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How do animals successfully invade urban environments? Sex-biased dispersal and learning arguably influ-
ence movement ecology, but their joint influence remains unexplored empirically, which might vary by space
and time. We assayed reinforcement learning in wild-caught, temporarily-captive core-, middle- or edge-range
inhabitants of great-tailed grackles—a bird species undergoing urban-tracking rapid range expansion, led by
dispersing males. Across populations, Bayesian models revealed: both sexes initially learn at similar pace, but,
when reward contingencies reverse, males—versus females—‘relearn’ faster via pronounced reward-payoff
sensitivity, a risk-sensitive learning strategy. Confirming this mechanism, agent-based forward simulations
of reinforcement learning replicate our sex-difference data. Separate evolutionary modelling revealed risk-
sensitive learning is favoured by natural selection in stable but stochastic settings—characteristics typical of
urban environments. Risk-sensitive learning, then, is a winning strategy for urban-invasion leaders, implying
life history (sex-biased dispersal) and cognition (learning) interactively shape invasion success in the unpre-
dictable Anthropocene. Our study sets the scene for future comparative research.

Introduction

Dispersal and range expansion go ‘hand in hand’; movement by individuals away from a population’s core is a pivotal
precondition of witnessed growth in species’ geographic limits [1, 2]. Because ‘who’ disperses—in terms of sex—
varies both within and across taxa (for example, male-biased dispersal is dominant among fish and mammals, whereas
female-biased dispersal is dominant among birds [3]), skewed sex ratios are apt to arise at expanding range fronts,
and, in turn, differentially drive invasion dynamics [4]. Female-biased dispersal, for instance, can ‘speed up’ staged
invertebrate invasions by increasing offspring production [5]. Alongside sex-biased dispersal, learning is also argued
to contribute to species’ colonisation capacity, as novel environments inevitably present novel (foraging, predation,
shelter, and social) challenges that newcomers need to surmount in order to settle successfully [6, 7, 8]. Indeed, a
growing number of studies show support for this supposition (recently reviewed in [9]). Carefully controlled choice
tests, for example, show urban-dwelling individuals—that is, the invaders—will learn novel stimulus-reward pairings
more readily than do rural-dwelling counterparts, supporting the idea that urban invasion selects for learning pheno-
types at the dispersal and/or settlement stage(s) [10]. Given the independent influence of sex-biased dispersal and
learning on range expansion, it is perhaps surprising, then, that their potential interactive influence on movement ecol-
ogy remains unexamined empirically (but for recent theoretical work, see [11, 12]), particularly in light of concerns
over (in)vertebrates’ resilience to ever-increasing urbanisation [13, 14].

Great-tailed grackles (Quiscalus mexicanus; henceforth, grackles) are an excellent model for empirical examina-
tion of the interplay between sex-biased dispersal, learning, and ongoing urban-targeted rapid range expansion: over
the past ∼150 years, they have (seemingly) shifted their historically urban niche to include more variable urban envi-
ronments (e.g., arid habitat; [15]), moving from their native range in Central America into much of the United States,
with several first-sightings spanning as far north as Canada [16, 17, 18]. Notably, the record of this urban invasion is
heavily peppered with first-sightings involving a single or multiple male(s) (41 of 63 recorded cases spanning most
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Fig. 1. Participants and experimental protocol. Thirty-two male and 17 female wild-caught, temporarily-captive great-tailed
grackles either inhabiting a core (17 males, 5 females), middle (4 males, 4 females) or edge (11 males, 8 females) population of
their North American breeding range (establishment year: 1951, 1996, and 2004, respectively), are participants in the current study
(grackle images: Wikimedia Commons). Each grackle is individually tested on a two-phase reinforcement learning paradigm:
initial learning, two colour-distinct tubes are presented, but only one coloured tube (e.g., dark grey) contains a food reward (F+
versus F-); reversal learning, the stimulus-reward tube-pairings are swapped. The learning criterion is identical in both learning
phases: 17 F+ choices out of the last 20 choices, with trial 17 being the earliest a grackle can successfully finish (for details, see
Methods and fig. S1).

of the twentieth century; [16]). Moreover, recent genetic data show, when comparing grackles within a population,
average relatedness: (i) is higher among females than among males; and (ii) decreases with increasing geographic dis-
tance among females; but (iii) is unrelated to geographic distance among males; hence, confirming urban invasion in
grackles is male-led via sex-biased dispersal [19]. Considering these life history and genetic data in conjunction with
data on grackle wildlife management efforts (e.g., pesticides, pyrotechnics, and sonic booms; [20]), we expect urban
invasion to drive differential learning between male and female grackles, potentially resulting in a spatial sorting of
the magnitude of this sex difference with respect to population establishment age (i.e., sex-effect: newer population >
older population; [21]). In range-expanding western bluebirds (Sialia mexicana), for example, more aggressive males
disperse towards the invasion front; however, in as little as three years, the sons of these colonisers show considerably
reduced aggression, as the invasion front moves on [22].

Here, for the first time (to our knowledge), we examine whether, and, if so, how sex mediates learning across
32 male and 17 female wild-caught, temporarily-captive grackles either inhabiting a core (17 males, 5 females),
middle (4 males, 4 females) or edge (11 males, 8 females) population of their North American range (based on
year-since-first-breeding: 1951, 1996, and 2004, respectively; details in Methods; Fig. 1). Collating, cleaning, and
curating existing reinforcement learning data (see Data provenance)—wherein novel stimulus-reward pairings are
presented (i.e., initial learning), and, once successfully learned, these reward contingencies are reversed (i.e., reversal
learning)—we test the hypothesis that sex differences in learning are related to sex differences in dispersal. As range
expansion should disfavour slow, error-prone learning strategies, we expect male and female grackles to differ across
at least two reinforcement learning behaviours: speed and choice-option switches. Specifically, as documented in our
preregistration (see Supplementary Materials), we expect male—versus female—great-tailed grackles: (prediction 1
and 2) to be faster to, firstly, learn a novel colour-reward pairing, and secondly, reverse their colour preference when the
colour-reward pairing is swapped; and (prediction 3) to make fewer choice option-switches during their colour-reward
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learning; if learning and dispersal relate. Finally, we further expect (prediction 4) such sex-mediated differences in
learning to be more pronounced in grackles living at the edge, rather than the intermediate and/or core region of their
range.

Because (dis)similar behaviour can result from multiple latent processes [23], we next employ computational
methods to delimit reinforcement learning mechanisms. Specifically, we adapt a multi-level Bayesian reinforcement
learning model (from [24]), which we validate apriori via agent-based simulation (see Methods and Supplemen-
tary Materials), to estimate the contribution of two core latent learning parameters: the information-updating rate
ϕ (How rapidly do learners ‘revise’ knowledge?) and the risk-sensitivity rate λ (How strongly do learners ‘weight’
knowledge?). Both learning parameters capture individual-level internal response to incurred reward-payoffs (full
mathematical details in Methods). Specifically, as ϕ0→1, information-updating increases; as λ0→∞, risk-sensitivity
strengthens. In other words, by formulating our scientific model as a statistical model, we can reverse engineer which
values of our learning parameters most likely produce grackles’ choice-behaviour—an analytical advantage over less
mechanistic methods [23].

To determine definitively whether our latent learning parameters are sufficient to generate grackles’ observed
reinforcement learning, we then conduct agent-based forward simulations; that is, we simulate ‘birds’ informed by
the grackles in our data set. Specifically, whilst maintaining the correlation structure among learning parameters, we
randomly assign 5000 ‘males’ and 5000 ‘females’ information-updating rate ϕ and risk-sensitivity rate λ estimates
from the full across-population posterior distribution of our reinforcement learning model, and we track synthetic
reinforcement learning trajectories. By comparing these synthetic data to our real data, we gain valuable insight
into the learning and choice behaviour implied by our reinforcement learning model results. Specifically, a close
mapping between the two data sets would indicate our information-updating rate λ and risk-sensitivity rate λ estimates
can account for grackles’ differential (or not) reinforcement learning; whereas a poor mapping would indicate some
important mechanism(s) are missing (e.g., [24]).

