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Abstract

During development, animals generate distinct cell populations with specific identities, functions, and 

morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages 

during wild-type zebrafish embryogenesis and early larval development (3–120 hours post-fertilization). 

Using these data, we identified the limited catalog of gene expression programs reused across multiple 

tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional 

state is present during development and suggest new long-term cycling populations. Focused analyses 

of non-skeletal muscle and the endoderm identified transcriptional profiles of understudied cell types 

and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially 

distinct pericyte subpopulations, and homologs of recently discovered human best4+ enterocytes. The 

transcriptional regulators of these populations remain unknown, so we reconstructed gene expression 

trajectories to suggest candidates. To enable additional discoveries, we make this comprehensive 

transcriptional atlas of early zebrafish development available through our website, Daniocell.
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Introduction

Animals consist of a collection of cells with beautifully diverse shapes, structures, and functions, 

and this diversity is rebuilt from scratch during the development of each embryo. One central quest of 

developmental biology is to understand how this morphological and functional diversity observed in 

distinct cells relates to transcriptional diversity—how much do transcriptional differences result in 

distinct morphologies and functions and through what mechanisms? In a crucial step toward addressing 

this question, single-cell RNAseq (scRNAseq) approaches provide an opportunity to map the 

transcriptionally distinct populations of cells during development in an unbiased way (Briggs et al. 2018; 

Farrell et al. 2018; Siebert et al. 2019; Cao et al. 2019; Fincher et al. 2018; Hu et al. 2020; Musser et al. 

2021; Plass et al. 2018; Wagner et al. 2018; Lindeboom, Regev, and Teichmann 2021; Rozenblatt-

Rosen et al. 2021; Li et al. 2022; Tabula Sapiens et al. 2022). As has been demonstrated repeatedly, 

scRNAseq-derived molecular cell type catalogs even in well-studied systems often reveal cell types or 

cell states that have been invisible in previous studies (Farrell et al. 2018; Parikh et al. 2019; Satija et 

al. 2015; Li, Li, et al. 2016; Shekhar et al. 2016). Additionally, the growing collection of molecular 

catalogs from diverse animals has enabled systematic and detailed comparisons of cell type 

transcriptional similarity across species, which mark the first steps toward understanding how 

transcriptional programs change and new cell types emerge during evolution (Shafer, Sawh, and Schier 

2022; Tarashansky et al. 2021; Arendt et al. 2019). Finally, single-cell transcriptomes collected in high-

resolution timecourses allow for inference of the temporal changes in gene expression that occur as 

cells are specified and differentiate, using pseudotime trajectory and related approaches (Qiu et al. 

2017; Trapnell et al. 2014; Fan et al. 2016; Wolf et al. 2019; Farrell et al. 2018). These analyses can 

identify the cascades of gene expression that accompany functional and morphological changes within 

differentiating cells and are valuable for identifying candidate cell-type or gene expression program 

regulators to test with reverse genetic approaches. Altogether, single-cell transcriptomic approaches 

provide a useful complement to classical genetic and embryological study of developmental biology by 
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revealing unexpected complexity, characterizing cells at a whole-transcriptome level instead of with 

selected marker genes, and helping generate and sharpen hypotheses.

Zebrafish are a powerful model for studying vertebrate embryogenesis, since their genetic 

tractability, optical clarity, external fertilization, and high fecundity have greatly facilitated developmental 

screens (Driever et al. 1996; 'The Zebrafish Issue'  1996; Nusslein-Volhard 2012; Mullins et al. 2021), 

rigorous lineage tracing (Carney and Mosimann 2018; Kimmel, Warga, and Schilling 1990; Ho and 

Kimmel 1993; Helde et al. 1994), and detailed mechanistic studies. Moreover, the high degree of 

developmental conservation among vertebrates has made zebrafish appealing for modeling many 

human diseases (Lieschke and Currie 2007; Rubinstein 2003). Here, we present a global view of cell 

type heterogeneity and transcriptional progression during zebrafish development to complement data 

acquired through other classical genetic and embryological approaches. We generated an atlas of 

489,686 single-cell transcriptomes from 62 closely spaced developmental stages spanning the first 5 

days of zebrafish development, encompassing the first transcriptional events after zygotic genome 

activation to a freely-swimming, feeding animal. We used these data to search for gene expression 

programs that are reused across multiple tissues, determined the duration of transcriptional states 

during development, and identified dividing populations that are present for long developmental 

durations. Since global analysis of a dataset of this complexity rarely reveals its full cellular diversity, we 

also performed focused analyses within selected tissues. This enabled identification of uncharacterized 

cell subtypes and resolved the expression profiles of less characterized cell types within the intestine 

and non-skeletal muscle cell populations. For these less characterized cell types, we propose putative 

progenitors, candidate regulator genes, and cell type-specific gene expression cascades, using 

pseudotime trajectory approaches. To make these data accessible to the zebrafish community and 

other researchers, we developed the web portal, Daniocell.
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Results

Temporally dense sampling of zebrafish development using single-cell RNAseq

Since developmental processes are incredibly dynamic, understanding them requires identifying 

the timing, ordering, and coordination of gene expression within and between cell types, and therefore 

requires assaying gene expression with high temporal resolution. Thus, to profile the molecular cell 

states that occur during wild-type zebrafish development, we generated single-cell transcriptomes from 

entire wild-type (TL/AB) zebrafish embryos and larvae across 50 closely spaced developmental stages, 

ranging from 14–120 hours post-fertilization (hpf). To capture underrepresented populations and allow 

robust cluster identification, we sampled heavily every 12 hours; to maintain temporal continuity 

necessary to investigate gene expression dynamics, we additionally sampled smaller cell numbers 

every 2 hours (Fig. 1a). In order to profile a large number of cells at an acceptable cost, we employed 

the cell hashing technique MULTI-seq (McGinnis et al. 2019), which barcodes cells prior to sample 

collection. Input cell concentrations were then increased, which profiled more cells, but at the cost of 

increased artefactual cell doublets (where multiple cells are incorrectly identified as ‘one cell’). The 

MULTI-seq hashing allowed computational identification and removal of doublets, which had multiple 

barcodes. We mapped reads to the GRCz11 genome, annotated using the Lawson Lab Zebrafish 

Transcriptome Annotation (v4.3.2) that harmonizes Ensembl and Refseq annotations, includes 

improved 3’ UTR models, and proposes additional gene models (Lawson et al. 2020). We also 

remapped published single-cell data from wildtype (TL/AB) zebrafish encompassing 3.3–12 hpf (Farrell 

et al. 2018) and combined the two datasets using Seurat to generate a continuous single-cell time-

course of 489,686 cells from 62 closely-spaced developmental stages spanning 3.3 to 120 hpf (Fig. 1a–

b, Supplementary Fig. 1a). Our dataset complements recent wild-type zebrafish single cell atlases that 

either use different techniques (single nuclei vs. single-cell), profile shorter developmental durations, or 

have lower frequency of collection timepoints (Farnsworth, Saunders, and Miller 2020; Farrell et al. 

2018; Wagner et al. 2018; Saunders et al. 2022; Dorrity et al. 2022). 
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We next identified transcriptionally distinct cell types and cell states during development (Fig. 

1c). In this work, we use the term ‘cell type’ to describe persistent cell identities (e.g., muscle vs. blood), 

and ‘cell state’ to refer to more transient transcriptional profiles that cells enter and exit over time (e.g., 

cycling vs. non-cycling or progenitor vs. differentiated). We iteratively clustered single-cell 

transcriptomes in a semi-supervised manner (see Materials and Methods), where we performed an 

initial clustering and assigned cells to 19 broad tissue types, based on cluster identity, transcriptional 

similarity, developmental stage, and established literature (Supplementary Fig. 1b). Then, within each 

tissue, we performed a second semi-supervised clustering, and clusters were annotated according to 

their expressed genes whose patterns were described by prior publications or the ZFIN gene 

expression database (Bradford et al. 2022). Altogether, this identified 521 clusters that represent ~300 

terminal and intermediate cell types or cell states. To visualize these data, cells were projected onto a 

Uniform Manifold Approximation and Projection (UMAP) and colored according to developmental stage 

and tissue of origin (Fig. 1b–c, Supplementary Fig. 1a–b). This dataset captures the specification and 

differentiation of cells comprising major organs, including the liver, gut, kidney, muscle, skin, circulatory 

system, and sensory systems. 

To enable public access to our catalog of zebrafish developmental cell states from early 

embryogenesis to larval stages, we have created a static single-cell portal, Daniocell (https://

daniocell.nichd.nih.gov/). This portal contains pre-computed information about gene expression during 

zebrafish development, rendered across all cells and each tissue separately. It is designed to answer 

the most common questions we expect researchers will ask from these data, namely: (1) When and 

where is any given gene expressed? (2) Which genes have the most similar and dissimilar gene 

expression patterns? (3) When is each cell type present and undergoing the cell cycle? and (4) Which 

genes does each cell type express most strongly and most specifically, and how does that compare to 

related cell types?
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Figure 1: A high temporal resolution single-cell RNAseq timecourse encompassing embryogenesis and early larval 
development. (A) Single-cell transcriptomes were collected from whole zebrafish embryos at 50 different developmental stages 
(colored dots) between 14–120 hpf and then merged with our previous dataset encompassing 3.3–12 hpf (Farrell et al., 2018). Size of 
dots represents the number of cells recovered from each stage. (B–C) UMAP projection of single-cell transcriptomes, colored by (B) 
developmental stage (colored as in Fig. A) and (C) curated major tissues. (D) Distribution of the coefficient of variation (CV) of cluster 
means of expression for each gene (log-transformed). Lower CV indicates relatively similar expression across all clusters, while high CV 
indicates high variation in expression, either temporally or across cell types. Genes were divided into categories based on thresholds 
(red dashed lines). (E) Schematic showing our approach for identifying transcriptionally similar cells using an epsilon (ε) neighborhood 
approach and determining whether each cell was in a ‘short-term’ or ‘long-term’ state (based on the mean of absolute stage difference 
between the analyzed cell and its ε-neighbors). (F) Timeline bar plots showing the duration of ‘long-term’ cycling cell states identified 
using a 36-hour threshold. Each bar represents a cell population that was identified as ‘long-term,’ and the length of bar represents the 
minimum timespan that encompasses 80% of its ε-neighbors. hpf: hours post fertilization, PGCs: primordial germ cells, LL: lateral line. 
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Spatiotemporal variation of gene expression during development

We sought to determine for each gene in our transcriptome reference: (1) whether we captured 

its expression, and (2) whether its expression pattern was relatively constant or varied during 

development. While defining thresholds for these measures involves a degree of arbitrariness, they 

provide a rough measure of the comprehensiveness of these data and the portion of the genome that is 

deployed and regulated during development. We detected meaningful expression for 24,216 of the 

36,250 genes in the transcriptome (67%), defined as ≥1 count in at least 22 cells (the size of our 

smallest cluster) and mean expression of ≥0.1 counts/cell in at least one cluster. To assay how many 

genes vary in expression across cell types and developmental stages, we used the coefficient of 

variation (CV) of cluster mean expression values as a rough measure. By relating CV to the number of 

clusters that express a gene (Fig. 1d) and by visually inspecting the expression pattern of randomly 

selected genes with different CVs (Supplementary Fig. 1c), we chose a set of thresholds to roughly 

categorize gene expression patterns. ~3.6% of genes are ubiquitously expressed with low levels of 

fluctuation during development (logCV ≤ –0.85)—far fewer than identified by studies in adult organs 

(Fig. 1d) (Eisenberg and Levanon 2013; Hounkpe et al. 2021). ~18% are ‘cell-type specific’ and 

expressed in ≤25 clusters, which generally corresponds to only a few cell types (logCV ≥ 1.52). The 

remaining 78% of genes exhibit spatiotemporal changes but are expressed in many cell types across 

several tissues. While scRNAseq does not capture all mRNA within each cell, these data do describe 

quantitative, temporally-resolved, and cell-type specific gene expression patterns for two-thirds of the 

genome during the first five days of zebrafish development. Moreover, it emphasizes that most genes 

vary spatiotemporally, suggesting that even general processes required for cellular survival vary 

between cell types or between developmental stages.

