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Abstract

Over the last few decades, psychologists have developed precise quan-
titative models of human recall performance in visual working memory
(VWM) tasks. However, these models are tailored to a particular class
of artificial stimulus displays and simple feature reports from partici-
pants (e.g., the color or orientation of a simple object). Our work has
two aims. The first is to build models that explain people’s memory
errors in continuous report tasks with natural images. Here, we use
image generation algorithms to generate continuously varying response
alternatives that differ from the stimulus image in natural and complex
ways, in order to capture the richness of people’s stored represen-
tations. The second aim is to determine whether models that do a
good job of explaining memory errors with natural images also explain
errors in the more heavily studied domain of artificial displays with
simple items. We find that: (i) features taken from state-of-the-art
deep encoders explain coarse-grained and some fine-grained aspects of
trial-by-trial difficulty in natural images, while several reasonable base-
lines do not; and (ii) deep visual encoders could reproduce set-size
effects but overall offered a poorer explanation of human data in the
artificial domain. Together, our results suggest that people may rely
on distinct cognitive systems or brain areas in artificial versus natu-
ral task domains. Moving forward, our approach offers a scalable way
to build a more generalized understanding of VWM representations
by combining recent advances in both AI and cognitive modeling.
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1 Introduction

When viewing an image, what details do we store in memory over the short
term? What is the nature of the cognitive bottleneck that restricts how much
information we can retain and recall? These and related questions have been
pursued for the last several decades, leading to the discovery of a number of
striking behavioral phenomena, including set-size, attraction, repulsion, and
inter-item interaction effects [1, 2]. Mathematical models offer compelling and
principled explanations for many of these phenomena [3–8]. However, while
these models are able to test competing theories about the nature of people’s
memory representations and capacity limits, they lack generality. Critically,
they cannot predict what people will recall about natural images. While chal-
lenging, it is crucial to study memory for more ecological stimuli, since findings
are likely to reveal important cognitive design principles that cannot be dis-
covered by studying more simplified and artificial settings alone [9]. Moreover,
given that our visual systems are optimized primarily to operate on natu-
ral images, it is reasonable to ask whether many of the phenomena we have
identified in artificial domains are related to this adaptation.

The effort to study visual memory in more ecological settings is hindered in
part by the same kinds of technological challenges facing much of vision science.
Due to the visual system’s complexity, we have long lacked precise models of
the computations carried out in the visual stream. A simultaneous challenge
lies in stimulus design. In order to probe the richness of our representations in
the domain of natural images, we need methods to continuously vary stimuli
in ways that appear natural to participants. Deep learning is beginning to offer
effective tools to solve both of these problems.

In order to build a general computational account of VWM for natural
images, we need a theory of where visual features come from. We argue that
the most parsimonious hypothesis is that VWM is primarily built on top of
feature detectors residing in the visual stream, and that our memory systems
select subsets of these features and store noisy or compressed versions of them.
Arguably, the most precise models to-date for computations carried out along
our visual streams come from certain classes of deep neural networks (DNNs)
[10, 11]. Thus, a reasonable starting place would be to select features from
these networks as candidates for the features that feed into VWM.

In order to predict behavior, we next need to combine the selected deep
neural network features with a noise model. Here, we adopt the Target Con-
fusability Competition (TCC) model [7]. This model is a generalization of a
standard signal detection model, which assumes two response options, to tasks
with arbitrary numbers of choices. Critical to our purposes, it can generate pre-
dictions for any feature space, including the kinds of complex, high-dimensional
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feature vectors that are likely needed to capture human visual representations,
such as those derived from DNNs. The TCC model is flexible in this way
because it relies only on pairwise similarity scores between the target stimu-
lus and each response alternative. Thus, the stimuli can be represented in any
hypothesized feature space, as long as a valid similarity metric can be applied.
Incorrect responses are assumed to result from a noise process that corrupts
the similarity scores (specifically, additive Gaussian noise).