Learning mechanisms in grackles obviously did not evolve to be successful in the current study; instead, they
likely reflect selection pressures and/or adaptive phenotypic plasticity imposed by urban environments [9, 6, 25, 26,
27]. Applying an evolutionary algorithm model (details in Methods), we conclude by examining how urban envi-
ronments might favour different information-updating rate ϕ and risk-sensitivity rate λ values, by estimating optimal
learning strategies in settings that differ along two key ecological axes: environmental stability u (How often does
optimal behaviour change?) and environmental stochasticity s (How often does optimal behaviour fail to payoff?).
Urban environments are generally characterised as both stable (lower u) and stochastic (higher s): more specifically,
urbanisation routinely leads to stabilised biotic structure, including predation pressure, thermal habitat, and resource
availability, and to enhanced abiotic disruption, such as anthropogenic noise and light pollution (reviews: [28, 29,
30]). Seasonal survey data from (sub)urban British neighborhoods show, for example, 40%-75% of households pro-
vide supplemental feeding resources for birds (e.g., seed, bread, and peanuts), the density of which can positively relate
to avian abundance within an urban area [31, 32, 33]. But such supplemental feeding opportunities are necessarily
traded off against increased vigilance due to unpredictable predator-like anthropogenic disturbances (e.g., automobile
and airplane traffic; as outlined in [34]).

In summary, here, we map a full pathway from reinforcement learning behaviour to underlying reinforcement
learning mechanisms to their selection and adaptive value in urban-like environments, to comprehensively examine
links between life history (male-biased dispersal) and cognition (learning) in an active urban-invader—grackles.

Results

Reinforcement learning behaviour

We observe robust reinforcement learning dynamics across populations (full model outputs and 89% highest poste-
rior density intervals (HPDI) for all three study populations in table S1 and S2). As such, we compare male and
female grackles’ reinforcement learning across populations. Both sexes start out as similar learners, finishing initial
learning in comparable trial numbers, and with comparable counts of choice-option switches (median number of trials
and switches in initial learning: males, 32 and 10.5; females, 35 and 15; respectively; Fig. 2, A to C and table S1
and S2). Once reward contingencies reverse, however, male—versus female—grackles overwhelmingly finish this
‘relearning’ in fewer trials and with fewer choice-option switches (median number of trials and switches in reversal
learning: males, 64 and 25; females, 81 and 35; respectively; Fig. 2, D to F and table S1 and S2). Environmen-
tal unpredictability, then, dependably directs disparate reinforcement learning trajectories between male and female

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.19.533319doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Grackle reinforcement learning: behaviour, mechanisms, and simulations. (A to F) Reinforcement learning behaviour.
Across-population comparison of grackles’ reinforcement learning speed and choice-option switches in (A and B) initial learning
(males, 32; females, 17) and (D and E) reversal learning (males, 29; females, 17), with (C and D) respective posterior estimates
and contrasts. In (A and D) dashed vertical lines show labelled median trials-to-finish; in (B and E) floating numbers show
median choice-option switch counts. (G to J) Reinforcement learning mechanisms. Within- and across-population estimates and
contrasts of grackles’ information-updating rate ϕ and risk-sensitivity rate λ in (G and I) initial and (H and J) reversal learning.
In (G to J) open circles show 100 random posterior draws; red filled circles and red vertical lines show posterior means and 89%
highest posterior density intervals, respectively. (K to P). Reinforcement learning agent-based forward simulations. Comparison of
reinforcement learning speed and choice-option switches: by 10,000 full posterior-informed ‘birds’ (n = 5000 per sex) in (K and L)
initial learning and (N and O) reversal learning; and by six average posterior-informed ‘birds’ (n = 3 per sex) in (M) initial learning
and (P) reversal learning. In (K and N) the full simulation sample is plotted with labelled median trials-to-finish (dashed vertical
lines); in (L and O) open circles correspond to 100 random simulant draws but the floating switch-count medians are calculated
from our full simulation; in (M and P) simulant switch counts are also labelled. Note (K and N) x-axes are truncated to match (A
and D) x-axes. For all M-F contrasts, the further the distribution falls from zero the stronger the sex difference. Plots (E to L) are
generated via model estimates using our full sample size: 32 males and 17 females.
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grackles (faster versus slower finishers, respectively), supporting our overall expectation of sex-mediated differential
learning in urban-invading grackles.

Reinforcement learning mechanisms

Looking at our reinforcement learning model’s estimates between populations to determine replicability (full model
output and 89% HPDI in tables S3 and S4), we observe: in initial learning, the information-updating rate ϕ of core-
and edge-inhabiting male grackles is largely lower than that of female counterparts, with smaller sample size likely
explaining the middle population’s more uncertain estimates (Fig. 2G and table S3); while in reversal learning, the
information-updating rate ϕ of both sexes is nearly identical irrespective of population membership, with females
dropping to the reduced level of males (Fig. 2H and table S3). Therefore, the information-updating rate ϕ across male
and female grackles is initially different (males < females), but converges downwards over reinforcement learning
phases (see across-population contrasts in Fig. 2, G and H and table S3).

These primary mechanistic findings are, at first glance, perplexing: if male grackles generally outperform females
grackles in reversal learning (Fig. 2, D to F), why do all grackles ultimately update information at matched, damp-
ened pace? This apparent conundrum, however, in fact highlights the potential for multiple latent processes to direct
behaviour. Case in point: the risk-sensitivity rate λ is distinctly higher in male grackles, compared to female coun-
terparts, regardless of population membership and learning phase, outwith the middle population in initial learning
likely due to sample size (Fig. 2, I and J and table S4). In other words, choice behaviour in male grackles is more
strongly governed by the relative differences in predicted reward-payoffs (see across-population contrasts in Fig. 2, I
and J and table S4). Thus, these combined mechanistic data reveal, when reward contingencies reverse, male—versus
female—grackles ‘relearn’ faster via pronounced reward-payoff sensitivity—a persistence-based risk-sensitive learn-
ing strategy.

Agent-based replication of reinforcement learning

Ten thousand synthetic reinforcement learning trajectories, together, compellingly show our ‘birds’ behave just like
our grackles: ‘males’ overwhelming outpace ‘females’ in reversal but not in initial learning (median number of trials
in initial and reversal learning: ‘males’, 31 and 62; females, 32 and 79; respectively; Fig. 2, K and N); and ‘males’
make markedly fewer choice-option switches in initial but not in reversal learning, compared to ‘females’ (median
number of switches in initial and reversal learning: ‘males’, 11 and 20; ‘females’, 11 and 29; respectively; Fig. 2, L
and O). Fig. 2, M and P show, respectively, synthetic initial learning and reversal learning trajectories by three average
‘males’ and three average ‘females’ (i.e., simulants informed via learning parameter estimates that average over our
posterior distribution), for the reader interested in representative individual-level reinforcement learning dynamics.

Selection and adaptive value of reinforcement learning mechanisms under urban-like environ-
ments

Strikingly, under characteristically urban-like (i.e., stable but stochastic) conditions, our evolutionary model shows the
learning parameter constellation robustly exhibited by males grackles in our study—that is, low information-updating
rate ϕ and high risk-sensitivity rate λ—is favoured by natural selection (Fig. 3, A and B). These results imply, in
urban and other statistically similar environments, learners benefit by averaging over prior experience (i.e., gradually
updating ‘beliefs’), and by informing behaviour based on this experiential history (i.e., proceeding with ‘caution’),
highlighting the adaptive value of strategising risk-sensitive learning in urban-like environments.