Additionally, about half of the genes annotated in the reference transcriptome we used lack 

proper gene names and have less experimental support. We measured whether they were detected 

with similar frequency and spatiotemporal variation, compared to ‘named’ genes. We categorized genes 

into four groups based on their level of evidence: ‘named’ genes (54%), unnamed cDNA clones (e.g. 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted April 15, 2023. ; https://doi.org/10.1101/2023.03.20.533545doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533545


 8

genes beginning with si:ch211-, si:dkey-, zgc:, etc., 13%), computationally predicted genes (e.g. genes 

beginning with LOC-, CABZ-, BX-, AL-, etc., 27%), and putative genes identified through de novo 

transcriptome assembly by the Lawson lab (genes beginning with XLOC-, 5.4%). Unnamed cDNA 

clones were detected with similar frequency to ‘named’ genes (67%) and exhibited spatiotemporally 

varying expression with slightly higher frequency (Supplementary Fig. 1d). Computationally predicted 

and ‘XLOC–’ genes were detected less frequently (28% and 37% respectively), but when detected 

were more likely to be spatiotemporally restricted, lending additional confidence that they may 

represent uncharacterized genes. Altogether, these results suggest that many of these unstudied genes 

are indeed expressed and regulated during development. Given their frequent sequence similarity to 

other ‘named’ genes, it is possible that many provide redundant functions and may have masked the 

roles of some important developmental regulators from forward genetic screens. 

Mapping the duration of transcriptional states using a genome-wide approach

Developing cells transition through several transcriptional states during specification and 

differentiation. Our dataset provides an opportunity to use cells’ full transcriptomes to identify the 

duration of each transcriptional state (i.e., how long cells in that transcriptional state can be found 

during development). Transcriptional states that are present for short durations occur only at a specific 

timepoint during development. Other transcriptional states that are present for longer may indicate that 

individual cells are persistently in this state for a long period of time (for instance, if a terminally 

differentiated cell adopts a transcriptome that is stable over time), or may represent a state that 

individual cells occupy for a short time, but during many developmental stages (for instance, in an 

asynchronous developmental process like somitogenesis, or if a similar transcriptional state is used by 

multiple cell types at different times). Using our dataset, we sought to (1) determine the duration of 

transcriptional states during development, (2) assess whether cell populations were undergoing 

continued cell division, and (3) use these combined analyses to identify potential long-term progenitor 

states. 
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To identify the duration of developmental states, we used an ε-nearest neighbor approach: we 

(1) defined a distance in gene expression space to represent transcriptionally similar cells (ε), (2) found 

each cell’s neighbors within that ε-neighborhood, and (3) computed the difference in developmental 

stage between each cell and its neighbors (Fig. 1e). Cells were categorized based on the mean of 

absolute stage difference with their neighbors (e.g., <24h, 24–36h, 36–48h, >48h) (Supplementary. Fig. 

2a–d). Cells in transcriptional states that are present “long-term” would be expected to have neighbors 

that were more different in developmental stage than cells in transcriptional states that occur only 

during a limited period of development, whose neighbors should all have a similar stage.

Most transcriptional states during development were present for a limited time. During the first 5 

days, 18% of cells were in transcriptional states that last for ≤12 hours, 58% that last for ≤24 hours, 

81% that last for ≤36 hours, 93% that last for ≤48 hours, and only 7% of cells were in a transcriptional 

state found for >48 hours. For downstream analyses, we classified cells into “short-term” and “long-

term” states based on a threshold of 36 hours—transcriptional states present ≥36 hours were 

considered “long-term” (Supplementary Fig. 2e). This threshold was chosen to balance focusing on 

states whose duration was rare while avoiding approaching the upper limit possible for this analysis on 

a time course of 120 hours. Additionally, each cell was classified as “cycling” or “non-cycling” based on 

its expression of transcripts associated with different cell cycle phases (Supplementary Fig. 2, 

Supplementary Fig. 3).

During terminal differentiation, many cell types exit the cell cycle and adopt a stable 

transcriptome. Correspondingly, we found that most cells in “long-term” transcriptional states had exited 

the cell cycle (68% of ‘long-term’ cells were non-cycling), and these cells were generally from later 

developmental stages (74% were 72 hpf or older); we interpret these as terminally differentiated. 

Interestingly, certain tissues predominantly exhibited “short-term” transcriptional states even when cells 

exited the cell cycle during later stages, including the periderm (76% of non-cycling cells in “short-term” 

states), fin (85%), eye (88%), and endoderm (94%) (Supplementary Fig. 3). This suggests that in these 

tissues, even after cells stop dividing, differentiate, and become functionally required, their 
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transcriptional profile continues to change. For the endoderm, this result aligns with previous 

observations that zebrafish digestive organs (liver, pancreas, and intestine) mature in larvae after 96 

hpf, although some of these organs become physiologically functional as early as 76 hpf (Li et al. 2020; 

Wallace et al. 2005; Flores et al. 2020).

The remaining 32% of cells in “long-term” transcriptional states were still undergoing cell 

division. Some of these cells are in non-differentiated developmental states that exhibit high rates of 

cell division and that cells enter over a prolonged period due to developmental asynchrony; for 

instance, we recover populations of transit amplifying cells like primitive erythroblasts, myoblasts, and 

periderm progenitors. Alternatively, some of these cells represent known long-term stem cells—such as 

radial glia, muscle satellite cells, hematopoietic stem cells, mesenchymal progenitors, and some neural 

progenitors (e.g. her4.1+) (Fig. 1f, Supplementary Fig. 2e). This suggests that these known progenitor 

populations remain transcriptionally consistent at the whole transcriptome level over a long duration. 

Recent work in zebrafish neuronal development similarly highlighted that some retinal progenitors 

remain transcriptionally consistent—there are retinal progenitors at 15 dpf that are nearly 

transcriptionally identical to embryonic progenitors that appear prior to 24 hpf (Raj et al. 2020). Here, 

we find that this is a common theme among eye progenitor populations, and several progenitor 

populations that have been studied with individual marker genes (Nelson, Park, and Stenkamp 2009; 

Chuang and Raymond 2001; Kennedy et al. 2004; Bando et al. 2020; Shen and Raymond 2004) are 

found “long-term” even when considered at a whole-transcriptome level, including (i) rx1+/rx2+/rx3– and 

rx3+/otx2+ optic progenitors, (ii) photoreceptor progenitors, and (iii) progenitors of retinal ganglion cells, 

cone bipolar cells and oligodendrocytes (atoh7+/vsx1+/olig2+) (Fig. 1f). These results contrast with some 

other classic stem cell populations that mature transcriptionally during development — for instance, 

pax3+ spinal cord progenitors are present from 14–58 hpf, but their full transcriptional profiles differ 

markedly over that time, and they exhibit a transcriptional persistence of <24hpf. This has been 

similarly shown previously for insm1a/her4.1+ hypothalamic progenitors (Raj et al. 2020). 
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While this analysis recovered many known stem cell populations, it also identified some cycling 

populations as “long-term” that are not well characterized: (i) an oit3+/lyve1a+ lymphatic population, (ii) 

cephalic muscles (gfra3+/ret+/msc+), (iii) dermal fibroblasts (pah+/hpdb+) in the pharyngeal arches, and 

(iv) myoseptal fibroblasts (en1a/en1b+/vegfc+) (Fig. 1f). These may represent unappreciated stem cell 

states or transit amplifying states and merit future investigation. 

This analysis has some caveats. For instance, a “long-term” transcriptional state that appeared 

in the last 36 hours of the timecourse (84–120 hpf) could be classified as “short-term” because we lack 

measurements after 120 hpf. Additionally, in a few cases, progenitor populations are identified as “long-

term” because of strong transcriptional resemblance between the dividing progenitors and their non-

dividing, differentiated counterparts. Examples include early erythroblasts, which begin to express 

differentiation genes, such as hemoglobins (e.g. hbbe1.1, hbbe1.2) while they are still dividing and also 

expressing genes associated with progenitor states (e.g. drl, blf, tal1, and urod). Similarly, some 

periderm progenitors begin to express transmembrane and adhesion-related differentiation genes (e.g. 

lye, anxa1a, krt17, eppk1, pkp1b, tm9sf5) while still cycling. This results in smaller-than-ε 

transcriptional differences between these dividing progenitor and non-dividing differentiating cells and 

the subsequent overestimation of developmental duration of the progenitor state. We have excluded 

such examples from our analyses above. However, most progenitor populations only identify other 

progenitors as ‘transcriptionally similar’, thereby enabling discrimination between the two progenitor 

strategies described above.

Altogether, our analysis identified that most transcriptional states during the first 5 days of 

zebrafish development are present for ≤36 hours. We find that many cell types adopt a stable 

transcriptome as they differentiate, but we highlight that this varies between tissues. Additionally, we 

captured multiple populations of “long-term” cycling cells. This included many known stem cell 

populations and thereby identifies which stem cells are more likely to have a stable transcriptome 

during early development. It also highlighted a few “long-term” transcriptional states as candidate 

unstudied stem cell populations. 
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Identification of shared developmental gene expression programs and tissue-specific 

adaptations 

Many distinct cell types share common cellular states, features, or elaborations. For example, 

despite providing dramatically different functions, olfactory sensory neurons and kidney tubular cells 

both have cilia. While ciliogenesis is known to result from a shared genetic program, for many such 

shared features, it remains unclear whether the underlying genetic program is also shared. Whole-

animal, time-course, single-cell RNAseq data can help address this question, as it enables gene 

expression correlation analysis across all cell types and many developmental stages. Here we 

catalogued gene expression programs (GEPs) that are shared between two or more tissues during 

zebrafish development (Fig. 2a). To find these GEPs, we: (1) smoothed the data from all cells in our 

dataset using a 5 nearest-neighbor network to reduce effects of technical noise (Wagner, Yan, and 

Yanai 2018), (2) used fuzzy c-means (FCM) clustering to group genes with similar expression over time 

and across tissues (Hall et al. 1992; Cannon, Dave, and Bezdek 1986; Bezdek 1980; Kumar and M 

2007), (3) filtered out poor quality GEPs (<5 member genes or primarily technical member genes), and 

(4) filtered out GEPs that were expressed in a single tissue. As a complementary approach, we also 

calculated GEPs on tissue-specific subsets and used correlation with cosine distance to identify 

modules that were found in multiple tissues; while this approach identified many more cell-type specific 

GEPs, it did not yield any additional shared GEPs that were not already captured from the global 

analysis (data not shown). This approach identified 90 GEPs shared between multiple tissues, 

comprised of 8–735 member genes (average 95 member genes). We were able to clearly annotate 82 

of these shared GEPs based on known functions of individual member genes (Fig. 2a, Supplementary 

Table 2); it is currently unclear whether the remaining 8 represent technical artifacts or novel GEPs 

without description in the literature. 

Out of the 82 annotated GEPs, 20 represented ubiquitous GEPs shared across most or all 

tissues, involved in essential cell functions such as metabolism, cell cycle, or cytoskeletal organization 
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Figure 2: Identification of gene 
expression programs shared by 
multiple distinct cell types during 
development. (A) Binary heatmap 
showing expression domains of 
gene expression programs 
(“GEPs”, x-axis) reused in multiple 
tissues (y-axis) during 
development. Annotations for select 
GEPs are shown. Asterisk indicates 
the GEPs further investigated in 
panels B, C, D, and Supplementary 
Fig. 5. Full GEP annotation can be 
found in Supplementary Table 2. 
(B) Dot plot showing expression of 
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(Fig. 2a, Supplementary Table 2). The remaining 62 GEPs were restricted to particular cell types across 

2 or more tissues and generally represented functionally related genes involved in conferring specific 

cellular features. For instance, as a confirmation of our approach, we identified four GEPs associated 

with one of the most well-studied recurring cellular features—the motile cilium (Supplementary Fig. 4a). 

Three modules (GEP-21, GEP-45, GEP-60) contained genes involved in motile cilia assembly, while 

the fourth (GEP-199) comprised genes expressed specifically in multi-ciliated cells (Marra et al. 2019; 

Zhou et al. 2017). 

In some cases, modules demonstrated cellular features that have a core, shared network that is 

then modified within different cell types. For instance, we observed co-expression of Megalin-

associated receptor-mediated endocytic machinery genes that facilitate protein absorption (GEP-193: 

including cubn, amn, dab2), which was known to be shared between intestinal lysosome-rich 

enterocytes (LREs) and pronephros proximal tubules (Zhang et al. 2013) (Fig. 2b). megalin itself was 

previously only documented in the pronephros (Park et al. 2019), but GEP-193 identified both paralogs: 

lrp2a as pronephros-specific and lrp2b as intestine-specific (Fig. 2b). This module also included several 

membrane-spanning transporters that transport sodium/glucose (slc5a11), organic ions (slc22a7b.3), 

monocarboxylate (slc16a13), and amino acids (slc6a19a.2, slc6a19b), highlighting that Megalin-

associated endocytosis is a component in a broader process for nutrient reabsorption (Fig. 2b). 

Moreover, these tissues additionally expressed module GEP-121 which contained lysosome-associated 

catabolic enzymes, including proteinases, hexosaminidases, and mannosidases (Supplementary Fig. 

