used to refine the139

irregular sides of an arbitrary hexagon such that they become regular. To this end,140

an irregular-hexagon was randomly generated, and an arbitrary reference value was141

used to transform the shape into a regular hexagon.142

Model 3: Vectors and protein structure alignment143

The method based on direction convergence discussed previously is used to align two144

structures of the protein ubiquitin (RCSB PDB ID: 1ubq), where one is the crystal145

structure and the other has undergone an arbitrary rotation in three dimensional146

space using VMD. Using the orient package in VMD, principal axes are calculated for147

both the original and rotated protein structures. The principal axes provide three unit148

vectors for each structure, the directions of which are systematically aligned across149

both structures. After direction convergence, new vectors and required transforma-150

tions are computed and applied to the rotated structure to map it to the original151

structure. An all-atom root mean square deviation (RMSD) is reported to assess the152

quality of the protein structure alignment.153

Model 4: Using variational quantum classifier for side chain rotamer clas-154

sification155

In order to test the variational quantum classifier, the ubiquitin protein structure156

(RCSB PDB ID: 6l0l) was used to create a dataset. For this, the sidechain of each157

amino acid was rotated, using VMD, about the bond CA-CB bond axis, excluding158

the amino acids glycine, alanine and proline. The rotations were carried out in 0.1159

degree increments, creating 3,600 rotamer conformations (observations) per amino160

acid which were then saved as PDB files, with the only difference between the crystal161

structure and the new PDB structure being the single amino acid rotamer change.162

For each new conformation, a reference atom from the sidechain of the rotated amino163

acid was chosen, see supplementary Table 1 for a list of amino acids and their ref-164

erence atoms. The number of atoms within certain select cutoffs (namely 5Å, 4Å,165

3Å, 2Å) proximity were enumerated. These numbers act as features for the machine166
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learning models used in this work. For each of the 3,600 observations, per amino acid,167

total potential energy of the system was calculated making use of the NAMDEnergy168

plugin in NAMD with the charmm36 force field. The requirement of potential energy169

for this model required the protein structure to have hydrogens which were missing170

in ubiquitin structure previously selected. A solution-NMR (nuclear magnetic reso-171

nance) based structure which already had the hydrogens (PDB ID: 6l0l) was therefore172

used.173

For use with a classification model, the energy values were divided into two classes,174

stable and unstable, with energy values at or below “0” kcal/mol being stable and175

those above “0” kcal/mol being unstable. The label for each class was “1” if a176

particular rotamer conformed to that class or “0” otherwise. In all instances, both177

labels were assigned. For model training, to ensure a balanced dataset, only amino178

acids where 50 values for each class were available, were chosen and correspondingly179

a 100-observation balanced dataset was generated.180

The model used the ZZFeaturemap together with the EfficientSU2 ansatz with181

the four features mentioned above making use of the “rx” and “y” gates with circular182

entanglement, and employing the COBYLA optimizer. The 100-observation balanced183

dataset was split with 70% data used for training and 30% for testing. The same184

training and testing data was also used with a classical support vector classifier and185

the classification accuracy was determined for both the variational quantum classifier186

and the classical support vector classifier. As another performance measure the entire187

dataset of 3,600 observations per amino acid was used for prediction and the accuracy188

scores for both classical and quantum algorithms were computed.189

To ascertain if the model training was robust, three trials each were carried out,190

per amino acid, and the accuracy determined for both the quantum and classical191

classifiers.192

Model 5: Quantum Monte Carlo simulation for rotamer energy landscape193

profiling194

The Monte Carlo method was used to sample the rotamer energy landscape. A195

six-qubit string was used to represent a total of 64 (26) states, each corresponding196

to a rotamer conformation of an amino acid, with consecutive states representing a197
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difference of ∼ 5.6 deg. The rotamers for each amino acid of ubiquitin (RCSB PDB198

ID 6l0l) were generated using the method stated earlier. The quantum circuit was199

empirically driven using six Hadamard gates, for the random generation of each of200

the six-qubits to represent a new state.201

The transition of the states were accepted with a probability of “1” if the new202

state was more stable, that is the change in energy (Newstate − Oldstate) is lesser203

than or equal to “0” (δE ≤ 0), or using the rule:204

R ≤ exp− δE
kT (7)

where kT was set to “1” and R is a random number, in the event that the δE > 0.205

The simulations were carried out for each amino acid for a total of 1000 Monte206

