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Understanding the brain’s perception algorithm is a highly in-
tricate problem, as the inherent complexity of sensory inputs
and the brain’s nonlinear processing make characterizing sen-
sory representations difficult. Recent studies have shown that
functional models—capable of predicting large-scale neuronal
activity in response to arbitrary sensory input—can be pow-
erful tools for characterizing neuronal representations by en-
abling high-throughput in silico experiments. However, accu-
rately modeling responses to dynamic and ecologically relevant
inputs like videos remains challenging, particularly when gen-
eralizing to new stimulus domains outside the training distribu-
tion. Inspired by recent breakthroughs in artificial intelligence,
where foundation models—trained on vast quantities of data—
have demonstrated remarkable capabilities and generalization,
we developed a “foundation model” of the mouse visual cortex:
a deep neural network trained on large amounts of neuronal re-
sponses to ecological videos from multiple visual cortical areas
and mice. The model accurately predicted neuronal responses
not only to natural videos but also to various new stimulus do-
mains, such as coherent moving dots and noise patterns, under-
scoring its generalization abilities. The foundation model could
also be adapted to new mice with minimal natural movie train-
ing data. We applied the foundation model to the MICrONS
dataset: a study of the brain that integrates structure with func-
tion at unprecedented scale, containing nanometer-scale mor-
phology, connectivity with >500,000,000 synapses, and function
of >70,000 neurons within a ∼1mm3 volume spanning multiple
areas of the mouse visual cortex. This accurate functional model
of the MICrONS data opens the possibility for a systematic
characterization of the relationship between circuit structure
and function. By precisely capturing the response properties
of the visual cortex and generalizing to new stimulus domains
and mice, foundation models can pave the way for a deeper un-
derstanding of visual computation.
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Introduction
A crucial step to decipher the brain’s algorithm of percep-
tion is to build accurate functional models of neuronal ac-
tivity that predict how the visual system responds to sen-
sory stimuli and how activity is modulated by behavioral
and internal brain states. Functional models of neuronal
responses to visual inputs have a long history in neuro-
science from simple linear-nonlinear (LN) models (Jones and

Palmer, 1987; Heeger, 1992a,b), energy models (Adelson
and Bergen, 1985), subunit/LN-LN models (Rust et al., 2005;
Touryan et al., 2005; Vintch et al., 2015), to multi-layer neu-
ral network models (Zipser and Andersen, 1988; Lehky et al.,
1992; Lau et al., 2002; Prenger et al., 2004).
Recently, deep artificial neural networks (ANNs) have be-
come the new standard for modeling visual cortex (Yamins
et al., 2014; Cadieu et al., 2014; Antolík et al., 2016; Batty
et al., 2017; McIntosh et al., 2016; Klindt et al., 2017; Kindel
et al., 2017; Cadena et al., 2019; Burg et al., 2021; Lurz et al.,
2020; Bashiri et al., 2021; Christensen and Zylberberg, 2020;
Cowley and Pillow, 2020; Ecker et al., 2018; Sinz et al.,
2018; Bakhtiari et al., 2021; Nayebi et al., 2021; Willeke
et al., 2022). Their ability to capture complex and highly
nonlinear relationships have enabled them to accurately pre-
dict neuronal responses to arbitrary static natural images and
even synthesize novel stimuli, such as the most exiting stim-
ulus for individual neurons (Bashivan et al., 2019; Walker
et al., 2019; Ponce et al., 2019; Franke et al., 2022; Höfling
et al., 2022). These models offer the possibility to perform a
nearly unlimited number of in silico experiments to system-
atically characterize neuronal representations, such as identi-
fying what individual neurons are selective for (Walker et al.,
2019; Bashivan et al., 2019; Franke et al., 2022; Fu et al.,
2023), what they are invariant to (Ding et al., 2023b), and
relating the geometry of the population activity to the sen-
sory input and behavior. The resulting predictions can then
be tested through in vivo closed loop experiments, such as
the inception loops paradigm (Walker et al., 2019; Franke
et al., 2022). This in silico–in vivo approach addresses inher-
ent challenges of studying neuronal representations, includ-
ing the high dimensionality of the input space, the non-linear
nature of information processing in the brain, and the limited
availability of time for conducting in vivo experiments.
However, although animals experience dynamic visual input
analogous to videos, most models to date are designed for
static images. Building models that accurately predict re-
sponses to video input is more challenging. Introducing the
temporal component introduces an entirely new dimension of
vision that is absent from static models. To deal with this in-
creased complexity, dynamic models typically contain more
parameters and require more data to train than their static
counterparts. Another challenge in neural network modeling
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is predicting on new stimulus domains outside the original
training distribution (Hendrycks and Dietterich, 2019). For
instance, when models are trained to generate responses to
natural movies, they perform well at predicting unseen natu-
ral movies but exhibit a substantial decrease in prediction per-
formance on other domains such as synthetic or parametric
stimuli (Sinz et al., 2018). However, to build upon the long
history of using parametric stimuli for visual psychophysics
and neurophysiology (Britten et al., 1992; Salzman et al.,
1990; Marshel et al., 2019) and to increase their usefulness
for in silico experiments, it is crucial to develop functional
models that generalize well to novel stimulus domains, such
that tuning functions can be characterized in silico with para-
metric stimuli, for example.
Recently, so called foundation models (Bommasani et al.,
2021) in artificial intelligence, characterized by their ability
to train on massive amounts of data and build robust repre-
sentations of their modeling domain, have demonstrated re-
markable generalization and capabilities in downstream tasks
(Brown et al., 2020; Radford et al., 2021). For example,
foundation models of language are trained on vast quantities
of text encompassing much of human knowledge. Trained
to predict the next sub-word in text, these foundation mod-
els capture robust language and knowledge representations
that can be transferred to new tasks with relatively little data.
These tasks include answering unstructured questions and
even passing medical licensing exams (Kung et al., 2023).
Inspired by these breakthroughs, we sought to develop a
foundation model of the mouse visual cortex trained on ex-
tensive quantities of data to predict neuronal activity from
dynamic video and behavior as inputs. We collected the re-
sponses to ecological video stimuli from ∼135,000 neurons
across multiple areas of the visual cortex from 14 awake, be-
having mice. Using a highly optimized recurrent deep neural
network architecture trained on a subset of these data, we
learned a common, data-driven dynamic “foundation core”
that effectively captured the shared latent representations of
all neurons we studied and accurately predicted neuronal re-
sponses across many mice and visual cortical areas. New
models utilizing the foundation core demonstrated the ability
to be rapidly and accurately fitted to new mice with mini-
mal amounts of data, surpassing the performance of individ-
ualized models that were trained end-to-end for each mouse
specifically. These models excelled not only in predicting
neuronal responses to new natural movies (in-domain) but
also generalized to accurately predict responses to various
out-of-domain stimuli, including random moving dots, flash-
ing dots, Gabor patches, coherent moving noise, and static
natural images. Finally, using the foundation core, we pro-
duced accurate functional models for the MICrONS study
(MICrONS Consortium et al., 2021): a publicly available
dataset containing >70,000 neurons within a ∼1mm3 corti-
cal volume spanning multiple visual areas. In addition to
neuronal function, the MICrONS dataset contains anatom-
ical information about the morphology and connectivity of
these neurons on the nanoscale-resolution, providing a com-
prehensive dataset for relating structure and function (func-

tional connectomics, Ding et al. 2023a).

