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Abstract 46 

1. To understand how microbiota influence plant populations in nature, it is important to 47 

examine the geographic distribution of plant-associated microbiomes and the underlying 48 

mechanisms. However, we currently lack a fundamental understanding of the biogeography 49 

of plant microbiomes and the environmental and host genetic factors that shape their 50 

distribution.  51 

2. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna 52 

species complex), we identified the key factors that influenced the geographic distribution of 53 

plant microbiome diversity and compositional variation.  54 

3. In line with the pattern observed in microbial biogeography based on free-living 55 

environmental microbiomes, we observed higher bacterial richness in temperate regions 56 

relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate 57 

populations). Our analyses revealed that temperature and sodium concentration in aquatic 58 

environments had a negative impact on duckweed bacterial richness, whereas temperature, 59 

precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed 60 

genetic variation, influenced the geographic variation of duckweed bacterial community 61 

composition.  62 

4. The findings add significantly to our understanding of host-associated microbial 63 

biogeography and provide insights into the relative impact of different ecological processes, 64 

such as selection by environments and host genetics, dispersal, and chance, on plant 65 

microbiome assembly. These insights have important implications for predicting plant 66 

microbiome vulnerability and resilience under changing climates and intensifying 67 

anthropogenic activities. 68 
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 72 

Introduction 73 

Plants host diverse microbial symbionts, and these microbial symbionts are important for the 74 

functioning of plants within ecosystems (Laforest-Lapointe et al., 2017; Tan et al., 2023). To 75 

better understand the influence of microbiomes on plant populations across geographic ranges in 76 

nature, it is important to examine the distribution patterns of plant-associated microbiomes and 77 

the mechanisms that drive these patterns. While our knowledge of microbial biogeography has 78 

advanced greatly through investigating free-living environmental microbiomes across terrestrial, 79 

marine, and atmospheric ecosystems (Tedersoo et al., 2014; Sunagawa et al., 2015; Bahram et 80 

al., 2018; Zhao et al., 2022), significant knowledge gaps exist as to what drives the geographic 81 

distribution of local microbiome diversity and compositional variation across populations in 82 

host-associated microbiomes, such as plant microbiomes. It is also unclear whether the principles 83 

of microbial biogeography derived from free-living microbiomes can be generalized to host-84 

associated microbiomes. 85 

 While various biogeography theories have been proposed to explain the distribution of 86 

diversity in plants and animals (Rosenzweig, 1995), microbial diversity does not always follow 87 

the same patterns as observed in their macroscopic counterparts (Chu et al., 2020). For instance, 88 

fungal diversity in soil microbiomes follows a latitudinal gradient, decreasing from lower to 89 

higher latitudes (Tedersoo et al., 2014; Bahram et al., 2018), similar to the patterns observed in 90 

plants and animals (Rosenzweig, 1995). However, global bacterial diversity peaks in temperate 91 
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regions across soil, marine, and airborne microbiomes (Tedersoo et al., 2014; Sunagawa et al., 92 

2015; Bahram et al., 2018; Zhao et al., 2022). The biogeography of free-living environmental 93 

microbiomes, therefore, indicates that ecological factors that may or may not follow latitudinal 94 

gradients can drive the geographic distribution of microbial diversity. Factors that exhibit a 95 

correlation with latitude may contribute to an observed latitudinal gradient of microbial diversity, 96 

as seen in the case of precipitation which predicts the distribution of soil fungal richness 97 

(Tedersoo et al., 2014). By contrast, factors that do not exhibit such a correlation may weaken 98 

and lead to a distinct biogeographic pattern, as seen in the case of pH which predicts the 99 

distribution of soil bacterial richness (Fierer & Jackson, 2006; Bahram et al., 2018). Compared to 100 

free-living microbiomes, plant microbiomes are subject to host-imposed niche filtering (Wei & 101 

Ashman 2018; Wei et al., 2022), which has the potential to reinforce or modify the role of 102 

environmental factors in driving microbial biogeography. The extent to which host plants, such 103 

as their genetic variation, affect the geographic distribution of microbial diversity may depend on 104 

whether hosts have adapted to the same or different environmental factors that influence 105 

microbial diversity. If hosts exhibit adaptation to the same environmental factors as microbes, 106 

host genetic variation may contribute to the observed patterns of microbial diversity caused by 107 

environments, while dissimilar adaptations may weaken the patterns.   108 

 Another notable pattern of microbial biogeography is the decay in microbial community 109 

similarity over geographic distance. Such distance decay is common across ecosystems 110 

