Abstract
Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. We hypothesize that attentional and contextual top-down signals interact in V1, in a manner that primarily benefits the representation of natural visual stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we show that attention enhances the decodability of stimulus identity from population responses evoked by natural scenes but, critically, not by synthetic stimuli in which higher-order statistical regularities were eliminated. Attentional enhancement of stimulus decodability from population responses occurs in low dimensional spaces, as revealed by principal component analysis, suggesting an alignment between the attentional and the natural stimulus variance. Moreover, natural scenes produce stimulus-specific oscillatory responses in V1, whose power undergoes a global shift from low to high frequencies with attention. We argue that attention and perception share top-down pathways, which mediate hierarchical interactions optimized for natural vision.
Competing Interest Statement
The authors have declared no competing interest.