Results
State-of-the-art dynamic functional model of the mouse vi-
sual cortex. To model the dynamic neuronal responses of
the mouse visual cortex, we developed an artificial neural net-
work (ANN) that was comprised of four components: per-
spective, modulation, core, and readout (Fig. 1). The mod-
ular design enabled the ANN to accommodate diverse tasks
and inputs. For instance, eye movements and different posi-
tioning of a mouse’s head relative to the monitor can result
in different perspectives of the same stimulus, despite best
efforts to limit experimental variability. To account for this,
the perspective component of our ANN uses ray tracing and
eye tracking data to infer the perspective of the mouse from
the presented stimulus on the monitor (Extended Data Fig.
1). To account for behavioral factors that modulate the activ-
ity of the visual cortex (Reimer et al., 2014), the modulation
component transforms behavioral inputs (locomotion, pupil
dilation) to produce dynamic representations of the mouse’s
behavioral and attentive state (Extended Data Fig. 2). The
perspective and modulation components provide visual and
behavioral inputs, respectively, to the core component of the
ANN. Composed of convolutional feedforward and recurrent
sub-networks, the core contains the majority of the ANN’s
modeling capacity and produces nonlinear representations of
vision that are modulated by behavior. These representa-
tions are mapped onto the activity of individual neurons by
the readout component, which performs a linear combination
of the features generated by the core at one specific location,
the neuron’s receptive field. All four components of the ANN
were trained end-to-end to predict time series of neuronal re-
sponses to natural movies (for details of model architecture
and training, see Methods).
First, we evaluated the predictive accuracy of our ANN
model architecture when trained on standard amounts of ex-
perimental data: i.e. on individual recording sessions lasting
∼1 hour. Predictive accuracy was measured by the correla-
tion between the recorded and the predicted responses to a
novel set of stimuli that were not included in model training.
To account for in vivo noise, the correlation was normalized
by an estimated upper bound on the performance that could
be achieved by a perfect model (Schoppe et al., 2016). Us-
ing this normalized correlation coefficient (CCnorm) as the
metric of predictive accuracy, we compared our model to the
previous best-performing dynamic model of the mouse visual
cortex (Sinz et al., 2018). Trained and tested on the same data
from that study (dynamic V1 responses to natural movies),
our model had a 25–46% increase in predictive accuracy on
held-out test data across the three recording sessions used in
Sinz et al. (2018) (Fig. 2a). This level of increase in perfor-
mance is substantial for predictive models of the visual cor-
tex. For comparison, in a recent competition to model neu-
ronal responses to static images, the winning model out of
172 submissions from 26 teams provided an 18% improve-
ment over the previous state-of-the-art static model (Willeke
et al., 2022, 2023). We also evaluated the predictive accuracy
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Fig. 1. ANN model of the visual cortex. The left panel (green) depicts an in vivo recording session of excitatory neurons from several areas (V1, LM, RL, AL) and layers
(L2/3, L4, L5) of the mouse visual cortex. The right panel (blue) shows the architecture of the ANN model and the flow of information from inputs (visual stimulus, eye position,
locomotion, and pupil size) to outputs (dynamic neuronal response). Underlined labels denote the four main components of the ANN: perspective, modulation, core, and
readout. For the modulation and core, the stacked planes represent feature maps. For readout, the blue boxes represent the core’s output features at the readout position of
the neuron, and the fanning black lines represent readout feature weights. The top of the schematic displays the dynamic neuronal response for a sampled set of neurons.
For two example neurons, in vivo and in silico responses are shown (green and blue, respectively).

of our model on newly collected data that contained multiple
visual areas (Fig. 2b). Interestingly, we found that the per-
formance of our model for higher visual areas (LM, RL, AL)
was similar to V1 (Fig. 2c), despite the increased complex-
ity of neuronal tuning to more complex features exhibited by
higher visual areas (Siegle et al., 2021; Goltstein et al., 2021).

Foundation models generalize to new subjects and stimu-
lus domains. While our new ANN model architecture sets
new standards for predicting dynamic neuronal responses of
the visual cortex, the performance depends critically on the
amount of data used for training, a property exhibited by
ANNs in general (Fig. 2b). The remarkable performance of
foundation models in other domains—e.g., natural language
(Brown et al., 2020) and image generation (Radford et al.,
2021)—originates from their vast quantities of training data.
However, collecting large amounts of neuronal data from in-
dividual neurons and animals presents challenges. Individual
recording sessions are limited in duration by experimental
factors such as attentiveness and recording device stability.
To overcome this limitation, we combined data from multi-
ple recording sessions, totaling over 900 minutes of natural
movie responses from 8 mice, 6 visual areas (V1, LM, AL,

RL, AM, PM), and ∼66,000 neurons. This data was used to
train a single, shared ANN core (Fig. 3a) with the goal of
capturing common representations of vision that underlie the
dynamic neuronal response of the visual cortex for a repre-
sentative group of mice. This representation could then be
used to fit models of new mice to improve their performance
with limited data. Here we refer to the representative group
of 8 mice as the “foundation cohort”, the trained ANN com-
ponent as the “foundation core”, and ANNs derived from the
foundation core as “foundation models”.
To evaluate the representation of the visual cortex captured by
the foundation core, we froze its parameters and transferred
it to ANNs with new perspective, modulation, and readout
components fitted to the new mice (Fig. 3a). Each new mouse
was shown an assortment of stimuli, designated for either
model training or testing. The training stimuli consisted of
natural movies, and we used different portions of this, span-
ning from 4 to 76 minutes, to fit ANN components to the
new mice. This approach aimed to examine the relationship
between the models’ performance and the amount of training
data for each new mouse. The testing stimuli included natural
movies that were not part of the training set (Fig. 3b’), and
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Fig. 2. Predictive accuracy of models trained on individual recording sessions. a, Predictive accuracy (median CCnorm across neurons, see Methods for details) of
our model vs. the previous state-of-the-art dynamic model of the mouse visual cortex by Sinz et al. (2018). We trained and tested our model on the same set of data from Sinz
et al. (2018): V1 neuronal responses to natural movies from 3 mice. Paired t-test (two-way): **, p < 0.01. n = number of neurons per mouse. b, Predictive accuracy of our
models by the amount of data used for training for 4 new recording sessions and mice. For each recording session, training data was partitioned in to 7 fractions ranging from
4 to 76 minutes. Separate models (diamonds) were trained on the differing fractions of training data, but tested on the same held-out testing data. Models of the same mice
are connected by lines. c, Predictive accuracy by visual area, from models that were trained on the full data. We did not find a statistically significant relationship between
predictive accuracy and visual areas (linear mixed effects model (Lindstrom and Bates, 1988), Wald’s test: n.s., p = 0.45).