(Sunagawa et al., 2015; Bahram et al., 2018; Zhao et al., 2022), and can arise due to a 111 

combination of ecological processes including dispersal limitation, environmental heterogeneity, 112 

and chance (Vellend, 2010; Mittelbach & Schemske, 2015). While dispersal limitation and 113 

chance promote stochasticity and play a major role in driving the geographic variation of 114 
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microbial community composition in nature (Zhao et al., 2022), environmental heterogeneity is 115 

also important and drives niche-based selection (Fierer & Jackson, 2006; Tedersoo et al., 2014; 116 

Sunagawa et al., 2015; Bahram et al., 2018). For instance, in terrestrial ecosystems, variation in 117 

soil pH and nutrient concentration leads to variation in soil bacterial community composition 118 

(Fierer & Jackson, 2006; Bahram et al., 2018). Similarly, in marine ecosystems, temperature 119 

variation is the primary driver of variation in bacterial community composition in surface waters 120 

(Sunagawa et al., 2015). In addition to selection by environments, selection by host genetic 121 

variation may also contribute to the geographic variation of microbiome composition associated 122 

with plants, and the respective and collective roles of host genetic and environmental variation 123 

will depend on the extent to which host genetic variation is shaped by the same or different 124 

environmental factors.   125 

 To enhance our understanding of the geographic distribution of microbiome diversity and 126 

compositional variation in plant microbiomes and the underlying mechanisms, we leveraged the 127 

broad distribution and extensive genetic variation of the duckweed, Lemna species complex 128 

(referred to as Lemna or duckweeds for simplicity). Lemna is floating aquatic plants commonly 129 

found in slow-moving freshwater ecosystems worldwide (Landolt, 1986), and plays an important 130 

role in ecosystem functions and services, such as carbon sequestration, phytoremediation, biofuel 131 

production, and animal feedstock (Cao et al., 2018; Acosta et al., 2021). In Lemna, hybridization 132 

has led to extensive genetic variation, making this species complex morphologically similar 133 

(Braglia et al., 2021). In this study, we examined Lemna microbiomes across 34 different 134 

populations in the United States, covering both the cool temperate and hot humid subtropical 135 

regions. Our purposes were twofold. First, we sought to test the hypothesis that bacterial richness 136 

is higher in temperate regions relative to lower latitudes and uncover the environmental and host 137 
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genetic factors driving the observed pattern. Second, we aimed to quantify the respective impact 138 

of ecological processes (e.g. selection, dispersal limitation, chance) on microbiome assembly and 139 

identify the environmental and host genetic factors driving the geographic variation of bacterial 140 

community composition. 141 

 142 

Materials and Methods 143 

Field collection 144 

We collected Lemna and its microbiomes from 34 populations in the northern and southern range 145 

of its distribution in the United States (Fig. 1a and Table S1): Ohio (OH, Cleveland, N = 8; 146 

Columbus, N = 5), New Hampshire (NH, N = 2), Massachusetts (MA, N = 2), Rhode Island (RI, 147 

N = 2), Louisiana (LA, N = 7), Georgia (GA, N = 4), and South Carolina (SC, N = 4). The field 148 

sampling was conducted during the fast-growing season of duckweeds during June–August 149 

2022. In addition, we collected samples from the two Massachusetts populations during the late 150 

growing season in October 2022 to confirm the negligible influence of temporary dynamics on 151 

duckweed microbiomes, relative to the other factors we investigated in this study. Specifically, at 152 

each population, we collected duckweeds using ethanol-sterilized forks into sterile plastic bags 153 

and stored them at 4 ºC until microbiome isolation within five days. We also measured the pH, 154 

conductivity (EC), and total dissolved solids (TDS) of the aquatic environment at each 155 

population using an Ohaus ST20M-B meter (Ohaus Corporation, Parsippany, New Jersey). 156 

Additionally, we collected 100 mL surface water in sterile centrifuge tubes and sent to the 157 

Wetland Biochemistry Analytical Services at Louisiana State University for additional water 158 

chemistry analysis (total organic carbon, TOC; total nitrogen, TN; total phosphorus, TP; major 159 

and trace elements including Na, Ca, Mg, Fe, Si, Cu, Zn, Mn, Pb, Cd; Table S1). 160 
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 161 

Microbiome isolation and sequencing 162 

Duckweed microbiome isolation was conducted sterilely under a laminar flow hood. For each 163 

population, we used sterilized forceps to remove debris from Lemna, and rinsed c. 500 164 

individuals in 20 mL sterile water to remove environmental microbes from their aquatic habitats. 165 

These individual plants were then transferred to 20 mL sterile 0.25× phosphate buffered saline. 166 