Discussion

In the unpredictable Anthropocene, one particularly pressing open question is how specific species invade urban en-
vironments. Contemporary evolutionary theory predicts life history and cognition combine to scaffold successful
‘city living’ [6, 8, 11, 12, 9]—we provide the first empirical evidence to support this idea. Assaying available data
on stimulus-reward initial and reversal reinforcement learning in wild-caught, temporarily-captive male and female
grackles either inhabiting a core, middle, or edge population of their range, we show: irrespective of population
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Fig. 3. Evolutionary optimality of strategising risk-sensitive learning. (A) Illustration of our evolutionary algorithm model to es-
timate optimal learning parameters that evolve under systematically varied pairings of two key (urban) ecology axes: environmental
stability u and environmental stochasticity s. Specifically, 300-member populations run for 10 independent 7000-generation simu-
lations per pairing, using ‘roulette wheel’ selection (parents are chosen for reproduction with a probability proportional to collected
F+ rewards out of 1000 choices) and random mutation (offspring inherit learning genotypes with a small deviation in random direc-
tion). (B) Mean optimal learning parameter values discovered by our evolutionary model (averaged over the last 5000 generations).
As the statistical environment becomes more urban-like (lower u and higher s values), selection favours lower information-updating
rate ϕ and higher risk-sensitivity rate λ (darker and lighter squares, respectively). We note arrows are intended as illustrative aids
and do not correspond to a linear scale of ‘urbanness’.

membership, both sexes initially learn stimulus-reward pairings at comparable pace, but, when reward contingencies
reverse, male grackles overwhelming finish this ‘relearning’ faster, compared to female counterparts. Under envi-
ronmental unpredictability, then, male grackles dependably outperform female grackles. How do male grackles do
this? Using a mechanistic Bayesian reinforcement learning model, we estimated how (hidden) learning parameters
generate grackles’ (observed) choice behaviour. We show choice-behaviour in male—versus female—grackles is gov-
erned more strongly by the ‘weight’ of relative differences in recent foraging returns—in other words, male grackles
show pronounced reward-payoff sensitivity. Indeed, subsequent agent-based forward simulations of reinforcement
learning—where we simulate ‘new’ birds based on the empirical estimates of grackles’ reinforcement learning in our
study—show ‘males’ more readily refocus disrupted foraging behaviour relative to ‘females’, making fewer choice-
option switches and finishing stimulus-reward ‘relearning’ faster. Such robust quantitative replication thus substanti-
ates our assertion that strategising risk-sensitive learning underpins our behavioural sex-difference data. Finally, using
evolutionary modelling to move out from our study into more general types of environments, we show natural selec-
tion favours risk-sensitive learning in characteristically urban-like environments: that is, stable but stochastic settings.
Together, these data imply risk-sensitive learning is a viable adaptive strategy to help explain how male great-tailed
grackles—the dispersing sex—currently lead their species’ remarkable North American urban invasion.
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The term ‘behavioural flexibility’—broadly defined as some ‘attribute’, ‘cognition’, ‘characteristic’, ‘feature’,
‘trait’ and/or ‘quality’ that enables animals to adapt behaviour to changing circumstances [35, 8, 36, 37]—has been
previously hypothesised to explain invasion success [7], including that of grackles [15]. But as eloquently argued
elsewhere [37], this term is conceptually uninformative, given the many ways in which it is applied and assessed. Of
these approaches, reversal learning and serial—multiple back-to-back—reversal learning tasks are the most common
experimental assays of behavioural flexibility (non-exhaustive examples of each assays in: bees [38, 39]; birds [40,
41]; fish [42, 43]; frogs [44, 45]; reptiles [10, 46]; primates [47, 48]; and rodents [49, 50]). We have shown, however,
at least for our grackles, faster reversal learning is governed primarily by pronounced reward-payoff sensitivity, so:
firstly, these go-to experimental assays do not necessarily measure the unit they claim to measure (a point similarly
highlighted in [51]); and secondly, formal models based on the false premise that variation in learning speed relates
to variation in behavioural flexibility require reassessment [35, 52]. Heeding previous calls [53, 54, 55], our study
provides an analytical solution to facilitate productive research on proximate and ultimate explanations of seemingly
flexible (or not) behaviour: because we publicly provide step-by-step code to map a full pathway from behaviour
to mechanisms through to selection and adaptation (see Data and materials availability), which can be tailored to
specific research questions. The reinforcement learning model, for example, generalises to, in theory, a variety of
choice-option paradigms [56], and these learning models can be extended to estimate asocial and social influence on
individual decision making (e.g., [57, 24, 58, 59, 60]), facilitating useful insight into the multi-faceted feedback process
between individual cognition and social systems [61]. Our open-access analytical resource thus allows researchers to
move beyond the umbrella term behavioural flexibility, and to biologically inform and interpret their science—only
then can we begin to meaningfully compare behavioural variation across taxa and/or contexts.

Related to this final point, it is useful to outline how additional drivers outwith sex-biased risk-sensitive learning
might contribute towards urban invasion success in grackles, too. Grackles exhibit a polygynous mating system, with
territorial males attracting multiple female nesters [62]. Recent learning ‘style’ simulations show the sex with high
reproductive skew approaches pure individual learning, while the other sex approaches pure social learning [63]. Dur-
ing population establishment, then, later-arriving female grackles could rely heavily on vetted information provided
by male grackles on ‘what to do’ [7], as both sexes ultimately face the same urban-related challenges. Moreover, risk-
sensitive learning in male grackles should help reduce the elevated risk associated with any skew towards acquiring
knowledge through individual learning. And as the dispersing sex this process would operate independently of their
proximity to a range front—a pattern suggestively supported by our mechanistic data (i.e., risk-sensitivity: males > fe-
males; Fig. 2, G and H). As such, future research on potential sex differences in social learning propensity in grackles
seem particularly prudent, alongside systematic surveying of population-level environmental and fitness components,
across spatially (dis)similar populations; for this, our annotated and readily available analytical approach should prove
useful, as highlighted above.

The lack of spatial replicates in the existing data set used herein inherently poses limitations on inference. But it is
worth noting that phenotypic filtering by invasion stage is not a compulsory signature of successful (urban) invasion;
instead, phenotypic plasticity and/or inherent species trait(s) may be facilitators [9, 6, 25, 26, 27]. For urban-invading
grackles, both of these biological explanations seem strongly plausible, given: firstly, grackles’ highly plastic foraging
and nesting ecology [64, 65, 17]; secondly, grackles’ apparent historic and current realised niche being—albeit in
present day more variable—urban environments, a consistent habit preference that cannot be explained by changes
in habitat availability or habitat connectivity [15]; and finally, our combined reinforcement learning and evolutionary
modelling results showing environments approaching grackles’ general species niche—urban environments—select
for particular traits that exist across grackle populations (here, sex-biased risk-sensitive learning; Fig. 3B). Admittedly,
our evolutionary model is not a complete representation of urban ecology dynamics. Relevant factors—e.g., spatial
dynamics and realistic life histories—are missed out. These omissions are tactical ones. Our evolutionary model solely
focuses on the response of reinforcement learning parameters to two core urban-like (or not) environmental statistics,
providing a baseline for future study to build on; for example, it would be interesting to investigate such selection on
learning parameters of ‘true’ invaders and not their descendants, a logistically tricky but nonetheless feasible research
possibility (e.g., [22]).

In conclusion, by revealing robust interactive links between the dispersing sex and risk-sensitive learning in an
urban invader (grackles), these fully replicable insights, coupled with our finding that urban-like environments favour
pronounced risk-sensitivity, underscore the potential for life history and cognition to scaffold invasion success in the
unpredictable Anthropocene. Our modelling methods, which we document in-depth and make freely available, can
now be comparatively applied, establishing a biologically meaningful analytical approach for much-needed study on
(shared or divergent) drivers of geographic and/or phenotypic distributions [9, 66, 67, 68, 69, 70].
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Methods

Data provenance

The current study uses data from two types of sources: publicly archived data at the Knowledge Network for Biocom-
plexity [71, 72]; or privately permissed access to A.J.B. of unpublished data by Grackle Project principal investigator
Corina Logan, who declined participation on this study.

Data contents

The data sets used herein encompass colour-reward reinforcement learning data from 32 male and 17 female wild-
caught, temporarily-captive grackles across three study sites that differ in their range-expansion demographics; that is,
defined as a core, middle or edge population (based on time-since-settlement population growth dynamics, as outlined
in [1]). Specifically, the colour-reward reinforcement learning data originated from the following three populations:
(i) Tempe, Arizona (17 males and five females)—herein, the core population (estimated to be breeding since 1951, by
adding the average time between first sighting and first breeding to the year first sighted [17, 73]); (ii) Santa Barbara,
California (four males and four females)—herein, the middle population (known to be breeding since 1996 [74]);
and (iii) Greater Sacramento, California (eleven males and eight females)—herein, the edge population (known to be
breeding since 2004 [75]).

Experimental protocol

A step-by-step description of the experimental protocol carried out by the original experiments is reported elsewhere
[52]. As such, below we detail only the protocol for the colour-reward reinforcement learning test that we analysed
herein.

Reinforcement learning test

The reinforcement learning test consists of two experimental phases (Fig. 1): (i) stimulus-reward initial learning
(hereafter, initial learning) and (ii) stimulus-reward reversal learning (hereafter, reversal learning). In both experimen-
tal phases, two different coloured tubes are used: for Santa Barbara grackles, gold and grey; for all other grackles,
light and dark grey. Each tube consists of an outer and inner diameter of 26 mm and 19 mm, respectively; and each
is mounted to two pieces of plywood attached at a right angle (entire apparatus: 50 mm wide × 50 mm tall × 67 mm
deep); thus resulting in only one end of each coloured tube being accessible (Fig. 1).

