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Abstract

Evolutionary dynamics in spatially structured populations has been studied for a long time. More
recently, the focus has been to construct structures that speeds up evolution – so called amplifiers of
selection. It has been shown that for a structure to amplify selection, self-loops are necessary when
mutants appear predominately in nodes that change often. As a result, for low mutation rates, self-looped
amplifiers attain higher steady-state average fitness in the mutation-selection than well-mixed populations.
But, what happens when the mutation rate increases such that fixation probabilities alone no longer describe
the dynamics? We show that self-loops effects are detrimental outside the low mutation rate regime. In
the intermediate and high mutation rate regime, amplifiers of selection attain lower steady-state average
fitness than the complete graph and the suppressor of selection. We also provide an estimate of mutation
rate beyond which the mutation-selection dynamics on a graph deviates from the weak mutation rate
approximation. This involves computing how the average fixation time scales with the population size for
several graphs.
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1 Introduction

Evolutionary graph theory (EGT) studies the role of spatial structure in evolutionary dynamics [1]. In
this framework, a spatially structured population is modelled as a graph with nodes representing asexually
reproducing individuals, while the links dictate the interactions among these nodes. In general, the links of
a graph can be weighted and directed. So far, the main focus of the EGT has been to study quantities like
fixation probability and fixation times for different graphs. The fixation probability is the probability that
a mutant individual takes over the population of wild-types, and the time it takes to do so, is called the
fixation time. The fixation probability is a central object in evolutionary biology [2–6]. For low mutation
rates, it determines the rate of evolution [7, 8]. Based on the fixation probability, most graphs can be
categorised into two categories: Amplifiers of selection and suppressors of selection [9]. An amplifier of
selection is a structure that – compared to the complete graph (the well-mixed population) – has higher
probability to fix beneficial mutants, and lower probability to fix deleterious mutants [10]. On the other
hand, a suppressor of selection has higher probability to fix deleterious mutants, and lower probability to
fix beneficial mutants than the complete graph.

In a complete graph, every node is alike, and therefore, the fixation probability for a mutant starting
from any of the nodes is equal. However, this is not true in general. For an arbitrary structure, the fixation
probability depends crucially on the node where the initial mutant appears [11, 12]. Hence, the mutant
initialisation scheme needs to be specified while stating the fixation probability for a graph. Two commonly
used mutant initialisation schemes are uniform mutant initialisation and temperature mutant initialisation.
Under the uniform mutant initialisation scheme, the initial mutant is equally likely to appear in every node.
Under temperature mutant initialisation scheme, the initial mutant appears in a node with probability
proportional to its temperature, where the temperature of a node is the sum of the weights of the links
directed towards the focal node [10]. In general, a graph can have very different fixation probability profiles
under different mutant initialisation schemes. For example, the star graph is an amplifier of selection under
the uniform mutant initialisation scheme, whereas, it is a suppressor of selection (in the limit of infinite
population size) under the temperature mutant initialisation scheme [13].

Recently, evolutionary dynamics on graphs has been studied beyond the fixation time scales by allowing
mutations to appear continuously [14–16]. The main quantities of interest in those long-term mutation-
selection dynamics are the mutation-selection balance [17], and the mixing time, the time it takes for the
dynamics to reach the steady-state [18, 19]. For very low mutation rates, amplifiers of selection attain
higher average steady-state fitness in the mutation-selection balance than the well-mixed population, and,
suppressors of selection attain lower average steady-state fitness in the mutation-selection balance than
the well-mixed population [16]. A suppressors of selection attains lower average steady-state fitness in the
mutation-selection because it is worse in fixing beneficials mutants and better in fixing deleterious mutants
than the complete graph. An amplifier of selection attains higher balance, because it is better in fixing
beneficial mutants and in preventing the fixation of deleterious mutants. In Ref. [20], it has been proven
that self-loops are necessary to generate amplification in a population structure. While we know that in the
low mutation rate regime, the self-looped star – an amplifier of selection – adapts better than the complete
graph, it not clear what happens to these self-looped amplifiers when the mutation rates are increased
beyond the low mutation rate regime. This is what we investigate here. We find that self-loops can have
a detrimental role on average fitness when the mutation rate is increased.

2 Moran Birth-death dynamics with mutation

To study evolutionary dynamics on graphs, we use the Moran Birth-death (Bd) updating. The letter B of
the shorthand Bd stands for birth, whereas d stands for death. Selection operates during the birth event,
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and it is represented by the capital letter, B. Death occurs randomly with uniform probability, and it is
represented by the small letter, d. The first letter of a shorthand represents a global event where every
individual of the population participates. The second letter of the shorthand represents a local event where
it is only the individuals neighboring to the individual selected in the first event participate. More details
on the types of evolutionary update rules in spatially structured populations can be found in [21].

