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ABSTRACT:  24 

Premise of the study: Plant functional traits are often used to describe spectra of ecological 25 

strategies among species. Here we demonstrate a machine learning approach for identifying the 26 

traits that contribute most to interspecific phenotypic divergence in multivariate trait space. 27 

Methods: Descriptive and predictive machine learning approaches were applied to trait data for 28 

the genus Helianthus, including Random Forest and Gradient Boosting Machine classifiers, 29 

Recursive Feature Elimination, and the Boruta algorithm. These approaches were applied at the 30 

genus level as well as within each of the three major clades within the genus to examine the 31 

variability in major axes of trait divergence in three independent species radiations. 32 

Key Results: Machine learning models were able to predict species identity from functional traits 33 

with high accuracy, and differences in functional trait importance were observed between the 34 

genus level and clade levels indicating different axes of phenotypic divergence.  35 

Conclusions: Applying machine-learning approaches to identify divergent traits can provide 36 

insights into the predictability or repeatability of evolution through comparison of parallel 37 

diversification of clades within a genus. These approaches can be implemented in a range of 38 

contexts across basic and applied plant science from interspecific divergence to intraspecific 39 

variation across time, space, and environmental conditions.   40 

 41 

Keywords: Ecophysiology;Evolutionary divergence;Feature selection;Helianthus;Machine 42 

Learning;trait-divergence 43 
 44 
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 48 

INTRODUCTION: 49 

 50 

Ecophysiologists have long strived to explain the variation in ecological strategy amongst plant 51 

species using trait axes (Grime, 1977; Westoby, 1998; Reich et al., 2003; Wright et al., 2004; 52 

Reich, 2014). Ecological strategy is defined as the manner in which plant species sustain 53 

themselves in a specific environment (Westoby, 1998). In this regard the use of functional traits 54 

has been central, those morphological, physiological, chemical, or phenological traits that 55 

indirectly contribute to evolutionary fitness through effects on growth, survival, and reproduction 56 

(Violle et al., 2007). Functional traits typically shape plant resource use and environmental 57 

interactions, and ecophysiologists have often sought to summarize interspecific variation in plant 58 

performance and functionality from only a handful of selected proxy traits that represent broader 59 

axes of trait variation (Westoby et al., 2002). Analyzing plant ecophysiology through the lens of 60 

a few traits (or more specifically the trait axes they are thought to represent) permits researchers 61 

to make global comparisons across many hundreds to thousands of species across the global 62 

diversity of ecosystems (Diaz et al., 2016). Examples of few-trait paradigms of ecological 63 

strategies include the competitor-stress tolerator-ruderal triangle (CSR, Grime, 1977) the leaf-64 

height-seed scheme (LHS, Westoby, 1998), the leaf economics spectrum (LES, Wright et al., 65 

2004) and the plant economics spectrum (PES, Reich, 2014). For example, the LHS scheme 66 

attempts to explain variation in plant ecological strategies based on variation in three axes: leaf 67 

construction and productivity, plant stature and competitiveness for light, and the relative 68 

provisioning of propagules during reproduction (Westoby, 1998). Such a scheme permits the 69 

categorization or relative placement of species in trait space on a global scale, and each of these 70 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.533012doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533012
http://creativecommons.org/licenses/by-nd/4.0/


  
Majumder and Mason 

4 
    

three axes are known to vary quite considerably between species at any level of the other two 71 

axes (Westoby, 1998). Other paradigms are perhaps less narrowly focused on so few traits, but 72 

use groups of often readily-assessed functional traits to describe larger axes of plant functional 73 

variation. The CSR triangle posits that the relative selective pressures of competition, abiotic 74 

stress, or biomass-destroying disturbance select for specific trait combinations in plants (Grime, 75 

1977). In stable high-resource environments, selection is thought to favor investment in 76 

vegetative growth and competition for resources both aboveground and belowground, mediated 77 

by plant functional traits that permit rapid growth. In stable low-resource environments, selection 78 

is thought to favor investment in dense, persistent tissues that allow the maintenance of 79 

metabolic activity under scarce resources or periods hostile to growth. In unstable environments 80 

with periodic disturbance, selection is thought to favor traits that support rapid growth and early 81 

reproduction with a high output of offspring. Modern efforts to convert these qualitative 82 

descriptions into quantitative axes are based on very few leaf traits (Pierce et al. 2013; Pierce et 83 

al., 2017). The leaf economics spectrum (LES, Wright et al., 2004) sought to identify a single 84 

worldwide axis of leaf ecophysiological variation, based on the relative investments of carbon 85 

and nutrients during leaf construction, leaf productivity per unit time, and realized leaf lifespan. 86 

This axis was thought to reflect the leaf-level contribution to whole-plant ecological strategies 87 

ranging from fast growth and low tolerance to resource-related stressors, to slow growth and 88 

high tolerance to resource-related stressors. This idea has been further expanded into a stem 89 

economics spectrum (e.g., Baraloto et al., 2010), a root economics spectrum (e.g., Mommer et 90 

al., 2012), a flower economics spectrum (e.g., Roddy et al., 2020), and indeed a holistic whole 91 

plant economics spectrum (PES, Reich, 2014) integrating these organ-level axes given how 92 

resources flow among organs in plants. All of these spectra generally seek to capture trait 93 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.533012doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.533012
http://creativecommons.org/licenses/by-nd/4.0/