In initial learning, grackles are required to learn that only one of the two coloured tubes contains a food reward
(e.g., dark grey); this colour-reward pairing is counterbalanced across grackles within each study site. Specifically, the
rewarded and unrewarded coloured tubes are placed—either on a table or on the floor—in the centre of the aviary run
(distance apart: table, 2 feet; floor, 3 feet), with the open tube-ends facing, and perpendicular to, their respective aviary
side-wall. Which coloured tube is placed on which side of the aviary run (left or right) is pseudorandomised across
trials. A trial begins at tube-placement, and ends when a grackle has either made a tube-choice or the maximum trial
time has elapsed (eight minutes). A tube-choice is defined as a grackle bending down to examine the contents (or lack
thereof) of a tube. If the chosen tube contains food, the grackle is allowed to retrieve and eat the food, before both tubes
are removed and the rewarded coloured tube is rebaited out of sight (for the grackle). If a chosen tube does not contain
food, both tubes are immediately removed. Each grackle is given, first, up to three minutes to make a tube-choice, after
which a piece of food is placed equidistant between the tubes to entice participation; and then, if no choice has been
made, an additional five minutes maximum, before both tubes are removed. All trials are recorded as either correct
(choosing the rewarded coloured tube), incorrect (choosing the unrewarded coloured tube), or incomplete (no choice
made). To successfully finish initial learning, a grackle must meet the learning criterion, detailed below.

In reversal learning, grackles are required to learn that the colour-reward pairing has been swapped; that is, the
previously unrewarded coloured tube (e.g., light grey) now contains a food reward. The protocol for this second and
final experimental phase is identical to that, described above, of initial learning.

Learning criterion
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For all grackles in the current study, we apply the following learning criterion: to successfully finish their respective
learning phase, grackles must make a correct choice in 17 of the most recent 20 trials. Therefore, the earliest a grackle
can successfully finish initial or reversal learning in the current study is at trail 17. This applied learning criterion is
the most compatible with respect to previous learning criteria used by the original experimenters. Specifically, Logan
[72] and Logan et al. [72] used a fixed-window learning criterion for core- and middle-population grackles, in which
grackles were required to make 17 out of the last 20 choices correctly, with a minimum of eight and nine correct choices
across the last two sets of 10 trials, assessed at the end of each set. If a core- or middle-population grackle successfully
satisfied the fixed-window learning criterion, the grackle was assigned by Logan or colleagues the end-trial number for
that set (e.g., 20, 30, 40), which did not always coincide with the true passing trial (by a maximum of two additional
trials). For edge-population grackles, Logan and colleagues used a sliding-window learning criterion (determined via
inspection of the original data file Woodland CA data.csv available at our GitHub repository), in which grackles were
required to again make 17 out of the last 20 choices correctly, with the same minimum correct-choice counts for the
previous two 10-trial sets, except that this criterion was assessed at every trial (from 18 onward) rather than at the end
of discrete sets. This second method is problematic because a grackle can successfully reach criterion via a shift in
the sliding window before making a choice. For example, a grackle could make three wrong choices followed by 17
correct choices (i.e., 7/10 correct and 10/10 correct in the last two sets of 10 trials), and at the start of the next trial,
the grackle will reach criterion because the summed choices now consist of 8/10 correct and at least 9/10 correct in
the last two sets of 10 trials no matter their subsequent choice—see initial learning performance by bird ‘Kel’ for a
real example. Moreover, the use of different learning criteria (fixed- and sliding-window) by Logan and colleagues
in different populations represents a confound when populations are compared. Thus, our applied learning criterion
ensures our assessment of grackles’ reinforcement learning is informative, straightforward, and consistent.

We note, as a consequence of applying our learning criterion, grackles can remain in initial and/or reversal learning
beyond reaching criterion. These extra learning trials, however, are already inherent to core- and middle-population
grackles originally assessed via the fixed-window learning criterion (see above). And our cleaning of the original data
detected additional cases where edge-population grackles already remained in-test after meeting the sliding-window
learning criterion (see our Data Processing.R script at our GitHub repository), presumably due to experimenter over-
sight. In any case, to ensure our analyses capture grackles’ reinforcement learning up until our applied learning
criterion, we exclude extra learning trials, where applicable. Prior to doing so, however, we verified: (i) a similar
proportion of male and female grackles experience extra initial learning trials (females, 15/17; males, 30/32); and
(ii) our learning parameter estimations during initial learning remain relatively unchanged irrespective of whether we
exclude or include extra initial learning trails (fig. S1). In short, we are confident that any carry-over effect of extra
initial learning trials on grackles’ reversal learning is negligible if nonexistent.

Statistical analyses

We analysed, processed, and visually present our data using, respectively, the ‘rstan’ [76], ‘rethinking’ [23], and
‘tidyverse’ [77] packages in R [78]. We note our reproducible code is available at our GitHub repository. We further
note our reinforcement learning model, defined below, does not exclude cases—two males in the core, and one male
in the middle population—where a grackle was dropped (due to time constraints) early on from reversal learning
by experimenters: because individual-level ϕ and λ estimates can still be estimated irrespective of trial number; the
certainty around the estimates will simply be wider [23]. Our Poisson models, however, do exclude these three cases
for our modelling of reversal learning, to conserve estimation. The full output from each of our models, which use
weakly informative and conservative priors, is available in tables S1 to S4, including 89% highest-posterior density
intervals [23].

Poisson models

For our behavioural assay of reinforcement learning finishing trajectories, we used a multi-level Bayesian Poisson
regression to quantify the effect(s) of sex and learning phase (initial versus reversal) on grackles’ recorded number
of trials to successfully finish each phase. This model was performed at both the population and across-population
level, and accounted for individual differences among birds through the inclusion of individual-specific varying (i.e.,
random) effects.

For our behavioural assay of reinforcement learning choice-option switching, we used an identical Poisson model
to that described above, to predict the total number of switches between the rewarded and unrewarded coloured tubes.
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Reinforcement learning model

We employed an adapted (from [24]) multi-level Bayesian reinforcement learning model, to examine the influence
of sex on grackles’ initial and reversal learning. Our reinforcement learning model, defined below, allows us to link
observed coloured tube-choices to latent individual-level attraction updating, and to translate the influence of latent
attractions (i.e., expected payoffs) into individual tube-choice probabilities. As introduced above, we can reverse
engineer which values of our two latent learning parameters—the information-updating rate ϕ and the risk-sensitivity
rate λ—most likely produce grackles’ choice-behaviour, by formulating our scientific model as a statistical model.
Therefore, this computational method facilitates mechanistic insight into how multiple latent learning parameters
simultaneously guide grackles’ reinforcement learning [23].

Our reinforcement learning model consists of two equations:

Ai,j,t+1 = (1− ϕk,l)Ai,j,t + ϕk,lπi,j,t (1)

P (i)t+1 =
exp(λk,lAi,j,t)

2∑
m=1

exp(λk,lAm,j,t)

(2)

Equation 1 expresses how attraction A to choice-option i changes for an individual j across time (t + 1) based on
their prior attraction to that choice-option (Ai,j,t) plus their recently experienced choice reward-payoffs (πi,j,t), whilst
accounting for the relative influence of recent reward-payoffs (ϕk,l). As ϕk,l increases in value, so, too, does the rate
of individual-level attraction updating based on reward-payoffs. Here, then, ϕk,l represents the information-updating
rate. We highlight that the k, l indexing (here and elsewhere) denotes that we estimate separate ϕ parameters for each
population (k = 1 for core; k = 2 for middle; k = 3 for edge) and for each learning phase (l = 1 for females/initial, l =
2 for females/reversal; l = 3 for males/initial; l = 4 for males/reversal).

Equation 2 is a softmax function that expresses the probability P that choice-option i is selected in the next choice-
round (t+1) as a function of the attractions A and the parameter λk,l, which governs how much relative differences in
attraction scores guide individual choice-behaviour. In the reinforcement learning literature, the λ parameter is known
by several names—for example, ‘inverse temperature’, ‘exploration’ or ‘risk-appetite’ [79, 58]—since the higher its
value the more deterministic the choice-behaviour of an individual becomes (note λ = 0 generates random choice).
In line with foraging theory [80], we call λ the risk-sensitivity rate, where higher values of λ imply foragers are
more sensitive to risk, seeking higher expected payoffs based on their prior experience, instead of randomly sampling
alternative options.