To study mutation-selection dynamics on graphs, we use a modified version of Moran Bd updating
where mutations appear with probability µ, see Fig. 1. One Moran Bd with mutation update step can be
described as follows:

1. Birth: First, an individual at node i is selected with probability proportional to its fitness, fi∑
j
fj

, to

reproduce.
2. Mutation: The offspring is either identical to the parent individual with probability 1 − µ or it is a

mutant with probability µ. If the offspring turn out to be a mutant, its fitness f ′ is sampled from
the mutant fitness distribution, ρ(f ′, f) with f being the parent’s fitness.

3. Death: An individual k neighbouring node i is chosen for replacement at random with probability,
wik∑
j
wij

. With probability, wii∑
j
wij

, the same parent individual can be chosen for replacement via a

self-loop. The offspring finally replaces the chosen individual.
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1 � µ

Figure 1: Birth-death (Bd) updating with mutation. Here, an example of the single time step of the Moran
Bd with mutation is shown. First an individual is selected with probability proportional to its fitness to give birth
to an offspring. The offspring either resembles the parent with probability 1 − µ, or mutates with probability
µ. In case the mutation takes place, the offspring fitness f ′ is then sampled from the distribution ρ(f ′, f) with
f being the parent’s fitness. In the figure, we have shown the case when mutation takes place. The mutant
offspring will then replaces one of the individuals neighboring the parent individual, or the parent individual itself
via the self-loop. The choice is made at random with probability proportional to the outgoing weight from the
parent node. Here, we have shown the case when the parent individual is replaced by the offspring via the
self-loop. The stronger the self-loop, more likely it is for the parent to be replaced by its offspring.

At the level of graphs where each node is occupied by an individual, self-loops were introduced as
mathematical objects [13]. But they make clear sense at the level where each node of a graph is occupied
by a population, i.e., here a graph is a population of populations [22], the weak migration rate regime
dynamics can be understood as the migration dynamics on a graph with strong self-looping [21, 23–25].

3 Amplification in the low mutation rate regime

In Ref. [16], the Moran Bd mutation-selection dynamics was studied in the low mutation rate regime. In this
regime, a newly appeared mutant either reaches fixation or goes extinct before the next mutant appears
in the population. For low mutation rates, the population is effectively monomorphic throughout the
mutation-selection dynamics and thus, the dynamics can be modelled as a random walk problem through
fitness space where a steady-state is attained at long times. The steady-state for a graph G subjected
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to a low mutation rate mutation-selection dynamics with mutant’s fitness f ′ drawn from a continuous
distribution ρ(f ′, f) can be computed as

P ∗G(f) =
1∫

df ′
φTG(f

′, f)

φTG(f, f
′)
· ρ(f

′, f)

ρ(f, f ′)

. (1)

Here, φTG(f
′, f) is the fixation probability of a mutant with fitness f ′, in a background of wild-type

population with fitness f under temperature mutant initialisation scheme T . The fixation probabilities
entering the steady-state expression 1 are temperature initialised, because when a new mutant appears in
a homogenous population, according to the Moran Bd updating stated in Sec. 2, it is more likely to appear
on the high temperature nodes.

The fixation probability of a mutant with fitness f ′ on the complete graph with background fitness f
is given by [10]

φTC(f
′, f) = φC(f

′, f) =
1− f

f ′

1−
(
f
f ′

)N . (2)

Using the above expression for the fixation probability and the Eq. 1, we obtain the average steady-state
fitness for the complete graph with uniform mutant fitness distribution,

〈f〉∗C =

∫
df fP ∗C(f) =

N

N + 1

fN+1
max − fN+1

min

fNmax − fNmin

. (3)

As expected, amplifiers of selection attain a higher steady-state average fitness than the well-mixed
population. On the other hand, suppressors of selection attain lower steady-state fitness than the well-
mixed population, see Ref. [16] for a formal proof. However, a suppressor of fixation, a structure that
has lower fixation probabilities than the complete graph regardless of the mutant fitness values, attains
higher average fitness in the mutation-selection balance than the complete graph. This happens because
of its ability to reject mutants more efficiently than the complete graph, compensating for its poor ability
to fix beneficial mutants. These structures can also attain higher fitness than amplifiers of selection in
the steady-state. Therefore, amplifiers of selection are not the only structures that adapt better than the
well-mixed populations in the long-term evolutionary dynamics.

4 Outside the low mutation rate regime

It has been suggested that amplifiers of selection deviate from the low mutation approximation at mutation
rates lower than the complete graph [8, 26]. This happens because amplification of selection in graphs
comes at the cost of higher fixation times of mutants [27, 28]. Thus, amplifiers are more likely to violate
the low mutation rate criterion where a mutant appearing in the population should either reach fixation
or go extinct before the next mutation appears. But with large fixation times, a new mutant can appear
while the previous mutation is still under way towards fixation or extinction, and thus leads to effects like
clonal interference [29, 30].