4b). These genes have previously been associated only with intestinal LREs (Wen et al. 2021), but this 

shows that increased protein reabsorption via Megalin-associated endocytosis is accompanied by a 

corresponding increase in lysosomal degradation capacity in other tissues as well. Despite these core 

similarities, these modules also captured tissue-specific adaptations to these processes. For instance, 

GEP-121 was also shared with other lysosome-rich cell types that are not involved in nutrient 

reabsorption, such as melanophores, macrophages, microglia, and lymphatic endothelia, indicating that 

despite co-expression in some cell types, lysosomal degradation capacity and protein reabsorption 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted April 15, 2023. ; https://doi.org/10.1101/2023.03.20.533545doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533545


 15

activity are separately regulated (Supplementary Fig. 4b). Additionally, GEP-193 included several 

pronephros-specific transporters for sodium/glucose (slc5a2, slc5a12), organic ions (slc22a4, 

slc22a13b), and phosphate transporters (slc20a1a, slc34a1a), highlighting that the shared reabsorption 

program is further specialized in individual tissues (Fig. 2b).

Similar themes were observed in gene expression programs that conferred cellular features that 

were shared even more broadly. For instance, we observed five shared GEPs across epithelial cell 

types (Fig. 2c), including two (GEP-100 and GEP-37) comprised of traditional epithelial marker genes 

(e.g. epcam, annexins, occludins, claudins, and keratins). Interestingly, those ‘traditional’ epithelial 

markers were excluded from some epithelial cell types, such as the lens, liver, and retinal pigmented 

epithelium (RPE). However, we identified GEP-106 that was shared across all epithelial cell types 

(including cell types that express ‘traditional’ markers and ones that do not) which included adiponectin 

receptor 2 (adipor2), the acidic phosphorylated glycoprotein (tuftelin/tuft1a), MHC-class I antigen 

(mhc1zba), beta-microglobulin (b2ml), enolase superfamily member 1 (enosf1), and a bZIP 

transcription factor (nfe2l2a). This suggests a less-explored core gene expression program that may 

influence epithelial biology in broader epithelial types, including even non-canonical epithelia. This 

network may then be modified by expression of additional programs, such as the ‘traditional’ epithelial 

markers or one of two tissue-specific epithelial signatures also identified here – GEP-91 in the 

periderm, ionocytes, and mucous-secreting cells, and GEP-16 in gut epithelia (Fig. 2c). Similarly, we 

found a core, shared expression program across mucous-secreting cells within the intestine, 

esophagus, and skin (GEP-94). In addition to mucins (a large family of heavily O-glycosylated proteins), 

this module identified a group of O-glycosylation-catalyzing enzymes which were shared between all 

mucous-producing cell types and expressed with nearly identical dynamics in those cell types (Fig. 2d, 

Supplementary Fig. 5), including GALNTs (which add N-acetyl galactosamine to the mucin backbone) 

and B3GNTs and B4GNTs (which elongate the glycan chain by adding galactose). However, intestinal 

goblet-cells expressed more sialtransferases (that adds sialic acid as terminal sugars) than esophagus 

or skin mucous-secreting cells, indicating that goblet-cell mucins may have longer sialic acid chains. 
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This suggests that differential mucin modifications in zebrafish may mirror those in other animals, such 

as rat, where longer sialic acid chains have been hypothesized to protect gut mucins from bacterial 

proteolytic enzymes (Grondin et al. 2020). 

Altogether, these results highlight that while some cellular features are produced by re-using 

gene expression programs during development across multiple tissues, the catalog is actually relatively 

limited, and that in most cases, those shared programs are accompanied by cell-type-specific 

elaborations that customize them for each distinct cell type.

Focused analysis of zebrafish non-skeletal muscle identifies new pericyte subpopulations

An immense anatomical cell type diversity is present during zebrafish development, and 

iterative clustering within this whole-animal dataset revealed a similar transcriptional diversity. However, 

there is not a perfect correspondence between these two categorizations. So, we performed focused 

analyses within non-skeletal muscle cells and endodermal derivatives to further explore their 

transcriptional diversity and to better align it with functional and anatomical categorizations.

Non-skeletal muscle primarily consists of smooth muscle cells (SMCs), which are a type of 

involuntary muscle that form interconnected sheets and provide structural and functional support to 

luminal organs, including the digestive system (visceral smooth muscle) and the circulatory system 

(vascular smooth muscle). In addition to vascular smooth muscle cells (vaSMCs), which surround major 

blood vessels, the circulatory system is also supported by pericytes, which surround capillaries. 

Pericytes and vaSMCs are spatially and morphologically distinct, since pericytes associate with 

different vessels, exhibit cytoplasmic extensions or projections, and are scattered along capillaries, 

rather than forming sheets (Dore-Duffy and Cleary 2011; Hartmann et al. 2015). However, these two 

cell types exhibit considerable transcriptional and functional overlap, since both vaSMCs and pericytes 

can control blood pressure, sculpt neighboring epithelia, and regulate neighboring tissue by producing 

secreted signals (Stratman et al. 2017; Smyth et al. 2018; Yamazaki and Mukouyama 2018; Baek et al. 
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Figure 3: Sub-clustering of non-skeletal muscle reveals distinct pericyte subtypes. (A) UMAP projection of 3,866 non-skeletal 
muscle cells, numbered and color-coded by cluster. (B) Dot plot of selected differentially expressed pericyte-specific markers (x-axis) 
compared to vascular (vaSMCs) and visceral SMCs (viSMCs). (C) Dot plot of selected differentially expressed genes (y-axis) between 
the three pericyte clusters (x-axis, P0–P2) and myofibroblasts compared to vascular SMCs (x-axis, vaSMCs). See Supplementary Fig. 
6C for additional markers. (D) Expression of pericyte marker genes visualized on the UMAP projection. Color bar shows mean 
expression level of each gene. (E–G’’) RNA in situ hybridization for markers specific to the pericyte-2 population on a flk::mCherry-
CAAX background in 5 dpf larvae. Panels E–E’’ indicate lateral view of the whole zebrafish head for the universal pericyte marker 
ndufa4l2a and pericyte-2 marker epas1a. Panels F–G’’ indicate a higher magnification of the brain posterior cerebral vein with epas1a+ 
pericytes. Arrows indicate ndufa4l2a+/epas1a+ pericytes in contact with as well separated from the posterior cerebral vein. In panels G–
G”, arrowheads indicate ndufa4l2a+/epas1a– pericytes along other hindbrain vessels while asterisks indicate autofluorescent red blood 
cells inside blood vessels. (H) Bar graph quantifying the number of ndufa4l2a+/epas1a+ pericytes that were visible in a similar-sized 
field of view near the posterior cerebral vein, per animal. (I–K’’) RNA in situ hybridization for ndufa4l2a and epas1a across other blood 
vessels in the zebrafish head including forebrain (I–I”), eye (J–J”), and pharyngeal arches (K–K”). Arrowheads mark cells that are 
ndufa4l2a+; no ndufa4l2a+/epas1a+ cells were observed in these regions. (L) Jitter plot showing the proportion of ndufa4l2a+ pericytes 
that were also epas1a+ in different regions of the zebrafish head. Error bars indicate standard error of mean (S.E.M). PA: pharyngeal 
arches. Scale bar: 25 µm.
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2022). However, the transcriptional heterogeneity, spatial distribution, and developmental regulators of 

pericytes remain areas of active investigation in multiple organisms (Ando, Ishii, and Fukuhara 2021; 

Donadon and Santoro 2021). To further explore cellular heterogeneity and gene expression profiles 

within these enigmatic tissues in zebrafish, we iteratively re-clustered 3,866 non-skeletal muscle cells 

(which include smooth muscle and pericytes) (Fig. 3a, Supplementary Fig. 6a). Our clusters include 2 

cardiac muscle populations (clusters C14 and C17), hepatic stellate cells (C18), and 2 pdgfra+ 

populations that we were unable to annotate (lyve1a+ or cxcl11+, C5 and C19). We identified smooth 

muscle based on expression of the traditional smooth muscle markers acta2 and tagln, which included 

five vascular SMC populations (C2, C11, C12, C15, and C21). Additionally, we identified three visceral 

SMC populations (C8, C10, C13) based on combined expression of the traditional visceral SMC 

markers desmin-b (desmb) and smoothelin-a and b (smtna and smtnb) (Kayman Kurekci et al. 2021; 

Georgijevic et al. 2007) (Fig. 3b). We also identified three potentially visceral SMC populations (C16, 

C22, and C23) that expressed only one or two of those three traditional visceral SMC markers 

(Supplementary Fig. 6b). Lastly, we identified three transcriptionally distinct pericyte populations (C4, 

C9, and C20) and a population of myofibroblasts (C3) (Fig. 3c, Supplementary Fig. 6c). Vascular SMCs 

are relatively well characterized, so in this section, we focus on the distinct pericyte populations and 

return to visceral SMCs in the next section. 

Pericyte clusters were identified based on the expression of previously described marker genes 

in mouse and zebrafish such as abcc9, pdgfrb and the recently described pericyte-specific (within 

zebrafish perivascular cells) marker gene, ndufa4l2a (Shih et al. 2021; Vanlandewijck et al. 2018)(Fig. 

3c–d, Supplementary Fig. 6c, Supplementary Fig. 7a). Transcriptionally distinct pericyte subpopulations 

have been previously demonstrated in mouse (Vanlandewijck et al. 2018) but have not been described 

in zebrafish. Here, we observed three distinct transcriptional states or subpopulations of pericytes – 

pericyte-0 which does not have any unique markers, and two others with at least 10 specific markers 

(Supplementary Fig. 6c). As examples of these specific markers, pericyte-1 expresses adrenomedullin 

(adma), and pericyte-2 expresses leukocyte extravasation genes such as esama and epas1a (Fig. 3c–
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d). A few cells within the pericyte-1 cluster also expressed the characteristic genes of pericyte-2, which 

indicates that the two subpopulations may be closely related or represent non-exclusive transcriptional 

states (Fig. 3c). Expression of some traditional pericyte and SMC markers varied among these 

populations. For instance, pdgfra (often considered a fibroblast marker) was expressed in pericyte-1, 

and the traditional SMC marker tagln was expressed in pericyte-0, but excluded from pericyte-1 and 

pericyte-2 (Fig. 3c). Previous studies have described that pericytes originate from multiple embryonic 

origins, including the sclerotome, neural crest, and lateral plate mesoderm (Le Lievre and Le Douarin 

1975; Jiang et al. 2000; Pouget et al. 2006; Etchevers et al. 2001; Korn, Christ, and Kurz 2002). Cranial 

pericytes derive from the cranial neural crest in zebrafish and mammals (Whitesell et al. 2014; Ando et 

al. 2016), and at the developmental stages profiled, most pericytes in zebrafish are located in the head. 

Consistent with this, all three pericyte clusters expressed the classical cranial neural crest marker 

foxc1a/b (Whitesell et al. 2019; French et al. 2014), which suggests that these populations derive from 

the neural crest (Fig. 3d).

Additionally, we observed a fourth population (C3) that expressed acta2, pdgfrb, and ndufa4l2a 

at lower levels, but also expressed proteoglycans (bgna, ctgfa and dcn) and ECM components 

(including col6a1/2, col4a5/6, and col11a1a) that are traditionally associated with fibroblasts (Muhl et al. 

2020) (Fig. 3a, c, Supplementary Fig. 6c, Supplementary Fig. 7). Based on its gene expression and its 

localization far from vessels (Supplementary Fig. 7), we believe this population represents 

myofibroblasts. However, given its weak expression of the pericyte marker ndufa4l2a and documented 

transdifferentiation between pericytes and fibroblasts (Sundberg et al. 1996), it remains possible that 

these cells have a more complicated identity.

A potential artifactual explanation for observing multiple pericyte signatures would be that 

pericytes incompletely dissociated from neighboring cells and formed doublets with other endothelial or 

mesenchymal cells. To exclude this possibility, we simulated incomplete dissociation by creating 

artificial doublets between pericyte-0 cells and other cell types that expressed the characteristic 
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markers of pericyte-1 and pericyte-2 subtypes (see Methods). None of these artificial doublets 

recreated the signatures observed in the pericyte-1 and pericyte-2 populations (Supplementary Fig. 8a–

b), suggesting that they do not represent artifacts generated by scRNAseq, but are real cellular states.