We collected epiphytic microbiomes by vortexing for 20 min, sonicating at 40 kHz for 5 min, 167 

and centrifuging at 13,200 rpm for 10 min. Microbial cells (from 5 mL out of the 20 mL 168 

epiphytic microbiome wash) were used for DNA extraction using cetyltrimethylammonium 169 

bromide (CTAB) and purified using polyethylene glycol (PEG) 8000. Briefly, microbial pellets 170 

were lysed with 500 µL sterile CTAB buffer (2% w/v CTAB, 100 mM Tris-HCl, 20 mM EDTA, 171 

1.4 M NaCl, 5 mM ascorbic acid, and 10 mM dithiothreitol) and two autoclaved 4 mm stainless 172 

steel beads on a Vortex Genie 2 (Scientific Industries, Bohemia, New York) for 40 min. An 173 

equal volume (500 µL) of chloroform : isoamyl alcohol (24 : 1) was then added for phage 174 

separation at 13,200 rpm for 5 min. DNA was then recovered by adding the upper phase to 1 mL 175 

of cold pure ethanol overnight at -20ºC and centrifuging at 13,200 rpm for 5 min. Pelleted DNA 176 

was washed with 500 µL of cold 70% ethanol and eluted in sterile TE buffer. We further purified 177 

the eluted DNA by conducting an additional round of chloroform : isoamyl alcohol phase 178 

separation, and then DNA was recovered by adding the upper phase to an equal volume of 179 

autoclaved PEG 8000 (20% w/v PEG 8000, 2.5 M NaCl), incubating at 37 ºC for 30 min, and 180 

centrifuging at 13,200 rpm for 5 min. Purified DNA pellet was washed with cold 70% ethanol 181 

and eluted in 60 µL sterile TE buffer and sent to the Argonne National Laboratory for bacterial 182 
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library preparation (16S rRNA V5–V6 region, 799f–1115r primer pair) and sequencing using 183 

Illumina MiSeq (paired-end 250 bp). 184 

 The paired-end (PE) reads were used for detecting bacterial amplicon sequence variants 185 

(ASVs) using the package DADA2 v1.20.0 (Callahan et al., 2016) in R v4.1.0 (R Core Team, 186 

2021). Following previous pipelines (Wei et al., 2021, 2022), the PE reads were trimmed and 187 

quality filtered [truncLen = c(240, 230), trimLeft=c(10, 0), maxN = 0, truncQ = 2, maxEE = 188 

c(2,2)] and then used for unique sequence identification that took into account sequence errors. 189 

The PE reads were then end joined (minOverlap = 20, maxMismatch = 4) for ASV detection and 190 

chimera removal. The ASVs were assigned with taxonomic identification based on the SILVA 191 

reference database (132 release NR 99) implemented in DADA2. The ASVs were further filtered 192 

before conversion into a bacterial community matrix using the package phyloseq (McMurdie & 193 

Holmes, 2013). First, we removed non-focal ASVs (Archaea, chloroplasts, and mitochondria). 194 

Second, we conducted rarefaction analysis using the package iNEXT (Hsieh et al., 2020) to 195 

confirm that the sequencing effort was sufficient to capture duckweed bacterial richness (Fig. 196 

S1). We further normalized per-sample reads (median = 20,192 reads) by rarefying to 10,000 197 

reads. Three populations with fewer reads (one from OH: 9787 reads; two from GA: 5775 and 198 

9484 reads, respectively) were normalized to 10,000 reads following the previous pipeline (Wei 199 

et al., 2021). Lastly, we removed low-frequency ASVs (<0.001% of total observations). The 200 

final bacterial community matrix consisted of 4880 ASVs across the 36 samples from 34 201 

different populations. 202 

 203 

Lemna genotyping 204 
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After microbiome isolation, duckweeds were bleached to create axenic plants. Briefly, c. 30 205 

clusters (100 plants) per population were bleached in 15 mL 1% sodium hypochlorite until 206 

clusters turned white, and then washed in 15 mL sterile water three times. Individual clusters 207 

were then grown in 0.5× Hoagland salt (PhytoTech Labs, Lenexa, Kansas) with 0.5% sucrose 208 

under 24 ºC and 16 h light for contamination check. A single axenic cluster was selected from a 209 

population (referred to as one genetic line) for further propagation in the same media for DNA 210 

extraction. Fresh duckweeds (c. 60 clonal plants) of each genetic line were used for DNA 211 

extraction using E.Z.N.A. SP Plant DNA Kit (Omega Bio-Tek Inc., Norcross, Georgia) and 212 

eluted in 100 µL sterile TE buffer. To examine duckweed genetic variation, we genotyped the 213 

genetic lines (N = 25, due to the unsuccess in generating some of the axenic genetic lines; Table 214 