Inside the low mutation rate regime, the steady-state average fitness of the population remains un-
changed on decreasing the mutation rate further as the steady-state is independent of the mutation rate
in this regime. However, the average steady-state fitnesses of structures decrease as the mutation rate
is increased beyond the low mutation rate regime. Therefore outside the weak mutation rate regime, it
not clear how amplifiers of selection, suppressors of selection, suppressors of fixation, and the well-mixed
population are ordered in terms of their average steady-state fitness. To analyze this, we simulate the
Moran Birth-death with mutation process for the self-looped star graph (weighted), the complete graph,
the cycle graph, the star graph, and the directed line with self-loops. These graphs are shown in Fig. 2 B.
Notice that without self-loops, nodes of the directed graphs that have no incoming links are frozen during
the mutation-selection dynamics, their states remain the same throughout the dynamics. Therefore, we
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focus instead on a structure where self-loops are added to all the nodes of the directed line to facilitate
their participation in the evolutionary dynamics.

The self-looped star graph is a piecewise amplifier of selection [13] for finite population size. Only in the
limit N → ∞, it is a true amplifier of selection. The complete graph, and the cycle graph are isothermal
graphs [1]. Under temperature initialisation, for finite N , the star graph is suppressor of fixation [13, 16].
The directed line with self-loops is a suppressor of selection [10]. From Fig. 2 A, we find that in the low
mutation rate regime, the steady-state average fitness is highest for the self-looped star graph and the star
graph, slightly lower for the complete and the cycle graph, and much lower for the self-looped directed line.

In Ref. [26], it has been shown that the temperature initialised star graph has a lower effective rate of
evolution compared to the complete graph. However from Fig. 2 A, we see that the star graph attains higher
steady-state average fitness than the complete graph. Therefore, a structure that speeds up evolution does
not necessarily lead to higher fitness in the long-term evolutionary dynamics. Similarly, a structure that
slows down evolution does not necessarily lead to lower fitness in the long-term evolutionary dynamics.
Although at low mutation rates, the self-looped star graph outperforms all other graphs by attaining the
highest steady state fitness, outside the low mutation rate regime, it performs poorly. On increasing the
mutation rates, the star with self-loops not only attains lower steady-state fitness than the complete graph,
but also the directed line with self-loops, a suppressor of selection. The main reason for this poor adaptation
of the self-looped star graph outside the low mutation rate regime are self-loops. We explore this in detail
in the following section.

We conclude this section by providing an estimate for the threshold mutation rate µth beyond which
the dynamics is considered to be outside the low mutation rate regime. It is given by

1

µth
≈ max

r

{
τT1 (r), τ̃T1 (r)

}
, (4)

where τT1 (r) and τ̃T1 (r) are the temperature initialised average fixation and extinction time, respectively,
of a mutant with fitness r relative to the wild-type. Eq. 4 follows from the criterion for the dynamics to
be in the low mutation rate regime. Recall that the criterion for an evolutionary dynamics to be in the
low mutation rate regime is that the time between any two successive mutations should be larger than
the time to fixation or extinction (whatever is higher for a given pair of mutant and wild-type fitness)
of a mutant. Now, the fixation time and the extinction time of a mutant are objects that take random
values from specific distributions [31–34]. To arrive at Eq. 4, we make an approximation to the criterion
by working at the level of average fixation and extinction times. By studying the average fixation and
extinction time of the five graphs shown in Fig. 2 B, except the self-looped directed line, we found that the
average fixation time of a mutant to be always higher than the average extinction time of the mutant, see
App. 7.2, specifically Figs. 6, 7, 8 for more details. Moreover, it is the average fixation time near neutrality
that determines the mutation rate threshold for these graphs. For the complete graph, this peaking of
the average fixation near neutrality was discussed in Refs. [35]. For the case of self-looped directed line,
we found that the average fixation time decreases as the mutant relative fitness is increased, whereas, the
average extinction time increases with increasing mutant fitness, see Fig. 8. However, for a given fitness
domain, it is the average fixation time corresponding to the lowest possible mutant’s relative fitness that
decides the µth for the self-looped directed line graph. The star with self-loops has the lowest mutation
threshold, as it has the highest fixation time. At neutrality, for large N the average fixation time for the
self-looped star graph scales as N5, whereas for the star graph it scales as N3. The average fixation time
scaling for the complete graph is N2, and the average fixation time scaling for the cycle graph is N3. For
the self-looped directed line graph, the average fixation time scaling deciding µth is, N2(1 + 1/r). The
scalings for µth for the above-mentioned structures are simply the inverse of the average fixation time
scalings mentioned in Tab. D of the Fig. 2. The scaling relations are derived in App. 7.2.

