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Abstract

Deep learning (DL) methods accurately predict various functional properties from genomic
DNA, including gene expression, promising to serve as an important tool in interpreting the full
spectrum of genetic variations in personal genomes. However, systematic out-of-sample
benchmarking is needed to assess the gap in their utility as personalized DNA interpreters. Using
paired Whole Genome Sequencing and gene expression data we evaluate DL
sequence-to-expression models, identifying their critical failure to make correct predictions on a
substantial number of genomic loci, highlighting the limits of the current model training
paradigm.

Main

Deep learning (DL) methods have recently become the state-of-the-art in a variety of regulatory
genomic tasks1–6. By adapting convolutional neural networks (CNNs), these models take as input
sub-sequences of genomic DNA and predict as outputs functional properties such as epigenomic
modifications2,7, 3D interactions5,8, and gene expression values1,9,10. A key insight has been to
formulate model training and evaluation such that genomic regions are treated as data points,
resulting in millions of training sequences in a single Reference genome to optimize model
parameters11,12. This training approach yields accurate predictions of context specific functional
profiles from the Reference genome sub-sequences. However, an extraordinary promise of these
sequence-based models is to make out-of-sample predictions for sequence alternatives across
individuals at any locus, each presenting a unique combination of genetic variants – a
combinatorial space that is simply not feasible to evaluate with current experimental assays4,6.
Using natural genetic variation in expression quantitative trait loci (eQTL) studies, previous
analysis has shown some promise in the ability of these models to make such out-of-sample
predictions1,13. On the other hand, benchmarking efforts using massively parallel reporter assay
(MPRA) experiments has shown varying degrees of accuracy1,14. However, experimental noise
and context differences between in-vivo training datasets and MPRA in-vitro experiments pose
significant challenges. Here, we use paired Whole Genome Sequencing (WGS) and
RNA-sequencing from a cohort of 839 individuals to systematically benchmark the utility of
existing sequence-to-expression DL models trained on the Reference genome in in-vivo
out-of-sample prediction of gene expression across a diverse set of sequence alternatives.

We focus our evaluation on Enformer1, the top-performing sequence-to-expression CNN-based
model that follows the current standard training paradigm, utilizing genomic regions across a
single Reference genome to learn the relevant sequence patterns for gene expression, TF binding,
and histone modifications across hundreds of cell types in a multitask framework (Fig. 1A).
First, we evaluated Enformer’s prediction of population-average gene expression in the cerebral
cortex from its test regions in the Reference Genome (Methods). We observe a Pearson
correlation R=0.58 (Fig. 1B, S1, R=0.51 for Enformer’s test set; Methods) between observed and
predicted gene expression across genes which is consistent with previous reports1,15.

Highlighting the ability of this model to perform out-of-sample predictions in selective cases, we
examine the case of a gene related to DNA replication: DDX11. DDX11’s expression in the
cortex is highly heritable according to standard linear analysis (heritability r2=0.8), and this can
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be attributed to a single causal single-nucleotide variant (SNV) using statistical fine-mapping13.
Using WGS data, we created 839 input sequences of length 196,608bp centered at TSS, one per
individual for the gene (Fig. 1C). Each individual’s input sequence contains all their observed
SNVs (Fig. S2). We observed accurate predictions of gene expression across individuals for the
DDX11 gene (Pearson R=0.85, Fig. 1D). Further, in-silico mutagenesis (ISM) at this locus
showed that Enformer utilizes a single causal SNV with high correlation to gene expression
(eQTLs) in making its predictions (Fig. 1E), the same causal SNV that was identified through
statistical fine-mapping with Susie13. Thus, at this locus, Enformer is able to identify the causal
SNV amongst all those in LD, and in addition provides hypotheses about the underlying
functional cause, in this case the extension of a repressive motif (Fig. S3).