To further characterize the pericyte-2 population, we performed in situ hybridization for the 

pericyte-2 specific marker, epas1a, in combination with the general pericyte markers ndufa4l2a and 

abcc9. We observed epas1a+/ndufa4l2a+ and epas1a+/abcc9+ cells surrounding the posterior cerebral 

vein in the hindbrain (Fig 3e–g, arrows, Supplementary Fig. 8c). ndufa4l2a+ cells surrounding other 

hindbrain vessels did not express epas1a, suggesting that this indeed represents transcriptional 

heterogeneity (Fig. 3g, arrowheads). Interestingly, ndufa4l2a+/epas1a+ cells were frequently observed 

in pairs (Fig. 3f, h), and though ndufa4l2a+ cells were generally spatially proximal to vessels, for pairs 

of ndufa4l2a+/epas1a+ cells, often one cell of the pair was separated from the vessel. Inspection of 

other regions of the zebrafish head, including the forebrain, eye, and pharyngeal arches revealed many 

ndufa4l2a+ cells, but almost none that co-stained with epas1a, suggesting that the pericyte-2 

population is spatially restricted to the hindbrain (Fig. 3i–l). This mirrors other organisms, where 

transcriptionally distinct pericyte subpopulations have been associated with particular tissues 

(Vanlandewijck et al. 2018). Altogether, these results reveal that there are multiple transcriptionally 

distinct pericytes in zebrafish that exhibit spatial segregation, much like mammals.

Molecular characterization of zebrafish intestinal smooth muscle cell types

The intestine is surrounded by smooth muscle that regulates its morphogenesis (Huycke et al. 

2019), stem cell maintenance (Martin-Alonso et al. 2021), enteric nervous system patterning (Graham 

et al. 2017), and gastrointestinal motility (Wedel et al. 2006; Bitar 2003). The intestinal smooth muscle 

(a subtype of visceral SMCs) is arranged in two layers, one oriented longitudinally and the other 

circularly (Georgijevic et al. 2007). In humans, mice, and zebrafish, intestinal SMC markers that label 

both circular and longitudinal smooth muscle have been reported (Sanders et al. 2012; Huycke et al. 

2019; Martin-Alonso et al. 2021; Ma et al. 2018); however, to our knowledge markers distinguishing 
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between circular and longitudinal SMCs have remained undescribed. Our focused analysis within non-

skeletal muscle revealed two transcriptionally distinct desmb+/smtnb+ intestinal SMC populations in 

zebrafish with distinct markers. C8 expressed kcnk18, fsta, foxf2a, gucy1a1, npnt, and C10 expressed 

il13ra2, tesca, rgs2, fhl3b (Fig. 3a, Fig. 4a–b). In situ hybridization for the C8/C10 markers il13ra2, fsta, 

and kcnk18 identified C8 as the inner, circular layer of intestinal SMCs and C10 as the outer, 

longitudinal layer of intestinal SMCs (Fig. 4c–m, Supplementary Fig. 9a–h), demonstrating the distinct 

molecular profiles of the two layers for the first time. 

To identify the transcriptional events accompanying the acquisition of intestinal circular and 

longitudinal SMC fates, we reconstructed developmental trajectories using URD (Farrell et al. 2018). 

We focused on cell populations from the non-skeletal muscle atlas that were putatively non-neural crest 

derived (foxc1a/b– and prrx1a/b–) and expressed the general smooth muscle marker acta2, which 

included three visceral SMC populations, two vascular SMC populations, and the putative 

myofibroblasts. We reconstructed trajectories from 3 dpf progenitors to distinct 5 dpf clusters, which 

predicted a close relationship between the two types of intestinal SMCs (Fig. 4n). To uncover the 

distinct gene expression cascades that characterize these two layers of smooth muscle and to predict 

potential transcriptional regulators within them, we examined gene expression dynamics along the two 

intestinal SMC branches, identifying markers specific for each SMC including early onset transcription 

factors (TFs) that may be important for the specification of these two populations (Fig. 4o, 

Supplementary Fig. 9i–k, Supplementary Fig. 10).  Several TFs were shared between the two intestinal 

SMC populations, including foxf1, foxp4, meis2a, and pbx3b (Supplementary Fig. 9i), though these 

factors were each expressed in numerous other cell types in the animal. However, we found that 

expression of the TFs foxq1a, foxq1b, foxf2a and tcf21 was restricted to the circular SMC trajectory, 

while the longitudinal SMC cells instead expressed cremb, itpr1a, and tead3a (Fig. 4o, Supplementary 

Fig. 9j–k). Interestingly, despite their widespread expression, previous studies in mouse (Hoggatt et al. 

2013) and Xenopus (Tseng, Shah, and Jamrich 2004) have demonstrated a requirement for foxf1 and 

foxf2 for general intestinal SMC differentiation. Altogether, these results revealed transcriptional 
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differences between these two intestinal smooth muscle layers that may underlie some of their 

described morphological and biophysical differences (Huycke et al. 2019).

Focused analysis of endodermal development identifies disease-relevant cell types and their 

candidate regulators

Similar to non-skeletal muscle, we characterized the cellular heterogeneity of endodermal 

derivatives and inferred the transcriptional events that underlie the specification of endodermal cell 

types during zebrafish development. We iteratively subclustered 12,592 endodermal cells into 33 

clusters and annotated them based on expression of known markers (Fig. 5a, Supplementary Fig. 11a–

b). Additionally, we identified the distinct transcription factors expressed by each of these clusters 

(Supplementary Fig. 11b). The primary source of heterogeneity varied across distinct endodermal 

tissues. Within the endocrine and exocrine pancreas, clusters primarily reflected distinct cell types. 

Within the liver, clusters primarily reflected metabolic specialization, such as emergence of a 

subpopulation of hepatocytes specialized for cholesterol biosynthesis (msmo1+) at 84 hpf that persist 

throughout larval development (Farnsworth, Saunders, and Miller 2020) and until adulthood (Morrison 

et al. 2022). Within the intestine, clusters were strongly associated with both anterior-posterior position 

and distinct cell types.

Among endodermal derivatives, the least transcriptionally characterized are those that allow fish 

to regulate their buoyancy: the swim bladder and the pneumatic duct, which connects the swim bladder 

to the esophagus. We identified a cluster (C32) that arises at 2–3 dpf which expressed genes that have 

been previously reported in both the pneumatic duct and swim bladder (anxa5b, hb9/mnx1, ihha, shha, 

sox2) (Fig. 5b–c), but not genes that have been previously reported exclusively in the swim bladder 

(acta2, elovl1a, fgf10, has2, hprt1l, ptch1, ptch2) (Winata et al. 2009; Yin et al. 2011) suggesting that 

this cluster represents the pneumatic duct. We did not observe a cluster that expressed known swim 

bladder markers, suggesting that this tissue may not have effectively dissociated during our 

experiments. Differential gene expression testing revealed that surfactant protein ba (sftpba) and the 
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transcription factor, sim1b are distinctly expressed in cluster C32 (Fig. 5b–c). RNA in situ hybridization 

confirmed that sftpba and sim1b are expressed exclusively in the pneumatic duct and uninflated 

anterior swim bladder bud (Fig. 5d). While somewhat less specific, pneumatic duct cells also expressed 

several additional transcription factors (arnt2, sim2, sim2.1) that may be important for its specification. 

Additionally, consistent with the previously hypothesized evolutionary relationship between the swim 

bladder and human lung, pneumatic duct cells expressed several genes associated with lung disease, 

including ceacam1, cd151, and abca12 (Fig. 5c). Despite its morphological appreciation for at least a 

century (Moser 1903), these findings represent (to our knowledge) the first specific molecular markers 

for the pneumatic duct.

Within the intestine, in addition to three general enterocyte populations, we also detected two 

non-canonical enterocyte populations (Fig. 5a), including the lysosome-rich enterocytes that are 

specialized for protein absorption (Fig. 2b). Additionally, we find a zebrafish cell population homologous 

to human best4+ enterocytes (Fig. 5e–h), a recently described cell type that is potentially reduced in 

inflamed intestines (Parikh et al. 2019; Smillie et al. 2019). These cells were also very recently 

identified in 6 dpf zebrafish (Willms et al. 2022), but we first observe them at 3 dpf, when they are in the 

process of being specified. Similar to their human counterparts, zebrafish best4+ enterocytes strongly 

expressed best4, otop2, cftr, carbonic anhydrases (ca2 and ca4b instead of ca4/7), and notch2 (Fig, 

5e–f; Fig. 6a–b; Supplementary Fig. 12) (Burclaff et al. 2022; Smillie et al. 2019). Additionally, they 

strongly express the hormone cholecystokinin (cckb) and hormone receptors such as secretin receptor 

(sctr), prostaglandin E receptor 4 (ptger4c), adrenergic receptor (adra2a), and tachykinin receptor 2 

(tacr2) (Fig. 5e, Fig. 6b, Supplementary Fig. 12). Via in situ hybridization, we found best4+ cells 

throughout the intestine, evidenced by overlap with the general intestinal marker cdx1b (Fig. 5f, g–g’’). 

best4+ cells in the anterior intestine co-express otop2 (Fig 5h–h’’, yellow arrowhead), which is also 

expressed in a posterior patch that is likely the LREs (Fig. 6f’’, white arrowhead). This mirrors recent 

human single-cell studies that describe otop2 expression within best4+ cells only within particular parts 

of the intestine, though that location is posterior in humans (the colon) and anterior in zebrafish 
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magnification of yellow boxes from G–G”. Scale bar – 100 µm. 
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(Busslinger et al. 2021; Elmentaite et al. 2021).

While these non-canonical enterocytes have now been found across multiple organisms, the 

transcriptional events underlying their specification is unknown. Thus, to establish candidate regulators 

of these populations, we reconstructed the developmental trajectories of transcriptional changes among 

intestinal cells using URD and identified transcription factors with dynamic expression along trajectories 

toward the two non-canonical enterocyte populations (Farrell et al. 2018) (Fig. 6c–f, Supplementary Fig. 

13). In progenitors at the branchpoint that separates best4+ cells from other absorptive enterocytes, we 

observed expression of the RANKL receptor tnfrsf11a and the transcription factors atoh1b and ascl1a 

(Fig. 6d–e). This is followed by the decline of ascl1a, atoh1b and tnfrsf11a expression, alongside the 

upregulation of several TFs (including dacha and pbx3a, whose expression within the intestine is quite 

specific to best4+ enterocytes), and lastly expression of cell type specific markers such as best4, otop2, 

and cftr (Fig. 6e, Supplementary Fig. 13). In situ hybridization confirmed that some best4+ enterocytes 

along the mid-intestinal region express pbx3a (Fig. 6g–h’’). In other contexts, Pbx3 cooperates with 

Meis1 to activate transcription (Garcia-Cuellar et al. 2015; Li, Chen, et al. 2016), and we observed that 

best4+ cells also express meis1b uniquely among intestinal cells (Fig. 5e), and propose that pbx3a and 

meis1b may act combinatorially in this cell type as well. 

The progenitors that putatively generate LREs were less distinct in their transcriptional state, but 

we observed an initial decline in expression of the more broadly expressed TFs foxd2 and satb2 and 

upregulation of cdx1a and skilb. This was followed by upregulation of several TFs (mafa, mafbb, tfeb, 

atoh1b) and genes functionally characteristic of LREs (cubn, dab2, amn) (Fig. 2b, Fig. 6f). Expression 

of mafbb and tfeb was unique to LREs among intestinal cells. tfeb regulates lysosome biogenesis 

(Lapierre et al. 2013; Lister et al. 2011)—the most characteristic feature of these cells—suggesting that 

these other TFs may be involved in either specification of LREs or their functional specialization.

In summary, we catalogued endodermal derivatives during zebrafish development, describing 

the gene expression program of the molecularly uncharacterized pneumatic duct and multiple non-

canonical enterocyte populations in zebrafish, including best4+ enterocytes. We established the 
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molecular similarity of zebrafish and human best4+ enterocytes and used trajectory approaches to 

identify putative progenitor populations and candidate developmental regulators that may be important 

for the specification or differentiation of these enterocyte populations.

Discussion

Understanding how gene expression changes drive specification and differentiation of distinct 

cell types during animal development benefits massively from a complete understanding of the cast of 

players: which molecular cell types/states exist, and which genes are expressed by each. In this study, 

we mapped gene expression landscapes with high temporal resolution across 489,686 cells during the 

first 120 hours of zebrafish development. Analysis of these data revealed global gene expression 

programs, characterized the persistence of transcriptional states during development, identified 

undescribed or rare cell types/subtypes, and enabled molecular characterization of tissues with few 

known marker genes. Moreover, we generated testable hypotheses about crucial regulators of cellular 

function and cell specification. We anticipate that additional focused re-analyses of these data by other 

investigators will lead to further discoveries.