5 Self-loops and high mutation rate regime

Under the Moran Bd update scheme, an offspring always replaces one of the parent’s neighbours – unless
the parent node is self-looped. For an individual occupying a self-looped node, the offspring can replace the
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⇠ N5

Figure 2: Mutation rate threshold, µth. (A) The steady-state average fitnesses obtained using the Moran
Birth-death mutation-selection dynamics simulations for the self-looped (weighted) star graph, an amplifier of
selection, the star graph, a suppressor of fixation, the self-looped directed line, a suppressor of selection, the
cycle graph, an isothermal graph, and the complete graph are shown via circles as a function of mutation
rates. (B) We mostly work with these five graphs through out the manuscript. Solid horizontal lines in panel A
represent steady-state average fitnesses for different graphs obtained under the low mutation rate approximation,
Eq. 1. The arrows mark the mutation rates beyond which the low mutation rate approximation is violated for
respective graphs. The graphs with higher average fixation time is expected to deviate earlier, see Eq. 4. (C)
The average fixation time scaling with N is shown for different graphs. Solid lines are the analytical results
whereas circles represent Moran Bd simulations. For larger N , it gets computationally expensive to work with
microscopic Moran Bd simulations, in such cases we use a Gillespie algorithm, shown via triangles. For details
on the Gillespie algorithm, refer to App. 7.2.3. (Parameters: (A) population size, N = 10, uniform mutant
fitness distribution, i.e., ρ(f ′, f) = 1

fmax−fmin
, (A,C) with number of independent realisations used for averaging,

2000, fmin = 0.1 and fmax = 10. )

individual with a finite probability. Thus, self-loops effectively decrease the fitness of the parent individual,
as the parent cannot spread its offspring freely into the population. The extent of this effect on the parent’s
fitness depends on the weight of the self-loops. This suggests that the fitness of a highly advantageous
strain can be decreased by placing it on a self-looped node with negligible outward flowing weight to
the neighbouring nodes [20]. Under Bd updating, the fixation probability of a mutant on a structured
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population with the weight matrix, w, decreases as the diagonal weights of the matrix are increased [36].
For update schemes like bD and dB, and a given structure with the weight matrix w, it is necessary

to have self-loops (wii > 0) for all i, in order to have a fixation probability of mutants on that structure
that is equivalent to a birth death process (of any type) on the self-looped complete graph with every link
having equal weight [36]. Self-loops also fix some issues for the bD and dB dynamics that seem to make
them unattractive from a modelling perspective [37]: One problem with the bD updating is that a mutant
with fitness tending to zero can have a finite fixation probability. On the other hand, for the dB updating,
an infinitely fit mutant can have a fixation probability smaller than one. Self-loops fix these issues.

In order for a structure to be a strong amplifier (a spatial structure where the fixation of a beneficial
mutant is guaranteed), self-loops have been proven to be necessary [20], both under the uniform and the
temperature initialisation. Though the concept of strong amplifiers is defined for infinite N , the self-loops
also play a quintessential role in generating amplifiers of finite N [20]. Intuitively, for a structure to be an
amplifier of selection, it should have a sufficient number of cold temperature nodes so that the mutants
are less likely to get replaced by wild-type individuals [28] and thus, a mutant type can persist in the
population for longer time and spread its offspring into the population. This is where self-loops come
into play, they help in creating more of these cold nodes and hence, amplifying selection. Consequently,
self-loops contribute substantially in attaining higher fitness in the mutation-selection balance [16].

However as seen in Fig. 2 A, the steady-state average fitness of the self-looped star, an amplifier of
selection, decreases fitness as the mutation rate is increased beyond the mutation threshold. Outside the
low mutation rate regime, clonal interference starts to play an important role in the evolutionary dynamics.
Therefore, to systematically investigate the effects of self-loops on evolutionary dynamics, we need to
analyze the dynamics on structured populations for higher mutation rates. While this can be studied by
simulations, it is challenging to obtain analytical insights for arbitrary mutation rates µ. Thus, in addition
to simulations we study another – biologically not relevant – extreme of the high mutation rate limit, i.e.,
µ→ 1. While this seems to be an irrelevant limit, its analysis reveals some crucial properties of evolutionary
dynamics that are already relevant for much lower mutation rates.

5.1 Sampling fitness from the uniform distribution

In the limit µ → 1, every time a parent reproduces, the offspring is a mutant. We start with a uniform
mutant fitness distribution, ρ(f ′, f) = 1

fmax−fmin
for fmin ≤ f, f ′ ≤ fmax.

5.1.1 Reference graph- complete graph with self-loops

When studying evolutionary dynamics on structured populations, the results are always compared with the
dynamics on a reference graph. The standard choice in Evolutionary graph theory for the reference graph
is the complete graph (without self-loops). For example, for the case of fixation probabilities and for the
mutation-selection dynamics under mutation rates, the complete serves as the reference graph. However,
for high mutation rates, instead of the complete graph, we choose the self-looped complete graph as a
reference. This is because every node of the self-looped complete graph has an equal chance of being
replaced by a mutant offspring during every birth event. This also implies that after a sufficiently long
time, the states of the nodes would be completely uncorrelated in space and time. The coarse-grained
evolutionary dynamics satisfies a master equation where each offspring’s fitness f ′ is chosen randomly from

the mutational jump distribution ρ(f ′, f) =
1

fmax − fmin
with f being the parent’s fitness. The probability

density function corresponding to population’s state, PSC(f , t) changes as

∂ PSC(f , t)

∂t
=

∫
df ′

(N−1∏

i=0

ρ(fi, f
′
i)

)

︸ ︷︷ ︸
Tf←f′

PSC(f
′, t)−

∫
df ′

(N−1∏

i=0

ρ(f ′i , fi)

)

︸ ︷︷ ︸
Tf′←f

PSC(f , t), (5)
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where the subscript SC stands for the self-looped complete graph, and, f = (f0, f2 · · · , fN−1) is the
fitness state of the population of size N . By assuming detailed balance [38], i.e.