new stimulus domains like static natural images (Fig. 3c’),
and 4 types of parametric stimuli (Fig. 3d’–g’), consisting of
drifting Gabor filters, flashing Gaussian dots, directional pink
noise, and random dot kinematograms. To test the role of the
foundation core in prediction performance, we trained a set
of control models that differed from the foundation models
only by the core component. For these controls or “individ-
ual models”, all four components—core, perspective, mod-
ulation, and readout—were trained end-to-end using train-
ing data from a single recording session. For the foundation
models, training data from the new mice were only used to
fit the perspective, modulation, and readout components, and
the core was trained on the foundation cohort as described
above and was frozen (Fig. 3a).
When tested on natural movies, foundation models outper-
formed individual models and required less training data
from the new mice to achieve high levels of predictive ac-
curacy (Fig. 3b). For instance, individual models required
more than an hour of training data for to surpass a median
CCnorm of 0.65 for all mice, whereas foundation models re-
quired less than half an hour (Fig. 3b). This performance gain
was observed across all tested stimulus domains, including
those that were in new stimulus domains (Fig. 3c’–g’), i.e.,
out-of-distribution (OOD) from the training domain of natu-
ral movies (Fig. 3b’). Importantly, no stimuli from the OOD
domains were used to train any component of the models, in-
cluding the foundation core. Nevertheless, foundation mod-
els were more accurate at predicting responses to new stim-
ulus domains while requiring significantly less training data
from the new mice (Fig. 3c–g). For example, when predict-
ing drifting Gabor filters, the foundation models were able to
achieve a performance of medianCCnorm > 0.55 using only
16 minutes of natural movie training data. In contrast, the in-
dividual models required more than an hour of training data
to reach the same performance level (Fig. 3d). This high-
lights the significant difference in the data efficiency of these

models, i.e., the amount and sample complexity of training
data required from new subjects to accurately fit their neu-
ronal responses. Thus, training a foundation dynamic core
on natural movie data pooled from multiple cortical layers,
areas and animals produces a robust and transferable repre-
sentation of the visual cortex that generalizes to new animals
and improves model performance for not only natural movies
but also novel stimulus domains.

Foundation models enables classical studies of paramet-
ric tuning By leveraging the foundation core and transfer
learning, we were able to create accurate foundation models
for individual mice (Fig. 3). These models enable essentially
unlimited in silico experiments for studying representations,
testing theories, generating novel hypotheses that can be ver-
ified in vivo. Here we assessed the precision with which clas-
sical tuning properties of the visual cortex could be replicated
at the individual neuronal level in our foundation model. We
presented mice—not part of the foundation cohort—with nat-
ural movie stimuli in order to train their ANN counterparts
(Fig. 4a). Additionally, we presented parametric stimuli (Fig.
4b’–c’) to measure the orientation, direction and spatial tun-
ing of the recorded neurons. Subsequently, we presented the
same parametric stimuli to the corresponding in silico neu-
rons and measured their properties for comparison (Fig. 4b–
c). This was done for 3 mice and ∼30,000 neurons from 4
visual areas (V1, LM, AL, RL).
To measure orientation and direction tuning, we presented
directional pink noise (Fig. 4b’), which encoded coherent
motion of different directions (0–360°) and orientations (0–
180°). First, we computed the strength of orientation and di-
rection tuning via selectivity indices for orientation (OSI) and
direction (DSI). There was a significant correlation between
in vivo and in silico estimates for both OSI (Fig. 4d) and DSI
(Fig. 4f), which validated the foundation model’s estimates
of tuning strength for orientation and direction. Next, we es-
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timated the preferred angles of orientation and direction of
neurons by fitting a directional parametric model (mixture of
von Mises distributions) to the responses. For strongly tuned
neurons, the in vivo and in silico estimates of preferred angles
of orientation and direction were closely matched (Fig. 4e,g).
For example, for strongly orientation-tuned neurons with an
in silico OSI > 0.5 (11% of neurons), the median difference
between the in vivo and in silico estimates of preferred orien-
tation was 4°, and with a lower OSI threshold of > 0.3 (43%
of neurons), the median difference was 7°(Fig. 4e).
To measure spatial tuning, we presented flashing Gaussian
dots (Fig. 4c’) to the neurons described above. We com-
puted a spike-triggered average (STA) of the stimulus, which
was used to estimate: 1) the strength of spatial tuning for
Gaussian dots (non-uniformity of the STA) via the spatial
selectivity index (SSI); and 2) the preferred location (peak
of the STA) via least squares fitting of the STA to a spatial
parametric model (2D Gaussian distribution). As with orien-
tation and direction tuning, we observed a significant corre-
lation between in vivo and in silico estimates of spatial tun-
ing strength, measured by SSI (Fig. 4h). For strongly tuned
neurons with in silico SSI > 8 (1% of neurons), the median
distance between the in vivo and in silico estimates of the
preferred location was 0.02 of the monitor width (Fig. 4i),
approximately 2° in visual space. Compared to directional
pink noise, we observed that a much fewer proportion of the
neurons we recorded were strongly tuned to Gaussian dots.
Together, these results demonstrate the accuracy of estimat-
ing tuning parameters for classical functional properties from
our foundation model with no prior training on parametric

stimuli. Therefore, rather than presenting parametric stimuli
in vivo, parametric tuning can be performed in silico with an
accurate and validated foundation model, freeing up valuable
in vivo experimental time for other purposes.

Foundation model of the MICrONS mouse. Underlying the
functional capabilities of the neocortex is an intricate cir-
cuitry of cellular and molecular structures. The MICrONS
project was a landmark study in visual neuroscience that in-
terrogated the relationship between structure and function of
the mouse visual cortex at unprecedented scale and resolu-
tion. From a single mouse, the responses of >70,000 excita-
tory neurons presented with natural movies were measured
through 14 sequential experiments, tiling a ∼1 mm3 vol-
ume encompassing V1, LM, AL and RL. The volume sub-
sequently underwent serial electron microscopy (EM) and
dense morphological reconstruction (Fig. 5b), yielding the
detailed structures of ∼60,000 excitatory neurons and ∼500
million synapses (MICrONS Consortium et al., 2021). The
in vivo and EM data were co-registered to produce the largest
integrated study of structure and function of the neocortex to
date.
When combining functional studies of the brain with other
modalities like anatomy, there is a finite amount of time for
in vivo recordings before histological analysis renders the tis-
sue unusable. While traditionally this would limit the num-
ber of functional studies that can be performed in vivo, pre-
dictive models allow essentially unlimited experiments to be
performed in silico. To enable this for the MICrONS project,
responses to natural movies were collected for the purpose
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imental paradigm: foundation models of new mice (n=3) were trained with natural
movies, and estimates of parametric tuning were computed from in vivo and in sil-
ico responses to synthetic stimuli (b’, directional pink noise; c’, flashing Gaussian
dots). b,c, In vivo and in silico estimates of an example neuron’s parametric tun-
ing to orientation/direction (b) and spatial location (c). d,f,h, Binned scatter plots
of in vivo and in silico estimates of selectivity indices (SI) for orientation (d, OSI),
direction (f, DSI), and spatial (h, SSI). The color indicates the number of neurons
(n) in each bin. e,g,i, Density histograms of differences between in vivo and in silico
estimates of preferred orientation (e), direction (g), and spatial location (i). In each
panel, histograms containing increasingly selective groups of neurons, thresholded
by in silico OSI (e) / DSI (g) / SSI (i), are stacked from top to bottom. The density
histograms were produced via kernel density estimation using Scott’s bandwidth.