We note that an alternative to TCC would be to add noise directly to the
DNN representations, rather than to pairwise similarity scores. For instance,
one could add Gaussian noise to each dimension of each DNN representation,
then compute similarity scores using the noise-corrupted vectors, and finally
take the maximum score as the response. This would lead to a model that is
mathematically similar, but raises the complication that the model’s behavior
then depends on nuisance factors, such as the dimensionality of the visual
representations and statistical moments of the activation values. Here, we are
most interested in whether the representational geometry of people’s VWM
representations is similar to that of a candidate DNN layer [12]. That is, does
higher pairwise similarity in the DNN layer’s representational space predict
higher confusability in people’s memories?

Our TCC-based models build on the original work in important ways. First,
while Schurgin et al. [7] refit the model’s single noise parameter (d′) for each
set-size, here we show that feature spaces from select DNN layers can reproduce
set-size effects without fitting separate noise parameters. Second, Schurgin
et al. derived a psychological similarity function from perceptual similarity
judgments, without identifying the origin of this similarity function. We show
how DNNs can be used to derive similarity functions that are predictive of
VWM for natural images. This also yields a practical benefit by obviating the
need to collect pairwise similarity judgments, which is impractical for very
large stimulus spaces.

We apply our modeling framework to VWM for both natural images and
artificial stimuli (color and orientation), comparing several different DNN-
based feature representations. To evaluate the models, we used a combination
of quantitative metrics (correlation, likelihood) and qualitative checks (sum-
mary statistics derived from from the models and data). We show that our
framework can capture many aspects of both natural and artificial stimuli, but
that there is a sharp divergence in performance between the two stimulus sets,
with our DNNs fairing worse in the artificial domain.

2 Results

2.1 Continuous report with natural images

To study VWM for natural images, we analyzed data collected by [13]. Stimuli
were generated using StyleGAN [14] (a generative adversarial network) trained
to produce novel, naturalistic indoor scenes (Fig. 1). We will refer to this as
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Fig. 1 Evenly-spaced samples from one wheel in the Scene Wheels experiment (radius=8).

the “Scene Wheels dataset”. On each trial, participants performed a continu-
ous report task, where the stimulus and all response alternatives were evenly
sampled from the circumference of a circle, which was drawn in a randomly-
sampled 2D plane in the GAN’s high-dimensional latent space. Trial difficulty
was controlled at a coarse level by changing the radius of the circle in latent
space. Larger radii resulted in more distinct response alternatives, since they
were further away from each other in code-space. The dataset includes 25
total “wheels” (circles in latent space), with five unique center points and five
different radii around each center point.

Model zoo. We compare TCC models constructed based on a wide range
of feature spaces, including layers from deep vision models and simpler base-
line models. Our two simplest baselines are the raw pixel vectors (length
3 × 256 × 256) and the RGB channel averages (length 3). We also include
the latent representation from a β-Variational Autoencoder (β-VAE) [15] as a
more sophisticated baseline. Deep autoencoder models have been explored as
tools to learn better image and video compression algorithms for technolog-
ical applications [16, 17], as well as to model human visual memory [18–20].
In addition to baseline models, we consider networks trained on the ILSVRC
ImageNet classification challenge (both the 1,000-way and 22,000-way ver-
sions) and networks trained on the Contrastive Language-Image Pre-training
(CLIP) objective [21]. The CLIP objective is conceptually related to classifi-
cation, but it encourages networks to learn semantically richer outputs that
capture all the information contained in a typical image caption rather than
a single class label. We selected a subset of pre-trained models provided by
OpenAI, including models based on the ResNet-50 backbone (and larger vari-
ants of the same architecture), which is a convolutional network, and Vision
Transformer, which is non-convolutional but also shown to be human-like [22].
For the ImageNet classifiers, we took several classic, pre-trained networks from
the Torchvision repository. We also took pre-trained ConvNext models [23]
(a recent convolutional competitor to Vision Transformers) from Facebook’s
Huggingface repository. Finally, we took a “harmonized” version of ResNet-50
from the repository provided by [24], which is optimized to encourage classifi-
cation decisions to depend on the same areas in the image that humans rely
on when making the same decisions.