P ∗SC(f
′) =

Tf ′←f

Tf←f ′
P ∗SC(f), (6)

and the normalisation condition
∫

df ′ P ∗(f ′) = 1, we find the steady-state for the high mutation rate
dynamics on the self-looped complete graph

P ∗SC(f) =
1

N−1∏

i=0

∫
df ′i

ρ(f ′i , fi)

ρ(fi, f ′i)

= p∗(f0) · p∗(f2) · · · p∗(fN−1). (7)

Here, p∗(fi) =
∫

df ′i
ρ(f ′i ,fi)
ρ(fi,f ′i)

is the marginal probability density function for the node i to have fitness fi. The

marginal probability density function also satisfies the normalisation condition
∫

df p∗(f) = 1. The average
steady-state fitness of the self-looped complete graph in terms of the individual node’s average steady-state
fitness satisfies 〈f〉∗ = 〈fi〉∗, i.e. the average fitness of the population is the same as the average fitness of
a node. This follows from the symmetry of the graph. Using the explicit form of the uniform mutational

jump density function in Eq. 7, we obtain p∗(f) =
1

fmax − fmin
, which is independent of f . At very high

mutation rates, the self-looped complete graph is totally blind to the fitness advantage/disadvantage of a
mutant. Therefore, for the self-looped complete graph the average steady-state fitness with µ = 1, and

the uniform mutational distribution is 〈f〉∗ = fmax + fmin

2
, independent of the population size.

Similarly, the expression for the standard deviation of the steady-state fitness of the population is given
by
√

Var(f)∗ where

Var(f)∗ = 〈f2〉∗ − 〈f〉∗2. (8)

Because the fitness values are independently and identically distributed the population level variance equals

Var(f)∗ =
1

N
var(f)∗, (9)

where var(f)∗ is the variance of a node. Simplifying the above equations, we obtain the standard deviation
of the steady-state fitness as fmax−fmin√

12N
. With this, we are now ready to discuss the evolutionary dynamics

on various self-looped graphs.

5.1.2 Self-looped directed line beats the looping star

In this section, we study the high mutation rate dynamics, µ→ 1, on the self-looped directed line and the
weighted self-looped star graph. To recall, the self-looped directed line is a suppressor of selection [10,16],
whereas, the (weighted) self-looped star graph is an amplifier of selection. In the low mutation rate
dynamics, the self-looped weighted star attains higher steady-state fitness than the self-looped directed
line. However, it is unclear what happens in the high mutation rate regime, which is far from a fixation-like
dynamics. Simulating the Moran Bd dynamics with µ = 1 for these two graphs, we find that the weighted
self-looped star attains lower steady-state fitness not only than the self-looped complete graph, but also
the self-looped directed line, see Fig. 4.

For the case of (weighted) self-looped star graph, from the Fig. 4 A, all the leaf nodes attain the same
steady-state fitness. This is expected due to symmetry reasons. The central node, node 0, stands out, and
has the highest fitness. This is because the fitness decreases effects of the self-loop is minimised by the
vast number of outgoing (incoming) links from (to) the central node.

A self-loop affects the node’s steady-state fitness depending on the node’s connections to other nodes.
As an example, the root node 0 of the directed line attains the lowest steady-state fitness among all other
nodes, Fig. 4 B. This is because the only incoming link to node 0 is the self-loop. In a mutation-selection
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N

Complete self-loops

Figure 3: Reference graph: complete graph with self-loops. Here, the mutation-selection dynamics is
studied for the self-looped complete graph with µ → 1. We find a very good agreement for the steady-state
statistics between the analytics and the simulations. The thick line represents the analytical average fitness,
while the shaded grey area represents the standard deviation around the average. Symbols and error bars show
simulations. In the steady-state, on average the self-looped complete graph attains the midpoint of the fitness
domain, as the fitness dynamics for each individual node of the population becomes uncorrelated in the fitness
space and time. The steady-state average fitness is also independent of the population size. The fluctuations
in the steady-state however depends on the population size and decreases with the increase in population size
as 1/

√
N (Parameters: fmin = 0.1, fmax = 10, number of independent realisations is equal to 2000, mutant

fitness distribution, ρ(f ′, f) = 1
fmax−fmin

).

dynamics, a self-loop leads to the decrease in the long-term fitness of a node. This can be understood by
the following argument: If a given node is currently occupied by a highly fit individual, it is more likely that
during the next Moran Bd update this particular node is selected to reproduce. If this node is self-looped,
assuming small outgoing weight to other nodes for now, with high probability the mutated offspring replaces
its parent via the self-loop. If the mutated offspring is again very fit, this offspring will again be more likely
to be selected to reproduce, and thus, repeating the cycle. This process will repeat until the node’s fitness
decreases. Therefore, self-loops make it harder for highly fit individuals to persist in the population.