  
Majumder and Mason 

5 
    

variation in relation to carbon, nutrient, and water resources and how such trait variation can 94 

explain growth and fitness across plant species in biomes globally. Through this, these trait-95 

based spectra of ecological strategies can be used to address how trait variation impacts species 96 

distributions, community assembly processes, and ecosystem-scale functions. While these 97 

spectra typically have been initially investigated and defined using collections of species with 98 

large interspecific trait variation, they have usually been created using small sets of traits 99 

selected based on some a priori expectation of trait importance from the existing body of 100 

knowledge about plant physiology, as well as relative ease of measuring a given trait in a 101 

reproducible way on many hundreds or thousands of plants. Indeed, researchers have actively 102 

focused on generating lists of traits that can be measured easily and suggested that an 103 

approximate consensus be sought for a ranked list of ‘important’ traits that reflect ecological 104 

strategies (Westoby et al., 2002). If such an approximate consensus regarding ‘important’ traits 105 

could be found, it would immensely help researchers in comparing ecophysiological studies in 106 

different systems, conducting meta-analysis across studies, and forecasting future vegetation 107 

dynamics under a changing climate (Westoby, 1998). 108 

Under species diversification across environmental gradients, natural selection acts on 109 

functional traits given their role in resource mediation and indirect impact on plant growth, 110 

survival and reproduction (Caruso et al., 2020a). However, while natural selection arising from 111 

resource availability, competition for resources, or disturbance are certainly very important, they 112 

are not the only sources of selection that shape plant populations – both natural and sexual 113 

selection arises from pollinators and other mutualists, herbivores and other natural enemies, and 114 

non-resource abiotic factors like ultraviolet radiation, thermal regimes, soil texture, or many 115 

others aspects of the abiotic and biotic environment (Geber and Griffen, 2003; Caruso et al., 116 
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2019; Caruso et al., 2020b). Given the multivariate nature of the environment, and the 117 

multivariate nature of whole plant phenotypes, the small number of core ecophysiological traits 118 

used to define the CSR, LHS, or PES paradigms may or may not be particularly important during 119 

the evolutionary history of diversification of a given lineage. This means that trait-first 120 

approaches, where a small number of traits like plant height, specific leaf area, or seed size are 121 

assessed in a study system because they are deemed ecologically ‘important’ at a large 122 

interspecific scale, have the potential to miss traits that are important for the diversification of 123 

lineages evolving under lineage-specific evolutionary constraints and contingency (Donovan et 124 

al., 2011; Blount et al., 2018). As a number of studies have pointed out, individual plant lineages 125 

or specific functional groups of species occupying a portion of the larger global variation may or 126 

may not share trait-trait relationships observed across larger interspecific datasets (e.g., Edwards 127 

et al., 2014; Mason and Donovan, 2015; Klimešová et al., 2015; Niinemets, 2015; Anderegg et 128 

al., 2018). Therefore, independently identifying the most ‘important’ traits for capturing 129 

functional diversification within a study system has strong utility as it permits a test of whether 130 

these existing paradigmatic trait spectra are actually the most evolutionarily important axes of 131 

trait variation for a given lineage, or whether other plant traits demonstrate stronger divergence 132 

among focal species and warrant investigation for their functional role in adaptation and 133 

contribution to ecological strategies. The phenotypic traits that most strongly delineate species in 134 

multivariate trait space are hereafter referred to in this work as the most divergent traits, and we 135 

here demonstrate an analytical approach for identifying these traits in multi-species multivariate 136 

trait datasets. 137 

To accomplish this, we here examine trait patterns within the genus Helianthus 138 

(Sunflower) and within each of three distinct clades within the genus (the annual clade, the 139 
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southeastern perennial clade, and the large perennial clade) that reflect independent radiations 140 

across habitats. Species of the genus Helianthus are abundant across North America (Heiser et 141 

al., 1969) and can be found in a wide variety of habitats spanning biomes which include arid, 142 

semi-arid, sub-tropical and temperate locations. Along with diversity of habitat, a concomitant 143 

broad variation in traits is also observed, making Helianthus an excellent model for studying 144 

functional trait divergence. Members of the annual clade have short lifespans ranging from 145 

annuals that live only three months to facultative perennials that may live for a few years, and all 146 

members reproduce exclusively through seeds. Members of the large perennial clade are 147 

rhizomatous erect perennials with some lifespans exceeding a decade, all of which are deciduous 148 

– dying back to rhizomes each year and with varying degrees of vegetative reproduction by 149 

clonal spread in addition to seed production. The southeastern perennial clade contains a 150 

combination of deciduous rhizomatous erect perennials and quasi-evergreen basal rosette 151 

perennials, all with long lifespans and reproducing by a mix of seed production, rhizomes, and 152 

crown buds.  153 

These three clades are distinct in their life histories and growth forms, but each contains large 154 

diversity among species in morphological, physiological, chemical, and phenological functional 155 

traits (cite the four data papers used in this study). This work aims to assess if the same traits are 156 

the most divergent within each of the three clades given the contingency of diversification from 157 

the three distinct common ancestors, which speaks to how repeatable or predictable the evolution 158 

of functional traits is – an outstanding question in the evolution of plant functional traits (Caruso 159 

et al., 2020a). 160 

Our analytical approach uses Machine Learning (ML)-based descriptive and predictive 161 

modeling techniques to objectively identify the traits that are the most divergent among species 162 
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relative to within-species variation. In the context of Machine Learning, descriptive models are 163 

used to explain data and gain insights, whereas predictive models are used to make forecasts (van 164 

Klompenburg et al., 2020). In the application of these approaches for our purposes, the 165 

descriptive modeling approach facilitates the ranking of plant traits according to their relative 166 