S2). We used three polymorphic ISSR markers (UBC827, UBC855, UBC856) that generated a 215 

total of 46 polymorphic bands across the genetic lines (Table S2). PCRs were carried out in 10-216 

µL reactions that contained 1.5 µL of extracted DNA, 0.5 µM primer, 4 mM MgCl2, 0.5 mg/mL 217 

BSA, 5 μL GoTaq Colorless Master Mix (Promega Corporation, Madison, Wisconsin) including 218 

200 μM of each dNTP and 1 unit Taq DNA polymerase, and H2O. PCRs followed a standard 219 

protocol: 94 ºC for 5 min; 40 cycles of 94 ºC for 1 min, 52 ºC for 1 min, and 72 ºC for 1 min; and 220 

a final extension at 72 ºC for 5 min. PCR amplicons were quantified with GeneRuler 100bp plus 221 

DNA Ladder (Thermo Fisher Scientific Inc., Waltham, Massachusetts) on 1.5% agarose gels in 222 

1× TBE buffer under 95V for 1:40 h.  223 

 Alleles were scored as presence or absence (1 or 0) using GelJ v2.0 (Heras et al., 2015). 224 

Population genetic structure was analyzed using STRUCTURE v2.3.4 (Pritchard et al., 2000) 225 

and the package pophelper (Francis, 2017). Genetic variation among populations was examined 226 

using a principal component analysis (PCA) in R. 227 
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 228 

Statistical analyses 229 

Microbiome richness and environmental and genetic correlates 230 

To test whether northern duckweed populations harbor more bacterial richness than southern 231 

populations, we conducted a general linear mixed model (LMM) with region (northern vs. 232 

southern) as the predictor and a nested random effect (states nested within regions) using the 233 

package lme4 (Bates et al., 2015). We conducted the LMM for both observed ASV richness and 234 

asymptotic ASV richness (Chao estimator) using iNEXT. To identify which environmental 235 

factors might influence the geographic distribution of bacterial richness, we focused on 19 236 

climatic and 13 water chemistry variables. We extracted the 19 climatic variables (WorldClim 237 

v2.1, 1970–2000) at 30 arc second resolution for the 34 populations. For water chemistry 238 

variables, we focused on pH, EC, TDS, nutrients (TOC, TN, TP, and C/N carbon to nitrogen 239 

ratio), and major and trace elements (Na, Ca, Mg, Si, Fe, and Mn). We did not consider some 240 

trace elements (Cd, Cu, Pb, and Zn) that showed little variation among populations or below the 241 

detection level (0.001 mg/L, Table S1). The water chemistry variables (except pH) were natural 242 

log transformed (log (x+0.01)) for analyses. For the climatic or water chemistry variables, we 243 

first conducted univariate regressions (general linear models, LMs) to select potential candidate 244 

predictors to be included in multiple regressions. We then used stepwise model selection (i.e. 245 

both forward and backward selections) of the multiple regressions based on the Akaike 246 

Information Criterion (AIC) to select the most parsimonious model and identify significant 247 

predictors. The lack of collinearity was confirmed based on the variance inflation factor (VIF). 248 

Duckweed genetic variation, represented by the first two axes of the genetic PCA (genetic PC1 249 
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and genetic PC2; Fig. 1c), was identified as non-significant predictors of bacterial richness by 250 

univariate regressions. 251 

  252 

Microbiome composition and environmental and genetic correlates 253 

To examine how diverse ecological processes, such as niche-based selection (by environments 254 

and host genetics), dispersal limitation, and chance, shaped bacterial community composition, 255 

we conducted four analyses. First, to assess the degree of distance decay in bacterial community 256 

similarity, we conducted a Mantel test between bacterial communities (the Bray–Curtis distance) 257 

and geographic distance using the package vegan (Oksanen et al., 2022). We further examined 258 

whether such distance decay was explained by geographic distance alone or environments. To do 259 

so, we conducted partial Mantel tests for climatic distance (all 19 climatic variables) and for 260 

water chemistry distance (all 13 water chemistry variables) while controlling for geographic 261 

distance. The climatic and water chemistry variables were (z-score) standardized prior to the 262 

estimation of their Euclidean distance among populations. The geographic distance was 263 

estimated based on the latitudes and longitudes of the populations (Table S1) using the package 264 

geodist (Padgham, 2021). Second, to quantify the relative importance of selection, dispersal, and 265 

chance in driving microbiome assembly among populations, we used a phylogenetic binning 266 

based null model analysis (iCAMP, Ning et al., 2020). Third, to further identify which 267 

environmental variables contributed to selection, we conducted univariate constrained principal 268 

component analysis (cPCoA) to select for potential predictors that may influence bacterial 269 

community composition. For the climatic variables, univariate cPCoAs revealed significant 270 