From the above reinforcement learning model, then, we generate inferences about the effect of sex on ϕk,l and
λk,l from at least 1000 effective samples of the posterior distribution, at both the population- and across-population-
level. We note our reinforcement learning model also includes bird as a random effect (to account for repeated
measures within individuals); however, for clarity, this parameter is omitted from our equations (but not our code—
see our GitHub repository). Our reinforcement learning model does not, on the other hand, include trials where
a grackle did not make a tube-choice, as this measure cannot clearly speak to individual learning—for example,
satiation rather than any learning of ‘appropriate’ colour tube-choice could be invoked as an explanation in such
cases. Indeed, there are, admittedly, a number of intrinsic and extrinsic factors (e.g., temperament and temperature,
respectively) that might bias grackles’ tube-choice behaviour, and, in turn, the output from our reinforcement learning
model [81]. But the aim of such models is not to replicate the entire study system. Finally, we further note, while we
exclude extra learning trials from all of our analyses (see above), our reinforcement learning model initiates estimation
of ϕ and λ during reversal learning, based on individual-level attractions encompassing all previous choices. This
parameterisation ensures we precisely capture grackles’ attraction scores up to the point of stimulus-reward reversal
(for details, see our RL Execution.R script at our GitHub repository).

Agent-based simulations: pre- and post-study

Prior to analysing our data, we used agent-based simulations to validate our reinforcement learning model (full details
in our preregistration–see Supplementary Materials). In brief, the tube-choice behaviour of simulants is governed
by a set of rules identical to those defined by equations 1 and 2, and we apply the exact same learning criterion for
successfully finishing both learning phases. Crucially, this apriori model vetting verifies our reinforcement learning
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model can (i) detect simulated sex effects and (ii) accurately recover simulated parameter values in both extreme and
more realistic scenarios.

After model fitting, we used the same agent-based approach to forward simulate—that is, simulate via the posterior
distribution—synthetic learning trajectories by ‘new’ birds via individual-level parameter estimates generated from our
across-population reinforcement learning model. Specifically, maintaining the correlation structure among sex- and
phase-specific learning parameters, we draw samples from the full or averaged random-effects multivariate normal
distribution describing the inferred population of grackles. We use these post-study forward simulations to gain a
better understanding of the implied consequences of the estimated sex differences in grackles’ learning parameters
(see Fig. 2 and associated main text; for an example of this approach in a different context, see [24]).

Evolutionary model

To investigate the evolutionary significance of strategising risk-sensitive learning, we used algorithmic optimisation
techniques [82, 83]. Specifically, we construct an evolutionary model of grackle learning, to estimate how our learning
parameters—the information-updating rate ϕ and the risk-sensitivity rate λ—evolve in environments that systemati-
cally vary across two ecologically relevant (see main text) statistical properties: the rate of environmental stability u
and the rate of environmental stochasticity s. The environmental stability parameter u represents the probability that
behaviour leading to a food reward changes from one choice to the next. If u is small, individuals encounter a world
where they can expect the same behaviour to be adaptive for a relatively long time. As u becomes larger, optimal
behaviour can change multiple times within an individual’s lifetime. The environmental stochasticity parameter s
describes the probability that, on any given day, optimal behaviour may not result in a food reward due to external
causes specific to this day. If s is small, optimal behaviour reliably produces rewards. As s becomes larger, there is
more and more daily ‘noise’ regarding which behaviour is rewarded.

We consider a population of fixed size with N = 300 individuals. Each generation, individual agents are born
naı̈ve and make t = 1000 binary foraging decisions resulting in a food reward (or not). Agents decide and learn about
the world through reinforcement learning governed by their individual learning parameters, ϕ and λ (see equations 1
and 2). Both learning parameters can vary continuously, corresponding to the infinite-alleles model from population
genetics [82]. Over the course of their lifetime, agents collect food rewards, and the sum of rewards collected over
the last 800 foraging decisions (or ‘days’) determines their individual fitness. We ignore the first 200 choices because
selection should respond to the steady state of the environment, independently of initial conditions [82].

To generate the next generation, we assume asexual, haploid reproduction, and use fitness-proportionate (or
‘roulette wheel’) selection to choose individuals for reproduction [82, 83]. Here, juveniles inherit both learning pa-
rameters, ϕ and λ, from their parent but with a small deviation (in random direction) due to mutation. Specifically,
during each mutation event, a value drawn from zero-centered normal distributions N(0, µϕ) or N(0, µλ) is added to
the parent value on the logit-/log-scale to ensure parameters remain within allowed limits (between 0 and 1 for ϕ; pos-
itive for λ). The mutation parameters µϕ and µλ thus describe how much offspring values might deviate from parental
values, which we set to 0.05. We restrict the risk-sensitivity rate λ to the interval 0 to 15, because greater values result
in identical choice behaviour. All results reported in the main text are averaged over the last 5000 generations of 10
independent 7000-generation simulations per parameter combination. This duration is sufficient to reach steady state
in all cases.

In summary, our evolutionary model is a necessary and useful first step towards addressing targeted research
questions about the interplay between learning phenotype and environmental characteristics.
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Table S1. Reinforcement learning speed. Between- and across-population total-trials-in-test Poisson regression
model estimates and male-female contrasts, with corresponding lower (L) and upper (U) 89% highest-posterior density
intervals in parentheses.

Initial learning

Population Male Female Contrast

Core 36.43 (L: 31.60; U: 41.31) 37.38 (L: 28.74; U: 45.92) -0.95 (L: -11.09; U: 8.99)
Middle 27.00 (L: 19.62; U: 33.61) 27.37 (L: 19.83; U: 34.22) -0.37 (L: -10.78; U: 9.79)
Edge 33.85 (L: 28.21; U: 39.15) 38.65 (L: 31.21; U: 45.59) -4.80 (L: -13.84; U: 4.28)

Across 33.77 (L: 30.41; U: 37.07) 35.08 (L: 30.14; U: 39.69) -1.31 (L: -6.78; U: 4.79)

Reversal learning

Population Male Female Contrast

Core 61.60 (L: 53.60; U: 69.57) 80.83 (L: 62.32; U: 97.47) -19.22 (L: -38.46; U: 0.65)
Middle 78.78 (L: 58.56; U: 98.84) 91.35 (L: 69.04; U: 111.88) -12.57 (L: -41.64; U: 17.50)
Edge 66.30 (L: 56.63; U: 76.64) 71.80 (L: 58.87; U: 84.46) -5.51 (L: -21.95; U: 10.95)

Across 60.00 (L: 54.25; U: 65.53) 78.18 (L: 68.26; U: 88.16) -18.21 (L: -29.51; U: -6.99)
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Table S2. Reinforcement learning switches Between- and across-population total-choice-option-switches-in-test
Poisson regression model estimates and male-female contrasts, with corresponding lower (L) and upper (U) 89%
highest-posterior density intervals in parentheses.

Initial learning

Population Male Female Contrast

Core 13.64 (L: 10.69; U: 16.34) 16.04 (L: 10.17; U: 21.59) -2.40 (L: -8.54; U: 4.38)
Middle 6.52 (L: 3.35; U: 9.15) 6.25 (L: 3.39; U: 9.15) 0.27 (L: -4.18; U: 4.33)
Edge 12.81 (L: 9.54; U: 16.08) 14.70 (L: 10.26; U: 18.72) -1.89 (L: -7.20; U: 3.74)

Across 13.23 (L: 11.07; U: 15.18) 14.40 (L: 11.48; U: 17.31) -1.17 (L: -4.72; U: 2.46)

Reversal learning

Population Male Female Contrast

Core 22.38 (L: 17.88; U: 26.86) 37.02 (L: 23.96; U: 48.74) -14.64 (L: -27.59; U: -1.17))
Middle 30.32 (L: 17.84; U: 42.10) 43.96 (L: 27.82; U: 59.76) -13.65 (L: -34.30; U: 7.69)
Edge 21.71 (L: 16.58; U: 27.22) 27.75 (L: 20.10; U: 35.35) -6.04 (L: -15.54; U: 3.39)

Across 22.18 (L: 18.72; U: 25.27) 36.74 (L: 29.78; U: 43.60) -14.56 (L: -22.48; U: -7.15)
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Table S3. Reinforcement learning information-updating rate ϕ. Between- and across-population computational
model ϕ estimates and male-female contrasts, with posterior means and corresponding lower (L) and upper (U) 89%
highest-posterior density intervals in parentheses.

