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Abstract 
Computational approaches for predicting the pathogenicity of genetic variants have advanced in recent years. These methods enable 
researchers to determine the possible clinical impact of rare and novel variants. Historically these prediction methods used hand-crafted 
features based on structural, evolutionary, or physiochemical properties of the variant. In this study we propose a novel framework that 
leverages the power of pre-trained protein language models to predict variant pathogenicity. We show that our approach VariPred (Variant 
impact Predictor) outperforms current state-of-the-art methods by using an end-to-end model that only requires the protein sequence as input. 
By exploiting one of the best performing protein language models (ESM-1b), we established a robust classifier, VariPred, requiring no pre-
calculation of structural features or multiple sequence alignments. We compared the performance of VariPred with other representative 
models including 3Cnet, EVE and ‘ESM variant’. VariPred outperformed all these methods on the ClinVar dataset achieving an MCC of 0.751 
vs. an MCC of 0.690 for the next closest predictor. 
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1 Introduction  
A large portion of genetic variation is represented by single 

nucleotide variants (SNVs). SNVs occur in both protein coding and 
non-coding regions, while protein-coding SNVs can be further 
divided into synonymous and non-synonymous (nsSNVs) types. 
Synonymous SNVs do not change the amino acid sequence of the 
resulting protein while non-synonymous SNVs (nsSNVs) do.  

Missense mutations, in which a single amino acid is replaced by 
another, are the most common type of nsSNV (the others leading 
to truncation or extension). There is a long history of using 
physicochemical and evolutionary information to predict whether a 
given missense mutation is disease-causing [1–3]. Nonetheless it 
remains a major challenge to predict pathogenicity. 

To tackle these challenges, many computational tools based on 
supervised machine learning techniques have been developed to 
predict the potential impact of variants. These compute deleterious 
scores based on dozens of biological properties of variants, such 

as evolutionary conservation [3–5], biochemical properties of amino 
acids [6,7], and structural features of proteins [8,9]. 

However, typically only a subset of variants can be annotated 
with all the features. This is especially true for tools that require a 
protein structure. There are 200 million protein sequences in the 
UniProt databank dated 12th Oct 2022 (see: 
https://www.ebi.ac.uk/uniprot/TrEMBLstats), but only 200,000 
experimentally-determined protein 3D structures stored in the 
Protein Data Bank (see: https://research.rutgers.edu/news/new-
collaboration-between-rcsb-protein-data-bank-and-amazon-web-
services-provides-expanded). This indicates that only 
approximately one in a thousand proteins have a reliable, 
experimentally resolved structure. For example, a commonly used 
predictor, Missense3D, can only structurally annotate 1965 and 
2134 variants out of 26,884 disease-associated and 563,099 
neutral variants, using structures from the PDB [9]. Even given the 
increase in structural coverage using predicted protein structures 
from AlphaFold2 [10], the accuracy of AlphaFold2 in predicting the 
structure of proteins with shallow multiple sequence alignments 
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(MSAs) or orphan proteins, is questionable [11] and structure-
based predictors may need to be re-trained for different levels of 
predicted quality obtained from AlphaFold2. 

One downside of supervised machine learning models is that 
they can be prone to overfitting. This problem is particularly 
pronounced in cases where the training data contains genes where 
all variants have the same class label (benign / pathogenic). A 
previous study identifies this as the ‘Type 2 data circularity’ problem 
[12]. To avoid these problems, unsupervised learning models such 
as EVE [13] were developed. EVE makes predictions using 
features derived from MSAs. At the time of EVE’s release the 
authors reported state-of-the-art performance (AUC-ROC score of 
0.91) for proteins that have been associated with disease in the 
clinical database ClinVar [13]. In a comparison between EVE and 
other computational variant effect predictors, EVE outperforms 
most widely used tools, including PolyPhen-2 [6], SIFT [14] and 
CADD [15] which are the three most popular predictors. However, 
EVE’s prediction accuracy for proteins not covered by informative 
MSAs remains unexplored. 

In the latest Critical Assessment of Genome Interpretation 
(CAGI-6), a novel predictor named 3Cnet was top ranked in the 
SickKids clinical genomes and transcriptomes panel (see: 
https://www.3billion.io/blog/3billion-wins-in-cagi6-a-global-artificial-
intelligence-genome-interpretation-contest/). 3Cnet is a deep 
artificial LSTM-based neural network model, which utilizes multiple 
protein features including MSAs, amino acid physicochemical 
properties, and features such as motifs and active sites as the input 
[16]. As EVE and 3Cnet are both trained for predicting the clinical 
significance of missense variants, and both have reported state-of-
the-art performance in this field, we have selected these as state-
of-the-art methods against which to benchmark our approach. 