‘importance’ in relation to species divergence in multivariate trait space as well as identifying a 167 

handful of optimal subsets of traits relevant to species delineation, whereas the predictive 168 

modeling validates these findings by identifying species from their traits. This approach is 169 

somewhat analogous to the non-ML method of using variance partitioning to investigate the 170 

magnitude of interspecific versus intraspecific variation in functional traits across multi-species 171 

ecological datasets (Albert et al., 2010; Kazakou et al., 2014; Prieto et al., 2017), however these 172 

approaches are almost always univariate and beholden to a range of assumptions (linearity, 173 

bivariate normality, homoscedasticity) in contrast to the multivariate ML-based approach we 174 

demonstrate here. Multivariate ML-based approaches permit the modeling of species trait 175 

divergences in a manner analogous to how multivariate suites of traits evolve in nature, including 176 

non-linear and strongly non-bivariate-normal relationships among traits. The feasibility of using 177 

interpretable ML-based models in the trait-based classification of species and the identification 178 

of relevant traits in this context has been demonstrated previously by using interpretable ML 179 

classifiers such as Decision Trees (Almeida et al., 2020). Such methods of identification have 180 

many parallels with traditional dichotomous keys, which are widely used throughout biology 181 

(Tilling, 1984) as a convenient and inexpensive method of species identification. Applying tree-182 

based ML algorithms in identifying plant species provides a method that does not rely heavily on 183 

subjective a priori researcher determinations regarding which traits are the most informative. 184 

Analogously, we here leverage multivariate ML-based approaches to identify sets of functional 185 
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traits that are the most divergent among species and strong candidates for traits of evolutionary 186 

significance. 187 

 188 

METHODS 189 

Data sources and plant material- 190 

Functional trait data from four separate publications (Mason and Donovan 2015; Mason 191 

et al., 2016; Mason, Goolsby et al., 2017; Mason, Patel et al., 2017) were acquired from the 192 

Dryad Digital Repository and aggregated into a single dataset. The relevant trait data came from 193 

the same common garden experiment containing 28 diploid wild Helianthus species grown under 194 

high-resource greenhouse conditions (Mason and Donovan, 2015). Each species was represented 195 

by 2-4 unique seed accessions derived from populations across the range of each species, with 196 

approximately 5-8 individual plants (biological replicates) per population.  The 28 species 197 

included represent over 80% of all diploid nonhybrid species within the genus Helianthus, 198 

distributed across the diploid backbone of the Helianthus phylogeny (Timme et al., 2007). The 199 

combined dataset used in this study included leaf morphological, ecophysiological, and 200 

defensive chemistry traits, whole-plant growth, biomass allocation, and phenology traits, and 201 

floral morphological and ecophysiological traits paired at the individual replicate plant level. 202 

 203 

Statistical software and packages-   204 

Data cleaning workflows and machine learning pipelines were designed using packages 205 

written in the R programming language (R Core Team 2022). The relevant code was executed on 206 

a standard laptop with 8GB of RAM to ensure wide accessibility of the approach. All code to 207 

reproduce the analyses in this work are provided on GitHub.  208 
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[Link: https://github.com/SamMajumder/MachineLearningFunctionalTraitDivergence] 209 

 210 

Data cleaning and data preparation- 211 

The steps undertaken to clean and prepare the data as well as subsequent analyses steps 212 

are outlined in Fig. 1. The full names of the traits were changed to an abbreviated format for ease 213 

of manipulation and use within the analysis pipeline, with a full list of traits and their 214 

corresponding abbreviations outlined in Table S1. This was achieved by using packages within 215 

the R tidyverse (Wickham et al., 2019). The dataset contained about 15% of missing data which 216 

was computed and visualized (Fig. S1). Missing data was imputed by using a proximity matrix 217 

from a random forest (Breiman, 2003) and this was implemented using the package 218 

randomForest (Liaw and Wiener, 2002). Seventy percent of the individuals were used at random 219 

to create the training set and thirty percent was used as the test set. The training and test dataset 220 

were imputed separately, to avoid data leakage. Genus-level questions were addressed by 221 

considering the entire training dataset during analysis, while clade-level questions were 222 

addressed by dividing the larger training dataset into three parts representing three major 223 

monophyletic clades within the genus: the large perennial clade, the annual clade, and the 224 

southeastern perennial clade sensu Stephens et al., (2015). Species not contained within these 225 

three clades were excluded from clade-level analyses.  226 

 227 

Modeling- 228 

Two classifiers were trained on the training data, and their predictive capabilities were 229 

evaluated by applying them to the test data (Fig. 1). These classifiers were Random Forest (RF) 230 

and Gradient Boosting Machines (GBM). RF is an ensemble machine learning algorithm which 231 
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builds several decision trees, and each tree is trained on a bootstrapped version of the original 232 

dataset, where the data is randomly sampled with replacement (Pal, 2005; Valletta et al., 2017). 233 

The predictions of each decision tree are then averaged across all trees, and this process in 234 

conjunction with bootstrapping the dataset is called “bootstrap aggregating” (Valletta et al., 235 

2017). The data left out during the bootstrapping procedure during the training process is called 236 

the out of bag data and is used to estimate the predictive performance of the model (Cutler et al., 237 

2012; Valletta et al., 2017). GBM is another ensemble tree-based algorithm where each tree in 238 

the ensemble predicts the error of the previous decision tree and each subsequent tree attempts to 239 

reduce this error, thereby sequentially improving the prediction accuracy (Friedman, 2001). 240 