of model training. Due to the challenge of completing all 14
experiments in the same animal in as short a period as possi-
ble, the amount of training data collected from each experi-
ment (mean 42 minutes, range 33–53 minutes, depending on
optical quality and animal behavioral profile) was less than
the other recording sessions in this study. With the avail-
able amount of data, individual models, with all components
trained from scratch on a single experiment, achieved a me-
dian CCnorm of 0.48–0.65, when tested on a held-out set
of natural movies. By applying our foundation modeling
paradigm—transferring the foundation core and fitting only
the perspective, modulation, and readout components—the

median CCnorm increased to 0.58–0.76 (Extended Data Fig.
3). This highlights the advantage of the foundation modeling
approach when there is a limited amount of data available for
training.
Fundamental properties of cortical organization—retinotopy
and functional specialization into visual areas—emerged
from the readout parameters of our foundation model of the
MICrONS mouse. To map the core’s representations onto the
activity of individual neurons, the readout component of the
ANN performs a linear combination of the core’s features at
a single position, the neuron’s receptive field (Fig. 1). This
means that the readout parameters for each neuron are fac-
torized into two elements: position and feature weights (Fig.
5a). The position encodes the center of the neuron’s spa-
tial receptive field, and the feature weights encode the rela-
tive importance of the core’s features at that position to the
neuron. These parameters were initialized and trained with-
out explicit information pertaining to cortical anatomy or vi-
sual areas. Nevertheless, by training the model to predict
neuronal responses to natural scenes, retinotopy and area-
specific properties of neuronal function emerged implicitly
from the readout positions and feature weights, respectively
(Fig. 5c–d).
One of the main organizing principles and anatomical fea-
tures of the visual cortex is retinotopy: the topographic map-
ping between the cortical position of neurons and the loca-
tion of their receptive fields. In mice, there is a nasotempo-
ral (azimuthal) progression of receptive fields from lateral to
medial regions of V1, and an inferosuperior (altitudinal) pro-
gression from rostral to caudal regions. Higher visual areas
also exhibit characteristic patterns of retinotopy. These pat-
terns were recapitulated by our model’s readout positions: the
x coordinate corresponded with azimuthal retinotopy, and y
corresponded with altitude (Fig. 5c). In contrast to previous
retinotopic methods, which either rely on special stimuli de-
signed to elicit spatial tuning (Garrett et al., 2014; Zhuang
et al., 2017) or anatomical coordinates to inform models
(Bashiri et al., 2021), our model enables retinotopic charac-
terization of the visual cortex solely from neuronal responses
to naturalistic stimuli.
The visual cortex is functionally specialized, with differ-
ent inter-connectivity and functional properties exhibited by
lower and higher visual areas. As visual information prop-
agates from lower to higher visual areas, the complexity
of neuronal encoding increases (Siegle et al., 2021), lead-
ing to a more explicit representation of higher-level fea-
tures like more linearly decodable information about ob-
jects (Froudarakis et al.; Goltstein et al., 2021). Since the
model’s readout feature weights encode differential tuning
to visual features, we hypothesized that they would reveal
functional differences between neurons in lower (V1) ver-
sus higher (LM, RL, AL) visual areas of the MICrONS vol-
ume. To test this hypothesis, we visualize the readout feature
weights by performing nonlinear dimensionality reduction
via uniform manifold approximation and projection (UMAP,
McInnes et al. 2018). We observed that neurons were orga-
nized according to their visual area, and V1 neurons occupied
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Fig. 5. The foundation model of the MICrONS volume reveals the functional organization of the visual cortex. a, Schematic of a foundation model of the MICrONS
mouse, trained on excitatory neuronal responses to natural movies. At the bottom, the readout at a single time point is depicted, showing the readout positions and feature
weights for two example neurons. b, Meshes of two example neurons, reconstructed from serial electron microscopy. The zoom-in cutout shows a synapse between these
two neurons, with the pre-synaptic axon in black and post-synaptic dendrite in silver. c, Colored scatter plots of readout positions of all neurons from a recording session
of the MICrONS mouse, overlayed on top-down a view of the recording window with annotated visual areas (V1, LM, RL, AL) and boundaries. The left and right plots are
colored by the x and y coordinates of the readout positions, respectively. d, Visualization of the readout feature weights of all neurons in the MICrONS volume, projected
onto a 2-dimensional embedding via UMAP.

mostly different regions of the UMAP than higher visual ar-
eas (Fig. 5d). Furthermore, for neurons that were recorded
multiple times in different scans, the readout weights demon-
strated stability across different scans (Extended Data Fig. 4).
These results suggest that fundamental properties underlying
the functional organization of the visual cortex are captured
by the parameters of our foundation model. This makes it
a valuable tool for studying computations across visual ar-
eas of the mouse cortex including analysis of the functional
connectivity of the MICrONS volume.

Discussion
We introduce a major step towards a foundation model for
the mouse visual cortex that achieves state-of-the-art perfor-
mance at predicting dynamic neuronal responses across mul-
tiple visual areas. Beyond excelling in the natural movie
domain on which it was trained, it accurately predicted re-
sponses to new stimulus domains, including coherent random
moving dots, dynamic Gabor patches, flashing dots, direc-
tional pink noise, and natural static images. The model’s gen-
eralization performance on new stimulus domains highlights
its ability to capture non-linear transformations from image
space to neuronal activity in the mouse visual cortex. The
foundation core enabled accurate models of new mice to be
fitted with limited training data, outperforming models with
cores that were individually trained for each mouse.
Our work was inspired by recent breakthroughs in artificial
intelligence, where foundation models (Bommasani et al.,
2021), trained on massive data volumes, have demonstrated

remarkable generalization in many downstream tasks. For
example, training on next word prediction (Brown et al.,
2020) can be transferred to downstream tasks—e.g., convers-
ing naturally with humans, or passing professional licensing
exams (Kung et al., 2023)—with relatively small amounts of
new data. Applied to neuroscience, the foundation modeling
paradigm overcomes a major limitation of previous common
approaches where models are individually trained using data
from a single experiment. The limited amount of data hin-
ders the accuracy of models as they try to learn from scratch
the complex non-linearities of the brain, even though there is
a great deal of similarity in how visual neurons respond. By
contrast, foundation models combine data from multiple ex-
periments and subjects, giving them access to a much larger
and richer set of data; only the specific idiosyncrasies of each
individual mouse and its neurons must be learned separately.
In other words, the similarities between neurons and subjects
can be leveraged to identify common features of the brain,
producing a more unified and accurate model of the brain
that is informed by multiple subjects rather than one.
In neuroscience, previous work (Lurz et al., 2021) has shown
that static models of the visual cortex benefit from pre-
training on large amounts of data pooled from multiple sub-
jects. In this study, we demonstrate that data pooling and
transfer learning can extend to a more universal model of
the visual cortex that predicts dynamic neuronal responses
to moving stimuli for both lower and higher visual cortical
areas. Importantly, our foundation models also predicted re-
sponses to new stimulus domains even without any fine tun-
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ing. Indeed, this accurate extrapolation underscores the po-
tential of foundation models to study complex biological sys-
tems such as the brain.
Here, we used the foundation modeling approach to fit the
valuable MICrONS dataset, enabling the exhaustive study
of functional connectomics within a large volume of the
mouse visual cortex. Building a digital twin for datasets
of this type effectively “immortalizes” the functional prop-
erties of the recorded neurons in the study. If the founda-
tion core can demonstrate generalization to novel arbitrary
stimulus domains of interest, the digitally twinned neurons
can be characterized using these new stimuli that were not
presented at the time of the in vivo data collection. Natu-
rally, conducting new animal validation experiments, similar
to those presented in this study, will be necessary to confirm
that the foundation core indeed generalizes to these newly
introduced stimulus domains of interest. In large projects
like MICrONS, where the longevity of a particular dataset is
especially desirable, the good generalization performance of
foundation models has clear benefits because we don’t want
the models’ value to depend on previous strategic decisions
about allocating experimental time to specific experimental
questions.
This in silico representation also offers some unique addi-
tional advantages in the types of analyses that can be per-
formed. For instance, the architecture of the foundation core
allows each modeled neuron’s predicted responses to be rep-
resented by a tuning function, which can be separated into
two components: a spatial component (indicating the posi-
tion of the neuron’s receptive field) and a feature component
(describing what the neuron responds to). This factorization
of the tuning function was utilized by another study—derived
from a version of our model—to analyze the relationship be-
tween the functional properties of neurons and synaptic con-
nectivity (Ding et al., 2023a). The researchers discovered
that the feature component, but not the spatial component,
predicted which neurons were connected at a fine synaptic
scale.
Our present foundation model merely scratches the surface,
as it only models parts of the mouse visual system under
passive viewing conditions. By expanding this approach
to encompass complex, natural behaviors in freely-moving
subjects, incorporating additional brain regions, diverse cell
types, and creating foundation models for other species could
be a paradigm shift in neuroscience. Foundation models can
be employed to study vision, cognition and motor control
during intricate, unconstrained natural behaviors in which
identical conditions rarely occur twice. For instance, we
can conduct comprehensive in silico experiments to explore
relationships between the high dimensional neuronal activ-
ity and behavioral spaces to generate hypotheses and to de-
sign simpler experiments to run in vivo, such as inception
loops (Walker et al., 2019; Franke et al., 2022).
Moreover, by considerably reducing the neuron-hours re-
quired to model new individuals and behaviors, founda-
tional models facilitate more efficient and cost-effective neu-
roscience experiments. For instance, we can establish high-