Carlo moves. The states and their corresponding energies were recorded.207

For illustration purposes energy values were transformed using208

Etrans =


log10(E) if E > 0

−1 ∗ log10(E) if E < 0

0 if E = 0

(8)

where “E” is the energy and “Etrans” is the transformed energy used for generating209

plots.210

Results211

Model 1: Encoding classical molecular data and molecular mechanics212

Vector magnitudes and directions were compared across two vectors, a subject and213

a reference vector. Figure 3 shows a particular instance of this where the difference214

(abs(|reference| − |subject|) = 13.29AU) between the magnitudes of the subject215

(|subject| = 25.98AU) and reference (|reference| = 12.69AU) vectors minimized to216

zero as the quantity (Sinv) in Equation 6 is minimized using the quantum circuit217

illustrated in Figure 2.218

Two angles (θ, φ) are required to uniquely represent the direction of a vector in219

the spherical coordinate system. Figure 4 demonstrates results of using the same220
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Figure 3: Minimization of magnitude difference and Sinv. The difference in the magnitudes
of the subject and reference vector approaches “0” as the minimizer reduces Sinv. From
the quantum circuit in Figure 2, the minimizer alters Sδθ such that the state of the qubit
carrying the magnitude of the subject vector approaches the state of the reference qubit,
in turn resulting in magnitude of the support vector converging to the magnitude of the
reference vector.
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angles (θ, φ) are needed. Using the same quantum circuit as shown in Figure 2, the difference
in the individual angles of the subject and reference vector are minimized as the minimizer
reduces Sinv. For ease of illustration, only every 10th iteration is plotted.
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Figure 5: Optimization of the sides of a hexagon. The quantum model demonstrated above
is used to optimize the sides of a hexagon. The blue figure represents a randomly generated
hexagon, whose sides are modified to be regular (1.5AU) , using the magnitude difference
minimization method detailed earlier.

circuit as used for the magnitude to ensure directions align between the subject221

(θ = 1.15rad, φ = 2.03rad) and the reference (θ = 0.73rad, φ = 0.98rad) vectors222

by minimizing the difference between them.223

While in this work only one case each for magnitude and direction is illustrated,224

the method can readily be adapted to explore other cases.225

Model 2: Vector magnitude for planar molecular geometry optimization226

This model presents optimizing the sides of a hexagon as a use case for the quantum227

circuit and the classical data encoding method discussed above. This problem bears228

similarity with refinement of bond length of planar molecules, e.g., benzene. In this229

example, all sides are chosen to have an arbitrary length of 1.5AU . Figure 5 shows230

the starting (Blue) and final (Red) states of the system, and illustrates that the final231

state adopts a regular hexagonal topology.232
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Figure 6: Protein structure alignment. The crystal structure of ubiquitin from RCSB PDB
(left; orange) was arbitrarily rotated about x, y and z-axes (middle), with the rotated
structure shown in gray. Using the vector direction alignment model, the rotated structure
was aligned with the original structure (right). The alignment resulted in an all-atom RMSD
of 0.4 Å.

Model 3: Vectors direction alignment and protein structure alignment233

Protein structure alignment is presented as a use case of aligning vector directions.234

Figure 6 shows the rigid transform of a protein structure, with the transform com-235

prising 3D rotations about the axes (x = 45deg, y = 35deg, z = 25deg). To achieve236

an alignment between the transformed and original structure, the direction alignment237

model is used. Figure 6 shows the result of the alignment with an RMSD value of238

∼ 0.4Å.239

As stated earlier, while only one case is demonstrated in the work, the method240

can be used for rigid alignments between transformed structures.241

Model 4: Using variational quantum classifier for side chain rotamer clas-242

sification243

To generate the dataset for this model, the ubiquitin protein structure, comprising 82244

amino acids was used and 3,600 sidechain rotamer conformations (observations) were245

generated for all amino acids excluding the glycine, alanine and proline as listed in the246

methods section. Subsequently only 45 amino acids were used as only these allowed247

creation of balanced 100-observation datasets, of which 50-observations had the clas-248

sification “stable” and the other 50-observations “unstable”. Remaining amino acids249

had less than 50 out of 3,600-observations in either “stable” or “unstable” classes.250
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Figure 7: Comparison of classical and quantum classifiers. Overall the classical classifier
performs better (Strain, Spred) than the quantum classifier (Qtrain, Qpred) both on the train-
ing and prediction datasets. Three runs are carried out for training and prediction, with
the quantum-based classification showing a much higher spread of accuracy across trials
both for training (red) and prediction (blue).