On the other hand, incoming and outgoing links decrease the stated negative effect of self-loops. When
a highly fit individual occupying a self-looped node is selected to give birth, its mutated offspring can be
placed on a neighbouring node if the parent node has a substantial outgoing weight to other nodes. This
decreases the participation of the self-loops in the update process, and leading to diminished effects of
the self-loops. The role of incoming links is more subtle. Incoming links make node’s fitness state more
randomised in accordance with the mutational jump distribution. In the long run, for the case of uniform
distribution, the mean of the fitness states attained by an individual node solely via the incoming links is
the mid point of fitness domain. Thus, depending on the mutational fitness jump distribution, incoming
links can have beneficial or detrimental effects on a node’s fitness. For the case of uniform distribution,
compared to self-loops, incoming links have beneficial effect on the population’s fitness as adding self-loops
decreases the population’s fitness below the mid-point of the fitness domain. These arguments explain,
why the end node of the directed line has higher steady-state fitness than the root node, but lower fitness
than the bulk nodes (node 9 in Fig. 4 B). The incoming link to the end node decreases the self-loops
effect by making the node’s fitness more randomised. However, the absence of an outgoing link from the
end node makes the negative impact of self-loop still substantial. The steady-state fitness for the node 1
is an interesting case because being a bulk node, its steady-state fitness is lower than other bulk nodes
fitnesses. It is because the incoming link to node 1 does not reach its full potential in randomising the
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Figure 4: Nodewise analysis of the star graph with self-loops and the directed line with self-loops.
Here, the average fitness trajectories for each node of the self-looped star graph (shown in panel A) and the
self-looped directed line (shown in panel B are shown. Thick lines represent average fitness trajectories at the
population level, whereas, thin lines represent average fitness trajectories for the nodes. The effect of self-loops
on a node’s fitness depends on the incoming and outgoing weight flowing out of that node. In panel A, self-loops
have the least effect on the central node because of relatively higher incoming and outgoing weight. As a result,
the central node attains higher average steady-state fitness than the leaf nodes. In panel B, the root node of
the directed line has the lowest steady-state average fitness because of the absence of an incoming link to the
root node. (Parameters: N = 10, µ = 1, fmin = 0.1, fmax = 10, number of independent realisations is equal to
2000, mutant fitness distribution, ρ(f ′, f) = 1

fmax−fmin
. For the directed line with self-loops, every outgoing link

from a node (including the self-loop) has the same weight. For the self-looped star graphs, the weights of the
links follows Eq. (22), such that λ = 1/(N − 1) and δ = 1/(N − 1)2.)

fitness, because the incoming link gets activated only when the root node 0 is selected to reproduce. But
since the root node has the lowest fitness, it is less likely to be selected during the update steps.

5.2 Sampling fitness from the Gaussian distribution

Until now, in the Moran Bd with mutation update scheme, the mutant’s fitness has been sampled from a
uniform distribution. However, an offspring’s fitness being completely uncorrelated with the parent’s fitness
is an extreme assumption. Therefore, to find out how robust are the negative effects of the self-loops seen
previously, we study the evolutionary dynamics with the fitness of a mutant offspring sampled from the
truncated Gaussian distribution on the fitness domain [fmin, fmax]. At a given point of the dynamics, the
Gaussian distribution is centered around the parent’s fitness with a standard deviation of σ around the
mean.

From Fig. 5 A, we see that adding self-loops decreases the steady-state fitnesses for all the graphs. The
effect of adding self-loops is the smallest for the complete graph. This is what we have also observed for
the case of uniform mutation fitness distribution. On increasing the σ from 0.1 to 1, compared to other
graphs, the self-looped star experiences a considerable decrease in the steady-state average fitness, Fig. 5
B. For σ = 1, the self-looped star graph, an amplifier of selection, attains lower steady-state fitness than
the self-looped directed line, a suppressor of selection. For very large σ, we recover the uniform distribution
limit, as expected, see Fig. 5 C, where all the non-self looped graphs attain the same mutation-selection
balance. The average fitness in this case is higher than that of the self-looped complete graph. All self-
looped graphs have lower average fitness than the self-looped complete graph. We refer to Appendix 7.3
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Figure 5: Sampling mutant’s fitness from the Gaussian. (A) When mutant fitness is sampled from the
Gaussian (truncated) distribution with σ = 0.1, we find that adding self-loops decreases the population fitness
in all the graphs. (B) Increasing the σ from 0.1 to 1, the average fitness in the steady-state goes down for
many graphs. The effect of increasing the σ is largest in the heterogenous star graphs and smallest in the
more homogenous structure like the complete graph. (C) We recover the uniform mutant fitness distribution
case for very large σ, here σ = 10. In this case, all the non-self looped graphs attain the same steady-state.
All self-looped graphs have lower average steady-state fitness than a non-self looped graph and the self-looped
complete graph (Parameters: N = 10, µ = 1, fmin = 0.1, fmax = 10, number of independent realisations is
equal to 2000).