throughput research platforms that, with minimal new data,
generate predictions of individual subjects’ neuronal activity
and behavior. When causal manipulations are incorporated in
the foundation model, such as pharmacological interventions,
we could then swiftly screen drugs tailored for a desired phe-
notypic neuronal or behavioral outcome. Ultimately, the de-
velopment of multimodal foundational neuroscience models
offers a powerful new approach to deciphering the algorithms
underpinning natural intelligence.
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Methods
Neurophysiological experiments MICrONS data in Fig. 5
was collected as described in MICrONS Consortium et al.
(2021), and data in Fig. 2a was collected as described in Sinz
et al. (2018). Data collection for all other figures is described
below.
All procedures were approved by the Institutional Animal
Care and Use Committee of Baylor College of Medicine.
Fourteen mice (Mus musculus, 6 females, 8 males, age 2.2-
4 months) expressing GCaMP6s in excitatory neurons via
Slc17a7-Cre and Ai162 transgenic lines (recommended and
generously shared by Hongkui Zeng at Allen Institute for
Brain Science; JAX stock 023527 and 031562, respectively)
were anesthetized and a 4 mm craniotomy was made over the
visual cortex of the right hemisphere as described previously
(Reimer et al., 2014; Froudarakis et al., 2014). Animals were
allowed at least 5 days to recover before experimental scans.
Mice were head-mounted above a cylindrical treadmill
and calcium imaging was performed using Chameleon Ti-
Sapphire laser (Coherent) tuned to 920 nm and a large field
of view mesoscope (Sofroniew et al., 2016) equipped with a
custom objective (excitation NA 0.6, collection NA 1.0, 21
mm focal length). Laser power after the objective was in-
creased exponentially as a function of depth from the surface
according to: P = P0× e(z/Lz), where P is the laser power
used at target depth z, P0 is the power used at the surface (not
exceeding 20 mW), and Lz is the depth constant (220 μm).
The greatest laser output of 100 mW was used at approxi-
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mately 420 μm from the surface.
The craniotomy window was leveled with regards to the ob-
jective with six degrees of freedom. Pixel-wise responses
from an ROI spanning the cortical window (>2400 x 2400
μm, 2-5 μm/px, between 100-220 μm from surface, >2.47
Hz) to drifting bar stimuli were used to generate a sign
map for delineating visual areas (Garrett et al., 2014). Area
boundaries on the sign map were manually annotated.
For eleven out of fifteen scans (including four of the founda-
tion cohort scans), our target imaging site was a 1200× 1100
μm2 area spanning L2-L5 at the conjunction of lateral pri-
mary visual cortex (V1) and three lateral higher visual areas:
anterolateral (AL), lateromedial (LM), and rostrolateral (RL).
This resulted in an imaging volume that was roughly 50% V1
and 50% higher visual area. This target was chosen in order
to mimic the area membership and functional property distri-
bution in the MICrONS animal (MICrONS Consortium et al.,
2021) Each scan was performed at 6.3 Hz, collecting eight
620 × 1100 μm2 fields per frame at 2.5 μm/px xy resolution
to tile a 1200-1220 × 1100 μm2 FOV at four depths (two
planes per depth, 20-40 μm overlap between coplanar fields.
The four imaging planes were distributed across layers with
at least 45 μm spacing, with two planes in L2/3 (depths: 170-
200 μm and 215-250 μm), one in L4 (300-325 μm), and one
in L5 (390-420 μm).
For the remaining 4 foundation cohort scans, our target imag-
ing site was a single plane in L2/3 (depths 210-220 μm),
spanning all visual cortex visible in the cortical window (typ-
ically including V1, LM, AL, RL, PM, and AM). Each scan
was performed at 6.8-6.9 Hz, collecting four 630 μm width
adjacent fields (spanning 2430 μm ROI, with 90 μm total
overlap). Each field was a custom height (2010-3000 μm) in
order to encapsulate visual cortex within that field. Imaging
was performed at 3 μm/px.
Movie of the animal’s eye and face was captured throughout
the experiment. A hot mirror (Thorlabs FM02) positioned be-
tween the animal’s left eye and the stimulus monitor was used
to reflect an IR image onto a camera (Genie Nano C1920M,
Teledyne Dalsa) without obscuring the visual stimulus. The
position of the mirror and camera were manually calibrated
per session and focused on the pupil. Field of view was man-
ually cropped for each session. The field of view contained
the left eye in its entirety, and was captured at∼20 Hz. Frame
times were time stamped in the behavioral clock for align-
ment to the stimulus and scan frame times. Video was com-
pressed using Labview’s MJPEG codec with quality constant
of 600 and stored the frames in AVI file.
Light diffusing from the laser during scanning through the
pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on
17 manually labeled samples from 11 animals to label each
frame of the compressed eye video (intraframe only H.264
compression, CRF:17) with 8 eyelid points and 8 pupil points
at cardinal and intercardinal positions. Pupil points with like-
lihood >0.9 (all 8 in 72-99% of frames per scan) were fit
with the smallest enclosing circle, and the radius and center

of this circle was extracted. Frames with < 3 pupil points
with likelihood >0.9 (<1.2% frames per scan), or producing
a circle fit with outlier > 5.5 standard deviations from the
mean in any of the three parameters (center x, center y, ra-
dius, <0.2% frames per scan) were discarded (total <1.2%
frames per scan). Gaps of <= 10 discarded frames were re-
placed by linear interpolation. Trials affected by remaining
gaps were discarded (<18 trials per scan, <0.015%).
The mouse was head-restrained during imaging but could
walk on a treadmill. Rostro-caudal treadmill movement
was measured using a rotary optical encoder (Accu-Coder
15T-01SF-2000NV1ROC-F03-S1) with a resolution of 8000
pulses per revolution, and was recorded at ∼100 Hz in order
to extract locomotion velocity.