GBM is a powerful machine learning algorithm which is highly flexible and customizable for a 241 

wide array of data types and machine learning applications (Natekin and Knoll, 2013). GBM 242 

contains four hyperparameters which can be tuned for the purposes of controlling the complexity 243 

of the predictive model (Friedman, 2001; Ridgeway, 2017; Zhou et al., 2019). These 244 

hyperparameters describe the number of decision trees built by the ensemble, the minimum 245 

number of observations for each tip of the decision tree (each species), and the learning rate and 246 

convergence across decision trees (Zhou et al., 2019).  247 

To quantify the predictive capabilities of RF and GBM using the strongly divergent traits 248 

as predictors, we used the overall accuracy of prediction alongside class-based metrics like 249 

precision, recall and F-1 score, calculated on the test dataset. The overall accuracy refers to the 250 

capability of the classifier to correctly predict any given species in the dataset, while recall 251 

conveys how many of an individual species were correctly predicted, precision is the measure of 252 

the quality of the prediction of individual species while the F-1 score is the harmonic mean of 253 

precision and recall. It combines the information from precision and recall into a single number 254 
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thus facilitating in understanding the predictive performance of our models at a species-specific 255 

level.  256 

As per Fig 1, the modeling step was implemented after the feature selection step to 257 

evaluate whether the traits deemed evolutionarily relevant were due to overfitting or not. The 258 

traits deemed important by an overfit model might not be relevant in relation to the outcome. 259 

This can not only lead to inaccurate future predictions (Smith, 2018) but also erroneous 260 

conclusions regarding the manner in which the variables relate to the outcome in the biological 261 

system. In this work the metrics calculated on the test dataset were used to not only validate the 262 

predictive capabilities of a specific model, but it is extended to gain confidence in the traits 263 

deemed important during the feature selection stage. 264 

 265 

Feature selection- 266 

The importance of all traits in the dataset was computed using Gini Impurity within a RF 267 

framework (Breiman, 2001, 2003). Gini Impurity in the feature selection stage involves in the 268 

quantification of the quality of splits in a tree-based classifier like RF during the decision-making 269 

process and this leads to the creation of efficient trees which in turn contributes to the 270 

improvement of the predictive task. At each node of a classification tree, selecting a feature or 271 

variable for branching is a crucial decision for the purposes of building a classification tree via 272 

training (Laber and Murtinho, 2019) and thus within its framework, a method to compute feature 273 

importance is necessary (Pal, 2005). An attribute which creates the best separation between the 274 

classes during creation of a split in the tree, will contribute to the highest decrease of the Gini 275 

impurity value and would have the highest importance amongst the list of attributes (Nembrini et 276 

al., 2018). This method of computing variable importance is called Mean Decrease of Impurity. 277 
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This allowed for ranking the traits based on their importance and facilitated in developing 278 

preliminary insights in relation to ecological relevance of the traits.  279 

 280 

To identify the optimal subset of relevant traits, recursive feature elimination (RFE) was used 281 

(Guyon et al., 2008). This resulted in reduction of the dataset to contain only a small optimal 282 

subset of relevant traits most useful for species classification, and this trait selection was 283 

achieved using an objective methodology (RFE) rather than a subjective one based on researcher 284 

opinion. RFE is a backward feature elimination technique whereby through a recursive process 285 

important features (here plant trait variables) are selected by building multiple models with the 286 

training data. A ranking system keeps track of the overall importance of each feature. With each 287 

iteration, the feature with the lowest rank in that iteration is eliminated. RFE uses a machine 288 

learning classifier to build multiple models and the choice of classifier is determined by the user. 289 

The method used to determine the importance of features and to rank and eliminate plant trait 290 

variables within the framework of RFE was the Mean Decrease of Accuracy (MDA) method, 291 

proposed alongside Gini Impurity by Breiman (2001). In this method, a baseline prediction 292 

accuracy is calculated on the out of bag data. Then the value of a variable is permuted, and this 293 

causes a change in the prediction accuracy, which is then recorded. The difference between the 294 

accuracies is averaged across all the decision trees in the RF ensemble and is normalized by 295 

standard error of the differences. The importance of the variable in question is the decrease in 296 

accuracy seen after permuting its original value. These steps are then repeated for all variables 297 

and their corresponding importance is recorded. RFE was implemented in this work by using the 298 

caret package (Kuhn, 2008). The plant traits within the optimal subset were retained in the 299 

training data and the rest were discarded. 300 
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To ascertain the plant traits that are most strongly relevant to species classification and 301 

therefore phenotypic divergence, the Boruta algorithm was used and was implemented using the 302 

Boruta package (Kursa and Rudnicki, 2010). This allowed us to apply an objective methodology 303 

to determine the most divergent traits at a genus and clade level. Boruta identified the strongly 304 

relevant, weakly relevant, and redundant plant trait variables in the dataset. This follows the 305 

principle that some features are more influential to the classification task while others are less 306 

influential according to the all-relevant problem (Nilsson et al., 2007; Kursa and Rudnicki, 307 