impact of all the 19 climatic variables, and thus we used the first two axes of the PCA of these 271 

climatic variables (climatic PC1 and PC2, accounting for 72.4% and 17.6% of total variation, 272 
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respectively; Fig. S2). For water chemistry, univariate cPCoAs identified the impact of seven 273 

variables (TN, TP, C/N, Ca, Mg, Fe, and pH), and we further used multivariate cPCoAs and 274 

stepwise model selection to reduce the potential water chemistry predictors to be included 275 

together with climatic PC1 and climatic PC2 for final model selection. The lack of collinearity 276 

was confirmed using VIFs. Fourth, to examine the influence of duckweed genetic variation, 277 

which can be potentially shaped by environmental selection (see analysis below), on bacterial 278 

community composition, we conducted variation partitioning of bacterial communities using the 279 

package vegan among duckweed genetic variation (genetic PC1 and genetic PC2), climate and 280 

water chemistry (with predictors identified by model selections described above). 281 

 282 

Duckweed genetic variation and environmental correlates 283 

To examine how duckweed genetic variation was influenced by environments, we used 284 

univariate and multiple regressions with stepwise model selection to identify significant 285 

environmental predictors of genetic PC1 and genetic PC2. As univariate regressions revealed 286 

significant impacts of many climatic variables on genetic PC1 and genetic PC2, we used climatic 287 

PC1 and climatic PC2 as potential predictors, along with the water chemistry predictors 288 

identified by univariate regressions, in multiple regressions for model selection. 289 

 290 

Results 291 

Duckweed populations and microbiomes 292 

Similar to terrestrial plants (Wei & Ashman, 2018; Acosta et al., 2020), duckweed microbiomes 293 

were dominated by Proteobacteria (79% of the ASVs), especially Alphaproteobacteria (42%) and 294 

Gammaproteobacteria (36%), followed by Bacteroidetes (7%), Actinobacteria (5%), Firmicutes 295 
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(3%), and others (Fig. 1b). The microbiomes of duckweeds collected from the same populations 296 

(MA, Fig. 1b) were similar regardless of the sampling time (either during the peak or at the end 297 

of the growing season). Our analysis of duckweed genetic data revealed evidence of admixture 298 

(Fig. S3). We observed genetic differentiation between northern and southern populations along 299 

both the genetic PC1 and PC2 (Fig. 1c). We further found that genetic variation among 300 

duckweed populations was influenced by climate and water chemistry (Table S3). Specifically, 301 

duckweed genetic PC1 was influenced by precipitations (climatic PC2; multiple regression, LM: 302 

t = 3.57, P = 0.002) and water TN (t = 2.26, P = 0.035), and marginally by pH (t = -1.96, P = 303 

0.063; Table S3). Duckweed genetic PC2 was primarily influenced by temperatures (climatic 304 

PC1, t = 5.80, P < 0.001; Table S3). 305 

 306 

Geographic variation of duckweed microbiome richness 307 

To test whether bacterial richness is higher in northern duckweed populations compared to 308 

southern populations, we used a LMM and found that the northern populations hosted 10% more 309 

bacterial ASVs than the southern populations (LS-mean; observed richness: northern = 350 ± 30, 310 

southern = 321 ± 28, Fig. 2a; asymptotic richness: northern = 428 ± 44; southern = 388 ± 39; 311 

Fig. S4), while mean difference between northern and southern populations was not statistically 312 

significant (P > 0.05; Fig. 2a and Fig. S4).  313 

Among the 19 climatic variables, only the mean temperature of the driest quarter (BIO9) 314 

showed a significant impact on bacterial richness, with a negative association observed between 315 

temperature and bacterial richness (multiple regression, LM: t = -2.12, P = 0.042; Fig. 2c and 316 

Fig. S4; Table S4). For water chemistry, while both concentrations of Na and TP were identified 317 

as potential factors influencing duckweed bacterial richness by univariate regressions, the 318 
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multiple regression revealed that only Na concentration had a significant impact on bacterial 319 

richness, with lower richness associated with higher Na concentrations (LM: t = -2.63, P = 320 

0.013; Fig. 2c and Fig. S4; Table S4). Unlike climate and water chemistry, the genetic variation 321 

of duckweed populations (genetic PC1 and PC2) did not influence bacterial richness (P > 0.05; 322 

Table S4). 323 

 324 

Geographic variation of duckweed microbiome composition 325 

Duckweed bacterial communities exhibited distance decay in similarity (Mantel test, r = 0.46, P 326 