However, the impressive out-of-sample predictions on DDX11 proved to be the exception rather
than the rule, suggesting that current models do not consistently generalize to within-locus
variation. When we compared the predicted to observed expression levels across individuals for
6,825 cortex-expressed genes that we were able to test, we found a large distribution in the
Pearson’s R (Fig. 2A, Table S1). While the model was able to predict gene expression with
statistical significance for 598 genes (FDRBH=0.05, Methods), the predictions were
anti-correlated with the true gene expression values for 195 of these genes (33%). For example,
predictions for GSTM3 gene expression values are anti-correlated with actual observed gene
expression across individuals (Fig. 2B). The results are similar when we select the best output
track that matches the cerebral cortex (“CAGE, cortex, adult”) or fine-tune the predictions using
an elastic net model (Fig. S4, Methods). As well, model ensembling, whereby we averaged over
model predictions on shifted sub-sequences and reverse and forward strands, slightly improved
the performance in some cases, but our analysis indicates that the sign of the prediction would
not be impacted by this type of ensembling approach (Fig. S5). When we focused this analysis
on 184 genes with known causal SNVs according to previous eQTL analysis13, again we
observed that while Enformer can make significant predictions, the predicted expression levels
are anti-correlated for 80 (43%) of these genes (Fig. S6A, Table S1). Overall, these results imply
that the model fails to correctly attribute the variants’ direction of effect (i.e., whether a given
variant decreases or increases gene expression level).

We then compared the prediction performance with a popular linear approach called PrediXcan16.
PrediXcan constructs an elastic net model per gene from cis genotype SNVs across individuals.
Unlike Enformer, PrediXcan is explicitly trained to predict gene expression from variants but it
does not take into account variants that were not present in its training data and cannot output a
prediction for unseen variants. While the models are conceptually different the PrediXcan model
gives a lower bound on the fraction of gene expression variance that can be predicted from
genotype. For a fair comparison, we used a “pre-trained” prediXcan model on GTEx data16 and
applied it to ROSMAP samples. Hence neither Enformer nor PrediXcan have seen the ROSMAP
samples prior to their application. For the 1,570 genes where an elastic net model was available,
performance of Enformer is substantially lower than PrediXcan (Mean R Enformer = 0.02, Mean
R PrediXcan = 0.26 Fig. 2C, Table S1). Further, the Elastic net model did not have the same
challenge with mis-prediction of the direction of SNV effect. We note that Enformer predictions
were evaluated against eQTLs in the original study using SLDP regression demonstrating
improved performance over competing models in terms of z-score. Our results are not in
contradiction with these findings. The SLDP approach computes the association of effects
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genome-wide; taking a conservative estimate for the degrees of freedom to be the number of
independent LD blocks (1,36117) a z-score of 7 would correspond to an R2 of 0.034.

Interestingly, when we compared the absolute Pearson R values across genes between Enformer
and PrediXcan, we observed a substantial correlation (R=0.58, Fig. S6B), implying that genes
whose expression values from genotype across subjects can be predicted well by PrediXcan
overlap the set of genes where Enformer assesses a relationship between SNVs and expression.
However, Enformer is not able to determine the sign of SNV effects accurately (hence a very low
mean R value between observed and predicted gene expression of 0.02).

To explore the causes for the negative correlation between Enformer predictions and the
observed gene expression values we applied two explainable AI (XAI) techniques on all genes
with a significant correlation to observed expression values (abs(R)>0.2, Fig. 2A): ISM and
gradients (Grad) 18–20. Both XAI methods decompose the nonlinear neural network into a linear
function whose weights approximate the effect and direction of every SNV to the prediction
(Methods). While there was a moderate correlation between attributions computed with Grad and
ISM (mean Pearson R = 0.28, Fig. S7), we found that linear decomposition with ISM generated
a better approximation of Enformer’s predictions (Fig. S8), and was able to accurately
approximate Enformer’s predictions for 95% of the examined genes (R>0.2, p<10-8).

For each gene, based on its ISM attributions, we determined the main SNV driver(s) that
dominate the linear approximation of the differential gene expression predictions across
individuals (Methods). Across the 256 examined genes, we found that 32% have a single SNV
driver, and the vast majority (85%) have five or fewer drivers (Fig. S9, Table S2). To understand
how these driver SNVs cause mispredictions, we directly computed the SNV direction of effect
by contrasting the gene expression levels across people when stratified by the SNV’s genotypes
(Methods), referred to as the eQTL effect size. We classified Enformer-identified driver SNVs
into “supported” and “unsupported” categories based on the agreement of SNVs ISM attribution
sign with the direction of effect according to the eQTL analysis. For example, GSTM3 has two
common driver SNVs and their predicted direction of effect was unsupported by the observed
gene expression data (Fig. 2D). For all 256 inspected genes, we found that mispredicted genes
had almost exclusively unsupported driver SNVs (Figure 2E), confirming that the selected
drivers are in fact the cause of Enformer’s misprediction for the sign of the effect.