Most recent novel protein data-representation approaches take 
inspiration from language models that have yielded ground-
breaking improvements in natural language processing (NLP). In 
particular, the Transformer neural network architecture [17], can 
learn contextualised word representations from a large amount of 
unlabelled text data and has achieved state-of-the-art performance 
for several NLP tasks. In the life sciences, most protein language 
models (PLMs) use Transformer architectures which were 
developed for NLP, but were subsequently trained on protein 
sequences with the goal of deciphering the ‘natural language’ of 
proteins. 

PLMs such as ProtT5 [18], ESM-1b [19], ESM-1v [20] and ESM-
2 [21] have been trained on a large corpus of raw protein 
sequences with the objective of predicting missing or masked 
amino acids given the context of the non-masked sequence. This 
results in a learned feature representation called an ‘embedding’ for 
each residue position in the protein sequence. The embeddings of 
these sequence-based pre-trained models have been shown to 
encode useful bio-physical information, such as residue 
conservation [22] amino acid hydrophobicity, protein structure class 
[18] and protein functional properties [23]. 

Even though these models were pre-trained without using 
evolutionary information, it has been shown that the methods 
achieve a similar performance to MSA-based models for various 
tasks while also reducing the computational cost. 

Recent studies have used experimental data to evaluate the 
performance of PLMs in predicting the functional effects of variants 
[20,24]. However, to date, only one study (‘ESM variant’) has used 
a PLM to predict the clinical significance of a mutation [25]. ‘ESM 

variant’ uses the ESM-1b pre-trained PLM without requiring any 
supervised training. Given that ESM-1b was trained to predict the 
likelihood of each amino-acid type at each position, it is possible to 
use these likelihoods as a proxy for how well tolerated an amino-
acid change is likely to be at the mutation site. ‘ESM variant’ 
constructs a pathogenicity score for a given mutation by using the 
ESM-1b likelihoods for the wildtype and mutant type amino acids at 
the mutated position Fig 1. The authors reported that their model 
outperformed EVE at variant pathogenicity prediction (AUC-ROC 
score = 0.905 vs. 0.885).  

This study extends the research on PLMs by proposing a novel 
methodology and architecture. We conduct a comparative analysis 
of alternative PLM models including the recent ESM-1v and ESM-
2 models which were trained on larger protein datasets. We 
compare performance of our model against EVE, ‘ESM variant’ and 
3Cnet using the ClinVar dataset. Additionally, we investigate 
whether the predictors are prone to bias from Type 2 data circularity 
using two additional benchmarks: SwissvarFilteredMix and 
VaribenchSelectedPure. 

Our model, VariPred, uses a novel twin-network PLM 
architecture combined with a trained classification module to 
achieve the highest classification performance on two variant 
classification benchmarks. The twin neural network framework 
(sometimes called a Siamese network) describes an approach 
where two comparable inputs are each passed through the same 
network. In our case, we pass the mutant and wildtype sequences 
through the PLM to generate embeddings for each residue position. 
Subsequently, we concatenate the two embeddings for the wildtype 
and mutant type residues that occur at the mutation position. These 
paired embeddings are used as input features to a lightweight feed-
forward classification module which is trained on the labelled data. 
As a result of the transformer network architecture and the PLM’s 
pre-training objective, contextual information from the entire 
sequence is incorporated into the per-residue embedding. At the 
same time, selecting only the embeddings for the residues at the 
mutation position allows the classification module to focus on 
information which is specific to the mutation site.  

 

2 Methods 

2.1 Dataset preparation  
Since ESM variant and EVE are both unsupervised learning 

models, they do not require a training dataset. To avoid having to 
retrain 3Cnet we opted to use the same train/test split as the 3Cnet 
authors. The only modifications that we made were to exclude the 
3Cnet simulated data from our model’s training set and remove 
some variants from the test set which appear to have been 
inadvertently included by the 3Cnet authors in both the train and 
test sets. 

2.1.1 Training set 
The training dataset used in 3Cnet consists of three parts: 

1) clinical data stored in the clinical database ClinVar, 2) common 
missense variants retrieved from the population database GnomAD, 
and 3) a set of simulated pathogenic data generated by the 3Cnet 
authors. The simulated data are based on amino acid conservation 
determined from MSAs, built using sequences from the RefSeq 
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database. We chose to exclude the simulated data from our training 
dataset and work with the subset of the 3Cnet training data sourced 
from ClinVar and GnomAD. 