One application of large-scale, whole-animal timecourse single-cell data is that it enables 

comparison between different cell types, tissues, and developmental times at the whole-transcriptome 

level. This enabled us to build a catalog of gene expression program that are reused by multiple cell 

types during development. Additionally, this allowed us to assay whether developmental transcriptional 

states are found only briefly or can be found over many developmental stages. We identified that most 

transcriptional states are found for 12–36 hours (based on the threshold for transcriptional similarity that 

we used). Additionally, this analysis helped separate stem cell populations into groups that have a 

stable transcriptional state and groups whose transcriptomes change during development (such as 

progenitor cells in the ventral nerve tube or mouse epiblast, which produce different descendants at 

different times). The stem cell populations which we identify as having a “long-term” transcriptional 

state are likely to remain transcriptionally consistent at the whole-transcriptome level. We find that this 
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applies to several classic stem cell populations usually identified by a few markers, including radial glia, 

satellite cells, and several populations within the eye. Moreover, our analysis captured a few additional 

populations that have not been studied as stem cells that occupy a “long-term” dividing state. These 

candidates include oit3+ lymphatic endothelia, pah+/hpdb+ dermal fibroblasts, myoseptal fibroblasts, and 

cephalic/opercular muscles. Further experimental investigation may establish these states as true 

progenitor populations. 

In addition to such global insights into zebrafish development, focused analyses in this work 

revealed the gene expression profiles of cellular subtypes that have not been well characterized 

molecularly, including the pneumatic duct and intestinal smooth muscle layers. These provide the 

molecular handles required for dissecting the development and function of these tissues. For instance, 

we identify genes that are specific to the pneumatic duct, including transcription factors that may 

regulate its development (sim1b, sim2) and Sftpb surfactant protein, which prevents terminal airway 

collapse while breathing in human lungs (Stahlman et al. 2000; Han and Mallampalli 2015). The 

pneumatic duct expresses other genes associated with pulmonary surfactant metabolism dysfunction, 

such as abca3 (Ban et al. 2007), which suggests that the swim bladder may be a valuable model for 

understanding and developing therapeutics to treat these disorders. This motivates testing the function 

of other specific markers of this tissue; for instance, tissue-specific models of abca12 may reveal a role 

in lung function and surfactant metabolism, in addition to its known role in maintaining epidermal barrier 

function (Zuo et al. 2008). Similarly, though the developmental signaling regimes that generate distinct 

intestinal smooth muscle layers are known (Huycke et al. 2019), this study identified transcriptional 

differences that are potentially downstream, including several candidate TFs. Interestingly, many of the 

TFs restricted to circular smooth muscle (foxq1a, foxq1b, tcf21) inhibit SMC differentiation in mammals 

by opposing the activities of the Foxf and Myocardin pathways (Hoggatt et al. 2013) which we observe 

in both intestinal SMC types. This presents the intriguing possibility that a key aspect of circular smooth 

muscle differentiation may involve the inhibition of alternative SMC fates, including longitudinal muscle. 

Our identification of distinct markers of the individual intestinal SMC layers will enable their genetic 
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manipulation to test their functional contributions, developmental origins, and the regulation underlying 

their specification.

For some cell types, focused analysis revealed previously unappreciated heterogeneity that has 

potential functional implications. For instance, although pericyte morphological heterogeneity is well 

appreciated (Grant et al., 2019), pericyte molecular heterogeneity remains an area of investigation, 

partially due to the former dearth of pericyte specific markers, which was recently resolved (Shih et al. 

2021). This study reveals that zebrafish possess multiple transcriptionally distinct pericyte 

subpopulations. Notably, at least some of the subtype-specific genes that we observe are expressed in 

pericytes in other animals (for instance, adma in rat pericytes (Kis et al. 2002) and epas1a and esama 

in mouse pericytes (Muhl et al. 2020)). In systems where transcriptional differences have been 

identified among pericytes, they are often accompanied by spatial restriction; for example, mouse lung 

and brain pericytes differ in expression of several transmembrane transporters (Vanlandewijck et al. 

2018). Similarly, this study observes that the pericyte-2 subtype is associated with particular vessels in 

the hindbrain, suggesting that zebrafish pericytes may also exhibit tissue-dependent transcriptional 

differences. Moreover, the genes expressed in different pericyte populations observed in this study may 

indicate distinct functions for these subtypes that will need to be tested using reverse genetic 

approaches. For example, we observe that only a subpopulation of zebrafish pericytes express the 

peptide hormone adrenomedullin (adma), which is produced by rat cerebral pericytes, where it triggers 

vasodilation of the vessels they surround (Kis et al. 2002). Similarly, since pericyte-2 (epas1a+) 

pericytes were often observed in pairs and sometimes at some distance from the vessel, this suggests 

that pericyte-2 subtype gene may be associated with particular morphological or migratory 

characteristics. Future long-term imaging assays will be required to determine whether these distinct 

transcriptional profiles represent persistent pericyte identities or transient cell states that pericytes in 

certain anatomical locations enter and exit.

This study also reconstructed trajectories that describe the development of recently discovered 

and potentially disease-related cell types, such as the best4+ enterocytes (Parikh et al. 2019; 
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Elmentaite et al. 2021). Decreased numbers of best4+ enterocytes in patients with ulcerative colitis and 

disruption of cGMP signaling in colorectal cancer (Parikh et al. 2019; Pattison et al. 2020; Smillie et al. 

2019)  have suggested a potential importance for best4+ enterocytes in human disease. Best4+ 

enterocytes are not found in rodents (Ikpa et al. 2016; Nowotschin et al. 2019; Pijuan-Sala et al. 2019), 

suggesting that zebrafish represent an excellent opportunity to study the function and development of 

these cells. Comparison between human and zebrafish best4+ enterocytes revealed important 

transcriptional similarities that indicate functional homologies. Human best4+ enterocytes respond to 

luminal pH (Parikh et al 2019) and zebrafish share the best4 and otop2 ion channels that are proposed 

to mediate this response. Additionally, human and zebrafish best4+ enterocytes share expression of cftr 

and carbonic anhydrases which may regulate ion or fluid homeostasis in the gut. Lastly, shared 

expression of adra2a between both human and zebrafish best4+ enterocytes (Supplementary Fig. 12) 

may indicate a role in intestinal motility in both organisms (Scheibner et al. 2002). Human best4+ 

enterocytes are the source of the critical hormone Uroguanylin/Guca2b (a guanylate-cyclase agonist 

peptide that increases cGMP levels to regulate satiety and intestinal tone) (Valentino et al. 2011). 

Although zebrafish guts do not express an ortholog of Uroguanylin, zebrafish best4+ enterocytes 

instead produce the intestinal hormone cholecystokinin which also regulates satiety, intestinal pH, and 

intestinal motility in part by activating cGMP production (Sindic 2013; Konturek, Konturek, and 

Domschke 1995; Zeng et al. 2020). This suggests that a conserved function between human and 

zebrafish best4+ enterocytes may be to activate cGMP production in response to pH changes or other 

signals, albeit via different mechanisms. Lastly, human best4+ enterocytes in different regions of the 

intestine exhibit distinct gene expression profiles (Burclaff et al. 2022; Parikh et al. 2019; Smillie et al. 

2019). Low cell numbers prevented sub-clustering the best4+ enterocytes in this study, but in situ 

hybridization demonstrated that zebrafish also exhibit regionalization of this population, since otop2 co-

expression is limited to particular regions of the intestine in both zebrafish and humans. Understanding 

the biology of these cells—both their development and function—would be crucial to enabling 

therapeutic approaches that manipulate or target them. Thus, in this study, we identify the molecular 
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characteristics of a putative progenitor state that gives rise to these cells (atoh1b/ascl1a/tnfrsf11a+), 

identify candidate developmental signals and regulators that may be important for their specification 

(e.g. Notch2, BMP, dacha, pbx3a, meis1b, tox2), and identify cell-type specific markers of these cells. 

Altogether, these lay the groundwork for experiments and genetic tools to manipulate these cells to 

understand their development and function in intestinal homeostasis and cell-cell communication with 

neighboring cell types. 

As exemplified in this study, single-cell genomics approaches have seen wide adoption among 

developmental biologists, and these data join a few complementary single-cell RNAseq datasets 

focused on zebrafish development. While all profile whole animals, each study has focused on 

analyzing different tissues or developmental processes, such as the early embryo and axial mesoderm 

(Farrell et al. 2018), early embryo and pharyngeal arch (Wagner et al. 2018), the intestine and non-

skeletal muscle (this work), liver and notochord (Farnsworth, Saunders, and Miller 2020), or 

parachordal cartilage and cranial ganglia (Saunders et al. 2022). This highlights the richness of the data 

and the potential for its reuse and reanalysis to make additional discoveries. It also underscores the 

need to make these data accessible and easy to work with. To this end, we created Daniocell to enable 

researchers to browse our data rapidly to address simple questions. 

We anticipate that these data can augment other large-scale efforts to build models or 

understand mechanisms of development. For instance, we envision that label transfer approaches 

(Stuart et al. 2019; Lotfollahi et al. 2022) used with our annotations will accelerate the time-consuming 

annotation step of future single-cell RNAseq work in zebrafish—at least to some degree; for this 

purpose, we encourage others to submit improvements to the annotations through Daniocell. 

Integration with data generated from different transgenic lines or via CRISPR barcoding techniques 

(McKenna et al. 2016; Spanjaard et al. 2018) can ascribe lineage information to each cell population 

and help understand their developmental origins. These data also provide a framework for unraveling 

the gene regulatory network underlying vertebrate development, especially when combined with high-

throughput single-cell chromatin accessibility assays and computational gene regulatory network 
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inference approaches (Aibar et al. 2017; Kamimoto et al. 2023). Thankfully, increasingly high-

throughput CRISPR screening techniques mean that approaches to functionally test the predictions that 

would emerge from those efforts are also accelerating (Parvez et al. 2021). The greatest gains from 

these approaches will be realized as cooperation increases within the zebrafish community to 

collectively integrate the results generated across many labs using different techniques, stages, and 

transgenic and mutant lines to make them more broadly useable. 

Materials and Methods

Zebrafish Husbandry

This study includes the use of live zebrafish vertebrate embryos. Animals were handled 

according to National Institutes of Health (NIH) guidelines. Some zebrafish work was performed at the 

facilities of Harvard University, Faculty of Arts & Sciences (HU/FAS) under protocol 25-08. The HU/FAS 

Institutional Animal Care and Use program maintains full AAALAC accreditation, is assured with OLAW 

(A3593-01) and is currently registered with the US Department of Agriculture (USDA). Additional 

zebrafish work was performed at the Eunice Kenndy Shriver National Institute of Child Health and 

Human Development (NICHD) Shared Zebrafish Facility, under animal protocol 20-001. The NICHD 

Animal Care and Use program also maintains full AAALAC accreditation, is assured with OLAW 

(D16-00602) and is currently registered with the US Department of Agriculture (USDA). At the 

developmental stages profiled in this study, zebrafish sex is not yet determined, so sex was not 

considered a biological variable in this study.

Dissociation of animals into cell suspensions

Fertilized eggs were collected from wild-type (Tupfel long fin/AB) in-crosses and then cultured in 

blue water (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 0.1% methylene blue) at 

28°C until they reached the desired stage. Per sample, 10–12 embryos or larvae were dechorionated 

using forceps in calcium-free Ringer’s solution (116 mM NaCl, 2.6 mM KCl, 5 mM HEPES, pH 7.0, 500 
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mL, sterile) with MESAB (400 ug/mL) and left to sit 5–10 minutes at 28°C to become anesthetized. 

Protease solution was mixed fresh each day (0.25% trypsin, 1 mM EDTA, pH 8.0, in 1xPBS, sterile; 

Sigma-Aldrich T4549). Per sample, 1.2 mL of protease solution was added to a well in a 24-well plate. 

This plate was placed at 28°C to equilibrate temperature. Meanwhile, collagenase P solution (100 mg/

ml Collagenase P in Hank’s Balanced Salt Solution; Sigma-Aldrich H9269 and 11213865001) was 

thawed on ice. Each sample of embryos/larvae were transferred to a 1.5mL Eppendorf tube, and the 

volume of Ringer’s solution was reduced to 100 uL. The animals were de-yolked and abraded by 

pipetting up and down 5 times with a P200 set to 80 uL. Animals were rinsed by adding 1 mL of fresh 

Ringer’s solution, allowing the animals to settle to the bottom, and removing all but 100 uL of the 

Ringer’s solution. The animals (including the 100 uL of Ringer’s) were then transferred into the 24-well 

plate with protease solution, 30 uL of Collagenase P solution was added per well, and the plate was 

swirled to mix (final volume = 1.33 mL per well). The plate was incubated at 28°C, monitoring 

dissociation with a microscope, pipetting up and down with a P1000 20 times slowly every 5 minutes. 

After 10 minutes, each sample was passed once through a P200 by pipetting from one well into 

another. Digestion was stopped after 20–25 minutes by adding 270 uL of 6X STOP solution (6X, 30% 

calf serum, 6 mM CaCl2, in 1 x PBS, sterile) to each well and swirling gently to mix (final volume per 

well now 1.5 mL). In many cases, some small chunks of tissue remained, but attempting to achieve 

complete digestion usually reduced cell viability significantly. Suspensions were filtered through a 40 

uM cell filter into 1.5 mL Eppendorf tube to remove any remaining tissue chunks. The tube was flicked 

vigorously 20 times.