= 0.001; Fig. 3a). Such distance decay was not solely driven by geographic distance, but also by 327 

environmental factors (rClimate|Geo = 0.27, P = 0.001; rWater chemistry|Geo = 0.29, P = 0.001). This 328 

result indicated that both selection and dispersal limitation as well as chance influenced 329 

duckweed microbiome assembly. We further found that selection played an important role (26%) 330 

in structuring duckweed bacterial communities, in addition to dispersal limitation (33%) and 331 

chance (and other unidentified weak processes, 41%; Fig. 3b).  332 

Among the environmental factors, climatic PC1 (temperatures) and PC2 (precipitations) 333 

together with water pH, TP, and Ca were the most important variables driving the geographic 334 

variation of duckweed bacterial community composition (cPCoA: climatic PC1, 7.2% of 335 

variation, F = 2.9, P = 0.001; climatic PC2, 4.3%, F = 1.7, P = 0.006; pH, 5.7%, F = 2.3, P = 336 

0.001; TP, 3.6%, F = 1.4, P = 0.048; Ca, 3.9%, F = 1.6, P = 0.012; Fig. 3c and Table S5). 337 

Climatic PC1 (temperatures) and TP were found to influence bacterial community cPCoA 1, 338 

while climatic PC2 (precipitations), pH, and Ca were found to influence cPCoA 2 (Fig. 3c). 339 

Based on the subset of populations (N = 25) with duckweed genetic data, we found that 340 

duckweed genetic variation affected bacterial community composition (cPCoA: genetic PC1, 341 
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7.7%, F = 2.0, P = 0.001; genetic PC2, 9.9%, F = 2.6, P = 0.001; Table S5). Variation 342 

partitioning analysis further pointed out the collective roles of climate, water chemistry, and host 343 

genetic variation on duckweed bacterial community composition (Fig. 3d). 344 

 345 

Discussion 346 

Our study on the microbiomes of wide-ranging duckweeds revealed that the geographic 347 

distribution of plant microbiome diversity supported the standing hypothesis of microbial 348 

biogeography, with bacterial richness higher in temperate regions relative to lower latitudes as 349 

observed in free-living environmental microbiomes. We also found that temperature (of the 350 

driest quarter, BIO9) and Na concentration showed a negative impact on the distribution of 351 

duckweed bacterial richness, while host genetic variation showed no strong effect. In contrast to 352 

bacterial richness, the geographic variation of duckweed bacterial community composition was 353 

influenced by all 19 climatic variables, including temperatures (climatic PC1) and precipitations 354 

(climatic PC2), and water chemistry variables such as pH and concentrations of TP and Ca. Our 355 

results further underscored the collective roles of host genetic variation, climate, and water 356 

chemistry in driving duckweed bacterial community composition. 357 

   358 

Bacterial richness of plant microbiomes is higher in temperate populations 359 

Our findings of higher bacterial richness in temperate relative to subtropical duckweed 360 

populations were consistent with global patterns of microbial biogeography in free-living 361 

microbiomes across ecosystems, including soil, marine, and airborne microbiomes (Tedersoo et 362 

al., 2014; Sunagawa et al., 2015; Bahram et al., 2018; Zhao et al., 2022). Similar to wild plants 363 

such as duckweeds, a latitudinal pattern of increased bacterial richness has also been observed in 364 
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crops such as the rhizosphere microbiomes associated with soybean from tropical to temperate 365 

regions (Zhang et al., 2018). In our study, we observed a 10% higher bacterial richness in 366 

temperate duckweed populations compared to subtropical populations, while the mean difference 367 

between the two regions was not statistically significant. This suggests that other factors, which 368 

do not follow a latitudinal pattern, might influence duckweed bacterial richness, such as Na 369 

concentration in freshwater ecosystems (Fig. 2c). We found that Na concentration negatively 370 

impacted bacterial richness in these natural duckweed populations. This negative impact of Na 371 

concentration on microbial growth has also been demonstrated experimentally in duckweeds 372 

(O’Brien et al., 2020). Interestingly, we observed high Na concentration in some populations 373 

from both temperate and subtropical regions (Table S1), potentially reflecting road salt use in the 374 

north and proximity to seawater in the south. This suggests that factors such as increased salinity 375 

in freshwater ecosystems due to, for instance, road salt flux (Kaushal et al., 2005; Hintz et al., 376 

2022) and sea level rise (Jackson & Jevrejeva, 2016; Dangendorf et al., 2017), as well as 377 

increased temperature (IPCC, 2022), under global change may have negative impacts on plant 378 

microbiome richness and their latitudinal patterns.    379 

 380 

Environmental factors influence the geographic variation of plant microbiome composition 381 

