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Abstract 
COVID-19 is mainly associated with respiratory symptoms, although several reports showed 
that SARS-CoV-2 affects the nervous system. We evaluated the effects of infection in prolonged 
culture of midbrain organoids, showing that the virus induces changes in gene expression, and 
fragmentation and loss of dopaminergic neurons. Our findings highlight the direct viral-induced 
damage to midbrain organoids indicating the relevance of assessing the neurological long-term 
evolution of COVID-19 patients. 
 
Main text 

The ongoing COVID-19 pandemic caused by SARS-CoV-2 can cause acute symptoms 
ranging from a simple cold to respiratory insufficiency and cytokine storm that can lead to 
death1. Patients can also develop chronic symptoms including respiratory and cognitive 
impairment, such as fatigue, depression, and inability to focus, a condition termed Post-Acute 
Sequelae of SARS-CoV-2 infection (PASC), or “long Covid”2. Recent evidence showed that 
SARS-CoV-2 not only affects the respiratory tract, but other systems as well, such as the central 
nervous system, albeit with no major cytopathological alterations in the brain after autopsies3. 
Other post-mortem reports indicated that although generally mild signs were detected in the 
overall brain, the area that showed a clear inflammatory process was the brainstem4, 5. This 
region, consisting of Medulla, Pons and Midbrain, was also identified in a longitudinal study in 
several COVID-19 patients (mostly with mild symptoms or asymptomatic) presenting a reduction 
in volume detected by magnetic resonance imaging (MRI)6. Considering these observations 
together with the nuclei localization of major neuronal systems regulating critical body 
functions7, we planned to evaluate in vitro, long-term infection-related changes in the midbrain, 
and infer parallels with a neurodegenerative condition like Parkinson’s disease (PD). 

Modelling COVID-19 in vitro using organoids has shed some light on the changes 
induced by SARS-CoV-2 infection8. Several studies based on brain organoids mimicking the 
overall central nervous system (CNS) highlight the neural tropism of the virus and describe a 
range of impacts extending from reduced inflammatory responses to cell death9. These studies 
focused on the early responses to viral infection (longest period evaluated was 72h post-
infection9, 10) and used organoids that do not have a comparable proportion of dopaminergic 
neurons as the one present in the midbrain. In contrast, the model used in this study 
recapitulates the main characteristics of the midbrain with functional activity such as synapse 
formation, spontaneous firing, and dopamine release11. It also shows hallmarks of PD like 
reduction of dopaminergic neurons, when derived from individuals presenting a genetic form of 
the disease12, 13. The aim of this study was to determine if SARS-CoV-2 has the ability to infect 
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midbrain organoids, to assess the direct effect of the virus on dopaminergic neurons and 
astrocytes, and to detect if the virus can induce a neurodegenerative process after an extended 
culture time.  

Midbrain organoids were exposed to 0.05 moi of SARS-CoV-2 for 16 hours and changes 
post-infection were analyzed after short- and long-term cultures of 4- and 28-days post-infection 
(dpi) respectively. Using an automated image analysis platform (Extended Data Fig. 1a), 
features of the cell types present in the midbrain organoids were extracted. At 4 dpi, a positive 
signal for the SARS-CoV-2 nucleocapsid (N) was detected not only at the external boundaries 
but also in the inner parts of the organoid, while no signal was seen in the mock condition (Fig. 
1a). A different antibody confirmed this observation (Extended Data Fig. 1b). Even though the 
level of colocalization between dopaminergic neurons (identified by tyrosine hydroxylase, TH) 
and SARS-CoV-2 was high, not all TH+ neurons stained positive for N (Fig. 1a). Infection with 
SARS-CoV-2 did not increase the proportion of pyknotic nuclei when normalized to the total 
amount of nuclei signal (Fig. 1b,c). There was a decrease in N-staining pixels over time, 
suggesting non-productive infection or reflecting cell-death (Fig. 1c). The levels of dopaminergic 
neurons were significantly reduced at 4 and 28 dpi. Although the amount of TH+ pixels 
recovered over time, it was not to the levels observed in the untreated condition (Fig. 1c). When 
assessing the degree of fragmentation of TH+ neurons, an early sign of degeneration, we 
observed that over time TH+ neurons presented a significantly increased disruption of neurite 
continuity (Fig. 1b,c). Within the same infected organoid, TH+ and SARS-CoV-2 positive 
neurons presented an altered morphology and high degree of neurite fragmentation compared 
to uninfected TH+ neurons (Fig. 1b). Altogether, these observations suggest that SARS-CoV-2 
infects TH+ cells and leads to cell death. 