The ClinVar dataset used by 3Cnet was downloaded from the 
ClinVar database via the FTP link (version 2020-4). In total, 72,470 
curated missense variants were selected according to the criteria 
of known molecular consequences and reliable review status. 
Specifically, only variants with the GRCh37 assembly version and  
 labelled with ‘missense variants’ were collected, and those with 
unreliable review status, containing strings with ‘no assertion’, 
‘Conflicting’, ‘no interpretation’, and ‘Uncertain’ were all excluded. 
Data labelled with ‘pathogenic’ or ‘likely pathogenic’ were all 
considered as pathogenic variants. Similarly, variants with any 
submission reported as either ‘benign’ or ‘likely benign’ were 
defined as neutral. After filtering out low-quality data, 72,470 
variants (22,337 pathogenic and 50,133 benign) remained. 

The GnomAD dataset prepared by the 3Cnet group (file 
downloaded using FTP: gnomad.exomes.r2.0.2.sites.vcf.gz) 
consists of 60,614 exome-derived variants. These variants have a 
minor allele frequency (MAF) higher than 0.1% and each was 
filtered by requiring a ‘PASS’ annotation, which ensures the quality 
of the variant, i.e. high confidence genotypes. Since these variants 
are found in the genome of supposedly healthy people, they are 
typically regarded as benign variants [26]. However, even though 
the 3Cnet authors regard variants with a MAF ≥ 0.1% as neutral, 
we cannot exclude the possibility that some of these variants have 
undetected (or partial penetrance) pathogenic effects. 

Each datapoint included in these three datasets was annotated 
with a specific RefSeq NP code (protein record identifier in the 
protein sequence database) and the mutant information in the 
HGVSp term by the 3Cnet group, e.g. NP_689699.2:p.Gly56Ser. 
For each RefSeq NP code, the corresponding curated wildtype 
protein sequence was also provided by the 3Cnet group. For each 
variant in the dataset, the input for the model consists of both wild-
type and mutant sequences, target mutated position, wildtype 
amino acid and the mutant amino acid. The final output of the model 
is a binary label, where 0 indicates that the mutation is benign and 
1 indicates pathogenic. 

2.1.2 Test set 
We noted that some variants (the same gene with the same 

mutation) were repeated between the 3Cnet train and test datasets. 
This problem arises from splitting the data based on variant 
information given in the HGVSp term. We found that some proteins 
annotated with different NP codes are in fact the same isoform, with 
the same wildtype protein sequence. To avoid having to retrain 
3Cnet we chose to remove the 1,767 duplicated variants from the 
ClinVar test set and a further 900 variants which were duplicated 
between the GnomAD training dataset and the ClinVar test set. 

As a result of removing these duplicates, the processed training 
dataset consists of 72,466 variants from ClinVar and 59,018 
variants from GnomAD. In total 17% of variants were labelled as 
pathogenic. The test set is comprised of data from ClinVar only and 
consists of 21,125 entries with 45% of variants labelled as 
pathogenic (Supplementary Table 1).  Here, we ensure that the 
training and test sets do not have any variants which are the same. 

Although all methods being benchmarked should ideally be 
tested using the same test set, for EVE the MSAs and predictions 
are not available for a significant proportion human genes, and thus 

we can only examine the performance of EVE on a subset. As a 
result, the test set for EVE shrinks from 21,125 to 4721, 52% of 
which were pathogenic, 28% Benign and 19% Uncertain 
(Supplementary Table 2).  

 

2.1.3 Testing for Type 2 data circularity bias 
Grimm et al. [12] points out that effective benchmarking of clinical 

variant prediction can be confounded by circularity arising from 
overlap between the train and test sets. Type 1 data circularity 
arises when the same variant is included in the train and test set. 
Type 2 circularity arises from the same genes being included in the 
train and test set, even where the individual mutations are distinct. 
Type 2 data circularity bias is a particular problem where the data 
includes genes where labels are imbalanced towards one class. 
This scenario can give rise to predictors that ignore the specific 
details of the mutation merely recognising genes which are 
oversampled as pathogenic or benign in the training data. In order 
to assess the models’ propensity to overfit to genes in this way, we 
tested predictors using the SwissvarFilteredMix dataset and the 
VaribenchSelectedPure public benchmarks [27]. These datasets 
are used together to test whether performance is confounded by 
type 2 data circularity. 