To investigate whether these unsupported attributions are caused by systematically erroneous
sequence-based motifs that Enformer learns, we analyzed the genomic sequences around driver
SNVs. We did not find any enrichment for specific sequence motifs (Fig. S10). When we plotted
the location of SNV drivers along the input sequences, we found that most drivers were located
close to the TSS (Fig. 2F, Fig. S11). We looked at Grad attributions along the entire sequence
(Fig 2G top, S12) and ISM attributions for large windows around the TSS (Fig 2G, bottom,
Supplementary materials) and found that the area around the TSS not only contained
distinguishable learned sequence motifs but also both the strongest positive and strongest
negative attributions outside of apparent learned motifs. We observe that the majority of the
SNVs that drive the significant positive and negative correlations to the observed expression do
not fall into one of these distinguishable motifs but instead in regions of spurious attributions
where training data was likely not sufficient to deduce the regulatory logic (Fig. S13, Table S3).
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In summary, our results suggest that current models trained on a single Reference genome often
fail to correctly predict the direction of SNV effects because most SNVs do not fall into the
major motifs that are learned from the Reference genome. Therefore, we hypothesize that
training similar models on larger, personalized datasets will increase the causal genetic variance
that these models see during training, improving their sensitivity in predicting gene expression
variation in a locus-dependent manner. Indeed, models like PrediXcan that only consider SNV
values and not their sequence context are mainly statistical powered to make predictions for a
limited set of genes21. A major factor that contributes to their lack of statistical power is their
inability to learn and generalize biological mechanisms like the sequence motifs that explain the
principles underlying the observed correlation between genetic variation and gene expression.
Revising how sequence-based NN models are trained promises to enable accurate in-silico
predictions about the cellular impact of genetic variants across the entire genome, because in
contrast they can learn and generalize the regulatory logic of gene expression as encoded in the
genomic sequence.

Figure Legends

Figure 1. Evaluation of Enformer across genomic regions and select loci. (A) Schematic of the
training approach implemented by Enformer and other sequence-based CNN models. Different genomic
regions from the Reference genome are treated as data points. Genomic DNA underlying a given region is
the input to the model, and the model learns to predict various functional properties including gene
expression (CAGE-seq), chromatin accessibility (ATAC-Seq), or TF binding (ChIP-Seq). (B)
Population-average gene expression levels in cerebral cortex (averaged in ROSMAP samples, n=839) for
expressed genes (n=13,397) shown on the x-axis. Enformer’s prediction of gene expression levels for
cortex based on the Reference genome sequences centered at TSS of each gene (196Kb) is shown on the
y-axis. Enformer’s output tracks are fine-tuned with an elastic net model (see Methods). (C) Schematic of
the per-locus evaluation strategy. Personal genomes are constructed for each individual by inserting their
observed SNVs into the Reference genome. The personalized sequences centered at the TSS of gene
DDX11 are used as input to Enformer. (D) Prediction of cortex gene expression levels for individuals in
the ROSMAP cohort. Each dot represents an individual. Output of Enformer is fine-tuned using an elastic
net model. E) In-silico mutagenesis (ISM) values for all SNVs which occur at least once in 839 genomes
within 98Kb of DDX11 TSS. SNVs are colored by minor allele frequency (MAF). The border of the
“driver” SNV is shown in red and its size is proportional to its impact on the linear approximation
(Supplementary Methods).

Figure 2. Evaluation of Enformer on prediction of gene expression across individuals. (A) Y-axis
shows the Pearson R coefficient between observed expression values and Enformer’s predicted values
per-gene. X-axis shows the negative log10 p-value, computed using a gene-specific null model
(Supplementary Method). The color represents the predicted mean expression using the most relevant
Enformer output track (“CAGE, adult, brain”). Red dashed line indicates FDRBH=0.05. (B) Prediction of
cortex gene expression levels (“CAGE, adult, brain” track) in the ROSMAP cohort (n=839) for the
GSTM3 gene, x-axis shows the observed gene expression values. (C) Pearson R coefficient between
PrediXcan predicted versus observed expression across 839 individuals (x-axis) versus Enformer’s
Pearson R values on the same sample (y-axis). Red lines indicate threshold for significance (abs(R)>0.2),
darker colored dots are significant genes from panel A. Green cross represents the location of the mean
across all x- and y-values. (D) ISM value (x-axis) versus eQTL effect size (y-axis) for all SNVs within the
196Kb input sequence of the GSTM3 gene. Red circles represent SNVs that drive the linear
approximation to the predictions. SNVs are defined as supported or unsupported based on the
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concordance with the sign of the eQTL effect size. (E) Fraction of supported driver SNVs per gene
(y-axis) versus Pearson’s R values between Enformer’s predictions and observed expressions (x-axis). (F)
Number of driver SNVs within the 1000bp window to the TSS. Main drivers are the drivers with the
strongest impact on linear approximation, shown in different colors. (G) Top: Gradient attributions (grey)
across the entire sequence of the GSTM3 gene with location of all SNVs and driver SNVs. Bottom:
300bp window around the TSS with ISM attributions normalized by the estimated standard deviation
across the entire sequence. Most significant connected motifs are framed in red. Main driver shown as
magenta triangle.