We then evaluated whether SARS-CoV-2 can infect astrocytes, by assessing the 
expression of GFAP and S100b13, 14. We observed that while their levels and colocalization were 
reduced during the early stages of infection, they increased over time, with S100b remaining 
significantly lower than control conditions (Fig. 2a,b). SARS-CoV-2 colocalized significantly 
more with certain types of cells (Fig. 2c-e). When assessing the type of cell that presented the 
highest proportion of N signal, neurons positive for the protein MAP2 were the most affected in 
both short- and long-term cultures (Fig. 2d). However, when looking at the proportion of a 
particular cell type that stained positive for SARS-CoV-2, dopaminergic neurons were the most 
affected, reaching around 40% of TH+ neurons in the midbrain organoid showing positive signal 
for the virus in short-term cultures (Fig. 2d). A significantly higher infection of GFAP+ and TH+ 
cells (when normalized to their respective abundance and the level of SARS-CoV-2 signal in the 
organoid) was observed for both short- and long-term cultures (Fig. 2e).  

Differentially expressed genes (DEGs) of midbrain organoids 4 dpi were enriched using 
different bioinformatic platforms. Dysregulated pathways associated with DNA damage, cell 
stress and death, neurodevelopment and neuronal survival, vesicle transport and membrane 
recycling, COVID-19, and autophagy were enriched using a manually curated disease centric 
data base (Fig. 3a). These pathways revealed DEGs such as RAB7A, CTSL, VPS26A, VPS29, 
VPS35, COMMD2, PPID, and ATP6V1E1 (Extended Data Fig. 2, and Supplementary Table 1 
and 2), which were previously reported to be altered post-infection with SARS-CoV-215. 
Networks of DEGs per category were built to identify the main interactions between them (Fig. 
3b and Extended Data Fig. 3). Our results show that the virus is sequestering the machinery of 
the cell for viral replication by upregulating genes related to its translation (Fig. 3b). This 
hijacking process involves the endosomal pathway and induces alterations to the dynein axonal 
transport (Fig. 3b). Concomitant with infection, pathways related to DNA damage, cell stress 
and apoptosis were also triggered (Fig. 3a and Extended Data Fig. 3). Genes known to be 
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involved in dopaminergic neuronal migration such as ROBO4 and SLIT216, and genes 
regulating survival of mature neurons like NOTCH117 were downregulated post-infection (Fig. 
3b), in line with the observed TH+ neuronal fragmentation and cell death. Using other gene sets 
to enrich the DEGs, pathways related to PD, oxidative phosphorylation, and antigen 
presentation via MHC class I were activated by SARS-CoV-2 (Fig. 3c,e and Extended Data Fig. 
4), while another disease-based gene set showed that annotations related with mitochondrial 
diseases and movement disorders were significantly dysregulated post-infection (Extended 
Data Fig. 5). Upregulation of exogenous peptide presentation (Fig. 3d) together with a reduction 
of “don’t-eat-me” signals (Extended Data Fig. 5), as previously reported in SARS-CoV-2 infected 
neurons10, shows that the infected cell prepares to be cleared. Given that around 20% 
(921/4438) of the DEGs were non-coding genes (Supplementary Table 3), we analyzed the 
genomic context of their loci to identify regulatory domains that could be altered by infection18, 19. 
Indeed, genomic regions related to abnormal nervous system physiology and morphology, and 
behavioral abnormality matched those of the dysregulated non-coding genes (Fig. 3e and 
Extended Data Fig. 6), with one set of genes related with abnormal morphology of the midbrain 
by MRI (HP:0002419 - Molar tooth sign on MRI, Fig. 3e). Altogether, this data demonstrates that 
SARS-CoV-2 infection of midbrain organoids triggers known mechanisms for its replication 
while inducing cellular damage that can lead to neurodegeneration. 

Despite several studies have addressed the impact of SARS-CoV-2 in brain organoids9, 

10, there was a lack of evidence of the effects of viral infection in midbrain organoids at different 
culture stages. Here we confirm that SARS-CoV-2 has the ability to infect dopaminergic 
neurons, and that this infection triggers a series of mechanisms that lead to neurite 
fragmentation and neuronal loss. Furthermore, SARS-CoV-2 induced significant changes in the 
transcriptome. Pathways centered in membrane recycling, which play a major role in neurons by 
recycling synaptic vesicles20, were among the most dysregulated. SARS-CoV-2 infection also 
induced dysregulation of dynein-mediated axonal transport, which coincides with previous 
knowledge that its impairment leads to neuronal death due to the lack of positive feedback from 
target-derived neurons towards the neuronal soma21, 22. Due to their ramified arborization, 
dopaminergic neurons have a higher susceptibility to altered bi-directional vesicle transport, and 
such alterations have been linked to the early stages of PD development23, 24. Competition for 
the proteins involved in vesicle recycling seems to be one of the mechanisms underlying SARS-
CoV-2-related dopaminergic neuron loss. In addition, these high energy demanding neurons are 
further affected by impairments in mitochondria metabolism25. Our observations are consistent 
with the previously reported neurotropism of the virus9, and highlight the need for further studies 
to evaluate the interplay between dopaminergic neurons, the blood-brain barrier, and microglia 
at late infection stages. Our findings expand the knowledge about the neurodegenerative 
process that the SARS-CoV-2 virus can induce, especially to dopaminergic neurons, 
emphasizing the importance of understanding the mechanisms underlying long-term 
neurological impairment in COVID-19 patients. 
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Figure legends 