for more details on the high mutation rate dynamics for the non self-looped graphs.
Overall, the average steady-state fitness for different graphs increases as σ is decreased. This trend

agrees with the intuition that low σ distributions provides directionality to the evolutionary dynamics
towards higher fitness values. However, not all the self-looped graphs are affected by this directionality
equally. The steady-state average fitness for the heterogenous self-looped graph like, the self-looped star,
decreases substantially on increasing σ, compare Fig. 5 A, B. In contrast, regular self-looped structures
like the self-looped complete graph and the self-looped cycle graph, do not experience such a sharp fitness
decrease, see again Fig. 5 A, B.

In nutshell, from Fig. 5, we can say that the fitness decreasing effects of the self-loops are not arising
for a uniform mutant fitness distribution only.

6 Discussion

Amplifiers of selection [1,10] are fascinating spatial structures. These structures can speed up evolution [8]
by enhancing the fixation of beneficial mutants. A randomly generated connected spatial structure, under
Moran Bd updating with uniform initialisation, is very likely to be an amplifier of selection [9]. Due to
their ability to amplify selection and ubiquity, amplifiers of selection have been in the focus of research
recently [13, 20, 28, 39–43].

Not only at the fixation time scales, but also for the long-term weak mutation rate mutation-selection
dynamics, amplifiers of selection perform better than the well-mixed population by attaining higher average
fitness [16]. Since mutations are occurring during reproduction, the fixation probabilities entering the
steady-state distribution (mutation-selection balance) for spatial structures are temperature initialised. It
has been shown that for structures to amplify selection under temperature initialisation, self-loops are
important [20].

While self-loops help structures perform better in the low mutation rate regime, outside the low mutation
rate regime, self-looped graphs do not attain higher average fitness than the well-mixed population. In fact,
outside the weak mutation rate regime, amplifiers of selection can even perform worse than suppressors
of selection in terms of maximizing fitness. An example is shown in the Fig. 2, where the self-looped star
graph, an amplifier of selection, attains lower fitness in the mutation-selection balance than the complete
and self-looped directed line, a suppressor of selection. To further investigate the effect of self-loops, we
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have worked in the extreme mutation probability regime, µ → 1. The idea was to remove other effects
from the evolutionary dynamics, and focus solely on the effect of self-loops on the adaptation of a spatially
structured population. The insights we obtain working in the high mutation regime can be useful for the
intermediate mutation rate regime as well. While we worked with extremely high mutation rates, high
mutation rate studies are not uncommon. One of the celebrated theories dealing with high mutation rate
mutation-selection dynamics is the quasispecies theory [44, 45]. It is a deterministic theory used to study
mutation-selection dynamics in infinite well-mixed population. Its variants have also been used to study
finite well-mixed populations [46, 47]. However, the effect of spatial structure remains to be analyzed in
the quasispecies theory. Our work is takes step in that direction.

While studying high mutation rate mutation-selection dynamics, the self-looped complete graph natu-
rally serves as the reference graph instead of the complete graph. The fitness dynamics for the self-looped
complete graph is random in the fitness space and time, i.e., at a given time, the fitness state of a node
is independent of its fitness states in the past and instantaneous the fitness state of its neighbours. We
found that self-loops have a strong fitness-decreasing effect on a node having lower outgoing and incoming
weight. In the limit µ → 1, we found that the non-self-looped graphs attain higher steady-state fitness
than their self-looped counterparts. Maybe more surprisingly, all the non-self-looped graphs attain the same
average fitness in the mutation-selection balance. All self-looped graphs attain lower steady-state fitness
than the complete graph. We also observed the fitness-decreasing effects of the self-loops for the case
where the mutant’s fitness is sampled from a Gaussian distribution. Thus, the fitness-decreasing effects of
the self-loops are not an artefact of a uniform mutant fitness distribution.