The SwissvarFilteredMix dataset consists of proteins with at least 
one type of label from each class. By contrast, in the 
VaribenchSelectedPure dataset each protein only has one type of 
variant class, either all benign or all pathogenic. If a model learns 
to predict based on characteristics of the gene and ignores the 
specifics of the variant, then it will typically show inflated 
performance on the VaribenchSelectedPure dataset while showing 
low performance on SwissvarFilteredMix. The 3Cnet and VariPred 
training set includes 67% of the genes that were in the 
VaribenchSelectedPure test set, although no variant was repeated 
between the train and test sets. 

The VaribenchSelectedPure and SwissvarFilteredMix datasets 
contain information on chromosome number, base substitution 
position, reference nucleotide base, altered nucleotide base, 
Ensembl protein ID and the ground-truth label. Some sequences 
are not consistent with the mutation information, possibly because 
there has been a new isoform since the two benchmarks were 
generated in 2016. 

Therefore, we annotated NM codes (mRNA record identifiers in 
the Nucleotide database) for each variant using the latest version 
of the ANNOVAR software [28], with the transcript-based 
annotation set for the RefSeq Gene (assembly version hg19; 
updated  2020-08-17 at UCSC). We then retrieved the 
corresponding protein isoform sequences (wildtype sequences) 
using the Entrez.efetch module included in Biopython (version 1.80) 
with Python 3.9. Using the original protein isoform sequences and 
the corresponding variant information, we generated the mutant 
sequences for each variant. This gave a SwissvarFilteredMix test 
set with 1153 benign variants and 1023 pathogenic variants, and a 
VaribenchSelectedPure set with 3629 benign variants and 2122 
pathogenic variants. 

Owing to the absence of some human genes in the EVE dataset, 
only 30% and 4.4% of variants in the SwissvarFilteredMix and 
VaribenchSelectedPure sets respectively, were annotated with the 
EVE binary pathogenicity label. Therefore, we could only keep 667 
out of 2176 variants from SwissvarFilteredMix (278 benign vs. 238 
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pathogenic) and 254 variants from the VaribenchSelectedPure set 
(127 benign vs. 72 pathogenic). Moreover, 151 out of 667 variants 
in the SwissFilteredMix and 55 out of 254 variants in the 
VaribenchSelectedPure set were labelled as ‘uncertain’. As a result, 
this dataset is much smaller than for the other methods; 
nonetheless, we still evaluated the performance of EVE for 
comparison. 

As with EVE, there are also problems with 3Cnet in generating 
features for some variants from these two benchmark datasets. To 
predict a variant’s pathogenicity with 3Cnet requires three 
components: the HGVSp term including the NP code and the 
mutation information, the NP code corresponding to the wildtype 
sequence, and 85 biological features retrieved from the SNVBox 
database [29]. However, this information is not recorded in the 
SNVBox database for some of the variants. Consequently, 3Cnet 
is not able to give a prediction for these variants. We therefore 
dropped these variants, leaving 1742 variants in the 
SwissvarFilteredMix and 5159 variants in VaribenchSelectedPure 
test sets for the evaluation of 3Cnet.  

2.2 Feature extraction and model setup 
In order to identify the most suitable PLM for differentiating 

pathogenic variants from benign, we tested the most widely used 
pre-trained models including ESM-1b, ESM-1v and ESM-2. ESM-2 
has several versions with different parameter sizes, ranging from 
8x106 to 15x109. According to a previous study, the performance of 
the model does not increase with model size, and models with 
650x106 parameters appear to have the best ability to extract per-
residue features [30]. Therefore, we chose ESM-2 with 650x106 
parameters for our analyses. 

 

2.2.1 Extract embeddings by PLMs 
ESM-1b and ESM-1v are BERT-style encoder-based 

Transformers, which limit the input length to 1022 amino acids. 
ESM-2 does not have this sequence length limitation, but using 
longer sequences is computationally prohibitive. Moreover, the 
Rotary Position Embedding strategy used in ESM-2 only considers 
the word embeddings and their neighbours, limiting any advantage 
of larger windows. Therefore, we designed a sequence truncation 
strategy which is consistent with such encoding methods and limits 
the maximum length to 1022 in all 3 models. 

The official ESM tokenizer package pads the length of shorter 
sequences to 1022 internally, but transforms the length back to the 
true sequence length during data processing. For sequences 
longer than 1022, if the mutation is within 1022 residues of either 
the N-terminus or the C-terminus, 1022 residues counting from the 
end were retained; if the mutation index occurs more than 1022 
residues from both termini, 510 neighbours from the N-terminal side 
and 511 from the C-terminal side of the mutated residue were 
selected, resulting in sequences having 1022 residues.  