TCC model. We construct a separate TCC model for each layer in each
architecture, as well as each baseline (see Fig. 2 for a schematic). For each
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Fig. 2 Schematic overview of our modeling pipeline using DNN features and the TCC
model. For a given DNN model and layer within that model, we take the (flattened) activa-
tions from that layer after feeding in a stimulus image and each response alternative from
the scene wheel, in turn. There were always 360 evenly-spaced response options. For each
option j, we computed cosine similarity between that option’s activation vector (yj) and
the stimulus’s (yi). After scaling by a constant factor d′, we added independent Gaussian
noise with unit variance to each of the 360 similarity scores to produce corrupted similarity
scores. Finally, we assumed responses were the argmax of these noisy scores.

trial, we compute all pairwise similarities between the target stimulus and
each of the 360 options along the response wheel. We then multiply these 360
similarity scores by a scaler, d′, which corresponds to the memory strength
for an exact match (similarity = 1), and therefore controls response accuracy.
Finally, we add independent Gaussian noise with unit variance to each of the
scores and take the option with the max score as the model’s response on that
simulated trial. (Note that it would be mathematically equivalent to scale the
variance of the noise, rather than the similarity scores.) We simulated 8000
model responses for each trial in the dataset.

Trial difficulty rank-order analysis. For each architecture considered,
we searched for the layer that best matched human data. For each layer, we fit
our only model parameter, d′, according to model likelihood. We conducted a
grid search over d′ values and used a histogram approximation to the model
likelihoods. We then estimated the Spearman correlation coefficient between
the human and model mean absolute error per trial. Because there was a large
number of unique stimuli compared to the number of responses collected, it
was necessary to bin trials. (Note that nearby stimuli on a given response wheel
tended to be highly similar.) We divided each scene wheel into 12 evenly-sized
bins, and for each bin, we averaged errors across all trials for which the target
stimulus fell within that bin.

Results of the Spearman analysis are presented in Fig. 3 (top panels). The
left-most panel (all trials aggregated) demonstrates that features taken from
our selected CLIP and ImageNet classifier models capture trial-by-trial diffi-
culty better than baselines. Within radius, our best models still explain some
fine-grained variance in the rank-order of difficulty, but the amount explained
differs by radius, whereas baseline models do not. As expected, baselines also
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Fig. 3 Rank-order difficulty results for Scene Wheels dataset. Top panels: Spearman rank
correlations for trial difficulty between best layer in selected DNN architectures and humans.
Dotted lines are an indication of the noise ceiling. Specifically, we took bootstrap resamples
of human responses within each radius, and for each resample we computed the Spearman
correlation coefficient between it and the original data. The lines are the fifth and 95th
percentile. Blue bars indicate p-values less than 0.05. Bottom panels: Comparison of human
and model mean errors within each wheel radius.

had lower likelihoods (Table 1). As another way to compare models, we also
plotted mean error per radius for humans and models (Fig. 3, bottom panels).
Interestingly, both our VAE model and raw pixels capture the relationship
between error and radius just as well as our best models, even while failing to
capture more fine-grained variance within each radius.

Table 1 Comparison of models and baselines
on Scene Wheels dataset

Model Log-likelihood Spearman

RGB channel means -25722 0.24 (p < 0.001)
Pixels -23077 0.70 (p < 0.001)
VAE -22935 0.77 (p < 0.001)
CLIP-RN50 -22628 0.85 (p < 0.001)
CLIP-ViT-B16 -22647 0.84 (p < 0.001)
VGG-19 -22606 0.83 (p < 0.001)

We also conducted a comparison across DNN architectures to examine what
factors might lead an architecture to explain more variance in this experiment
(Fig. 4). We considered several dimensions, including number of images seen
during training, type of architecture, and number of trainable parameters.
Since we are unable to do an exhaustive search over these factors (and various
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Fig. 4 Extended cross-model comparison on Scene Wheels dataset. Marker radius is pro-
portional to number of trainable parameters. ConvNext models labeled ‘1k’ were trained on
the 1,000-way ImageNet classification dataset and the others were trained on the 22,000-way
version.

confounds may exist), we present qualitative results, which may be suggestive
for future work.