MULTI-seq barcoding of cell suspensions

Cells were spun down at 300 x g for 3 minutes at 4°C. Supernatant was removed (leaving ~ 100 

ul) and cells were resuspended in 1 mL chilled DMEM/F12 (0% BSA; Gibco 12500062). Cells were 

washed by spinning at 300 x g for 3 minutes at 4°C, removing supernatant, and resuspending cells in 1 
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mL chilled DMEM/F12 (0% BSA). During the spin, 11 uL of anchor solution was added to each well of a 

round-bottom plate (200 nM anchor oligo, 200 nM barcode oligo in DMEM/F12 with 0% BSA; anchor 

oligo was a gift from Chris McGinnis and the Zev Gartner lab, now available from Sigma-Aldrich; 

barcodes ordered from IDT). Cell suspension was distributed into 10-12 wells (100 uL cells per well), 

mixed with 5-10 gentle pipettings, then incubated on ice 5 minutes. To lock MULTI-seq barcodes in 

place, 11 uL of co-anchor oligonucleotide solution (200 nM co-anchor oligo in DMEM/F12 with 0% BSA; 

co-anchor oligo also a gift from Chris McGinnis and the Zev Gartner lab, now available from Sigma-

Aldrich) was added to each well, pipetted gently to mix, and incubated on ice for 5 minutes. Labeling 

was halted with BSA by adding 50 uL of DMEM/F12 (4% BSA) and mixing gently. To remove excess 

labeling reagents, cells were washed twice by spinning cells down at 300 x g for 3 minutes at 4°C, 

removing supernatant, and resuspending in 200 uL of DMEM/F12 (1% BSA). After the final wash, 

samples were pooled in a 2 mL Eppendorf, washed by spinning at 250 x g for 4 minutes, removing the 

supernatant, and resuspending in 1 mL of DMEM/F12 with 1% BSA, spinning again at 250 x g for 4 

minutes, and then resuspending in 300 uL of DMEM/F12 with 1% BSA. Cells were filtered through a 40 

uM FlowMi cell filter (Bel-Art H13680-0040) into a clean tube.

Collection of single-cell transcriptomes

Droplet emulsions of single cells were generated using the 10X Genomics Chromium controller 

with Single Cell 3’ v3.1 consumable reagents, according to the manufacturer’s instructions. In brief, 

single-cell suspensions were stained with acridine orange / propidium iodide (11 uL of cells + 1 uL of 

Logos F23001 Acridine Orange/Propidium Iodide Stain) and then examined and quantified on a Logos 

Luna FL automated cell counter. Samples with sufficient concentration, low multiplet rate (<5% to 

proceed, <3.6% on average), and high viability (>85% to proceed, >95% on average) were then diluted 

with Ringer’s to load into the instrument. Cells had been barcoded with MULTI-seq hash oligos to 

enable overloading of the instrument, which would then return of a larger number of transcriptomes with 

an increased rate of doublets that could then be removed computationally based on identification of 
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multiple hash barcodes associated with that cell barcode. Samples were loaded into two channels at 

normal (9,600 cells loaded, targeting 6,000 cells recovered) and high (34,000 cells loaded, targeting 

21,250 cells recovered) concentrations. Downstream reactions were performed in the Biorad C1000 

Touch Thermal cyclers. 10–12 cycles were used for cDNA amplification, and the result was inspected 

using Agilent High Sensitivity DNA Kits on the Agilent Bioanalyzer 2100. 8–13 cycles were then used for 

sample index PCR, based on the concentration of amplified cDNA in the previous step. Final libraries 

were evaluated using Agilent High Sensitivity DNA Kits on the Agilent Bioanalyzer 2100 and quantitated 

using a ThermoFisher Qubit 4 with dsDNA High Sensitivity (HS) reagents. Average fragment length 

from the Bioanalyzer and concentration from the Qubit were used to pool libraries in equimolar 

concentrations. Libraries were sequenced across several sequencing runs. Some samples (including 

samples TC1-24, TC1-48, TC1-72, TC1-96, TC2-36, TC2-60, TC2-84, and TC3-48) were checked in 

three separate runs on a Nextseq 500 System (Illumina) with High Output 75 cycle kits, with 28 bases 

for Read 1, 8 bases for Index 1, and 56 bases for Read 2. Most sequencing was performed in three 

separate runs on a NovaSeq 6000 Sequencing System (Illumina), using S4 full flowcells, with 28 bases 

for Read 1, 8 bases for Index 1, and 91 bases for Read 2. PhiX control library was spiked in at 1%. 

Libraries were briefly analyzed and re-pooled after the second sequencing run to try to achieve similar 

reads/cell across the entire data. Reads from all runs above were used in downstream analysis. Most 

sequencing runs contained mixtures of libraries to measure gene expression and MULTI-seq barcodes.

Alignment of sequencing data

Alignment of sequencing reads and processing into a digital gene expression matrix was 

performed using Cell Ranger version 4.0.0, including the aligner STAR version 2.5.1b, with standard 

parameters. The -expect-cells parameter was set to 6,000–21,250 based on the number of cells loaded 

per sample. The data was aligned against GRCz11 release 99 (January 2020) using the Lawson Lab 

Zebrafish Transcriptome Annotation version 4.3.2, published in Lawson et al. eLife 2020, available from 
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https://www.umassmed.edu/lawson-lab/reagents/zebrafish-transcriptome/. 320 entries annotated as 

pseudogenes by Ensembl were removed from the reference.

Removal of MULTI-seq doublets

UMI count tables of MULTI-seq cell hashing barcodes were generated using the deMULTIplex 

package (available https://github.com/chris-mcginnis-ucsf/MULTI-seq/). Reads were input from FASTQ 

and preprocessed (deMULTIplex::MULTIseq.preProcess, cell=c(1,16), umi=c(17,28), tag=c(1,8)), 

aligned against the barcode sequences used in each experiment and then deduplicated into a UMI 

counts table (deMULTIplex::MULTIseq.align). Visual inspection on a tSNE projection 

(deMULTIplex::barTSNE) was used to confirm that the run had been successful and cells fell into 

clearly defined barcode classes.

In order to remove doublets that resulted from overloading 10X channels in barcoded samples, 

MULTI-seq encoded cell hashes were used to remove resultant doublets. Briefly, two calculations were 

used — classification based on Seurat’s hash tag oligo demultiplexing functions, and a classification 

based on signal-to-noise ratio. For classification by Seurat, a Seurat object was created using the 

MULTI-seq UMI counts matrix, normalized (Seurat::NormalizeData, assay="MS", normalization.method 

= "CLR"), and classified (Seurat::HTODemux, assay="MS", positive.quantile=0.9999). For classification 

based on signal-to-noise, cells were called as ‘negative’ if they had <20 UMIs aligned to a single 

barcode. To be considered a ‘singlet,’ required that the signal-to-noise ratio was ≥5, where ‘signal’ was 

the number of UMIs assigned to the barcode with the most UMIs and ‘noise’ was the number of UMIs 

assigned to the barcode with the second most UMIs. Cells with signal-to-noise ratio <5 were classified 

as ‘doublets.’ Cells were removed for lacking MULTI-seq cell hash information if they were called as 

‘negative’ in both approaches. Cells were removed for being doublets if they were scored as a ‘doublet’ 

by either approach.

Normalization and quality control
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Cells that were scored as singlets based on MULTI-seq cell hashing were then processed and 

analyzed using Seurat version 3.1.5 and R version 3.6.3. First, cells were scored 

(Seurat::PercentageFeatureSet) for their mitochondrial gene expression (using all genes beginning mt-) 

and ribosomal gene expression (using the genes: rpl18a, rps16, rplp2l, rps13, rps17, rpl34, rpl13, rplp0, 

rpl36a, rpl12, rpl7a, rpl19, rps2, rps15a, rpl3, rpl27, rpl23, rps11, rps27a, rpl5b, rplp2, rps26l, rps10, 

rpl5a, rps28, rps8a, rpl7, rpl37, rpl24, rpl9, rps3a, rps6, rpl8, rpl31, rpl18, rps27.2, rps19, rps9, rpl28, 

rps7, rpl7l1, rps29, rpl6, rps8b, rpl10a, rpl13a, rpl39, rpl26, rps24, rps3, rpl4, rpl35a, rpl38, rplp1, 

rps27.1, rpl15, rps18, rpl30, rpl11, rpl14, rps5, rps21, rpl10, rps26, rps12, rpl35, rpl17, rpl23a, rps14, 

rpl29, rps15, rpl22, rps23, rps25, rpl21, rpl22l1, rpl36, rpl32, rps27l).

Cells were removed with either a low number of detected features (≤200 genes detected) or 

abnormally high number of detected features (top 0.5%), or with abnormally high mitochondrial content 

(≥10%). They were then log-normalized (Seurat::NormalizeData, normalization.method = 

"LogNormalize", scale.factor = 10000) and scaled, regressing against mitochondrial and ribosomal 

gene expression (Seurat::ScaleData, vars.to.regress = c("percent.mt", "percent.ribo")). 

Remapping and integration of 2018 Drop-seq data

For earlier stage cells in this analysis, previously published single-cell transcriptomes from wild-

type TL/AB zebrafish covering 3.3–12 hours post-fertilization from Farrell et. al 2018 were integrated 

with the newly generated data. First, the previous data was re-aligned to the reference used in this 

study and processed using Drop-seq Tools version 1.12 and its included copy of Picard Tools. Since the 

final step of the Drop-seq processing pipeline corrects cell barcodes to account for oligonucleotide 

synthesis errors that occur during the manufacture of the Dropseq beads, we started from the BAM files 

generated in the 2018 study, where cell barcodes had already been corrected, in order to maintain 

consistency with the original study. Picard Tools SamToFastq was used to create a FASTQ file from the 

previous BAM file, which was then used as input to STAR version 2.5.4a with the same reference that 

had been used with CellRanger. Picard Tools RevertSam was used to remove the previous alignment 
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from the 2018 BAM, then both the 2018 BAM and output of STAR were sorted into queryname order 

using Picard Tools SortSam (SO=queryname). The remaining steps were standard application of 

Dropseq Tools. The two BAM files were merged with PicardTools MergeBamAlignment, tagged with 

gene exon information using Dropseq Tools TagReadWithGeneExon and a digital gene expression 

matrix was produced using Dropseq Tools DigitalExpression with NUM_CORE_BARCODES = 12000. 

The digital gene expression matrices were then combined and trimmed to match exactly the cells 

included in the original 2018 study.

Using Seurat version 4.1.0, separate Seurat objects were created for the remapped 2018 

Dropseq dataset (Farrell et al. 2018) and newly generated 10X dataset in this study. These objects 

were combined using the SeuratObject::merge command. For visualization, we identified the top 2000 

variable genes (Seurat::FindVariableFeatures, selection.method = “vst”, nfeatures = 2000), performed 

PCA (Seurat::RunPCA), and identified significant PCs (Seurat::JackStraw, dims=100). A Uniform 

Manifold Approximation and Projection (UMAP) was calculated using 50 nearest neighbors and the 30 

most significant PCs (Seurat::RunUMAP, n.neighbors = 50). For clustering, we used an iterative 

approach. First a broad clustering (“top clusters”) was generated by identifying the top 1500 variable 

genes (Seurat::FindVariableFeatures, selection.method = “vst”), performing PCA, and clustering using 

the Leiden approach on the top 30 PCs (Seurat::FindClusters, algorithm = 4, resolution = 0.1, n.start = 

50, random.seed = 17), resulting in 25 clusters. Within each top cluster, sub-clusters were determined 

using a similar approach, by calculating the top 2000 variable genes, performing PCA, identifying the 

significant PCs, and performing Leiden clustering at multiple resolutions (Seurat::FindClusters, 

algorithm=4, resolution = c(0.75, 1, 2, and 3), n.start = 50, random.seed = 17). Markers were calculated 

for each subclustering and roughly annotated subclusters. The different resolutions were assessed 

manually, and a resolution was chosen based on which clustering seemed the most biologically 

relevant. Most often, clusters obtained at resolution 2 and 3 were found to best capture cell type 

differences within each subclustering, but within some less-complex tissues (e.g. the primordial germ 

cells), lower resolutions were more appropriate. In order to make the “top clusters” biologically relevant 
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and represent individual tissues within the fish (for instance, “endoderm”), some subclusters were 

manually reassigned to different top clusters based on their cell type annotations, and some top 

clusters were manually split. The subclustering procedure was repeated, and final subcluster 

resolutions were chosen again based on biological relevance. Additional manual curation was 

performed by manually splitting some subclusters that represented more than one cell type based on 

their expressed genes and/or prior knowledge from the literature. Additionally, subclusters without 

sufficient differentially expressed genes were combined in order to ensure that each subcluster was 

sufficiently distinct: marker genes for individual clusters were identified using ROC and Wilcoxon Rank 

Sum Tests using the command Seurat::FindMarkers(test.use = “roc”/”wilcox”, min.pct = 0.25, 

logfc.threshold = 0.25) and subclusters without at least 3 differentially expressed genes were merged. 