Fig. 1 | SARS-CoV-2 colocalizes with TH inducing neuronal fragmentation. a, 
Representative images of midbrain organoid sections stained for SARS-CoV-2 Nucleocapsid 
(N), Tyrosine Hydroxylase (TH) and a nuclear dye (Hoechst) for the short-term culture (4 dpi) 
and mock condition. Separate channel images are presented in grey scale, combined images 
with SARS-CoV-2 N in red, TH in green and Hoechst in blue. Numbered boxes represent 
zoomed regions in the panel to the right. Scale bar in main panel, 200µm. Scale bar in zoomed 
region, 50 µm. b, Representative images of midbrain organoid sections stained for SARS-CoV-2 
N, TH and Hoechst for the short- and long-term cultures (4 dpi and 28 dpi respectively). 
Separate channel images are presented in grey scale, combined images with SARS-CoV-2 N in 
red, TH in green and Hoechst in blue. Numbered boxes represent zoomed regions of 
fragmented and unfragmented dopaminergic neurons. Scale bar in main panel, 200µm. Scale 
bar in zoomed region, 50 µm. c, Quantification of pixels of the respective masks normalized to a 
specific marker in the different conditions, Vehicle (V) or SARS-CoV-2 infection (S), at different 
timepoints, 4 dpi or 28 dpi; n(V4/S4/V28/S28): 37/33/31/26 sections, from 4 organoids per 
group. Top-left panel, represents the pixel ratio between pyknotic nuclei and total nuclei. 
Kruskal-Wallis (P<0.01) followed by Dunn’s test adjusted by Benjamini-Hochberg. Top-right 
panel, represents the pixel ratio between SARS-CoV-2 N and intact (not pyknotic) nuclei. 
Kruskal-Wallis (P<0.0001) followed by Dunn’s test adjusted by Benjamini-Hochberg. Bottom-left 
panel, represents the pixel ratio between TH and intact nuclei. Kruskal-Wallis (P<0.0001) 
followed by Dunn’s test adjusted by Benjamini-Hochberg. Bottom-right panel, represents the 
pixel ratio between fragmented TH signal and total TH signal. Kruskal-Wallis (P<0.001) followed 
by Dunn’s test adjusted by Benjamini-Hochberg. Individual data points are shown with their 
distribution and boxplots representing the 25th (lower hinge), median (thick line), and 75th 
quartiles. Whiskers represent 1.5*IQR (inter-quartile range). *P<0.05, **P<0.01, ***P<0.001, and 
ns (not significant) P>0.05. 