Overall, we find that architecture, number of trainable parameters, and
number of training images may all be important factors. For each archi-
tecture, we selected the best layer according to its Spearman correlation in
the rank-order difficulty analysis. We find that the highest correlations are
achieved by the CLIP pre-trained networks, which also saw the most images
during training. At the same time, we see that within the class of Con-
vNext models, increasing the number of training images increases correlation.
Although number of training images may be confounded with objective, since
the better performing ConvNext models were trained on the 22,000-way clas-
sification task as opposed to 1,000-way. Another possibility is that training
objectives that encourage richer semantic information at the output layer
lead to higher correlations. Keeping objective and training set fixed, we also
see that some architectures outperform others. Within CLIP-trained models,
the Vision Transformer does worse than several convolutional architectures.
Within models trained on ImageNet 1,000-way classification, VGG-19 and
ResNet50 outperform ConvNext. Finally, we see evidence that continuing to
increase model size after a certain point leads to lower correlations. Within
both CLIP and ConvNext architectures, the largest models fare worse than
smaller ones, at least when the number of training images is large. If this effect
is indeed mediated by training set size, it could be related to the finding that
very large classifiers tend to find more ways to “cheat” the dataset in ways
that humans do not [25, 26].

Sources of trial-by-trial difficulty. A successful model of memory
should be able to explain why average difficulty varies across trials, even within
set size. A straightforward way to make a trial difficult for a participant is to
provide response options that are very similar to the target stimulus (e.g., by
choosing a small scene wheel radius). However, it is also possible that stimulus-
specific factors modulate difficulty, independent of the response options. For
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Fig. 5 Results of trial-difficulty regression analysis. We trained regression models using
recursive feature elimination to predict human mean error on each stimulus. All input fea-
tures summarized a stimulus with a single value. Each panel considers trials within a single
radius, since radius modulated difficulty but was not a stimulus-intrinsic factor (see Main
text). The blue, monotonic increasing lines in radii 2, 4, and 8 indicate that the regression
models capture fine-grained aspects of stimulus-specific difficulty. The limits in predictive
accuracy of the model can be observed in the larger radii, which are no longer monotonic.
Larger radii are harder to explain, because errors are smaller in magnitude and less vari-
able. Note the lines in each panel corresponding to the TCC models are flat, which indicates
they could not explain this stimulus-specific variability. Error bars are bootstrapped 90%
confidence intervals using 1000 random train-test splits. The bottom-right panel re-plots the
regression model predictions on a single plot for easier comparison.

instance, set-size effects in classic multi-item displays are usually explained in
terms of visual load [1, 27]. These accounts posit that a limited resource is
spread in some manner across items (or features) in the display, and thus aver-
age precision for each item necessarily decreases as a function of the quantity
of items stored. It is possible, for example, that an analogue to the set-size
effect exists in natural images, although a challenge lies in identifying what
counts as an item.

To test for stimulus-specific factors of difficulty, we searched for summary
statistics (see Methods) that increased monotonically with human mean error,
where each statistic summarized a stimulus image with a single number. We
found no individual statistic that exhibited a monotonic relationship. However,
we conducted a regression analysis to examine whether linear combinations of
the same features could produce a monotonic function (Fig. 5). We found this
to be the case, suggesting there exist factors that drive mnemonic difficulty
which are independent of the set of response options in the experiment. We
then asked whether our TCC models could explain this relationship and found
that they could not (see lines in plot corresponding to models, which are mostly
flat).
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Fig. 6 Results of the Spearman correlation analysis after refitting our models to color and
orientation stimuli.

2.2 Continuous report with color and orientation

In our experiments with artificial images, we analyzed previously collected
data from experiments studying color [28] and orientation [6] working mem-
ory. Both experiments we analyzed used continuous report tasks. In the color
memory experiment, every item in each display was probed. In the orientation
experiment, one item was probed at random. In addition to examining rank-
order of trial difficulty as above, we aimed to explain set-size effects, as well
as a subset of well-known response biases and inter-item effects. We restricted
our evaluation to the same subset of well-performing models presented in the
Scene Wheels experiment. In each experiment, we generated stimuli to match
the set of items shown to participants.

Fig. 6 shows results of the rank-order difficulty analysis, after refitting our
selected DNN architectures to the color and orientation datasets, separately.
We find that within each set-size, the best models have positive correlations
but in most cases do not reach a significance threshold of p < 0.05. The ρ
values are also less than was found for most of the Scene Wheel radii.