Transformer-based PLMs provide features in two forms: the 
probability of each amino acid type occurring at each position in the 
sequence, and a dense vector-embedded representation of each 
position in the sequence. Owing to the self-attention mechanism of 
the Transformer architecture, the embedding can incorporate 
contextual information from the entire 1022 residue window. For 
each mutated position we extracted the log likelihood ratio (LLR) 

and the embedded representation of the wild-type and mutant type 
residue. 

The LLR was calculated using the ESM likelihood of the mutant 
and wildtype amino acid at the target position conditioned on the 
model receiving the wildtype sequence as input, using the formula 
shown in Fig. 1. 

PLMs are pre-trained using a masked language modelling 
objective. During the pre-training, 15% of residues were randomly 
masked out from the input sequences, and the model predicts 
which amino acid type is most likely to be present at each masked 
position. 

Amino acids which frequently occur at a target position, typically 
have a comparatively high likelihood.  Thus, if the mutant type’s 
likelihood is significantly lower than the wild type, this serves as an 
indicator that the mutation is problematic, while mutant residues 
with high likelihoods typically have similar physiochemical 
properties and are therefore less likely to affect protein stability or 
function. The ‘ESM variant’ method [25], which uses the LLR 
generated by ESM-1b to discriminate variant pathogenicity, 
claimed that an LLR threshold of -7.5 is sufficient to detect 
pathogenic variants. Therefore, in this study, we also applied -7.5 
as the LLR threshold for ESM-1v and ESM-2. The ESM models 
evaluated in this study use word embedding dimensions set to 1280 
to represent each position in the sequence.  

The schema of data processing and model generation is given in 
Fig. 2. To obtain the embeddings of each sequence pair (wildtype 
and mutant protein sequences), all sequence pairs were fed into 
the PLM. For example, if a wildtype sequence consists of 100 
amino acids, two embedding matrices (one for amino acids in the 
wildtype sequence, the other for amino acids in the mutant 
sequence) with dimensions 100 x 1280 would be generated 
(Fig. 2A).       

We hypothesised that the embedding of the target amino acid at 
the mutation position would be the most informative. Therefore, we 
only took the embedding of the amino acid at the mutated position 
from both wildtype and mutant sequences. These two embeddings 
were then concatenated horizontally such that each data entry is 
represented as a vector with dimensions 1 x 2560. Feeding the 
training dataset (192575 entries) into the ESM-1b pre-trained 
model will generate a wildtype-mutant concatenated amino acid 
embedding representation matrix with a size of (192575 x 2560) 
(Fig. 2B). These embeddings are expected to capture fundamental 
biological features, related to protein function or structural stability. 

To investigate whether combining LLR and embeddings would 
increase performance, we appended the LLR to the last column of 
the embedding matrix, which increased the dimension from 2560 to 
2561 (Fig. 2C).  

 

2.2.2 Feed-Forward Neural Network 
We created a classification module by including a shallow feed 

forward neural network (FNN) as the decoder/classifier for the PLM. 
This was trained on the class labels without updating parameters in 
the PLM. During the hyperparameter tuning process, we tried 
increasing the depth of the FNN as well as trying multiple sets of 
learning rates and drop-out rates. The final FNN, which gave 
optimal performance, consists of one hidden layer, a LeakyReLu 
activation function, and one output layer with the dropout rate set 
at 0.5 and learning rate set at 0.0001 (Fig. 3C). The input layer of 
the feed forward neural network has 2560 nodes (2561 if LLR is 
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appended), while the hidden layer contains 1280 nodes, and the 
output consists of 2 nodes with a SoftMax layer to ensure the output 
probabilities sum to 1 for binary classification of benign/pathogenic. 
Only the pathogenic output node was considered and a value of 0.2 
was selected as a threshold for predicting the pathogenic class. 
This low threshold was selected because the dataset is highly 
skewed towards neutral variants and this value optimizes the MCC 
on the training data. 

2.3 Evaluation metrics 
Accuracy, Precision-Recall, F1-score, MCC (Matthews 

correlation coefficient) and AUC-ROC (area under curve of the 
receiver operating characteristic) are some of the most popular 
metrics for evaluating binary classifiers. Since MCC takes all 
outcomes (true and false positives and negatives) into account 
(Equation 1), it is less sensitive to class imbalance and is also more 
informative about the classifier’s performance at a given threshold 
[31]. In contrast, other measures are more sensitive to imbalance 
[32] and the AUC-ROC gives a view of the overall performance of 
a classifier (across a range of thresholds) rather than the actual 
performance in a classification problem. 