Monitor Positioning and Calibration Visual stimuli were
presented with Psychtoolbox in MATLAB to the left eye with
a 31.0 x 55.2 cm (height x width) monitor (ASUS PB258Q)
with a resolution of 1080 x 1920 pixels positioned 15 cm
away from the eye. When the monitor is centered on and
perpendicular to the surface of the eye at the closest point,
this corresponds to a visual angle of 3.8 °/cm at the nearest
point and 0.7 °/cm at the most remote corner of the moni-
tor. As the craniotomy coverslip placement during surgery
and the resulting mouse positioning relative to the objective
is optimized for imaging quality and stability, uncontrolled
variance in animal skull position relative to the washer used
for head-mounting was compensated with tailored monitor
positioning on a six dimensional monitor arm. The pitch of
the monitor was kept in the vertical position for all animals,
while the roll was visually matched to the roll of the animal’s
head beneath the headbar by the experimenter. In order to
optimize the translational monitor position for centered vi-
sual cortex stimulation with respect to the imaging field of
view, we used a dot stimulus with a bright background (max-
imum pixel intensity) and a single dark square dot (minimum
pixel intensity). Randomly ordered dot locations drawn from
either a 5 x 8 grid tiling the screen (20 repeats) or a 10 x
10 grid tiling a central square (approx 90 degrees width and
height, 10 repeats), with each dot presentation lasting 200 ms.
For five scans (four foundational cohort scans, 1 scan from
Fig. 4), this dot-mapping scan targeted the V1/RL/AL/LM
conjunction, and the final monitor position for each animal
was chosen in order to maximize inclusion of the population
receptive field peak response in cortical locations spanning
the scan FOV. In the remaining scans, the procedure was the
same, but the scan FOV spanned all of V1 and some adja-
cent higher visual areas, and thus the final monitor position
for each animal was chosen in order to maximize inclusion
of the population receptive field peak response in cortical lo-
cations corresponding to the extremes of the retinotopic map.
In both cases, the yaw of the monitor visually matched to be
perpendicular to and 15 cm from the nearest surface of the
eye at that position.
A photodiode (TAOS TSL253) was sealed to the top left cor-
ner of the monitor, and the voltage was recorded at 10 KHz
and timestamped with a 10 MHz behavior clock. Simulta-
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neous measurement with a luminance meter (LS-100 Kon-
ica Minolta) perpendicular to and targeting the center of the
monitor was used to generate a lookup table for linear inter-
polation between photodiode voltage and monitor luminance
in cd/m2 for 16 equidistant values from 0-255, and one base-
line value with the monitor unpowered.
At the beginning of each experimental session, we collected
photodiode voltage for 52 full-screen pixel values from 0 to
255 for one second trials. The mean photodiode voltage for
each trial was collected with an 800 ms boxcar window with
200 ms offset. The voltage was converted to luminance using
previously measured relationship between photodiode volt-
age and luminance and the resulting luminance vs. voltage
curve was fit with the function L = B+A ·P γ where L is
the measured luminance for pixel value P, and the median γ
of the monitor was fit as 1.73 (range 1.58 - 1.74). All stimuli
were shown without linearizing the monitor (i.e. with moni-
tor in normal gamma mode).
During the stimulus presentation, display frame sequence in-
formation was encoded in a 3 level signal, derived from the
photodiode, according to the binary encoding of the display
frame (flip) number assigned in-order. This signal under-
went a sine convolution, allowing for local peak detection
to recover the binary signal together with its behavioral time
stamps. The encoded binary signal was reconstructed for
>96% of the flips. Each flip was time stamped by a stimulus
clock (MasterClock PCIe-OSC-HSO-2 card). A linear fit was
applied to the flip timestamps in the behavioral and stimulus
clocks, and the parameters of that fit were used to align stim-
ulus display frames with scanner and camera frames. The
mean photodiode voltage of the sequence encoding signal at
pixel values 0 and 255 was used to estimate the luminance
range of the monitor during the stimulus, with minimum val-
ues of approximately 0.005 - 1 cd/m2 and maximum values
of approximately 8.0 - 11.5 cd/m2.

Stimulus Composition Dynamic stimuli libraries of natu-
ral movies and directional pink noise ("Monet") was as de-
scribed in MICrONS Consortium et al. (2021), and the static
natural image library was as described in Walker et al. (2019).
Dynamic Gabor filters were generated as described in Petkov
and Subramanian (2007). We used a spatial envelope that had
a standard deviation of ∼10° in the center of the monitor. A
10-second trial consisted of 10 Gabor filters (each lasting 1
second) with randomly sampled spatial positions, directions
of motion, phases, spatial and temporal frequencies.
Random dot kinematograms were generated as described in
Morrone et al. (2000). The diameter of the dots was ∼2°
in the center of the monitor. Each 10-second trial con-
tained 5 patterns of optical flow, each lasting 2 seconds. The
patterns were randomly sampled in terms of type of opti-
cal flow (translation: up/down/right/left, radial: in/out, ro-
tation: clockwise/anticlockwise), and coherence of random
dots (50%, 100%).
The composition of stimuli for the MICrONS recording ses-
sions is described in MICrONS Consortium et al. (2021).
For all other recording session, the composition of stimuli

is listed in table 1.

Neural network architecture Our model of the visual cortex
is an artificial neural network composed of four components:
perspective, behavior, core, and readout. These components
are described in the following sections.

Perspective network The perspective network uses ray
tracing to infer the perspective or retinal activation of a mouse
at discrete time points from two input variables: stimulus
(movie frame) and eye position (estimated center of pupil,
extracted from the eye tracking camera). To perform ray trac-
ing, we modeled the following physical entities: 1) topogra-
phy and light ray trajectories of the retina; 2) rotation of the
retina; 3) position of the monitor relative to the retina; 4) in-
tersection of the light rays of the retina and the monitor.
1) The retina was modeled as a uniform 2D grid mapped
onto a 3D sphere via an azimuthal equidistant projection (Ex-
tended Data Fig. 1a). Let θ and φ denote the polar coordi-
nates (radial and angular, respectively) of the 2D grid. The
following mapping produced a 3D light ray for point (θ,φ)
of the modeled retina:

l(θ,φ) :
[
θ
φ

]
7→

sinθ cosφ
sinθ sinφ

cosθ

 .
2) We used pupil tracking data to infer the rotation of the oc-
cular globe and the retina. At each time point t, a multilayer
perceptron (MLP with 3 layers and 8 hidden units per layer)
was used to map the pupil position onto the 3 ocular angles
of rotation:

MLP :
[
pxt
pyt

]
7→

θ̂xtθ̂yt
θ̂zt

 ,
where the pxt,pyt are the x,y coordinates of the pupil
center in the frame of the tracking camera at time t, and
θ̂xt, θ̂yt, θ̂zt are the estimated angles of rotation of about the
x (adduction/abduction), y (elevation/depression), z (intor-
sion/extorsion) axes of the occular globe at time t.
LetRx,Ry,Rz ∈R3×3 denote rotation matrices about x,y,z
axes. Each light ray of the retina l(θ,φ) was rotated by the
occular angles of rotation:

l̂(θ,φ,t) =Rz(θ̂zt)Ry(θ̂yt)Rx(θ̂xt)l(θ,φ) ,

producing l̂(θ,φ,t) ∈ R3 : the ray of light for point (θ,φ) of
the retina that accounts for the animal’s gaze and the rotation
of the occular globe at time t.
3) The monitor was modeled as a plane with 6 degrees of
freedom: 3 for translation and 3 for rotation. Translation of
the monitor plane relative to the retina was parameterized by
m0 ∈ R3. Rotation was parameterized by angles θ̄x, θ̄y, θ̄z:[