Figure 7 shows the comparison of the classification accuracy for the 45 amino acids251

using both the quantum and the classical classifiers. Additionally the classification252

accuracy achieved during the model training stage is shown alongside the classification253

accuracy achieved after using the same trained model to classify all 3,600 rotamers254

which included 100-observations from the training data and 3,500 observations which255

were novel for the model.256

For each dataset, both training and prediction, three trials were conducted to257

gauge robustness of the classifiers compared.258

Overall the classical classification model outperformed the quantum classifier.259

With an average scoring accuracy of ∼ 60% across both training and prediction260

datasets, the quantum classifier shows a much higher spread of prediction accuracy.261
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(a) Amino acid # 66
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(b) Amino acid # 72
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(c) Amino acid # 64

Figure 8: Monte Carlo simulation for rotamer energy profiling. Results of the states sampled
using Monte Carlo simulation are shown for three amino acids. Amino acids 66 and 72,
show an inverse correlation between rotamer energy and the occupancy profile as expected.
For amino acid 64, given all rotamer states have Etrans < 0, (a) all states are uniformly
visited.

14

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.16.532929doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532929
http://creativecommons.org/licenses/by-nc/4.0/


Model 5: Quantum Monte Carlo simulation for rotamer energy landscape262

profiling263

Using a 6-qubit string, 64 rotamer states were represented for each amino acid, with264

each state ∼ 5.6 deg apart from its next subsequent state. The energy of each new265

state was computed and the new state accepted or rejected using the rules listed in266

the methods section. Figure 8(a,b) show the case of two amino acids (66 and 72), both267

of which clearly show an inverse relationship between states visited (Figure 8: left268

panel) and their corresponding energetic signatures (Figure 8: right panel). For the269

1000 Monte Carlo step simulation carried out for each amino acid, high occupancy270

(Frequency) is seen for low energy states and vice versa. Another case of amino271

acid 64 is shown in Figure 8 (c), where all energy values (Etrans) sampled are below272

“0”, resulting in uniform occupancy for all rotamer states. The results for all amino273

acids are included in the supplementary material which reproduces similar expected274

behavior.275

Discussion276

This work, using empirical models, demonstrates how classical data can be used with277

quantum computers. In classical molecular mechanics atomic coordinates are per-278

turbed to achieve a desired state, representing some energy minimum. The reference279

state is usually encoded in force fields. The first use case, presented in this work,280

demonstrates an analogous case where two points in 3D (x, y, z) coordinates are ex-281

pressed using spherical coordinates (r, θ, φ). To ensure that the subject converges to282

the reference state, the spherical coordinates (r, θ, φ) are directly loaded onto qubit283

using the UGate. Together with the CSwapGate, the dot product is computed al-284

lowing for the direct comparison of the two qubits and indirectly the same for the285

encoded coordinates and any resulting difference then minimized.286

This model and its variations used to compare both vector magnitudes and di-287

rections has significant implications in the area of molecular mechanics as it can be288

tied together with various optimization routines to achieve desired states of molecular289

systems. This work demonstrates, without quantum advantage, and using empirical290
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systems utility of this basic model to optimize geometries of molecules using a hybrid291

classical-quantum computing workflow.292

Apart from the above model, this work also shows the use of quantum machine293

learning with biological data. Although the example does not demonstrate quantum294

advantage, and the classical classifier outperforms the quantum classifier, the example295

demonstrates the use of classical data from geometry optimization problem-space with296

a quantum machine learning algorithm. In addition to the above, the same data is297

used to carry out Monte Carlo simulations.298

As stated earlier, encoding classical data for use with quantum algorithms presents299

a significant challenge in this area. This work presents some ideas for encoding data300

that can further help with the development of quantum algorithms and eventually301

achieving quantum advantage.302

Conclusion303

Using conventional examples of molecular geometry optimization, this work acts as a304

primer to familiarize the wider community working in the area of molecular mechanics305

with quantum computing. While quantum advantage is not demonstrated in this306

work, it successfully demonstrates encoding of classical molecular data for use with307

quantum computers. By presenting several models working in different ways, this308

work is expected to draw attention from the wider community and hopefully future309

work will demonstrate quantum advantage which in turn will benefit the area of310

molecular mechanics and consequently drug discovery.311
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[25] Héctor Abraham et. al. Qiskit: An open-source framework for quantum com-395

puting, 2021.396

[26] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual Molec-397

ular Dynamics. Journal of Molecular Graphics, 14:33–38, 1996.398

[27] James C Phillips, David J Hardy, Julio DC Maia, John E Stone, João V Ribeiro,399

Rafael C Bernardi, Ronak Buch, Giacomo Fiorin, Jérôme Hénin, Wei Jiang,400
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