2010). Understanding this varied influence of all relevant features with regard to classification 308 

tasks can help in demystifying the black box approach to classification modeling. The Boruta 309 

algorithm is an RF-based algorithm and performs its task of feature selection through the 310 

computation of importance of each feature by a permutation method which differs from MDA in 311 

the timing of the permutation step. It first duplicates the original feature set, and the values of 312 

these duplicates are obtained by permuting the value of the original feature. Thus, instead of 313 

permuting feature values from the out of bag data, Boruta permutes feature values from the 314 

original dataset. The most strongly relevant traits are retained in both the training and the test 315 

dataset, whereas the rest are removed. This reduced training and test dataset is used in the train 316 

and evaluate classification models.  317 

To compare the findings from Boruta to more traditional methods examining interspecific 318 

versus intraspecific variation in plant functional traits, a linear mixed model was implemented in 319 

the lme4 package (Bates et al., 2015) to perform variance partitioning among individuals within 320 

populations, among populations within species, and among species. 321 

 322 

 323 
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RESULTS:    324 

Importance ranking of traits at the genus and clade level  325 

On the scale of relative importance computed through Mean Decease of Impurity (Figure 326 

S6), traits like leaf trichome density, leaf size and shape, fresh mass, dry mass, lamina thickness 327 

and whole plant reproductive phenology were among the most important traits at the genus level 328 

(Figure S6, Table S10). Among the least important traits were those related to leaf nutrient 329 

chemistry and gas exchange, and floral morphology and water content. For each of the three 330 

clades, many of the same traits were important, but with some differences among clades. In the 331 

large perennial clade, the most important traits included leaf size and shape, leaf water use 332 

efficiency, whole plant reproductive phenology, and floral size, while the least important traits 333 

were related to leaf gas exchange and floral morphology (Figure S12 and Table S13). In the 334 

annual clade, the most important traits included leaf trichome density, leaf size, floral size, whole 335 

plant reproductive phenology, and whole plant size, while the least important traits were related 336 

to leaf nutrient chemistry, gas exchange, and water content (Figure S9, Table S16). In the 337 

southeastern perennial clade, the most important traits included leaf size and shape, leaf trichome 338 

density, leaf solidity, whole plant reproductive phenology, and whole plant size, while the least 339 

important traits were related to leaf gas exchange, leaf lifespan, and leaf mass per area and 340 

toughness (Figure S15, Table S19). 341 

Comparing several commonly assessed plant functional traits (those of the leaf 342 

economics spectrum and leaf-height-seed scheme) between genus and clade level, we observe 343 

differences in trait variable rankings that inform patterns of trait divergence at different 344 

evolutionary scales. Leaf area exhibited a consistently high ranking at both the genus level and 345 

within each of the three clades, indicating that leaf size is a major component of interspecific 346 
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multivariate trait divergence at both recent and deeper-time scales. Leaf lifespan ranked much 347 

higher at the genus level (Figure S6, Table S10) compared to within clades, indicating a higher 348 

degree of importance of leaf lifespan in the divergence of the common ancestors of the three 349 

clades in multivariate trait space and relatively less importance for subsequent interspecific 350 

divergence within each clade. Area-based photosynthetic rate exhibited a low ranking across the 351 

genus and southeastern perennial clades (Figure S15, Table S19), but a higher rank in the large 352 

perennial (Figure S12, Table S13) as well as in the annual (Figure S9, Table S16) clades, 353 

indicating a higher degree of importance for photosynthetic rate in species phenotypic 354 

divergence within those clades (Figure S9, Table S16). Conversely, whole plant total biomass, 355 

predictive of stature under the leaf-height-seed scheme, ranked very high in the annual clade 356 

compared to the large perennial and southeastern perennial clades, as well as in the genus level 357 

where they ranked lower. Other traits related to the leaf economics spectrum or leaf-height-seed 358 

scheme, such as leaf mass per area and leaf nitrogen content, were found to rank low to moderate 359 

at both the genus level and within the three clades. Overall, while some traits contained within 360 

existing functional trait paradigms were found to be highly predictive of species identity and 361 

therefore interspecific phenotypic divergence, other traits within these paradigms were found to 362 

be of low importance for capturing multivariate trait divergence among species. 363 

 364 

Optimal subset of relevant traits identified with RFE  365 

                 Leaf nutrient chemistry and gas exchange traits as well as flower water content were 366 

excluded from the optimal subset at the genus level. Similar patterns were seen at the large 367 

perennial and annual clade level in relation to traits pertaining to leaf gas exchange and leaf 368 

chemistry being excluded from the optimal subset. Additionally, area based photosynthetic rate, 369 
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leaf chlorophyll content, whole plant leaf mass fraction as well as water content and morphology 370 

pertaining to flowers were also discarded at the level of both these clades. Reproductive 371 

phenology traits, as well as traits like whole plant belowground mass fraction, stem mass fraction 372 

and leaf mass fraction were also not part of the optimal subset of relevant traits at the annual 373 

clade level. At the southeastern perennial clade level, these traits were, area based photosynthetic 374 

rate, leaf toughness, leaf lifespan, and traits relating to leaf nutrient chemistry.  375 

 376 

Strongly divergent traits identified with Boruta-       377 

                    At the genus level, as well as within the large perennial, annual and southeastern 378 

perennial clades, most of the traits within the RFE-identified optimal subset were deemed to be 379 

potentially divergent by the Boruta algorithm. At the genus level, leaf traits like size (leaf area, 380 

leaf mass), shape (leaf circularity), and leaf trichome density were identified as the most strongly 381 

divergent traits alongside whole plant reproductive phenology (first bud, first flower) and stem 382 

mass fraction (Figure S8, Table S12). At the clade level, several of the most divergent traits 383 

identified by Boruta aligned with those identified at the genus level – leaf size (leaf area, leaf 384 

mass) and whole plant total biomass was strongly divergent within all three clades, leaf trichome 385 

density highly divergent within the annual (Figure S11, Table S18) and southeastern perennial 386 

clades (Figure S17, Table S21), reproductive phenology (first bud, first flower) highly divergent 387 

within both the large perennial (Figure S14, Table S18) and southeastern perennial clades.  388 