Initial learning

Population Male Female Contrast

Core 0.03 (L: 0.01; U: 0.05) 0.07 (L: 0.02; U: 0.12) -0.04 (L: -0.10; U: 0.02)
Middle 0.12 (L: 0.03; U: 0.20) 0.10 (L: 0.03; U: 0.17) 0.02 (L: -0.13; U: 0.15)
Edge 0.07 (L: 0.02; U: 0.11) 0.09 (L: 0.03; U: 0.14) -0.02 (L: -0.10; U: 0.07)

Across 0.03 (L: 0.01; U: 0.04) 0.05 (L: 0.02; U: 0.08) -0.02 (L: -0.06; U: 0.01)

Reversal learning

Population Male Female Contrast

Core 0.03 (L: 0.02; U: 0.05) 0.04 (L: 0.02; U: 0.05) 0.00 (L: -0.02; U: 0.02))
Middle 0.04 (L: 0.02; U: 0.06) 0.04 (L: 0.02; U: 0.06) 0.00 (L: -0.03; U: 0.03)
Edge 0.04 (L: 0.03; U: 0.05) 0.04 (L: 0.03; U: 0.06) 0.00 (L: -0.03; U: 0.02)

Across 0.03 (L: 0.01; U: 0.04) 0.03 (L: 0.02; U: 0.07) 0.00 (L: -0.01; U: -0.01)
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Table S4. Reinforcement learning risk-sensitivity rate λ. Between- and across-population computational model λ
estimates and male-female contrasts, with posterior means and corresponding lower (L) and upper (U) 89% highest-
posterior density intervals in parentheses.

Initial learning

Population Male Female Contrast

Core 4.61 (L: 2.24; U: 6.84) 2.65 (L: 0.93; U: 4.20) 1.96 (L: -1.06; U: 5.12)
Middle 3.58 (L: 1.33; U: 5.86) 3.53 (L: 1.51; U: 5.66) 0.00 (L: -3.43; U: 3.52)
Edge 2.81 (L: 1.44; U: 4.14) 2.03 (L: 1.06; U: 2.89) 0.79 (L: -1.19; U: 2.34)

Across 5.65 (L: 3.15; U: 8.22) 3.30 (L: 1.68; U: 4.73) 2.35 (L: -0.77; U: 5.61)

Reversal learning

Population Male Female Contrast

Core 4.76 (L: 2.86; U: 6.33) 2.20 (L: 1.10; U: 3.28) 2.56 (L: 0.59; U: 4.82))
Middle 2.99 (L: 1.35; U: 4.40) 1.74 (L: 0.80; U: 2.57) 1.25 (L: -0.64; U: 3.12)
Edge 4.13 (L: 2.62; U: 5.75) 3.62 (L: 2.12; U: 4.94) 0.51 (L: -1.68; U: 2.67)

Across 5.86 (L: 3.30; U: 8.37) 3.50 (L: 1.98; U: 4.91) 2.36 (L: 0.14; U: 4.26)
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Fig. S1. Initial reinforcement learning and extra learning trials. Comparison of information-updating rate ϕ and
risk-sensitivity rate λ estimates (top and bottom row, respectively) in initial learning excluding and including extra
initial learning trials (left and right column, respectively), which are present in the original data set (see Methods).
Because this comparison does not show any noticeable difference depending on their inclusion or exclusion, we
excluded extra learning trials from our analyses. All plots are generated via model estimates using our full sample
size: 32 males and 17 females.
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Abstract14

How might differences in dispersal and learning interact in range expansion dynamics? To begin to answer15

this question, in this preregistration we detail the background, hypothesis plus associated predictions, and16

methods of our proposed study, including the development and validation of a mechanistic reinforcement17

learning model, which we aim to use to assay colour-reward reinforcement learning (and the influence of two18

candidate latent parameters—speed and sampling rate—on this learning) in great-tailed grackles—a species19

undergoing rapid range expansion, where males disperse.20

Introduction21

Dispersal and range expansion go ‘hand in hand’; movement by individuals away from a population’s core is22

a pivotal precondition of witnessed growth in species’ geographic limits (Chuang & Peterson, 2016; Ronce,23

2007). Because ‘who’ disperses—in terms of sex—varies both within and across taxa (for example, male-24

biased dispersal is dominant among fish and mammals, whereas female-biased dispersal is dominant among25

birds; see Table 1 in Trochet et al., 2016), skewed sex ratios are apt to arise at expanding range fronts, and,26

in turn, differentially drive invasion dynamics. Female-biased dispersal, for instance, can ‘speed up’ staged27

invertebrate invasions by increasing offspring production (Miller & Inouye, 2013). Alongside sex-biased28

dispersal, learning ability is also argued to contribute to species’ colonisation capacity, as novel environments29

inevitably present novel (foraging, predation, shelter, and social) challenges that newcomers need to surmount30

in order to settle successfully (Sol et al., 2013; Wright et al., 2010). Indeed, a growing number of studies31

show support for this supposition (as recently reviewed in Lee & Thornton, 2021). Carefully controlled32

choice tests, for example, show that urban-dwelling individuals—that is, the ‘invaders’—will both learn and33

unlearn novel reward-stimulus pairings more rapidly than their rural-dwelling counterparts (Batabyal &34

Thaker, 2019), suggesting that range expansion selects for enhanced learning ability at the dispersal and/or35

settlement stage(s). Given the independent influence of sex-biased dispersal and learning ability on range36

expansion, it is perhaps surprising, then, that their potential interactive influence on this aspect of movement37

ecology remains unexamined, particularly as interactive links between dispersal and other behavioural traits38

such as aggression are documented within the range expansion literature (Duckworth, 2006; Gutowsky &39

Fox, 2011).40

That learning ability can covary with, for example, exploration (e.g., Auersperg et al., 2011; Guillette et41

1
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al., 2011) and neophobia (e.g., Verbeek et al., 1994), two behaviours which may likewise play a role in42

range expansion (Griffin et al., 2017; Lee & Thornton, 2021), is one potential reason for the knowledge gap43

introduced above. Such correlations stand to mask what contribution, if any, learning ability lends to range44

expansion—an undoubtedly daunting research prospect. A second (and not mutually exclusive) reason is45

that, for many species, a detailed diary of their range expansion is lacking (Blackburn et al., 2009; Udvardy &46

Papp, 1969). And patchy population records inevitably introduce interpretive ‘noise,’ imaginably impeding47

population comparisons of learning ability (or the like).48

In range-expanding great-tailed grackles (Quiscalus mexicanus), however, learning ability appears to rep-49

resent a unique source of individual variation; more specifically, temporarily-captive great-tailed grackles’50

speed to solve colour-reward reinforcement learning tests does not correlate with measures of their exploration51

(time spent moving within a novel environment), inhibition (time to reverse a colour-reward preference),52

motor diversity (number of distinct bill and/or feet movements used in behavioural tests), neophobia (latency53

to approach a novel object), risk aversion (time spent stationary within a ‘safe spot’ in a novel environment),54

persistence (number of attempts to engage in behavioural tests), or problem solving (number of test-relevant55

functional and non-functional object-choices) (Logan, 2016a, 2016b). Moreover, careful combing by56

researchers of public records, such as regional bird reports and museum collections, means that great-tailed57

grackle range-expansion data is both comprehensive and readily available (Dinsmore & Dinsmore, 1993;58

Pandolfino et al., 2009; Wehtje, 2003). Thus, great-tailed grackles offer behavioural ecologists a useful study59

system to investigate the interplay between life-history strategies, learning ability, and range expansion.60

61

62

Figure 1 Left panel: images showing a male and female great-tailed grackle (credit: Wikimedia Commons).63

Right panel: schematic of the colour-reward reinforcement learning experimental protocol. In the initial64

learning phase, great-tailed grackles are presented with two colour-distinct tubes; however, only one coloured65

tube (e.g., dark grey) contains a food reward (F+ versus F-). In the reversal learning phase, the colour-reward66

tube-pairings are swapped. The passing criterion was identical in both phases (see main text for details).67