 
Equation 1: 
 

𝑀𝐶𝐶 = 	
𝑇𝑃	 × 	𝑇𝑁 − 𝐹𝑃	 × 	𝐹𝑁

+(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
Therefore, we applied MCC as the main metric to measure the 

performance of predictors studied in this research, while using 
AUC-ROC as an auxiliary indicator. 

 

3 Results 

3.1 Comparing the performance of LLR, 
embeddings and LLR + embeddings 

The ‘ESM variant’ method  [25] only uses the LLR feature 
generated from ESM-1b to predict the clinical significance of 
missense variants. Here we evaluate the performance for this task, 
using LLRs generated by two other PLMs: ESM-1v and ESM-2.  

We first tested models using the ClinVar test set. For PLMs which 
only use the LLR threshold for prediction, ‘ESM variant’ (using 
ESM-1b) has the best predictive performance, with an MCC score 
of 0.623, followed by ESM-2 (0.5837) and ESM-1v (0.584) (Fig. 3).  

In addition to using LLR threshold to differentiate pathogenic 
variants from benign, our VariPred predictor uses a shallow FNN 
trained on the PLM embeddings for the wildtype and mutant 
sequence. We observe that this approach significantly improves the 
performance of all protein language models. ESM1b, remains the 
best performing model, with an MCC score of 0.746, followed by 
ESM-2 (0.734) and ESM1v (0.721) (Fig. 3). 

When we combine the LLR together with the embeddings, the 
performance of all models improved further. ESM-1b still has the 
best performance with an MCC score of 0.751, ESM-2 scored 0.748, 
and ESM-1v achieved 0.728 (Fig. 3). Therefore, in the following 
experiments to compare the performance with other tools, we 

chose ESM-1b as the feature extractor for our model, VariPred. We 
trained our model with both embeddings and LLRs as input.  

3.2 Comparison between models using the ClinVar 
test set 

To evaluate VariPred’s performance on clinical data, we 
compared the performance of VariPred with other tools on the 
ClinVar test set. Since EVE also classifies variants with a third label 
“Uncertain”, we calculated two MCC scores for EVE. In the first 
case, we considered variants labelled as “Uncertain” as pathogenic 
and then as benign, and calculated the mean of the MCCs resulting 
from these two scenarios as the first score for EVE (EVE-avg). In 
the second case, we simply ignored “Uncertain” predictions, and 
calculate the MCC score of EVE with the remaining data (EVE-ign). 
In this case, 20% of the data were dropped and only 3469 variants 
remained for the evaluation. 

Comparing against other methods, VariPred has the best 
performance with an MCC of 0.751. 3Cnet is closest to matching 
the performance of VariPred with an MCC of 0.690, followed by 
EVE-ign (MCC=0.673) and ‘ESM variant’ (MCC=0.620), while EVE-
avg has the lowest performance with an MCC of 0.545 (Fig. 4). 
However, VariPred only requires protein sequence information as 
input, while 3Cnet requires features including MSAs, amino acid 
physicochemical properties, and protein features such as motifs or 
active sites. 

3.3 Type 2 data circularity problem test 
We compared all predictors including the three PLMs with only 

LLR (as the baseline) and the combination of LLR and embedding 
features with two public benchmarks, the SwissvarFilteredMix and 
VaribenchSelectedPure test sets, to evaluate if any of the models 
are affected by the Type 2 data circularity problem.  

In this evaluation, 3Cnet has the highest accuracy in 
VaribenchSelectedPure, and is the only model with higher 
performance in VaribenchSelectedPure (MCC=0.403) than 
SwissvarFilteredMix set (MCC=0.161) (Fig. 5). This suggests that 
3Cnet is affected by the Type 2 data circularity problem where the 
model is learning features of the gene and ignoring the specifics of 
the variant. In contrast, our model, VariPred, has the second 
highest performance in SwissvarFilteredMix (MCC=0.440) but a 
lower performance in VaribenchSelectedPure (MCC=0.240) 
(Fig. 5), indicating that VariPred is not confounded by the Type 2 
data circularity problem.  

We evaluated EVE (both -ign and -avg) on the 
SwissvarFilteredMix and VaribenchSelectedPure test sets with the 
publicly available pre-computed data. The MCC for EVE is 0.349 
when regarding all variants labelled as Uncertain as pathogenic, 
and is 0.387 when considering them as neutral, giving a mean 
score (EVE-avg) of 0.368. On the other hand, EVE-ign has the best 
performance in this test set, with an MCC of 0.450, but no prediction 
is made for approximately 20% of the data. We removed variants 
with no pre-computed EVE score from VaribenchSelectedPure, 
giving a small dataset of 254 (127 benign vs. 72 pathogenic vs. 55 
uncertain). EVE-avg with VaribenchSelectedPure gave an MCC of 
0.259, while EVE-ign gave a higher MCC of 0.325, but with only 
199 variants included in the analysis. Both EVE-avg and EVE-ign 
give MCCs lower than that on the SwissvarFilteredMix test set (Fig. 
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5) suggesting there is no issue with Type 2 data circularity, although 
this has been assessed using a much smaller dataset than for the 
other predictors. 