When comparing these results to traditional variance partitioning, we find similar results 389 

in relation to our non-linear methods used in this study at both the genus and clade level. Most of 390 

the traits that were deemed strongly divergent at the genus level also had the most variance at the 391 

species level when compared to the population level (Table S6) and this same pattern was also 392 
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seen in the perennial (Table S7), annual (Table S8) and the southeastern perennial clade (Table 393 

S9). There were however some differences as well. For example, floral morphology traits like 394 

flower petal area fraction, flower disc area fraction, flower disc diameter, flower disc 395 

circumference and leaf traits like leaf water content showed a high interspecific variation at the 396 

genus and southeastern perennial clade level while it had a low variable importance as per 397 

Boruta. Interestingly, the amongst species variation was over 50 % for floral morphology traits 398 

such as flower petals fresh mass, flower petals dry mass, flower disc circumference, flower ray 399 

width, flower total circumference, flower total diameter, flower ray length, flower total area, 400 

flower petal area, flower area investment ratio and leaf traits such as toughness at the annual 401 

clade level, however, these traits were excluded from the list of optimal subset of relevant traits 402 

as per RFE.  403 

 404 

Classification models  405 

At the genus and the clade levels, RF performed roughly equally to GBM in correctly 406 

classifying species from trait data, as evidenced by the overall accuracy, precision, recall and F1 407 

score on the unseen test dataset. For RF and GBM overall accuracy in respective order were 408 

95.7% (Precision: 0.93,Recall: 0.91 and F1 score: 0.91) and 91.3% (Precision: 0.84, Recall: 0.83, 409 

F1 score: 0.82) for GBM at the genus level, 92.1% (Precision: 0.87,Recall:0.86 and F1 score: 410 

0.85) and 90.77% (Precision: 0.84, Recall: 0.84, F1 score: 0.83) at the annual clade level, 411 

96.04% (Precision: 0.95, Recall: 0.93 and F1 score: 0.93) and 93.81% (Precision: 0.90, Recall: 412 

0.89, F1 score: 0.89) at the perennial clade level as well as 95.85% (Precision: 0.94, Recall: 0.93 413 

and F1 score: 0.93) and 96.31% (Precision: 0.94, Recall: 0.93 and F1 score: 0.93) at the 414 

southeastern perennial clade level.  415 
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DISCUSSION:  416 

What classification models can tell us about trait evolution in Helianthus 417 

 A range of studies have questioned the applicability of global-scale plant functional trait 418 

paradigms to smaller evolutionary scales, finding that major axes of diversification or underlying 419 

trait-trait relationships differ within specific diverse lineages, among species within diverse 420 

genera, or among populations within widespread species (e.g., Edwards et al.,, 2014; Mason and 421 

Donovan, 2015; Klimešová et al., 2015; Niinemets, 2015; Anderegg et al., 2018). Given 422 

concerns about the applicability of global trait spectra at smaller scales, the small handful of 423 

plant functional traits used to represent such global spectra may have little relevance to species 424 

phenotypic diversification at these scales. The source studies used for the present work (Mason 425 

and Donovan, 2015; Mason et al., 2016; Mason et al., 2017a; Mason et al., 2017b) examined a 426 

wide array of ecophysiological, chemical, morphological, and phenological traits across the 427 

genus Helianthus, and typically interpreted the evolution of these traits in light of global plant 428 

functional trait paradigms. However, taking a more holistic view using ML methods across a 429 

wide range of traits, we here find relatively lower interspecific divergence for conventionally 430 

‘important' leaf ecophysiological traits like those of the leaf economic spectrum (gas exchange, 431 

leaf nutrients, leaf mass per area) and far higher divergences for leaf size and morphology as 432 

well as whole-plant phenology, size, and biomass allocation. This comports with the earlier 433 

finding that whole plant phenological and biomass allocation traits are more strongly 434 

evolutionarily correlated with native habitat environmental variables than are leaf economics 435 

traits (Mason et al., 2017a; Mason and Donovan, 2015). Similarly, divergences in leaf size and 436 

shape have previously been found to be evolutionarily correlated with native habitat 437 

environmental variables, as well as with integrated water use efficiency and other leaf-level 438 
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resource-use traits within the genus (Mason and Donovan, 2015). Floral size traits have also 439 

previously been found to be evolutionarily correlated with native habitat environmental variables 440 

(Mason et al., 2017b). The results obtained here indicate that in diversifying across wide 441 

gradients of water and nutrient availability, temperature, and growing season length, each of the 442 

three major clades within the genus have diversified along somewhat different multivariate trait 443 

axes, perhaps constrained by limited variation in other traits in the context of growth form and 444 

life history. The ML approach implemented here permits a traits-first examination of species 445 

phenotypic divergences across the genus, which can be compared to existing functional trait 446 

paradigms to determine the traits underlying global spectra are the most important aspects of 447 

species phenotypic divergence. For Helianthus, our results suggest that the leaf economic 448 

spectrum (Wright et al., 2004) is likely not the primary axis of trait divergence within the genus, 449 

though several traits related to the leaf-height-seed scheme (Westoby et al., 1998) are found to be 450 

among the most divergent traits. However, the variation in variable importance observed among 451 

clades indicates that patterns of species trait divergence under are only partially repeated even 452 

when arising from a recent common ancestor. The importance of divergence in leaf size and 453 

shape suggests a more important functional role of these traits in relation to diversification across 454 

environments than currently recognized for sunflowers (Nicotra et al., 2011). Likewise, the 455 

importance of leaf trichome density suggests that the known roles of trichomes in mediating 456 

interactions with the abiotic environment (temperature, radiation, and water; Bickford, 2016) and 457 

natural enemies (herbivores and pathogens; Levin, 1973; Dalin et al., 2008) are important to wild 458 