We next examined set-size effects in the orientation working memory
dataset, which included four set sizes (1, 2, 4, and 8). We compared mean abso-
lute error per set-size between humans and our models and found all best-fit
models to exhibit a set-size effect, but closest correspondence was found for the
VGG-19 model (Fig. 7, left panel). We further investigated what causes mean
error in our models to vary as a function of set-size. We find that the effect
is caused by the sparsity of activations in the DNN layers. As more objects
are added to the background of the image, more activations become non-
zero, causing the range of similarity values in the response options to shrink
(Fig. 7, right panels). Since noise with fixed variance is added to these values,
responses become more easily corrupted with increasing set-sizes. This expla-
nation bears some resemblance to neural resource models of working memory
[8], which appeal to divisive normalization between neurons in a population
as the mechanism to control neural resource allocation across items in the
display. However, these neural population models differ in that they predict



Springer Nature 2021 LATEX template

10 Article Title

2 4 6 8
Set size

10

15

20

25

30

M
ea

n 
ab

s. 
er

ro
r

human
clip_RN50
clip_ViT-B16
vgg19

0 50 100 150
Response angle

0.94

0.96

0.98

1.00

Co
sin

e 
sim

ila
rit

y 
to

 ta
rg

et

clip_RN50

0 50 100 150
Response angle

0.95

0.96

0.97

0.98

0.99

1.00
clip_ViT-B16

ss=1.0
ss=2.0
ss=4.0
ss=8.0

0 50 100 150
Response angle

0.7

0.8

0.9

1.0
vgg19

Fig. 7 Analysis of set-size effects in TCC models. Left panel: Comparison of human and
model mean error within each set-size in the orientation memory task. Right panels: Raw
similarity scores (per set-size) for our three selected models between a target with a hori-
zontal orientation and all response options.

a relatively constant overall level of activation, whereas the DNN models we
examined increase their activation with set-size.

We next asked whether our models could explain response inhomogeneities
in color and orientation working memory. A striking finding from orientation
memory experiments is that recall for nearly horizontal and vertical orien-
tations is exaggerated away from these cardinal orientations (repulsion). At
the same time, responses are biased toward the oblique orientations (attrac-
tion) [29]. In color working memory, there exist a set of “focal” colors that
responses are biased toward [30]. By visual inspection, we found that the bias
of our best-fit VGG-19 model bears some similarity to human bias in the ori-
entation memory task, although it also differs in some ways (Fig. 8, left). We
note, however, that further investigation revealed that while deep layers of the
model deviated somewhat from the exact shape of human biases in orientation
memory, earlier layers exhibited a closer correspondence (see Supplementary),
suggesting this class of models is capable in principle of explaining these biases.
By contrast, in color memory, none of the model layers are able to explain the
pattern of biases observed in humans (Fig. 8, right), although the models all
exhibit a similar pattern of biases.

Finally, we consider inter-item effects. [5] found strong evidence that mem-
ory errors for one item in a display depend on the other items they appeared
with. A specific hypothesis they tested was that people store hierarchical rep-
resentations of the displays. At the upper level, they may record the overall
level of dissimilarity between the items, while at a lower level, they record
item-specific details. To test this hypothesis, they computed a correlation coef-
ficient between circular variances, where one vector comprised the variances of
the three hues in each stimulus display and the other was the variances of the
three chosen hues at response time. Importantly, they only included trials for
which participants were far off on all their responses (> 45 deg). They found a
significant correlation of 0.4. When we conducted the same analysis with our
selected models, we found an insignificant correlation near zero for all of them.

Taken together, the above results suggest that layers from our selected
DNNs do not adequately explain participants’ behavior in continuous report
for color and orientation. A possible reason for this mismatch between models
and humans is that the models were trained only on natural images and did
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Fig. 8 Comparison of humans’ and models’ average response bias in orientation (left) and
color (right) memory tasks.

not see anything like the artificial stimuli during training. We tested for this
possibility by fine-tuning our two CLIP models on the color stimuli. We created
captions by finding the nearest color name from a database of color names for
each item in the display. After redoing our analyses, we found no improvement
in model fit (see Supplementary), suggesting human behavior in these kinds of
artificial displays may not be easily captured by the kinds of DNN architectures
we tested.