 

4 Discussion 
We tested three different PLMs (ESM-1b, ESM-1v, ESM-2) and 

showed that ESM-1b was the best predictor for pathogenicity of 
single-position missense variants. Using the ClinVar test set, our 
VariPred predictor which combined LLR and residue embeddings 
generated by ESM-1b has the best performance achieving an MCC 
of 0.751 and AUC-ROC of 0.933 without using any additional 
biological features and not being confounded by Type 2 data 
circularity.  

In principle, since ESM-1v and ESM-2 were pre-trained using a 
much larger protein sequence dataset, they should have a broader 
view on the mutability landscape of proteins than ESM-1b. The 
ESM-1v and ESM-2 authors state that both ESM-1v and ESM-2 are 
sufficient to conduct the missense mutation pathogenicity 
prediction without any further training [20,30]. Nonetheless, we 
observed better performance on the ESM-1b model. We speculate 
that this may be a result of the ESM-1b pre-training dataset being 
more closely aligned with the relatively narrow set of (human only) 
proteins that are included in ClinVar.  

Reports suggest that for predicting the functional (rather than 
clinical) effects of variants, which are in the form of a continuous 
scalar value, ESM1-v and ESM-2 have a better performance  
[20,30]. However, recent comments suggest that ESM-1b performs 
better in some other tasks, such as structure prediction [33]. In this 
study, we showed that ESM-1b outperforms two other state-of-the-
art predictors in predicting the binary clinical significance of 
missense variants. 

Although 3Cnet has a similar performance to VariPred, it has a 
better performance on the VaribenchSelectPure dataset compared 
with the SwissvarfilteredMix set (see Fig. 5). This indicates that 
3Cnet is affected by the Type 2 data circularity problem and may 
be more prone to biased predictions arising from the composition 
of the training data.  

Besides the leading performance of VariPred in predicting the 
clinical significance of missense variations, VariPred is more 
efficient in facilitating a high-throughput prediction of the 
pathogenicity of variants in humans as it has minimal dependencies 
and only requires the sequence as input. 

Many human genes are not included in the MSAs provided by 
EVE or in the pre-computed predictions, therefore we have not 
evaluated its performance on genes which have shallow MSAs. We 
note that collecting the MSAs for each protein adds a large 
computation and memory cost and computing the EVE score for 
each variant is also highly computationally intensive.  

Preparing the input features for 3Cnet is a difficult task. 3Cnet 
relies on features based on 85 biophysical properties retrieved from 
the SNVBox database. However, not all variants can be mapped 
with features from the SNVBox database as it has not been updated 
since 2011, resulting in missing sequences and problems with 
changed RefSeq IDs. This may lead to uncertainty in the 
consistency between the retrieved feature and the data entry. 
Additionally, only the NP codes which are included in the provided 
transcript ID list can be transformed into a 3Cnet prediction dataset. 

 In comparison to EVE and 3Cnet, VariPred requires only the 
most fundamental information for each data entry: the wildtype 
protein sequence and mutation information including which residue 
is being mutated at which position in the wildtype sequence into 
which mutant amino acid. Without the need for further dataset 
preparation, such as MSA construction or feature retrieval, making 
predictions on a dataset of 5000 variants take 30 minutes with a 
12GB GPU, such as the Nvidia GTX 1080Ti. 

We note that performance on the SwissvarFilteredMix testing set 
was lower than performance on ClinVar for all models. Comparing 
this dataset with the latest ClinVar dataset (2022-12) we found that 
17% of entries have an inconsistent label (e.g. ‘uncertain’ in 
SwissVarFilteredMix versus ‘positive’ in ClinVar) and 81% do not 
have a label in the ClinVar dataset, whilst 2% of variants have the 
opposite label. This could explain why the performance of all 
predictors drops in the SwissvarFilteredMix set, as the inconsistent 
data would reduce the evaluated prediction performance of the 
predictors. This could be a result of different criteria for labelling 
(e.g. how partial penetrance variants are classified) or labels 
changing due to newly arisen evidence. 