Helianthus diversification and ripe for more detailed study, particularly given that trichomes are 459 

known to produce diverse secondary metabolites within cultivated Helianthus annuus 460 

(Aschenbrenner et al., 2013,2015,2016; Spring et al., 2015).  461 
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Other applications of machine learning classification models in plant science 462 

In ecological and agricultural studies, the datasets may contain continuous data collected on 463 

different scales which are common when measuring different traits and environmental 464 

characteristics. In such situations, tree-based machine learning methods provide reliable and 465 

accurate predictions on data without the need for scaling. The tree-based approaches mentioned 466 

in this study can be applied to answering similar ecophysiology questions in other genus as well 467 

as clades. Predictive models can be trained on ecophysiology data from several genera and 468 

species to elucidate not only genus, species, and clade specific evolutionary phenomena but also 469 

broader questions which pertain to interspecific functional trait diversification. Such approaches 470 

have the potential to inform ecologists which traits to specifically focus on and the relative 471 

importance of major traits when studying specific genera or species. Studies can be designed to 472 

evaluate the impact of specific weather and climate factors on the variation of functional trait 473 

values within a genus spanning several biomes. Such questions can also be investigated at an 474 

intraspecific level.  475 

 476 

They can be used for species identification where predictive models are trained on traits, 477 

phenotypic or genomic, or both from all known species within a genus. Such an approach can 478 

elucidate which phenotypic traits, genomic and biochemical features contribute to the differences 479 

amongst species and which characteristics are common within specific species or genera. Tree 480 

based models trained on biological data from known species can also potentially identify closely 481 

related species that may not have been discovered simply by computing the probability of 482 

prediction on such species. Classifying crop cultivars based on yield, disease resistance and 483 

nitrogen efficiency can also be pertinent applications of such methods. Furthermore, elucidating 484 
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the major factors and the interaction of those factors in relation to plant performance is possible 485 

as well using approaches mentioned in this study. We hope future studies in plant ecophysiology 486 

and agriculture will adopt non-linear multidimensional methods discussed in this study alongside 487 

common frequentist statistical models to answer specific questions especially when the 488 

hypotheses of linear models are violated or when using multidimensional large datasets. 489 
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 Appendices:  714 

1) Table S1: List of all functional traits used in this study along with their corresponding 715 

abbreviations used.  716 

2) Table S2: Functional trait data from twenty-eight diploid wild Helianthus species. 717 

3) Table S3: Training data. This data was used to perform descriptive modeling and was 718 

used to train machine learning classifiers.  719 

4) Table S4: Testing data. This data was used to validate the predictive capabilities of the 720 

machine learning classifiers trained on the training data  721 

5) Table S5: Traits that were not part of the optimal subset of relevant traits at the genus and 722 

clade level.  723 

6) Table S6: Variance partitioned between species, population, and corresponding residuals 724 

at the genus level.  725 

7) Table S7: Variance partitioned between species, population, and corresponding residuals 726 

at the perennial clade level.  727 

8) Table S8: Variance partitioned between species, population, and corresponding residuals 728 

at the annual clade level. 729 

9) Table S9: Variance partitioned between species, population, and corresponding residuals 730 

at the southeastern perennial clade level.  731 

10) Table S10: Relative importance of each trait at the genus level calculated by Gini 732 

impurity by fitting a random forest model to the training data.  733 

11) Table S11Optimal subset of ecologically relevant traits at a genus level, identified by 734 

recursive feature elimination.  735 

12) Table S12 Strongly divergent traits at the genus level identified by the Boruta algorithm.  736 
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13) Table S13: Relative importance of each trait at the perennial level calculated by Gini 737 

impurity by fitting a random forest model to the training data. 738 

14) Table S14 Optimal subset of ecologically relevant traits at a perennial level, identified by 739 

recursive feature elimination.  740 

15) Table S15 Strongly divergent traits at the perennial level identified by the Boruta 741 

algorithm.  742 

16) Table S16: Relative importance of each trait at the annual level calculated by Gini 743 

impurity by fitting a random forest model to the training data.  744 

17) Table S17: Optimal subset of ecologically relevant traits at an annual level, identified by 745 

recursive feature elimination. 746 

18) Table S18: Strongly divergent traits at the annual level identified by the Boruta 747 

algorithm.  748 

19) Table S19: Relative importance of each trait at the southeastern perennial calculated by 749 

Gini impurity by fitting a random forest model to the training data.  750 

20) Table S20: Optimal subset of ecologically relevant traits at the southeastern perennial 751 

level, identified by recursive feature elimination.  752 

21) Table S21: Strongly divergent traits at the southeastern perennial level identified by the 753 

Boruta algorithm.   754 

22) Table S22: Dataset used to perform the variance partitioning analysis.  755 
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Figure Legends:  760 