mx my mz

]
=Rz(θ̄z)Ry(θ̄y)Rx(θ̄x) ,

where mx,my,mz ∈R3 are the horizontal, vertical, and nor-
mal unit vectors of the monitor, respectively.
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4) We computed the line-plane intersection between the mon-
itor plane and l̂(θ,φ,t), the gaze-corrected trajectory of light
for point ij of the retina at time t:

m(θ,φ,t) = m0 ·mz

l̂(θ,φ,t) ·mz

l̂(θ,φ,t),

where m(θ,φ,t) is the point of intersection between the mon-
itor plane and the light ray l̂(θ,φ,t). This was projected onto
the monitor’s horizontal and vertical unit vectors:

mx(θ,φ,t) = (m(θ,φ,t)−m0) ·mx ,

my(θ,φ,t) = (m(θ,φ,t)−m0) ·my ,

yielding mx(θ,φ,t) and my(θ,φ,t), the horizontal and ver-
tical displacements from the center of the monitor/stimulus
(Extended Data Fig. 1b). To produce inferred activation of
the retinal grid at (θ,φ,t), we performed bilinear interpola-
tion of the stimulus at the four pixels surrounding the line-
plane intersection at mx(θ,φ,t), my(θ,φ,t).

Modulation network The modulation network is a small
LSTM network (Hochreiter and Schmidhuber) that trans-
forms behavioral variables, i.e., locomotion and pupil size,
and previous states of the network, to produce dynamic rep-
resentations of the behavioral state and arousal of the mouse.

LSTM :

rtpt
p′t

 ,hM
t−1,cM

t−1 7→ hM
t ,cM

t ,

where r is the running/treadmill speed, p is the pupil diam-
eter, p′ is the instantaneous change in pupil diameter, and
hM,cM are the "hidden" and "cell" state vectors of the mod-
ulation LSTM network.
The hidden state vector hM was tiled across space to produce
modulation feature maps HM

t :

hM
t ∈ Rc→HM

t ∈ Rc×h×w ,

where c,h,w denote channel, height, and width, respectively,
of the feature maps. These feature maps HM

t served as the
modulatory inputs into the recurrent portion of the core net-
work at time t.

Core network The core network—comprised of feedfor-
ward and recurrent sub-networks—transforms the inputs
from the perspective and modulation networks to produce
feature representations of vision modulated by behavior.
First, the feedforward network transforms the visual input
provided by the perspecive network. For this we used a 3D
convolutional network with 3 layers and GeLU nonlinearities
(Hendrycks and Gimpel, 2020) and residual connections (He
et al., 2015) in between each layer. Spatial pooling was per-
formed to reduce the spatial resolution of the feature maps.
To enforce causality, the 3D convolutions were shifted along
the temporal dimension, such that no inputs from future time
points contributed to the output of the feedforward network.
Next, the recurrent network transforms the visual and behav-
ioral information provided by the feedforward and modula-
tion networks, respectively. The recurrent network is com-
prised of multiple, cannonical “layers” that perform the same

recurrent operation but with different parameters and inputs.
For the recurrent operation, we used a convolutional LSTM
(Conv-LSTM, SHI et al. 2015):

Conv-LSTML : XL
t ,HL

t−1,CL
t−1 7→HL

t ,CL
t ,

where XL
t is the input to the recurrent layer L, and HL

t ,CL
t

are the “hidden” and “cell” feature maps, respectively, of the
Conv-LSTM.
The input to each recurrent layer consisted of the outputs of
the feedforward and modulation networks: F and HM, re-
spectively. Additionally, each layer L also received inputs
from the hidden feature maps of other recurrent layers HL′

.
This resulted in a densely interconnected recurrent network
with bidirectional pathways between recurrent layers. Let
WL

V∗ denote a 2D spatial convolution with a kernel W for
layer L and variable V. The following describes the input to
that layer at time t:

XL
t = WL

F ∗Ft+ WL
M ∗HM

t +
∑
L′

WL
L′ ∗HL′

t−1 ,

where the input to the recurrent layer XL
t is a linear combina-

tion of the output of the feedforward network FL
t , the output

of the modulation network HM
t , and the previous hidden fea-

ture maps of the other recurrent layers HL′
t−1.

Finally, to produce the output of the core network, the hidden
feature maps of the recurrent layers were concatenated along
the channel dimension:

Ct = Concatenate(HL=1
t ,HL=2

t , ...) .

Readout network The readout network maps the core’s
outputs onto the activity of individual neurons. For each neu-
ron, the readout parameters were factorized into two compo-
nents: spatial position and feature weights. For a neuron n,
let pn ∈R2 denote the spatial position (x,y), and let wn ∈Rc
denote the feature weights for that neuron, with c being the
number channels in the core network’s output. To produce
the response of that neuron n at time t, the following readout
operation was performed:

cnt = Interpolate(Ct , pn) ,
rnt = exp(cnt ·wn+ bn) ,

where cnt ∈ Rc is a feature vector that is produced via bilin-
ear interpolation of the core network’s output Ct ∈ Rc×h×w
(channels, height, width), interpolated at the spatial position
pn. The feature vector cnt is then combined with the feature
weights wn and a scalar bias bn to produce the response rnt
of neuron n at time t.
Due to the bilinear interpolation at a single position, each
neuron only reads out from the core’s output feature maps
within a 2×2 spatial window. While this adheres to the func-
tional property of spatial selectivity exhibited by neurons in
the visual cortex, the narrow window limits exploration of
the full spatial extent of features during model training. To
facilitate the spatial exploration of the core’s feature maps
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during training, for each neuron n, we sampled the readout
position from a 2D Gaussian distribution: pn ∼N (µn,Σn).
The parameters of the distribution µn,Σn (mean, covari-
ance) were learned via the reparameterization trick (Kingma
and Welling, 2013). We observed empirically that the co-
variance Σn naturally decreased to small values by the end
of training, meaning that the readout converged on a specific
spatial position. After training, and for all testing purposes,
we used the mean of the learned distribution µn as the single
readout position pn for neuron n.

Model training The perspective, behavior, core, and read-
out networks were assembled together to form an ANN that
was trained to match the recorded dynamic neuronal re-
sponses from the training dataset. Let yit be the recorded in
vivo response, and let rit be the predicted in silico response
of neuron i at time t. The ANN was trained to minimize
the Poisson negative log likelihood loss,

∑
it r

i
t−yit log(rit),

via stochastic gradient descent with Nesterov momentum
(Sutskever et al., 2013). The ANN was trained for 200 epochs
with a learning rate schedule that consisted of a linear warm-
up in the first 10 epochs, cosine decay (Loshchilov and Hut-
ter, 2016) for 90 epochs, followed by a warm restart and co-
sine decay for the remaining 100 epochs. Each epoch con-
sisted of 512 training iterations / gradient descent steps. We
used a batch size of 5, and each sample of the batch con-
sisted of 70 frames (2.33 seconds) of stimulus, response, and
behavioral data.

Model testing We generated model predictions of re-
sponses to stimuli that were included in the experimental
recordings but excluded from model training. To evaluate
the accuracy of model predictions, for each neuron we com-
puted the correlation between the mean in silico and in vivo
responses, averaged over stimulus repeats. The average in
vivo response aims to estimate the true expected response of
the neuron. However, when the in vivo response is highly
variable and there are a limited number of repeats, this es-
timate becomes noisy. To account for this, we normalized
the correlation by an upper bound proposed by Schoppe et al.
(2016). Using · to denote average over trials/stimulus re-
peats, the normalized correlation CCnorm is defined as fol-
lows:

CCnorm = CCabs
CCmax

,

CCabs = Cov(r,y)√
Var(r)Var(y)

,

CCmax =

√
NVar(y)−Var(y)

(N −1)Var(y) ,

where r is the in silico response, y is the in vivo response,
and N is the number of trials. CCabs is the Pearson corre-
lation coefficient between the average in silico and in vivo
responses. CCmax is the upper bound of achievable perfor-

mance given the the in vivo variability of the neuron and the
number of trials.