Inconclusive and contradictory pathogenicity labels are an 
argument in favour of unsupervised methods such as EVE and 
‘ESM variant’. Even though we observed lower performance when 
compared with supervised methods such as VariPred and 3Cnet, it 
is important to note that the unsupervised methods are not prone 
to bias introduced by training dataset selection and labelling issues. 

Several authors have suggested that predictors may have better 
performance on variants of a specific gene or disease [27,34]. In 
the future, we will evaluate VariPred’s performance on specific 
genes associated with various diseases as well as differential 
pathogenicity prediction – i.e. predicting different pathogenic 
phenotypes caused by mutations in the same protein [35]. 

Currently, VariPred only uses sequence information to predict 
pathogenicity. In the future we will evaluate the effect of including 
structural information in the predictor. A similar strategy has been 
implemented for aiding engineering of enzymes by directed 
evolution and for aiding protein design [36,37], but has not yet been 
explored in the prediction of the clinical significance of missense 
mutations. Incorporating both sequence and structural information 
is likely to improve VariPred’s ability to classify missense variants. 

Applying a more biologically meaningful data augmentation 
strategy may add more diversity into the training set. Conservation 
information is one of the most powerful features for predicting 
protein stability and functional effects [38]. In the study of 3Cnet, 
the artificial pathogenic-like variants were generated simply by 
considering the amino acid frequency and the number of gaps. 
However, a good conservation scoring scheme depends on 
multiple components, of which the most important include amino 
acid frequency, residue similarity (biophysical properties), 
sequence similarity (considering sequence redundancy and MSA 
depth), the number of gaps in the MSA, and the concept of 
‘compensated pathogenic mutations’ (CPDs), which refers to 
mutations occurring in different species that are tolerated because 
of compensating mutations [39]. Therefore, in the future, it may be 
worth investigating whether such a combination of data 
augmentation and synthetic data strategies can further improve the 
performance of VariPred. 
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In summary, VariPred only requires the native and mutated 
sequence and, using protein language model encoding, is able to 
outperform state-of-the-art methods that use features including 
structural information and multiple sequence alignments. 

 

Code availability 
All code required to reproduce the model and analysis in this study are 
available at https://github.com/wlin16/VariPred.git. 
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Fig 1 Illustration of how to calculate the log-likelihood ratio (LLR) from ESM models. The input for the PLM is an amino-acid sequence while the output is the log-
likelihood ratio calculated based on the probabilities of the wildtype amino acid and the mutant amino acid occurring at the given position. Note, the heatmap showing in 
this figure was artificially generated for the demonstration purpose. Pr, Probability; wt148 = T, the148th residue occurring at the input wildtype (wt) protein sequence is 
a Threonine (T); mt148 = W, the148th residue was mutant type (mt) Tryptophan (W). 
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 Fig 2 Schema of workflow for training VariPred. A) In the first step, each wild-type protein sequence and the corresponding mutant 
protein sequence are fed into the PLM separately. The PLM generates a per-residue embedding for each amino acid. The output is the 
matrix of sequence embedding, with dimensions sequence length x embedding dimension. B) Only the embeddings of the amino acids at 
the mutated position are used and joined giving an embedding dimension of 2560. The concatenated embeddings for each observation are 
combined to give an embedding matrix with dimensions dataset size x 2560. C. The embedding matrix is fed as the input into a Feedforward 
Neural Network (FNN), and two probabilities are then output identifying if the given variant belongs to the pathogenic or benign group. Note 
that if the LLR feature is appended the input matrix is dataset size X 2561. 
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Fig 3 Comparison between models under different testing situations. Comparison of the LLR and embedding features for three protein language models. The 
baseline is using ‘Only LLR’ to predict pathogenicity of variants; For ‘Only embeddings’ we used amino acid embeddings as input to a shallow FNN to predict the 
pathogenicity of variants; ‘LLR + embeddings’ concatenates the LLR feature as the last column of the amino acid embedding matrix, and then performs variant 
classification by using this extended matrix as input to the FNN. 

 

Fig 4 Comparing the performance of pathogenicity predictors using the ClinVar validation set. A) AUC-ROC curve plot for the four 
predictors. B) The Confusion matrix comparison for predictors. Note that EVE has a smaller test set size due to the problems with data 
availability. Consequently, the distribution of actual positives and actual negatives is different from the other predictors. All overlaps of mutant 
protein sequences, between the training set and this test set have been removed. C) MCC score for the predictors being tested in this study. 
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Fig 5 Type 2 data circularity problem test. Predictors labelled with baseline only use LLR to classify variants. The ESM-1v and ESM-2 methods only use 
embedding features as input and have further supervised training using the training set mentioned in the Methods. 
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