The geographic variation of duckweed bacterial community composition among populations 382 

exhibited distance decay, driven by diverse ecological processes. Among these processes, 383 

dispersal limitation and chance played a major role (74%), similar to the observations (70–80%) 384 

in global distributions of free-living soil and marine microbiomes (Zhao et al., 2022). Consistent 385 

with global soil microbiomes (Zhao et al., 2022), selection accounted for 26% of the influence in 386 

driving the geographic variation of duckweed bacterial community composition. Specifically, 387 
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environmental pH, which is a dominant driver of global soil bacterial community composition 388 

(Fierer & Jackson, 2006; Bahram et al., 2018), was also found to influence duckweed bacterial 389 

community composition in the aquatic environments here. Similar to marine microbiomes 390 

(Sunagawa et al., 2015), temperatures strongly impacted duckweed bacterial community 391 

composition. Such effects of temperature and pH on bacterial community composition have also 392 

been demonstrated experimentally in duckweeds (Calicioglu et al., 2018). Additionally, 393 

phosphorus, one of the most important limiting factors in freshwater ecosystems (Hudson et al., 394 

2000), influenced duckweed bacterial community composition, similar to observations in 395 

bacterial communities associated with marine algae (Martin et al., 2021). Furthermore, we found 396 

that calcium concentration, reflecting hardness of aquatic environments, was also driving 397 

duckweed bacterial community composition, independent from the strong impact of pH (after 398 

model selection). Our study, together with previous research, point to some general principles of 399 

microbial biogeography regarding the influence of selection by environments and the underlying 400 

drivers. These findings highlight the potential impacts on the distribution of microbiome 401 

composition of climate change and anthropogenic activities, particularly in terms of nutrient 402 

deposition and discharge into ecosystems (Schlesinger, 2009; Tipping et al., 2014), and the 403 

overall quality of aquatic environments. 404 

 405 

Host genetic variation plays a role in the geographic distribution of plant microbiomes 406 

While we have highlighted the similarities in the patterns and mechanisms of microbial 407 

biogeography between plant microbiomes and free-living environmental microbiomes, our 408 

findings also emphasized the joint role of plant genetic variation and environmental variation. 409 

Different from soil microbiomes, where aboveground plant diversity does not influence bacterial 410 
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community composition (Fierer & Jackson, 2006; Tedersoo et al., 2014; Bahram et al., 2018), 411 

our study showed that plant genetic variation influenced duckweed bacterial community 412 

composition (Table S5) via its joint effect with climate and water chemistry, rather than their 413 

independent effects (Fig. 3d). This was primarily because the genetic variation of duckweeds 414 

was strongly influenced by the same factors that influenced their microbiome composition, such 415 

as temperatures, precipitations, nitrogen concentration (which was correlated with phosphorus 416 

concentration), and pH. The strong coupling of host genetic variation and microbiomes with 417 

environmental factors made it challenging to separate the effects of host genetic and 418 

environmental variation on microbiome composition in natural populations without manipulative 419 

experiments. This observation should not be unique to duckweeds but is expected to be common 420 

in plant microbiomes, because local adaptation to environments is a widespread phenomenon in 421 

plants (Leimu & Fischer, 2008). This observation underscores the potential for even stronger 422 

impacts on the distribution, structure, and function of plant microbiomes in the cases of 423 

misaligned responses between plants and microbes to climate change and anthropogenic 424 

activities. 425 

 426 

Conclusions 427 

Our study elucidates the geographic distribution of plant microbiome structure and the 428 

underlying mechanisms, highlighting both the commonalities and differences in microbial 429 

biogeography relative to free-living environmental microbiomes. Our findings call for the need 430 

of additional research across diverse plant species and populations, geographic scales, and 431 

ecosystems to further advance our understanding of the principles of microbial biogeography. 432 

The key drivers identified in our study, including temperatures, precipitations, pH, and 433 
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concentrations of sodium, phosphorus, and calcium, along with host genetic variation, provide 434 

important insights into predicting the vulnerability and resilience of plant microbiomes and their 435 

impacts on ecosystem functioning under changing climates and intensifying anthropogenic 436 

activities. 437 

 438 

 439 
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 592 

Fig. 1 Lemna populations and microbiomes. (a) We collected the Lemna species complex from 593 

the northern and southern range of its distribution in the United States (34 total populations: OH, 594 

13; NH, 2; MA, 2; RI, 2; LA, 7; GA, 4; SC, 4). (b) The top 10 most abundant phyla (class level 595 

for Proteobacteria) of Lemna bacterial microbiomes. The two MA populations (referred to as 596 

MA.1 and MA.2) were sampled at two separate times during the peak (June–August) and the end 597 

of the growing reason (October) in 2022. The order of the four MA samples in the plot follows 598 

