Summary
G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating the exchange of guanine nucleotide in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G protein complex. Using variability analysis to monitor the transitions of the stimulatory Gs protein in complex with the β2-adrenergic receptor (β2AR) at short sequential time points after GTP addition, we identified the conformational trajectory underlying G protein activation and functional dissociation from the receptor. Twenty transition structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of events driving G protein activation upon GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα Switch regions and the α5 helix that weaken the G protein-receptor interface. Molecular dynamics (MD) simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP upon closure of the alpha-helical domain (AHD) against the nucleotide-bound Ras-homology domain (RHD) correlates with irreversible α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signaling events.
Competing Interest Statement
G.S. is a co-founder of and consultant for Deep Apple Therapeutics. B.K.K. is a co-founder of and consultant for ConfometRx.
Footnotes
Addition of corresponding author contact information, the addition of funding information, addition of ligand synthesis details to methods, fixed typo in an author name on the BioRxiv list, fixed line alignment of fig. 5d border that was misplaced, and fixed rendering of sup. fig. 7