Software and intermediate results
Scripts for running the analyses presented, as well as intermediate results are available from:
https://github.com/mostafavilabuw/EnformerAssessment

Accession Codes
Genotype, RNA-seq, and DNAm data for the Religious Orders Study and Rush Memory and
Aging Project (ROSMAP) samples are available from the Synapse AMP-AD Data Portal
https://www.synapse.org/#!Synapse:syn2580853/discussion/default as well as RADC Research
Resource Sharing Hub at www.radc.rush.edu.
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Figure 1

Figure 1. Evaluation of Enformer across genomic regions and select loci. (A) Schematic of the
training approach implemented by Enformer and other sequence-based CNN models. Different genomic
regions from the Reference genome are treated as data points. Genomic DNA underlying a given region is
the input to the model, and the model learns to predict various functional properties including gene
expression (CAGE-seq), chromatin accessibility (ATAC-Seq), or TF binding (ChIP-Seq). (B)
Population-average gene expression levels in cerebral cortex (averaged in ROSMAP samples, n=839) for
expressed genes (n=13,397) shown on the x-axis. Enformer’s prediction of gene expression levels for
cortex based on the Reference genome sequences centered at TSS of each gene (196Kb) is shown on the
y-axis. Enformer’s output tracks are fine-tuned with an elastic net model (see Methods). (C) Schematic of
the per-locus evaluation strategy. Personal genomes are constructed for each individual by inserting their
observed SNVs into the Reference genome. The personalized sequences centered at the TSS of gene
DDX11 are used as input to Enformer. (D) Prediction of cortex gene expression levels for individuals in
the ROSMAP cohort. Each dot represents an individual. Output of Enformer is fine-tuned using an elastic
net model. E) In-silico mutagenesis (ISM) values for all SNVs which occur at least once in 839 genomes
within 98Kb of DDX11 TSS. SNVs are colored by minor allele frequency (MAF). The border of the
“driver” SNV is shown in red and its size is proportional to its impact on the linear approximation
(Supplementary Methods).
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Figure 2

Figure 2. Evaluation of Enformer on prediction of gene expression across individuals. (A)
Y-axis shows the Pearson R coefficient between observed expression values and Enformer’s
predicted values per-gene. X-axis shows the negative log10 p-value, computed using a
gene-specific null model (Supplementary Method). The color represents the predicted mean
expression using the most relevant Enformer output track (“CAGE, adult, brain”). Red dashed
line indicates FDRBH=0.05. (B) Prediction of cortex gene expression levels (“CAGE, adult,
brain” track) in the ROSMAP cohort (n=839) for the GSTM3 gene, x-axis shows the observed
gene expression values. (C) Pearson R coefficient between PrediXcan predicted versus observed
expression across 839 individuals (x-axis) versus Enformer’s Pearson R values on the same
sample (y-axis). Red lines indicate threshold for significance (abs(R)>0.2), darker colored dots
are significant genes from panel A. Green cross represents the location of the mean across all x-
and y-values. (D) ISM value (x-axis) versus eQTL effect size (y-axis) for all SNVs within the
196Kb input sequence of the GSTM3 gene. Red circles represent SNVs that drive the linear
approximation to the predictions. SNVs are defined as supported or unsupported based on the
concordance with the sign of the eQTL effect size. (E) Fraction of supported driver SNVs per
gene (y-axis) versus Pearson’s R values between Enformer’s predictions and observed
expressions (x-axis). (F) Number of driver SNVs within the 1000bp window to the TSS. Main
drivers are the drivers with the strongest impact on linear approximation, shown in different
colors. (G) Top: Gradient attributions (grey) across the entire sequence of the GSTM3 gene with
location of all SNVs and driver SNVs. Bottom: 300bp window around the TSS with ISM
attributions normalized by the estimated standard deviation across the entire sequence. Most
significant connected motifs are framed in red. Main driver shown as magenta triangle.
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