68

Here, for the first time (to our knowledge), we propose to investigate potential differences in colour-reward69

reinforcement learning performance between male and female great-tailed grackles (Figure 1), to test the70

hypothesis that sex differences in learning ability are related to sex differences in dispersal. Since the71

late nineteenth century, great-tailed grackles have been expanding their range at an unprecedented rate,72

moving northward from their native range in Central America into the United States (breeding in at least 2073

states), with several first-sightings spanning as far north as Canada (Dinsmore & Dinsmore, 1993; Wehtje,74

2003). Notably, the record of this range expansion in great-tailed grackles is heavily peppered with first-75

sightings involving a single or multiple male(s) (Dinsmore & Dinsmore, 1993; Kingery, 1972; Littlefield,76

1983; Stepney, 1975; Wehtje, 2003). Moreover, recent genetic data show that, when comparing great-tailed77

grackles within a population, average relatedness: (i) is higher among females than among males; and (ii)78

decreases with increasing geographic distance among females; but (iii) is unrelated to geographic distance79

among males; hence, confirming a role for male-biased dispersal in great-tailed grackles (Sevchik et al., in80

press). Considering these natural history and genetic data, then, we expect male and female great-tailed81

grackles to differ across at least two colour-reward reinforcement learning parameters: speed and sampling82

rate (here, sampling is defined as switching between choice-options). Specifically, we expect male—versus83

female—great-tailed grackles: (prediction 1 & 2) to be faster to, firstly, learn a novel colour-reward pairing,84

and secondly, reverse their colour preference when the colour-reward pairing is swapped; and (prediction85

3) to be more deterministic—that is, sample less often—in their colour-reward learning; if learning ability86

and dispersal relate. Indeed, since invading great-tailed grackles face agribusiness-led wildlife management87
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strategies, including the use of chemical crop repellents (Werner et al., 2011, 2015), range expansion should88

disfavour slow, error-prone learning strategies, resulting in a spatial sorting of learning ability in great-89

tailed grackles (Wright et al., 2010). Related to this final point, we further expect (prediction 4) such sex90

differences in learning ability to be more pronounced in great-tailed grackles living at the edge, rather than91

the intermediate and/or core, region of their range (e.g., Duckworth, 2006).92

Methods93

Data94

This preregistration aims to use colour-reward reinforcement learning data collected (or being collected)95

in great-tailed grackles across three study sites that differ in their range-expansion demographics; that is,96

belonging to a core, intermediate, or edge population (based on time-since-settlement population growth97

dynamics, as outlined in Chuang & Peterson, 2016). Specifically, data will be utilised from: (i) Tempe,98

Arizona—hereafter, the core population (estimated—by adding the average time between first sighting and99

first breeding to the year first sighted—to be breeding since 1951) (Walter, 2004; Wehtje, 2003); (ii) Santa100

Barbara, California—hereafter, the intermediate population (known to be breeding since 1996) (Lehman,101

2020); and (iii) Woodland, California—hereafter, the edge population (known to be breeding since 2004)102

(Hampton, 2001). Data collection at both the Tempe, Arizona and Santa Barbara, California study sites has103

been completed prior to the submission of this preregistration (total sample size across sites: nine females104

and 25 males); however, data collection at the Woodland, California study site is ongoing (current sample105

size: three females and nine males; anticipated minimum total sample size: five females and ten males).106

Thus, the final data set should contain colour-reward reinforcement learning data from at least 14 female107

and 35 male great-tailed grackles.108

Experimental protocol109

General110

A step-by-step description of the experimental protocol is reported elsewhere (e.g., Blaisdell et al., 2021). As111

such, below we detail only the protocol for the colour-reward reinforcement learning tests that we propose112

to analyse herein.113

Colour-reward reinforcement learning tests114

The reinforcement learning tests consist of two phases (Figure 1, right panel): (i) colour-reward learning115

(hereafter, initial learning) and (ii) colour-reward reversal learning (hereafter, reversal learning). In both116

phases, two different coloured tubes are used: for Santa Barbara great-tailed grackles, gold and grey (Logan,117

2016b, 2016a); for all other great-tailed grackles: light and dark grey (Blaisdell et al., 2021). Each tube118

consists of an outer and inner diameter of 26 mm and 19 mm, respectively; and each is mounted to two119

pieces of plywood attached at a right angle (entire apparatus: 50 mm wide × 50 mm tall × 67 mm deep);120

thus resulting in only one end of each coloured tube being accessible (Figure 1, right panel).121

In the initial learning phase, great-tailed grackles are required to learn that only one of the two coloured122

tubes contains a food reward (e.g., dark grey; this colour-reward pairing is counterbalanced across great-tailed123

grackles within each study site). Specifically, the rewarded and unrewarded coloured tubes are placed—either124

on a table or on the floor—in the centre of the aviary run (distance apart: table, 2 ft; floor, 3 ft), with the125

open tube-ends facing, and perpendicular to, their respective aviary side-wall. Which coloured tube is126

placed on which side of the aviary run (left or right) is pseudorandomised across trials. A trial begins at127

tube-placement, and ends when a great-tailed grackle has either made a tube-choice or the maximum trial128

time has elapsed (eight minutes). A tube-choice is defined as a great-tailed grackle bending down to examine129

the contents (or lack thereof) of a tube. If the chosen tube contains food, the great-tailed grackle is allowed130

to retrieve and eat the food, before both tubes are removed and the rewarded coloured tube is rebaited out131

of sight (for the great-tailed grackle). If a chosen tube does not contain food, both tubes are immediately132

removed. Each great-tailed grackle is given, first, up to three minutes to make a tube-choice (after which133

a piece of food is placed equidistant between the tubes to entice participation); and then, if no choice has134

been made, an additional five minutes maximum, before both tubes are removed. All trials are recorded135

as either correct (choosing the rewarded colour tube), incorrect (choosing the unrewarded colour tube), or136
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incomplete (no choice made); and are presented in 10-trial blocks. To pass initial learning, a great-tailed137

grackle must make a correct choice in at least 17 out of the most recent 20 trials, with a minimum of eight138

and nine correct choices across the last two blocks.139

In the reversal learning phase, great-tailed grackles are required to learn that the colour-reward pairing140

has been switched; that is, the previously unrewarded coloured tube (e.g., light grey) now contains a food141

reward. The protocol for this second and final learning phase is identical to that, described above, of the142

initial learning phase.143

Analysis plan144

General145

Here, we will analyse, process, and visually present our data using, respectively, the ‘rstan’ (Stan Development146

Team, 2020), ‘rethinking’ (McElreath, 2018), and ‘tidyverse’ (Wickham et al., 2019) packages in R (R147

Core Team, 2021). Our reproducible code is available on GitHub (https://github.com/alexisbreen/Sex-148

differences-in-grackles-learning).149

Reinforcement learning model150

In this preregistration, we propose to employ an adapted (from Deffner et al., 2020) Bayesian reinforcement151

learning model, to examine the influence of sex on great-tailed grackles’ initial and reversal learning perfor-152

mance. The reinforcement learning model, defined below, allows us to link observed coloured tube-choices to153

latent individual-level knowledge-updating (of attractions towards, learning about, and sampling of, either154

coloured tube) based on recent tube-choice reward-payoffs, and to translate such latent knowledge-updating155

into individual tube-choice probabilities; in other words, we can reverse engineer the probability that our pa-156

rameters of interest (speed and sampling rate) produce great-tailed grackles’ observed tube-choice behaviour157

by formulating our scientific model as a statistical model (McElreath, 2018, p. 537). This method can there-158

fore capture whether, and, if so, how multiple latent learning strategies simultaneously guide great-tailed159

grackles’ decision making—an analytical advantage over more traditional methods (e.g., comparing trials to160

passing criterion) that ignore the potential for equifinality (Barrett, 2019; Kandler & Powell, 2018).161

Our reinforcement learning model consists of two equations:162

𝐴𝑖,𝑗,𝑡+1 = (1 − 𝜙𝑘,𝑙)𝐴𝑖,𝑗,𝑡 + 𝜙𝑘,𝑙𝜋𝑖,𝑗,𝑡, (1)

𝑃(𝑖)𝑡+1 = exp(𝜆𝑘,𝑙𝐴𝑖,𝑗,𝑡)
2

∑
𝑚=1

exp(𝜆𝑘,𝑙𝐴𝑚,𝑗,𝑡)
. (2)