Finally, we asked whether the same or similar layers within each model pro-
vided the best explanations across experiments. For VGG-19, we the best-fit
layer for the Scene Wheels dataset was layer 30, but for color and orientation
it was 7 and 22, respectively. For CLIP ResNet-50, the best layer was 24 for
Scene Wheels, 11 for color and 16 for orientation. For CLIP ViT-B16, the best
layer was 12 for Scene Wheels, 23 for color, and 11 for orientation. Thus, for
both convolutional architectures, the best layer was deeper for natural images
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than both the artificial experiments, but for the vision transformer-based archi-
tecture, this was not the case. However, since the results were generally poor
for the artificial stimuli, we also looked across all layers (Supplementary) to
see if a systematic relationship emerged between layer depth and correlation.
Doing so, we found that deeper layers are consistently better explanations of
the Scene Wheels data for the convolutional architectures, but the relation-
ship is less clear for ViT. In the case of color and orientation, no clear trend
emerges in any of the architectures.

3 Discussion

We combined several recent advances from cognitive science and AI to build
scalable models of visual memory. We sought to build models that are not
restricted to tasks with low-dimensional stimuli and/or simple feature reports,
but can make more general predictions. In particular, we sought to under-
stand what features are stored in memory over the short term after viewing
natural images. We then asked whether similar features are stored when view-
ing the kinds of sparse, artificial displays typically used in working memory
experiments.

We constrained our search for human-like features to two classes of pre-
trained DNN, ImageNet classifiers and CLIP models. We found that our best
models as well as several baselines were able to capture coarse-grained aspects
of people’s psychological similarities, specifically the increase in mean error
with smaller scene wheel radii. However, our models based on DNNs were able
to capture much more fine-grained variance than all baselines, as measured by
rank-order correlations of trial difficulty. When we refit our models to color and
orientation tasks, the story was different. While the best-fitting models were
able to capture set-size effects, and to a certain extent human-like biases in
orientation memory, overall they provided a poor explanation of trial-by-trial
difficulty in both color and orientation experiments compared to the natural
images.

A likely contributing factor to this shortcoming is that the models’ repre-
sentations for the probed item did not depend very much on the other items
in the display, at least in the case of colors, whereas human data show strong
inter-item dependencies. Specifics of the DNN architectures may contribute to
this issue. For instance, early layers of convolutional networks have small recep-
tive fields and thus their representations of spaced-out items in a display may
interact little. However, this is not likely to be the only issue, since some of our
best-fit layers were deep enough in principle to have inter-item interactions.

Another potential reason that our DNNs failed to adequately capture
human responses with simple color and orientation features is that the color
and orientation stimuli were far from their training distribution, and thus in a
sense, the networks did not “understand” the content of the image. For exam-
ple, human participants naturally parse such images into a set of objects with
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configural properties [31, 32]. We reasoned that an appropriate fine-tuning pro-
cedure might endow our models with similar abilities. CLIP models provide
an ideal starting point toward this goal, since we can train the model with a
description of the contents of the artificial stimuli. To test this, we fine-tuned
our CLIP models on the color stimulus images accompanied with captions
that named the colors present in the display. However, we found no resulting
improvement in the models’ fits to participant responses.

Future work should more closely examine why human responses diverge
from models built on representations taken from deep classifier and CLIP-
trained models. One possibility that has already been put forward in the VWM
literature is that people may employ meta-cognitive strategies that are tai-
lored to simple multi-item displays, such as chunking and hierarchical encoding
[33–35]. Alternatively, these kinds of behaviors might arise naturally from a
DNN trained on the appropriate objective. But our results here already rule
out some common training objectives (classification, CLIP, pixel-wise recon-
struction), using vision transformers as well as a variety of convolutional
architectures. Attention mechanisms might be another source of divergence
between humans and models in our tasks. For example, there is evidence that
attentional dynamics are a critical component of explaining VWM performance
in sparse multi-item displays [36–38]. By contrast, popular DNN models solve
their objectives without any explicit attentional modulations [32].