While heavily manually curated, our overall goal was to represent the molecular heterogeneity of cell 

types recovered in our data while also representing the known biology of zebrafish development to the 

best of our ability. This final clustering comprised 19 tissue subsets (top clusters), which contained a 

total of 521 subclusters. The final clusters were annotated based on previously described expression 

patterns from published RNA in situ hybridizations, published single-cell RNAseq studies, public 

repositories such as ZFIN, and elsewhere. Annotations are all compiled in Table S1 with a nested 

hierarchy containing information about germ layer/tissue/organs, broader tissue category, and finally 

the cell type. 

Identifying short-term and long-term transcriptional states during development

To identify groups of transcriptionally similar cells, we used an ε-neighborhood approach. 

Euclidean distances in gene expression space were calculated between cells in each of the 19 tissue 

subsets using the stats::dist function. Genes used were the union of the highly variable genes 

calculated on each of the 19 tissue subsets. In order to find an optimal ε, we assessed neighbors 

identified for each cell using a range of different ε neighborhood sizes (ε = 20, 25, 30, 31, 32, 33, 34, 

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60), and chose the smallest ε that allowed most cells 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted April 15, 2023. ; https://doi.org/10.1101/2023.03.20.533545doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533545


 41

in the data to have ε-neighbors. We observed that at least 70% of cells within each of the 19 subsets 

had neighbors within an ε size of 35. 

Each cell was assigned a cell cycle score based on expression of genes representative of G1/S, 

G2/M, and G0 phases of the cell cycle using the Seurat::CellCycleScoring function. Genes used to 

assign cell cycle scores to cells in our dataset were as follows: G1/S – mcm5, pcna, tyms, mcm7, 

mcm4, rrm1, ung1, gins2, mcm6, cdca7, dtl, prim1, uhrf1, cenpu, gmnn, hells, ccne2, cdc6, rfc2, polr1b, 

nasp, rad51ap1, wdr76, slbp, ubr7, pold3, msh2, atad2, rad51, rrm2, cdc45, exo1, tipin, dscc1, blm, 

casbap2, usp1, clspn, pola1, chaf1b, mrpl36, e2f8; G2M – cdk1, ube2c, birc5, top2a, tpx2, cks2, nuf2, 

mki67, tacc3, cenpf, smc4, ckap4, kif11, cdca3, hmgb2, ndc80, cks1b, tmpo, pimreg, ccnb2, ckap2l, 

ckap2, aurkb, bub1, anp32e, tubb4b, gtse1, kif20b, hjurp, jpt1, cdc20, ttk, cdc25c, kif2c, rangap1, 

ncapd2, dlgap5, cdca8, cdca2, ect2, kif23, hmmr, aurka, psrc1, anln, lbr, ckap5, cenpe, ctcf, nek2, 

g2e3, gas2l3, cbx5, cenpa. Cells were then categorized as ‘cycling’ (based on either G1/S or G2/M 

scores above 0) or ‘non-cycling’ (based on G1/S and G2/M scores both below 0).

Using an ε neighborhood size of 35, for each cell, we identified the ε-neighbors, computed the 

absolute value of the difference in developmental stage between the cell and each of its neighbors, and 

then took the mean as that cell’s “stage difference.” The “stage difference” identifies whether for a given 

cell, the transcriptional similar cells are generally very similar in stage (in which case this value will be 

small), or transcriptionally similar cells span a wide range of developmental cells (in which case this 

value will be large). We categorized cells based on “stage difference” into different groups (“<24hr”, 

“24–36hr”, “36–48hr”, and “≥48hr”), and considered cells with a “stage difference” of ≥36 hours as 

“long-term” states.

For plots of long-term cycling states in Fig. 1F, clusters with at least 10% of cells in a long-term 

cycling state were considered. For these states, we identified their ε-neighbors and the clusters to 

which the neighbors belonged. Long-term cycling states that exhibited ≥99% overlap (i.e. that identified 

99% of another cluster as neighbors) were considered similar transcriptional states and were 

combined. For the neighbors of the resultant long-term cycling states, only those clusters were 
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considered in which at least 50% of cells were neighbors of the long-term state. Clusters associated 

with long-term cycling states and their neighbors were then aligned with our annotations. Clusters that 

corresponded to doublets or technical artefacts were also removed from this analysis. The bar 

represents the shortest time range that encompassed 80% of the “long-term” cells and their 

transcriptionally similar ε-neighbors. 

Gene module identification

Identification of gene modules is sensitive to the noise inherent in scRNA-seq data. To 

ameliorate this, we used a form of imputation/smoothing based on k-nearest neighbor networks 

(Wagner, Yan, and Yanai 2018).  Briefly, PCA was conducted on the data and the 5 nearest neighbors 

were identified for each cell based on the top 30 PCs using the command knn_smoothing (k=5, d=30, 

seed=42) from the R implementation of the Wagner, Yan, and Yanai approach.

Due to limitations on the addressable size of a matrix for the clustering package chosen, we 

focused on a subset of genes and downsampled the cells used as input. Genes were limited to those 

that were expressed in 0.1% – 75% of cells in the data to exclude genes who were too lowly expressed 

to produce meaningful results and to focus on genes that exhibited cell-type specificity by excluding 

genes that were mostly ubiquitous. To maximize retention of cellular complexity, downsampling was 

performed to focus on eliminating cells from overrepresented populations while preserving rare cell 

types and changes over time. Each cluster was divided according to its major “stage groups” (3–4 hpf, 

5–6 hpf, 7–9 hpf, 10–12 hpf, 14–21 hpf, 24–34 hpf, 36–46 hpf, 48–58 hpf, 60–70 hpf, 72–82 hpf, 84–94 

hpf, 96–106 hpf, 108–118 hpf, 120 hpf). Per cluster–stage-group (i.e. the cells defined by the 

intersection of cluster and stage group), 50 cells or 20% (whichever was larger) was retained.

Fuzzy c-means clustering was then performed using the R package Mfuzz (Kumar and M 2007). 

Briefly, data was standardized (Mfuzz::standardise) and then clustered with fuzziness parameter 1.04 

(empirically determined) and 200 modules requested (Mfuzz::mfuzz, c = 200, m = 1.04). These were 

then filtered for technical quality. First, modules that were extremely similar (member gene loadings had 
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correlation >0.95) were combined by summing their member gene loadings (eliminating 48 of 200 

modules). Second, intra-cluster variation in expression patterns was reduced by limiting gene 

memberships to core members (“α-core members” in Mfuzz parlance) that contribute the most strongly 

to the overall ‘expression’ of a module—gene loadings <0.2 were converted to 0. Third, any modules 

that had fewer than 5 core member genes were eliminated (eliminating 5 of 152 remaining modules). 

Finally, new cell embeddings were generated by multiplying the new gene loading matrix against the 

original expression data (new.cell.embedding <- Matrix::t(data.unlogged) %*% membership.adjusted). 

The resultant 147 modules were analyzed for their expression across tissues and how 

completely individual genes within these modules were shared across tissues. Gene modules were 

then annotated to identify the functional roles of their constituent genes based on literature and 

information from public repositories such as ZFIN. Genes from each module were grouped and 

analyzed together based on their previously reported functions or based on the family that they 

belonged to. For example, in GEP-193 (Supplementary Table 2), two groups of genes were identified: 

one associated to Megalin-mediated endocytosis and the other represented a family of SLC 

transporters. Gene modules that (i) represented outliers, (ii) consisted of member genes expressed 

only within one tissue subset, and (iii) and contained member genes that were mitochondrial or 

ribosomal were excluded from our downstream analysis eliminating 57 of the resultant 147 modules. 

Gene modules were calculated using all cells as well as cells constituting each tissue type. To 

compare the gene modules recovered between the global dataset versus the tissue groups, we 

calculated correlation and cosine similarity between all modules that were calculated either globally or 

on a particular tissue. Modules with a correlation of at least 0.25 were sorted and clustered using the 

functions hclust(method = “ward.D2”) and cutree(h = 0.75). All modules calculated on individual tissues 

were either: (1) highly correlated with a gene module calculated on the global data set, or (2) not 

recovered in the global analysis, but also not shared with another tissue in the dataset. 

Embryo pretreatment and fixation
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Zebrafish larvae (3–5 dpf) were collected and fixed in 4% paraformaldehyde at 4°C overnight 

and stored in methanol at –20°C. Larvae were then rehydrated to PBST (phosphate buffered saline, 

0.1% Tween-20 pH 7.3) in 3 graded steps. After rehydration, embryos were further permeabilized by a 

50–55-minute proteinase K treatment (10 μg/mL in PBST), post-fixed for 20 mins with 4% 

paraformaldehyde at RT, and then washed with PBST (5 times).  

Generation of probes for in situ hybridization of enterocytes

For genes expressed in the intestine and best4+ enterocytes, antisense best4, otop2, pbx3a and 

cdx1b probes were generated by in vitro transcription. Whole-larvae cDNA was generated by isolating 

total RNA from 3–5 dpf zebrafish larvae using the E.Z.N.A Total RNA kit (Omega, Bio-Tek INC, Cat# 

R6834-01) and reverse transcribing using the iScript cDNA synthesis kit (BioRad, Cat# 1708891). 

Fragments of coding sequences of these genes were amplified by PCR using gene-specific primers as 

follows: 

best4: 949 bp; F: 5’–TGATGATGGTGGTCTCTGGA and R: 5’–CTTCCAATAGCAGCGTCCAT. 

otop2: 1011bp; F: 5’–TGATGGCTGTGACTGAGGAG and R: 5’– 

GTGGTAAACATCGGAATGCC.

pbx3a: 958bp; F: 5’–AGCAGGACATCGGAGACATT and R: 5’–AACTGGACGCAGCAGAAGAT.

cdx1b: 641bp; F: 5’–CCGTAAGACACCCAAGCCTA and R: 5’– CTCAGCACTACCAGGCAATG.

PCR products were then inserted into the pSC plasmid using the Agilent Strataclone Kit (Cat# 240205) 

to generate plasmids JFP524 (best4), JFP526 (otop2), JFP549 (pbx3a) and JFP542 (cdx1b). Plasmids 

were linearized with NotI (pSC-best4, pSC-otop2) or HindIII (pSC-pbx3a, pSC-cdx1b) and in vitro 

transcribed using T7 (pSC-pbx3a, pSC-cdx1b) or T3 polymerase (pSC-best4, pSC-otop2) and 

fluorescein or digoxygenin RNA labeling kits (digoxygenin: Roche, Cat# 11277073910; fluorescein: 

Roche, Cat# 11685619910) These reactions were cleaned using the NEB Monarch RNA Cleanup 

protocol (NEB, Cat# T2040L) and used as anti-sense RNA probes for fluorescent in situ hybridization. 
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Two color fluorescent in situ hybridization

Tyramide-mediated fluorescent in situ hybridization was primarily used to characterize best4+ 

enterocytes in the zebrafish intestine. Post-fixation, animals were prehybridized in hybridization buffer 

(50% formamide, 5X SSC, 0.1% Tween-20, 1M citric acid, pH 6.0, 50μg/mL heparin, and 500 μg/mL 

tRNA) for 2 hours at 70°C in a dry heat block. Hybridization was then performed at 70°C overnight in 

hybridization buffer with 3 ng/µL of each probe. Following hybridization, the next day, larvae were 

washed with the following series of buffer washes at 70°C: 75%, 50%, and 25% prehybridization buffer 

diluted in 2X SSC for 10 minutes each, 2X SSC for 15 minutes, then twice in 0.2X SSC for 30 minutes 

each. This was followed by a dilution series of 0.2X SSC:PBST (3:1, 1:1, and 1:3 PBST) for 5 minutes 

each at room temperature. Next, animals in PBST were rocked in 2% blocking buffer (5 g of blocking 

reagent, Roche, 11096176001) in 1X maleate buffer (150mM maleic acid, 100mM sodium chloride) for 

at least 2 hours and then incubated in anti-fluorescein-POD Fab fragments (Roche, 11207733910) 

diluted at 1:400 overnight at 4°C. Upon retrieval, the antibody solution was washed off using PBST and 

the antibody was developed in dark for 45 minutes without agitation using a tyramide staining solution 

(TSA PLUS Fluorescein Reagent, Akoya Biosciences, TS-000200) diluted 1:50 in amplification buffer 

(1X Plus Amplification Diluent, Akoya Biosciences, FP1135). Next, the peroxidase was inactivated in 

1% hydrogen for 20 minutes peroxide followed by elution of the antibody with 0.1M glycine (pH 2.2). 