MA.1 (peak and end season) and then MA.2 (peak and end season). (c) We obtained Lemna 599 

genetic data for 25 out of the 34 populations based on ISSR markers. Lemna genetic variation 600 

was examined using a PCA.  601 
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 602 

Fig. 2 Environmental drivers of Lemna microbiome richness. (a) The least-squares mean (LS 603 

mean) ± SE of bacterial ASV richness are plotted for the northern populations (‘N’: OH, NH, 604 

MA, RI) and southern populations (‘S’: LA, GA, SC) using a general linear mixed model with 605 

region (northern vs. southern) as the predictor and states nested within regions as the random 606 

effect. (b) The mean temeprature of driest quarter (BIO9) and (c) the (natural log transformed) 607 

Na concentration of aquatic environments were identified as the important factors driving the 608 

distribution of bacterial richness of Lemna microbiomes after model selection of multiple 609 

regressions. Slopes with shaded 95% confidence intervals are shown. For statistical details, see 610 

Table S4.  611 
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 612 

Fig. 3 Ecological processes underlying the geographic variation of Lemna microbiome 613 

composition. (a) The Mantel test indicates a significant correlation between the Bray-Curtis 614 

distance of bacterial communities and geographic distance. (b) The relative importance of 615 

ecological processes driving Lemna microbiome assembly was quantified using the package 616 

iCAMP. We focused on selection (homogeneous and heterogeneous selections), dispersal 617 

limitation, and chance, whereas ‘others’ encompass weak processes (iCAMP) including 618 

homogenizing dispersal here. (c) The first two axes of the 19 climatic variables (climatic PC1 619 

and climatic PC2), pH, and concentrations of total phosphorus (TP) and calcium (Ca) were 620 

identified as the most important factors driving variation in Lemna bacterial community 621 

composition after model selection of constrained principal component analyses (cPCoAs). (d) 622 

Variation partitioning indicates the collective roles of duckweed genetic variation, climate, and 623 
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water chemistry in explaining the geographic variation of Lemna bacterial community 624 

composition. For statistical details, see Table S5. 625 

  626 
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 627 

Fig. S1 Rarefaction reveals that the majority of the bacterial richness of Lemna 628 

microbiomes was captured by the sequencing effort. The number of reads is represented by 629 

the solid portion of each line, whereas the dashed portion indicates extrapolation in the 630 

rarefaction analysis using the R package iNEXT. Colors indicate the different origins (states) of 631 

duckweed populations.  632 
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 633 

Fig. S2 The climatic PCA of Lemna populations. The climatic PCA was based on the 19 634 

climatic variables of the 34 Lemna populations. BIO1 = Annual Mean Temperature; BIO2 = 635 

Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3 = Isothermality 636 

(BIO2/BIO7) (×100); BIO4 = Temperature Seasonality (standard deviation ×100); BIO5 = Max 637 

Temperature of Warmest Month; BIO6 = Min Temperature of Coldest Month; BIO7 = 638 

Temperature Annual Range (BIO5-BIO6); BIO8 = Mean Temperature of Wettest Quarter; BIO9 639 

= Mean Temperature of Driest Quarter; BIO10 = Mean Temperature of Warmest Quarter; BIO11 640 

= Mean Temperature of Coldest Quarter; BIO12 = Annual Precipitation; BIO13 = Precipitation 641 

of Wettest Month; BIO14 = Precipitation of Driest Month; BIO15 = Precipitation Seasonality 642 

(Coefficient of Variation); BIO16 = Precipitation of Wettest Quarter; BIO17 = Precipitation of 643 

Driest Quarter; BIO18 = Precipitation of Warmest Quarter; BIO19 = Precipitation of Coldest 644 

Quarter. 645 
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 647 

Fig. S3 STRUCTURE results of Lemna. (a) The inference of populations (K) identifies four 648 

genetic clusters. (b) Inferred admixture plot of the 25 Lemna samples is displayed at K = 4.  649 
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 650 

 651 

Fig. S4 Environmental drivers of the asymptotic richness of Lemna bacterial microbiomes. 652 

(a) The least-squares mean (LS mean) ± SE of bacterial ASV richness (based on Chao estimator) 653 

are plotted for the northern populations (OH, NH, MA, RI) and southern populations (LA, GA, 654 

SC), using a general linear mixed model with region (northern vs. southern) as the predictor and 655 

states nested within regions as the random effect. (b) The mean temeprature of the driest quarter 656 

(BIO9) and (c) the (natural log transformed) Na concentration of aquatic environments were 657 

identified as the important factors driving the distribution of Lemna bacterial richness after 658 

model selection of multiple regressions. Slopes and shaded 95% confidence intervals are shown. 659 

For statistical details, see Table S4. 660 
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