Our models were built on the hypothesis that the features stored in VWM
are noisy or compressed versions of features computed when initially perceiving
a stimulus. But this hypothesis could be tested in a more direct way by using
neural recordings. Previous work has shown that when DNNs are trained to
predict neural activity directly (e.g., using fMRI data), the learned representa-
tions recapitulate key behaviors and capabilities of human vision. For instance,
when trained on activity from face-selective areas, the resulting representa-
tions are able to solve non-trivial segmentation problems, picking out faces in
complex scenes [39, 40]. The outputs of these networks, or even the fMRI data
used to train them, could be directly swapped in for the features we used in the
present work. By building TCC models directly on top of neural features, we
might also elucidate the discrepancies we found between natural and artificial
images. For example, we could visualize the ways that participants segment
and interpret artificial displays and use the result to pinpoint failure modes
of DNNs trained to predict labels or captions. Using the same approach, we
could also ask whether people rely on different brain areas depending on the
stimulus set or task [41].

Finally, our approach may prove useful in clarifying some longstanding
debates about the nature of VWM. In particular, our method allows us to
ask how biases and capacity limits in certain artificial paradigms fit into a
larger picture that includes behavior in more natural settings and tasks. Given
that many important findings about VWM come from unnatural stimuli, an
important baseline to test is whether adaptation to demands of our natural
environment explains these phenomena. Our results shed light on this and
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related questions. We found that a TCC model using the right DNN features
could explain both set-size effects and repulsion biases in orientation memory,
despite only being trained to classify natural images. More work is neces-
sary to determine whether these correspondences are simply coincidental or
provide a satisfying explanation of human behavior. Nonetheless, our work
constitutes a necessary first step toward more flexible and general models of
visual memory that can accommodate findings from both natural and artifi-
cial stimulus domains. Such models must at minimum be able to capture the
representational geometry of the features stored in VWM. Thus, our models
were designed to evaluate different feature spaces according to how well their
geometries explained human error patterns. And while this is only a first step,
our novel framework provides clear avenues for future investigation. It makes
clear that significant efforts should be devoted to determining what elements
are missing from current DNN architectures and in what ways they need to
be modified in order to explain more variance in VWM tasks, especially those
involving artificial displays.

4 Methods

4.1 DNN layers

For ResNet-based models, we selected all layers from the pre-residual-block
portion of the network, the last convolutional layer within each bottleneck
sub-module in each residual block, and the pooling layer just before the final
output. For VGG-19, we selected the last 32 layers within the sub-module
labeled “features” in the Torchvision implementation. This excluded the last
two fully-connected layers before the soft-max output. For the ConvNext mod-
els, we took the output of each ConvNextLayer within each ConvNextStage,
as defined by the PyTorch model. For Vision Transformer-based models, we
took the attn and ln 2 sub-layers from each attention layer.

We downloaded pre-trained CLIP models from
https://github.com/openai/CLIP, PyTorch ImageNet classifiers from
https://pytorch.org/vision/stable/models.html and ConvNext models
https://huggingface.co/models?sort=downloads&search=facebook%2Fconvnext.

4.2 Trial-difficulty regression analysis

We trained linear regression models to predict trial difficulty in the scene-wheel
dataset. Our proxy measure for difficulty was mean absolute human error.
Stimuli were binned in the same manner as for the Spearman rank correlation
analyses (i.e. bin size of 30 degrees, see main text). We trained on a subset
of scene wheel radii (2, 4, and 8), and sampled 1000 random train/test splits.
Splits were 50/50 and were done within each radius separately to keep the
dataset balanced. We re-trained the regression model for each of the 1000
resamples, using only items from the training split. Results presented in the
main text use model predictions on the test split only. Table 2 gives descriptions

https://github.com/openai/CLIP
https://pytorch.org/vision/stable/models.html
https://huggingface.co/models?sort=downloads&search=facebook%2Fconvnext
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Table 2 Description of features used in trial-difficulty regression analysis

Feature name Description
radius Radius in GAN space. Not a feature of stimulus but of

response set. Larger radius means response alternatives are
more distinct from stimulus and each other, and therefore
result in less difficult trials. Included in regression to allow
predictions to account for this stimulus-independent source
of variability in human error.