Figure 1 shows the complete workflow of the entire analysis procedure. The data was divided 761 

into a training and a test dataset by random sampling, whereby 70 % of the data was used for 762 

training and 30 % was used for testing. Missing data was imputed using a random forest 763 

algorithm using the R function rfImpute from the package randomForest. A random forest 764 

classifier was applied to the imputed training data (Train Imputed) and the traits were ranked 765 

based on Gini Importance. A recursive feature elimination method was implemented on the 766 

imputed training data and the optimal subset of ecologically relevant traits for species 767 

diversification was identified. The traits that were not in the optimal subset were excluded from 768 

both the training (Train optimal) and the test dataset (Test optimal). The Boruta algorithm was 769 

then applied to the training data (Train optimal) and the strongly divergent traits were identified. 770 

Once again only these traits were retained in both the training (Train boruta) and the test data 771 

(Test boruta), while the traits not identified as strongly divergent were discarded. Finally, two 772 

predictive models were trained on this reduced training dataset (Train boruta). One predictive 773 

model was built using the random forest classifier while the other one was built using the 774 

gradient boosting machine. These two models were validated using the test dataset (Test boruta) 775 

and compared with each other using metrics like overall accuracy, precision, recall and the F1 776 

score.  777 

  778 
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Figure 2. Visualization of species divergence along three strongly divergent trait axes at the 779 

genus and the respective clade levels. Figure 2a shows the trade-offs between leaf circularity, 780 

leaf area and whole plant stem mass fraction at the genus level.  Figure 2b visualizes the same 781 

for leaf lamina thickness, leaf night respiration area and whole plant total biomass at the annual 782 

clade level. Figure 2c represents the species divergence along the trait axes leaf area, leaf 783 

circularity and LD13C at the large perennial clade level.  and Figure 2d pertains to the 784 

phylogenetic clade southeastern perennial and visualizes data along trait axes leaf conductivity, 785 

leaf area and leaf circularity. In each panel, each point represents an individual plant, and each 786 

color represents a different species. For interactive three-dimensional plots, please visit the 787 

following URLs:  788 

[Figure 2a: 789 

https://sammajumder.github.io/MachineLearningFunctionalTraitDivergence/Genus3d.html  790 

Figure 2b:  791 

https://sammajumder.github.io/MachineLearningFunctionalTraitDivergence/Annual3d.html 792 

Figure 2c: 793 

https://sammajumder.github.io/MachineLearningFunctionalTraitDivergence/Perennials3d.html 794 

Figure 2d:   795 

https://sammajumder.github.io/MachineLearningFunctionalTraitDivergence/Southeastern3d.htm796 

l ] 797 

 798 

 799 
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Figure S1 shows the percent missing value for each trait in the dataset.  801 

Figure S2 Estimated relative variation partitioned for all 71 traits at the genus level within 802 

species and population.  803 

Figure S3 Estimated relative variation partitioned for all 71 traits at the large perennial clade 804 

level within species and population.  805 

Figure S4 Estimated relative variation partitioned for all 71 traits at the annual clade level within 806 

species and population.  807 

Figure S5 Estimated relative variation partitioned for all 71 traits at the southeastern perennial 808 

clade level within species and population.  809 

Figure S6 Relative importance of all 71 traits at the genus level, computed using Gini Impurity 810 

by applying a random forest classifier to the training data. This was used to rank the all the traits 811 

in the dataset.  812 

Figure S7 Optimal subset of ecologically relevant traits at the genus level, ascertained by using a 813 

recursive feature elimination (RFE) method on the dataset. The variable importance was 814 

calculated using mean decrease of accuracy from a random forest classifier within the framework 815 

of RFE.    816 

Figure S8 Strongly divergent traits at the genus level identified using the Boruta algorithm. 817 

These are the traits that strongly delineate the species in a multivariate trait space.  818 

Figure S9 Relative importance of all 71 traits at the annual level, computed using Gini Impurity 819 

by applying a random forest classifier to the training data. This was used to rank the all the traits 820 

in the dataset.  821 

Figure S10 Optimal subset of ecologically relevant traits at the annual level, ascertained by using 822 

a recursive feature elimination (RFE) method on the dataset. The variable importance was 823 
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calculated using mean decrease of accuracy from a random forest classifier within the framework 824 

of RFE.    825 

Figure S11 Strongly divergent traits at the annual level identified using the Boruta algorithm. 826 

These are the traits that strongly delineate the species in a multivariate trait space.  827 

Figure S12 Relative importance of all 71 traits at the perennial level, computed using Gini 828 

Impurity by applying a random forest classifier to the training data. This was used to rank the all 829 

the traits in the dataset.  830 

Figure S13 Optimal subset of ecologically relevant traits at the perennial level, ascertained by 831 

using a recursive feature elimination (RFE) method on the dataset. The variable importance was 832 

calculated using mean decrease of accuracy from a random forest classifier within the framework 833 

of RFE.    834 

Figure S14 Strongly divergent traits at the perennial level identified using the Boruta algorithm. 835 

These are the traits that strongly delineate the species in a multivariate trait space.  836 

Figure S15 Relative importance of all 71 traits at the southeastern perennial level, computed 837 

using Gini Impurity by applying a random forest classifier to the training data. This was used to 838 

rank the all the traits in the dataset.  839 

Figure S16 Optimal subset of ecologically relevant traits at the southeastern perennial level, 840 

ascertained by using a recursive feature elimination (RFE) method on the dataset. The variable 841 

importance was calculated using mean decrease of accuracy from a random forest classifier 842 

within the framework of RFE.    843 

Figure S17 Strongly divergent traits at the southeastern perennial level identified using the 844 

Boruta algorithm. These are the traits that strongly delineate the species in a multivariate trait 845 

space.  846 
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