Larvae were then washed in PBST and incubated in blocking solution for 2 hours at room temperature. 

The blocking solution was replaced with anti-DIG-POD Fab fragments (Roche 11207733910) diluted 

1:500 in blocking reagent. Digoxygenin staining was then developed using the Tyramide PLUS staining 

solution (TSA PLUS Cy3 reagent, Akoya Biosciences, TS-000202) diluted 1:50 in Amplification buffer 

for 45 minutes at room temperature. To counterstain DNA, Hoecsht 33342 (Invitrogen, H1399) was 

added at 1:1000 dilution in PBST and animals were incubated overnight at 4°C then washed 6 times 

with PBST for 15 minutes each. 
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Hybridization Chain Reaction (HCR)

HCR was performed for characterizing pericyte populations, intestinal smooth muscle populations, and 

the pneumatic duct. HCR probes were designed using the Özpolat lab probe generator (Kuehn et al. 

2022), available at https://github.com/rwnull/insitu_probe_generator. Probes were designed with 

amplifiers B1, B2, B3, and B5, skipping 10 bases from the beginning of the cDNA and by choosing the 

maximum poly A/T and poly G/C homopolymer length as 5. For each gene, 20 probe pairs were 

ordered in OPools format (Integrated DNA Technologies) and resuspended in nuclease-free water to a 

working concentration of 1 µM. Oligos constituting probe sets used in this study are consolidated in 

Table S3. Following rehydration and fixation, larvae were prehybridized in HCR probe hybridization 

buffer (Molecular Instruments, Lot# BPH02724) for 0.5–2 hours at 37°C with shaking at 300 rpm. Then, 

hybridization was performed with 1 µL of each 1 µM probe diluted in 500 µL probe hybridization buffer 

at 37°C with shaking at 300 rpm overnight (12–16 hours). Probes were washed off using the HCR 

probe wash buffer (Molecular Instruments, Lot# BPW02624) and subsequently pre-amplified with fresh 

hairpin amplification buffer (Molecular Instruments) for 30 mins to 2 hours at room temperature. 

Hairpins (3 µM; Molecular Instruments) were pre-annealed (98°C for 90 seconds and 25°C for 30 mins 

with a ramp rate of -0.1°C per second) to create hairpin secondary structure. Hairpin mixtures were 

then diluted 1:100 in hairpin amplification buffer (Molecular Instruments) and larvae were incubated for 

12–16 hours at 24°C with 300 rpm shaking. Following amplification, animals were rinsed in 5X SSCT at 

24°C followed by washes in PBST and, in some cases, immunostained for a fluorescent protein. 

Immunostaining After HCR

Immunostaining was performed for flk::mCherry-CAAX and flk::GFP animals to visualize blood vessel 

architecture in 5 dpf zebrafish larvae. After HCR, samples were further permeabilized with 0.1% Triton 

X-100 in phosphate buffered saline. Samples were blocked for 2 hours in blocking solution (5% Normal 

Donkey Serum (Jackson Labs), 10% Bovine Serum Albumin, 1% DMSO, and 0.1% Triton X-100 in 

phosphate buffered saline). Primary staining was performed with anti-RFP (rabbit, Rockland 
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600-401-379) and anti-GFP (rabbit, Invitrogen A11122) antibodies diluted 1:1000 in blocking buffer. 

Secondary staining was performed with goat Alexa Fluor 405-anti-rabbit (Molecular Probes, Cat#: 

A-31556) diluted 1:1000 in PBST. 

Microscopy and image analysis

Stained larvae were mounted in 1% low melting agarose diluted in 1X Danieau buffer (58 mM NaCl, 0.7 

mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5 mM HEPES, pH 7.6) and imaged in either a Nikon 

Eclipse Ti2 inverted microscope with a Nikon DS-Ri2 camera or an inverted Zeiss LSM 880 Airyscan 

using a 10X air, 20X air, and 40X long working distance water/oil objective. Image processing was 

performed in ImageJ/Fiji and Photoshop (Adobe). The acquired z-stacks were projected using Fiji, and 

brightness and contrast were set in Fiji using only a linear relationship in the lookup table. Cropping and 

resizing was performed using Photoshop (Adobe) and figures were assembled using Illustrator 

(Adobe). 

Inference of developmental trajectories using URD

Transcriptional trajectories were constructed using URD v1.1.2 as previously described  (Farrell 

et al. 2018) from the putatively non-neural crest derived (i.e. foxc1a/foxc1b negative and prrx1a/b 

negative) viSMCs, vaSMCs, and myofiboblasts and intestinal derivatives to determine the molecular 

events that occur as cells diversify and differentiate in these tissues. Cells belonging to each group 

were selected by cluster identities and used to create a URD object using the URD::seuratToURD2() 

function. Previously identified highly variable genes were maintained. 

To identify and remove outlier cells, a k-nearest neighbor network was calculated between cells 

using Euclidean distance in gene expression space with 100 nearest neighbors. Cells were then 

removed based on their distance to their nearest neighbor or unusually high distances to the 20th 

nearest neighbor using the function URD::knnOutliers (mural-cells: x.max = 25, slope.r = 1.1, int.r = 4, 

slope.b = 1.85, int.b = 8; intestine: x.max = 23, slope.r = 1.2, int.r = 5, slope.b = 0.85, int.b = 7.5). 
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URD uses user-defined starting ('root’) and endpoints (‘tips’) for building trajectories. The 

earliest stage cells from each subset (36–58 hpf for SMCs/pericytes and 14–21 hpf for intestinal 

subtypes) were selected as the ‘root’ or starting point of the tree. Endpoints were defined from late 

stage cells (120 hpf from the intestinal tissues and 108–120 hpf for the SMCs/pericytes), based on their 

cluster identity. Clusters were excluded that represented clear progenitor or precursors based on gene 

expression of cell cycle genes (e.g., intestine: cluster 14). 

To identify cells along trajectories between the ‘root’ and each ‘tip’, first a diffusion map was 

calculated using the function URD::calcDM with parameters nn = 100, sigma = 12 (non-skeletal muscle) 

or sigma = 8.2 (intestine), which draws on the R package destiny (Haghverdi, Buettner, and Theis 

2015). Next, pseudotime was computed using the function URD::floodPseudotime (n = 100, 

minimum.cells.flooded = 2). Then, biased random walks were simulated starting from each terminal 

using the function URD::simulateRandomWalk, with the following parameters—SMCs/pericytes: optimal 

cells forward = 10, max.cells.back = 20, n.per.tip = 25000, root.visits = 1, max.steps = 5000; intestine: 

optimal cells forward = 20, max.cells.back = 40.

Next, we fit a branching tree structure to each set of trajectories using the URD::buildTree 

command with the following parameters—SMCs/pericytes: divergence.method = “preference”, 

cells.per.pseudotime.bin = 10, bins.per.pseudotime.window = 8, p.thresh = 0.001; intestine: 

divergence.method = “preference”, cells.per.pseudotime.bin = 25, bins.per.pseudotime.window = 5, 

p.thresh = 0.1. To visualize the trajectories, we generated force-directed layouts on cells that had been 

robustly visited during the random walks (i.e., cells that have a minimum visitation frequency of 0.5) 

using the command URD::treeForceDirectedLayout function with the following parameters num.nn = 87 

(intestine) or num.nn = 110 (SMCs/pericytes), cells.to.do = robustly.visited.cells, cut.outlier.cells = 

NULL, cut.outlier.edges = NULL, cut.unconnected.segments = 2, min.final.neighbors = 4.  

Identifying gene cascades along developmental trajectories
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Gene cascades were constructed using two different methods for intestinal SMCs and intestinal 

derivatives. For intestinal SMCs, each major group (or clade) of branches from the end of the branching 

tree were considered as a single entity and compared against each other pairwise to identify 

differentially expressed genes. In addition, using URD’s branching tree as a framework, the 

URD::aucprTestAlongTree() function was also used to find genes that are differential markers of each 

lineage within each group using the parameters: must.beat.sibs = 0.6, auc.factor = 1.1, log.effect.size = 

0.4. These differentially expressed genes were further curated based on other criteria as described 

previously (Raj et al. 2020). All genes that had a fold change of 0.6 along the trajectory pursued and a 

classifier score of 1.05 were used for downstream analysis. Genes along the individual intestinal SMCs 

branches were normalized to the maximum observed for each gene within this tissue and ordered 

based on the pseudotime that they enter “peak” expression (defined as 50% higher expression than the 

minimum expression value). Gene expression dynamics within the intestinal SMCs were fit using 

smoothed spline curves using the function URD::geneSmoothFit() with parameters method = “spline”, 

spar = 0.5, moving.window = 5, cells.per.window = 8, pseudotime.per.window = 0.005.  For the 

intestinal SMC trajectory, genes were further compared between the two branches to select genes that 

are specific to one branch or another or markers of both (i.e., this strategy was used to differentiate 

between intestinal SMC precursors, circular and longitudinal SMC markers). 

 In the intestine trajectory, for each intestinal population, cells in each segment were compared 

pairwise with cells from each of the segment’s siblings and children using the function 

URD::aucprTestAlongTree(log.effect.size = 0.4, auc.factor = 0.6, max.auc.threshold = 0.85, 

frac.must.express = 0.1, frac.min.diff = 0, must.beat.sibs = 0.6). Genes were called differentially 

expressed if they were expressed in at least 10% of cells in the branch under consideration and were 

0.6 times better than a random classifier for the population as determined by the area under a 

precision-recall curve. Gene expression of each marker gene in each trajectory within the intestine was 

then fit using an impulse model using the function URD::geneCascadeProcess() with parameters: 

moving.window = 5, cells.per.window = 18, pseudotime.per.window = 0.01. Cells in each trajectory 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted April 15, 2023. ; https://doi.org/10.1101/2023.03.20.533545doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533545


 50

were grouped using a moving window through pseudotime within which mean expression was 

calculated. Expression was then normalized to the maximum observed expression for each gene within 

the intestine. The parameters of the impulse model were then used to calculate the onset time for each 

gene and order genes according to the pseudotime of their expression onset. 

Simulation of artificial pericyte doublets

To simulate artificial pericyte doublets, we mixed gene expression signatures of the general 

pericyte cluster (pericyte-0: C9) that did not express any unique markers with that of other cell types 

that expressed the characteristic markers of the two pericyte populations identified in our study (C20: 

pericyte-1; C4: pericyte-2). We identified the top 3 genes expressed by C20 and C4 respectively and 

extracted cells from the global dataset other than pericytes that strongly expressed these genes (log-

normalized expression >2). Out of these cells, only ones between 60–120 hpf were used for 

downstream analysis as the two putative pericyte clusters consisted of cells encompassing those 

stages. For each group, we then randomized the pool of C9 (pericyte-0) cells and the extracted non-

pericyte cells to create 5000 random cell pairs to use for creating artificial doublets. To create a mixed 

gene expression signature characteristic of doublets in scRNAseq, for each cell pair, we unlogged the 

expression data, took the mean of the pericyte-0 and non-pericyte cells’ expression, and re-calculated 

the log. We limited the genes used to calculate average expression to the union of the highly variable 

genes calculated on the global dataset and the non-skeletal muscle atlas. To understand how similar or 

different these doublets are to the distinct pericyte subpopulations, we calculated Euclidean distances 

in variable gene expression space for cells within a pericyte population (i.e. pericyte-1 to pericyte-1) 

and between a pericyte population and its simulated doublets (i.e. pericyte-1 to pericyte-1-simulated-

doublets) using the “dist” function. Simulated doublets were always more distant from the pericyte 

subpopulations than other cells within the population.

To further confirm that the pericyte-1 and -2 clusters are not artefacts, we further performed 

differential gene expression analysis between the individual pericyte clusters versus their 
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corresponding artificial doublet signatures. For each pericyte cluster, based on the distances calculated 

above, we chose the nearest 5% artificial doublet cells (i.e. those most similar to the putative pericyte 

population) and compared their gene expression using the Seurat::FindMarkers function. Even the 

most similar simulated doublets did not recapitulate the expression of the pericyte-1 and pericyte-2 

populations.  

Comparison of gene expression between species

Gene expression comparisons were performed against a human colon (Parikh et al. 2019) and 

a small intestine (Burclaff et al. 2022) scRNAseq dataset. Gene orthologs between zebrafish and 

human were obtained using the R Bioconductor package “biomaRt”. Genes for which orthologs were 

not present in one of the two datasets (e.g., human GUCA2A, GUCA2B, zebrafish sctr, tacr2) were also 

included in the cross-species analysis.
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