disk size Disk storage size for stimulus images (here we used JPEG).
vae beta0.01 mean(abs(z)), where z are the activation values correspond-

ing to µ in β-VAE encoder output layer. This model was the
same as the one used to create a baseline TCC model (see
Main). Its β value was 0.01 and it was trained on the Places-
365 dataset. Due to regularization toward the zero-mean
prior, large activations magnitudes should generally be rare,
but more complex images may elicit higher magnitudes.

countr estimate Output of CounTR model, which estimates number of
objects in an image.

keypoints 2d mean(abs(y)), where y is the output activation map from
the 2D keypoints model in the Midlevel-vision repository.
Higher values indicate higher confidence in the presence of
a 2D keypoint. Images with more points of interest may be
more difficult to remember. (Based on SURF features.)

keypoints 3d Same as keypoints 2d except with 3D keypoints. (Based on
NARF features.)

seg 2d Disk size of image output from Midlevel-vision unsupervised
segmentation (2D) model, which is based on gestalt princi-
ples. Images with greater gestalt complexity may be more
difficult to remember.

seg 25d Same as seg 2d, except with 2.5D gestalt features.
vgg19 l* mean abs mean(abs(y)), where y are hidden activations from VGG19

trained on ImageNet-1k at layer i. Due to regularization,
activations are sparse. Images with higher visual load may
elicit larger activations.

vgg19 l* spatial entropy H(y), where y are hidden activations from VGG19 trained
on ImageNet-1k at layer i, and H is the ”spatial” entropy.
This measure increases to the extent that points of interest
(as indicated by non-zero activations) are more evenly dis-
tributed across the image. This may be a relevant factor if
people prefer focal attention over diffuse.

for each of the features we included in the analysis. We used Scikit-Learn’s
recursive feature elimination with cross-fold validation (RFE-CV) with the
minimum number of features set to one, applied to standard linear regression.
Before training, we applied a log-odds (inverse sigmoid) transformation to the
prediction targets to adjust for their circularity. Fig. 9 (top) plots how often
each feature was kept by the RFE-CV procedure. Fig. 9 (bottom) visualizes
inter-feature correlations.
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Fig. S1 Spearman rank correlations for trial difficulty between each layer in selected DNN
architectures and humans on Scene Wheels dataset. Blue bars indicate p-values less than
0.05.

Supplementary Information

Results for all DNN layers

Fig. S1 shows results from all layers of each of the three selected models for
the Scene Wheels dataset. Figs. S2 and S3 show the same for the orientation
and color datasets, respectively. Note that in the case of orientation, d′ is fit
for each layer across all set-sizes simultaneously.

Repulsion bias in VGG-19

We examined additional layers of VGG-19 in the orientation memory experi-
ment to see whether any layers exhibited the repulsion effect characteristic of
human responses. For each layer examined, we set d′ to its maximum-likelihood
value (when fit across all set sizes). Fig. S4 plots response bias for layers 8-11.
By inspection, layer 9 shows a clear repulsion bias that mirrors humans in its
shape. Layers 10 and 11 show the effect as well, although they diverge more
from human bias.



Springer Nature 2021 LATEX template

Article Title 21

Fine-tuning CLIP models on color stimuli

We sampled stimuli using the same color wheel as the memory experiment,
but varied set-size randomly between 1 and 4. To create each caption, we
assigned a name to each color in the stimulus and joined the names together
with a white-space as the delimiter. Colors were matched to the set contained
in the database here: https://shallowsky.com/colormatch/rgb.txt. Matching
was done by choosing the color name whose corresponding RGB value was the
closest to the stimulus item, as measured by Euclidean distance. Fig. S5 shows
the results of redoing the response-bias analysis with the fine-tuned models.
The Spearman correlation coefficients for mean error between humans and the
fine-tuned models were 0.15(p = 0.066) for CLIP-RN50 and 0.13(p = 0.11) for
CLIP-ViT-B/16.

https://shallowsky.com/colormatch/rgb.txt
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Fig. S2 Spearman rank correlations for trial difficulty between each layer in selected DNN
architectures and humans on orientation memory dataset. Blue bars indicate p-values less
than 0.05.
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Fig. S3 Spearman rank correlations for trial difficulty between each layer in selected DNN
architectures and humans on color memory dataset. Blue bars indicate p-values less than
0.05.
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Fig. S5 Human and fine-tuned CLIP model response biases in color memory task.
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