Equation 1 expresses how attraction (𝐴) to a choice-option (𝑖) changes for an individual (𝑗) across time163

(𝑡 + 1) based on their prior attraction to that choice-option (𝐴𝑖,𝑗,𝑡) plus their recently experienced choice-164

payoff (𝜋𝑖,𝑗,𝑡), whilst accounting for the weight given to recent payoffs (𝜙𝑘,𝑙). As 𝜙𝑘,𝑙 increases in value,165

so, too, does the rate of individual attraction-updating; thus, 𝜙𝑘,𝑙 represents the individual learning rate.166

We highlight that the 𝑘, 𝑙 indexing denotes that we estimate separate 𝜙 parameters for each phase of the167

experiment (𝑘 = 1 for initial, 𝑘 = 2 for reversal) and each sex (𝑙 = 1 for females, 𝑙 = 2 for males).168

Equation 2 is a softmax function that expresses the probability (𝑃 ) that option (𝑖) is selected in the next169

choice-round (𝑡 + 1) as a function of the attractions and a parameter (𝜆𝑘,𝑙) that governs how much relative170

differences in attraction scores guide individual choice-behaviour. The higher the value of 𝜆𝑘,𝑙, the more171

deterministic (less option-switching) the choice-behaviour of an individual becomes (note 𝜆𝑘,𝑙 = 0 generates172

random choice); thus, 𝜆𝑘,𝑙 represents the individual sampling rate for phase 𝑘 and sex 𝑙.173

From the above reinforcement learning model, then, we will generate inferences about the effect of sex on 𝜙𝑘,𝑙174

and 𝜆𝑘,𝑙 from at least 1000 effective samples of the posterior distribution (see our model validation below).175

We note that our reinforcement learning model also includes both individual bird and study site as random176

effects (to account for repeated measures within both individuals and populations); however, for clarity,177
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these parameters are omitted from our equations (but not our code: https://github.com/alexisbreen/Sex-178

differences-in-grackles-learning). Regarding our study site random effect, we further note that, as intro-179

duced above, we will also explore population-mediated sex-effects on 𝜙 and 𝜆, by comparing these learning180

parameters both within and between sexes at each study site. Finally, our reinforcement learning model181

excludes trials where a great-tailed grackle did not make a tube-choice, as this measure cannot clearly speak182

to individual learning ability—for example, satiation rather than any learning of ‘appropriate’ colour tube-183

choice could be invoked as an explanation in such cases. Indeed, there are, admittedly, a number of intrinsic184

and extrinsic factors (e.g., temperament and temperature, respectively) that might bias great-tailed grackles’185

tube-choice behaviour, and, in turn, the output from our reinforcement learning model (Webster & Rutz,186

2020). Nonetheless, our reinforcement learning model serves as a useful first step towards addressing if learn-187

ing ability and dispersal relate in great-tailed grackles (for a similiar rationale, see McElreath & Smaldino,188

2015).189

Model validation190

We validated our reinforcement learning model in three steps. First, we performed agent-based simulations.191

Specifically, we followed the tube-choice behaviour of simulated great-tailed grackles—that is, 14 females192

and 35 males from one of three populations (where population membership matched known study site sex193

distributions)—across the described initial learning and reversal learning phases. The tube-choice behaviour194

of the simulated great-tailed grackles was governed by a set of rules identical to those defined by our mathe-195

matical equations—for example, coloured tube attractions were independently updated based on the reward196

outcome of tube choices. Because we assigned higher average 𝜙 and 𝜆 values to simulated male (versus197

female) great-tailed grackles, the resulting data set should show males outperform females on initial and198

reversal learning, at both the group and individual-level; it did (Figure 2 & S1, respectively).199

200

Figure 2 Group-level tube-choice behaviour of simulated great-tailed grackles across colour-reward rein-201

forcement learning trials (females: yellow, n = 14; males: green, n = 35), following model validation step202

one. Tube option 1 (e.g., dark grey) was the rewarded option in the initial learning phase; conversely, tube203

option 2 (e.g., light grey) contained the food reward in the reversal learning phase. Each open circle repre-204

sents an individual tube-choice; black lines indicate binomial smoothed conditional means fitted with grey205

89% compatability intervals.206

Next, we ran our simulated data set on our reinforcement learning model. Here, we endeavored to determine207

whether our reinforcement learning model: (i) recovered our assigned 𝜙𝑘,𝑙 and 𝜆𝑘,𝑙 values (it did; Table 1);208

and (ii) produced ‘correct’ qualitative inferences—that is, detected the simulated sex differences in great-209

tailed grackles’ initial and reversal learning (it did; Figure 3).210
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Table 1: Comparison of assigned and recovered 𝜙 and 𝜆 values, following model validation step two. Eighty-
nine percent highest posterior density intervals (HPDI) are shown for recovered values.

𝜙 𝜆
Female Male Female Male

Initial Reversal Initial Reversal Initial Reversal Initial Reversal
Assigned 0.03 0.05 0.09 0.11 2.00 3.00 4.00 5.00
Recovered 0.03 0.05 0.07 0.10 2.16 2.82 4.31 5.68
89% HPDI 0.01 - 0.04 0.04 - 0.06 0.03 - 0.11 0.08 - 0.12 1.29 - 2.99 2.05 - 3.58 2.65 - 6.00 4.41 - 6.97

211

Figure 3 Comparison of learning ability in simulated female (yellow; n = 14) and male (green; n = 35) great-212

tailed grackles across initial and reversal colour-reward reinforcement learning, following model validation213

step two. (A) 𝜙, the rate of learning i.e., speed. (B) 𝜆, the rate of sampling i.e., switching between choice-214

options. (C) and (D) show posterior distributions for respective contrasts between female and male learning.215

Eighty-nine percent highest posterior density intervals are shaded in grey; that this interval does not cross216

zero evidences a simulated effect of sex on learning ability.217

Finally, we repeated step one and step two, using a range of realistically plausible 𝜙 and 𝜆 sex differences218

(note that values for female great-tailed grackles were left unchanged from Table 1), to determine whether219

our reinforcement learning model could detect different effect sizes of sex on our target learning parameters.220

This final step confirmed that, for our anticipated minimum sample size, our reinforcement learning model:221

(i) detects sex differences in 𝜙 values >= 0.03 and 𝜆 values >= 1; and (ii) infers a null effect for 𝜙 values222

< 0.03 and 𝜆 values < 1 i.e., very weak simulated sex differences (Figure 4). Both of these points together223

highlight how our reinforcement learning model allows us to say that null results are not just due to small224

sample size. Additionally, estimates obtained from step three were more precise in the reversal learning phase225

compared to the initial learning phase (Figure 4), and we can expect to detect even smaller sex differences if226

we analyse learning across both phases—an approach we will apply if we detect no effect of phase. In sum,227

model validation steps one through three confirm that our reinforcement learning model is reasonably fit.228
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229

Figure 4 Parameter recovery test for different sizes of simulated sex differences. Plots show posterior230

estimates of the effect of sex (contrasts between simulated male and female great-tailed grackles; n =231

14 and 35, respectively) on speed (𝜙) and sampling (𝜆) learning parameters, following model validation232

step three. Black circles represent the mean recovered sex effect estimates with grey eighty-nine percent233

highest posterior density intervals (HPDIs); black solid diagonal lines represent a ‘perfect’ match between234

assigned and recovered parameter estimates (note that we would not expect a perfect correspondence due235

to stochasticity of agent-based simulations); and black dashed horizontal lines represent a recovered null236

sex effect.237

Bias238

AJB and DD are (at the time of submitting this preregistration) blind with respect to all but two aspects239

of the target data: the sex and population membership of each grackle that has, thus far, completed, or is240

expected to complete, the colour-reward reinforcement learning tests (because these parameters were used241

in model validation simulations—see above).242
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Supplementary material344

345

Figure S1 Individual-level tube-choice behaviour of simulated great-tailed grackles across colour-reward346

reinforcement learning trials (females: yellow, n = 14; males: green, n = 35). Tube option 1 (e.g., dark grey)347

was the rewarded option in the initial learning phase; conversely, tube option 2 (e.g., light grey) contained348

the food reward in the reversal learning phase. Each open circle shows an individual tube-choice; black solid349

lines show loess smoothed conditional means fitted with grey 89% compatibility intervals; and dashed black350

lines show individual-unique transitions between learning phases.351
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