Fig. 2 | Dopaminergic neurons are highly susceptible to SARS-CoV-2 infection. a, 
Representative images of midbrain organoid sections stained for SARS-CoV-2 Nucleocapsid 
(N), Glial Fibrillary Acidic Protein (GFAP) and S100 Calcium Binding Protein B (S100b) for the 
long-term culture (28 dpi) and mock condition. Separate channel images are presented in grey 
scale, combined images with GFAP in red, S100b in green and SARS-CoV-2 NC in blue. Scale 
bar, 200µm. b, Quantification of pixels of the respective masks normalized to a specific marker 
with the different conditions, Vehicle (V) or SARS-CoV-2 infection (S), at different timepoints, 4 
dpi or 28 dpi; n(V4/S4/V28/S28): 35/27/40/38 sections, from 4 organoids per group. Top-left 
panel, represents the pixel ratio between S100b and intact nuclei. Kruskal-Wallis (P<0.0001) 
followed by Dunn’s test adjusted by Benjamini-Hochberg. Top-right panel, represents the pixel 
ratio between GFAP and intact nuclei. Kruskal-Wallis (P<0.0001) followed by Dunn’s test 
adjusted by Benjamini-Hochberg. Bottom-left panel, represents the pixel ratio between the 
colocalization of GFAP and S100b, and intact nuclei. Kruskal-Wallis (P<0.0001) followed by 
Dunn’s test adjusted by Benjamini-Hochberg. Bottom-right panel, represents the pixel ratio 
between the colocalization of GFAP, S100b and SARS-CoV-2 N signal, and intact nuclei. 
Kruskal-Wallis (P<0.0001) followed by Dunn’s test adjusted by Benjamini-Hochberg. c, 
Representative images of midbrain organoids sections stained for SARS-CoV-2 N (red), nuclei 
(blue) and one marker (green): Microtubule Associated Protein 2 (MAP2), Tyrosine Hydroxylase 
(TH), GFAP or S100b. Top and bottom panel represent for short- and long-term culture (4 dpi 
and 28 dpi) respectively. Scale bar in main panel, 200µm. d, Densitograms showing the affinity 
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of SARS-CoV-2 for different cell types depicted by the different markers MAP2, TH, GFAP or 
S100b, at different times post-infection (4 and 28 dpi). Left panel shows the proportion of SARS-
CoV-2 positive pixels colocalizing with one of these markers. Right panel shows the proportion 
of one of these markers that colocalizes with SARS-CoV-2 positive pixels; n(4-MAP2/4-TH/4-
GFAP/4-S100b/28-MAP2/28-TH/28-GFAP/28-S100b) 27/33/21/21/41/20/37/37 sections, from 4 
organoids per group. e, Quantification of SARS-CoV-2 positive pixels colocalized with the 
different markers MAP2, TH, GFAP or S100b normalized to SARS-CoV-2 positive pixels and 
the respective marker total quantification. Left panel shows short-culture post-infection (4 dpi), 
and right panel shows long-culture post-infection (28 dpi). n(4-MAP2/4-TH/4-GFAP/4-S100b/28-
MAP2/28-TH/28-GFAP/28-S100b) 27/33/21/21/41/20/37/37 sections, from 4 organoids per 
group. Kruskal-Wallis (P<0.0001 for both 4 and 28 dpi) followed by Dunn’s test adjusted by 
Benjamini-Hochberg. Individual data points are shown with their distribution, and boxplot 
representing the 25th (lower hinge), median (thick line), and 75th quartile. Whiskers represent 
1.5*IQR (inter-quartile range). *P<0.05, **P<0.01, ***P<0.001, and ns (not significant) P>0.05. 

Fig. 3 | SARS-CoV-2 induces alterations in pathways related to neuronal metabolism and 
survival. a, Significantly dysregulated pathways (P<0.05) of DEGs enriched using Metacore 
gene set with a False discovery rate (FDR) q<0.05. Dysregulated pathways are divided in 
groups based on their similarity. The proportion of dysregulated genes in the pathway are 
shown in the right panel (DEGs in green, total genes in black). b, Network analysis of DEGs 
categorized in groups based on the similarity of the dysregulated pathways (grouping shown in 
panel a). Groups displayed are: COVID19 (C), Vesicle transport and membrane recycling 
excluding interactions with CFTR (VT), and neurodevelopment and neuronal survival (NDS). 
Networks were filtered to remove isolated nodes, and based on their log2 fold change (log2FC): 
C and VT < -0.12 or >0.09; NDS < -0.135 or >0.153. c, Significantly dysregulated pathways 
(P<0.05) of DEGs enriched using KEGG gene set, with a FDR q<0.05. Dot plot panel, shows 
the number of DEGs of a specific dysregulated pathway (size of circle), the proportion of 
dysregulated genes in that pathway (value of Gene ratio), and the adjusted p-value (color of 
circle). Ridge plot panel, shows the expression (log2FC) distribution of the DEGs of a specific 
pathway; the color of the histogram represents the adjusted p-value. d, Significantly 
dysregulated pathways (P<0.05) of DEGs enriched using GO gene set, with a FDR q<0.05. Dot 
plot panel, shows the number of DEGs of a specific dysregulated pathway (size of circle), the 
proportion of dysregulated genes in that pathway (value of Gene ratio), and the adjusted p-value 
(color of circle). Ridge plot panel, shows the expression (log2FC) distribution of the DEGs of a 
specific pathway; the color of the histogram represents the adjusted p-value. e, Phenotypic 
abnormalities linked to the loci of non-coding RNA (ncRNA) DEGs, enriched using GREAT, and 
the Human Phenotype Ontology (HPO) gene set. Dysregulated pathways are divided in groups 
based on the hierarchy of HPO. Significantly dysregulated pathways by region-based binomial 
(P<0.05), with a FDR q<0.05. RNAseq runs were performed pooling 5 organoids per line and 
per batch. Vehicle (V) or SARS-CoV-2 infection (S); n(V/S): 8/8 RNAseq runs. 
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