Parametric tuning To estimate parametric tuning, we pre-
sented parametric stimuli to the mice and the models. Specif-
ically, we used directional pink noise parameterized by direc-
tion/orientation and flashing Gaussian blobs parameterized
by spatial location. Orientation, direction, and spatial tuning
were computed from the recorded responses from the mice
and the predicted responses from the models. This resulted
in analogous in vivo and in silico estimates of parametric tun-
ing for each neuron. The methods for measuring the tuning
to orientation, direction, and spatial location are explained in
the following sections.

Orientation and Direction tuning We presented 16 an-
gles of directional pink noise, uniformly distributed between
[0,2π). Let rθ be the mean response of a neuron to the angle
θ, averaged over repeated presentations of the angle. The ori-
entation and direction selectivity indices (OSI and DSI) were
computed as

OSI =
|
∑
θ rθ e

i2θ|∑
θ rθ

,

DSI =
|
∑
θ rθ e

iθ|∑
θ rθ

,

i.e., the normalized magnitude of the first and second Fourier
components.
To determine the parameters for orientation and direction tun-
ing, we used the following parametric model:

f(θ |µ,κ,α,β,γ) = αeκcos(θ−µ) +βeκcos(θ−µ+π) +γ ,

which is a mixture of two von Mises functions with ampli-
tudes α and β, preferred directions µ and µ+π, and disper-
sion κ, plus a baseline offset of γ. The preferred orientation is
the angle that is orthogonal to µ between [0,π], i.e., (µ+π/2)
mod π. To estimate the parameters µ,κα,β,γ that best fit the
neuronal response, we performed least squares optimization,
minimizing

∑
θ (f(θ |µ,κα,β,γ)− rθ)2.

Parameters were estimated via least square optimization for
both the in vivo and in silico responses. Let µ̂,µ be the an-
gles of preferred directions estimated from in vivo, in silico
responses, respectively. The angular distances between the
in vivo and in silico estimates of preferred direction (Fig. 4g)
and orientation (Fig. 4e) were computed as follows:

∆Direction = arccos(cos(µ̂−µ)) ,
∆Orientation = arccos(cos(2µ̂−2µ))/2 .

Spatial tuning To measure spatial tuning, we presented
“on” and “off” (white and black), flashing (300 ms) Gaus-
sian dots. The dots were isotropically shaped, with a standard
deviation of approximately 8 visual degrees in the center of
the monitor. The position of each dot was randomly sampled
from a 17× 29 grid tiling the height and width monitor. We
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observed a stronger neuronal response for “off” compared
to “on”, and therefore we used only the “off” Gaussian dots
to perform spatial tuning from the in vivo and in silico re-
sponses.
To measure spatial tuning, we first computed the spike trig-
gered average (STA) of the stimulus. Let x ∈ R2 denote the
spatial location (height and width) in pixels. The value of the
STA at location x was computed as follows:

sx =
∑
t |sxt−s0|rt∑

t rt
,

where rt is the response of the neuron, sxt is the value of the
stimulus at location x and time t, and s0 is the blank or gray
value of the monitor.
To measure the spatial selectivity of a neuron, we computed
the covariance matrix or dispersion of the STA. Again using
x ∈ R2 denote the spatial location (height and width) in pix-
els:

z =
∑

x
sx ,

x =
∑

x
sxx/z ,

ΣSTA =
∑

x
sx(x−x)(x−x)ᵀ /z .

The spatial selectivity index, or strength of spatial tuning,
was defined as the negative log determinant of the covariance
matrix:

SSI =− log |ΣSTA| .

To determine the parameters of spatial tuning, we used least
squares to fit the STA to the following parametric model:

f(x |µ,Σ,α,γ) = αexp
(
−1

2(x−µ)ᵀΣ−1(x−µ)
)

+γ ,

which is a 2D Gaussian component with amplitude α, mean
µ, and covariance Σ, plus a baseline offset of γ.
From the in vivo and in silico responses, we estimated two
sets of spatial tuning parameters. Let µ̂,µ be the means (pre-
ferred spatial locations) estimated from in vivo and in silico
responses. To measure the difference between the preferred
locations (Fig. 4i), we computed the Euclidean distance:

∆Location = ‖µ̂−µ‖ .

Data availability. All MICrONS data have already been
released on BossDB (https://bossdb.org/project/microns-
minnie, please also see https://www.microns-
explorer.org/cortical-mm3 for details). Additional data
including foundation model architecture, hyperparameters,
and weights will be released upon publication.

Code availability. All code will be released on github upon
publication.
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Extended Data Fig. 1. ANN perspective. Schematic of the modeled perspective the animal. a, The retina is modeled as points on a sphere receiving light rays that trace
through the origin. An example light ray with polar angle θ and azimuthal angle φ is shown in red. b, The light ray is traced to a point mx,my on the monitor. Bilinear
interpolation of the four pixels on the monitor surrounding mx,my produces the activation of a point θ,φ on the modeled retina. c, 9 examples of the modeled perspective
from the left eye of an animal, with 3 horizontal rotations of the optical globe (abduction/adduction)× 3 vertical rotations (elevation/depression). The concentric circles indicate
visual angles in degrees. (See Methods for details on the perspective network.)
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Extended Data Fig. 2. ANN modulation. Visualization of the modulation network’s output, projected onto 2 dimensions via UMAP. a, b show the same data from an example
recording session and modulation network. Each point on the plot indicates a point in time from the recording session. The colors indicate measurements of pupil size (a)
and treadmill speed (b) at the respective points in time. (See Methods for details on the modulation network.)
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Extended Data Fig. 4. Pairwise similarities of readout feature weights of neurons from the MICrONS volume. The similarity between readout weights was measured
inversely via angular distance ∠ := arccos((x ·y)/(‖x‖‖y‖))/π , where x,y is a pair of readout weights. A similar pair of readout weights will exhibit a small ∠, and vice
versa. For each neuron N that was recorded in more than one scan and co-registered to the same EM unit (n=1,015), we computed: 1) the mean ∠ between N and itself from
different scans, 2) the mean ∠ between N and nearby neurons N’ from different scans, and 3) the mean ∠ between N and nearby neurons N’ from the same scan. These
are shown in scatterplots a–c. The scatterplots are colored by the CCmax of N, which is an inverse measure of neuronal noise, i.e., the estimated maximum correlation
coefficient that a model could achieve at predicting the mean response the neuron (see Methods for details). A nearby neuron N’ was defined as being ≤ 100 µm away
from N in terms of soma distance, and the numbers of nearby neuron is shown in d (from different scans) and e (from the same scan). f and g (corresponding to d and e,
respectively) show the fraction of the nearby neurons N’ that are more similar to N in terms of readout weights than N is to itself across different scans. f, For 919 out of the
1013 neurons N, less than 0.05 of nearby neurons N’ from different scans had more similar readout weights. g, For 840 out of the 1013 neurons N, less than 0.05 of nearby
neurons N’ from the same scan had more similar readout weights.
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