We also provide a heuristic measure of the low mutation rate thresholds, µth, the mutation rate beyond
which the evolutionary dynamics is outside the low mutation rate regime. The mutation rate threshold
µth for a graph, depends on the average fixation times and the extinction times of mutants on that
graph. As expected, structures with higher fixation times have lower mutation rate thresholds. Therefore,
compared to the complete graph and suppressors of selection, amplifiers of selection show deviation for the
low mutation rate approximation at lower mutation rates. For a majority of the spatial structures, these
thresholds are estimated using the structures’ near-neutrality average fixation time scaling with population
size. For the directed line with self-loops, the average fixation time grows monotonically with the decrease
in mutant’s fitness and therefore, µth is computed from the average fixation time of a mutant with least
possible relative fitness for a fitness domain. In this work, we have derived the large N average fixation
time scalings for several graphs which in return give the µth scalings. The knowledge of these thresholds
prevents one from running heavy simulations deep in the low mutation regime. As in the low mutation
rate regime, the steady-state statistics is independent of the mutation rate, it is sufficient to access the
steady-state via simulations by going slightly below the computed mutation rate thresholds but not deep
into the low mutation rate regime. Due to higher sojourn times, it is expected for a self-looped graph to
have higher average fixation time for a mutant than its non self-looped counterpart. This however needs
a further detailed investigation.

Amplifiers of selection have been in the focus of EGT. However, their promising aspects to optimise
fixation of fit mutants are somewhat limited to short-term time scales, where they come with the caveat
that they tend to have long fixation times [8, 39]. In the long-term mutation-selection dynamics, it has
been shown in Ref. [16] that suppressors of fixation have the potential to perform better than the amplifiers
of selection. This is because of the ability of the suppressor of fixation to reject deleterious mutations more
efficiently compensating for its poor probability of fixation for beneficial mutations. Moreover, outside
the low mutation rate regime, we see that the temperature initialised star graph, a suppressor of fixation,
takes over the self-looped star graph, an amplifier of selection, and maintain higher average fitness in the
steady-state throughout the mutation rate regime. However, the reason for the star graph to take over the
self-looped star outside the weak mutation rate regime is not clear and requires further investigation. In
conclusion, we suggest to broaden the scope of evolutionary graph theory to other structures and to move
its focus away from amplifiers of selection.
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7 Appendix

7.1 Kolmogorov’s Criterium

In the section 5.1.1, we have used the detailed balance condition. Here, we justify the use of detailed
balance by proving that the stochastic process at hand is indeed reversible. To do so we make use of
Kolmogorov’s criterium [48]. According to this criterium, a Markov chain on a fitness space spanned by f
is reversible if and only if:

T (f1,fn) · · ·T (f3,f2)T (f2,f1) = T (f1,f2)T (f2,f3) · · ·T (fn,f1), (10)

for any finite set of ordered fitness states f1, f2, · · · fn.
The basic idea behind the Kolmogorov’s criterium relies on the fact that a reversible Markov chain has

zero probability current in the steady-state. In our case,

T (f ,f ′) =
N−1∏

i=0

ρ(fi, f
′
i). (11)

Since, ρ(fi, f
′
i) = 1

fmax−fmin
, the transition probabilities are independent of fitness. Thus, Kolmogorov’s

criterium in Eq. 10 is satisfied and the Markov chain for the self-looped complete graph presented in the
Sec. 5.1.1 is reversible.

7.2 Mutation rates threshold and Fixation times

Here we derive the expressions for the average fixation times of a mutant, τ1 on various network topologies
like the self-looped star, star, complete, cycle and the self-looped directed line.

7.2.1 Star graphs

To compute the fixation time for the star graph and self-looped weighted star graph, we use the method
of solving recursions inspired from Ref. [49]. To start, we write down the recursion satisfied by τ•i , the
average fixation time with i mutants in the leaves and a mutant in the center node. We denote this state
by (•, i). Similarly, τ◦i , is the average fixation time starting with the state (◦, i), i.e., i mutants in the
leaves and a wild-type individual in the central node.

φ•i τ
•
i = T ••i,i+1φ

•
i+1τ

•
i+1 + T •◦i,i φ

◦
i τ
◦
i + (1− T ••i,i+1 − T •◦i,i )φ•i τ•i + φ•i , 0 ≤ i ≤ n− 1,

φ◦i τ
◦
i = T ◦•i,i φ

•
i τ
•
i + T ◦◦i,i−1φ

◦
i−1τ

◦
i−1 + (1− T ◦•i,i − T ◦◦i,i−1)φ◦i τ◦i + φ◦i , 1 ≤ i ≤ n,

(12)

where,

(i) φ•i is the fixation probability with the initial state being (•, i),
(ii) φ◦i is the fixation probability with the initial state (◦, i).
(iii) T ••i,i±1 is the transition probability from the state (•, i) to the state (•, i± 1),
(iv) T ◦◦i,i±1 is the transition probability from the state (◦, i) to the state (◦, i± 1),
(v) T •◦i,i is the transition probability from the state (•, i) to the state (◦, i).
(vi) T ◦•i,i is the transition probability from the state (◦, i) to the state (•, i).

The recursions in Eq. 12 satisfy the boundary conditions: φ◦0 = 0 and τ•n = 0. These recursions can be
simplified further by dividing the recursion one by T ••i,i+1 + T •◦i,i , and recursion two by T ◦•i,i + T ◦◦i,i−1,

φ•i τ
•
i =

T ••i,i+1

T ••i,i+1 + T •◦i,i
φ•i+1τ

•
i+1 +

T •◦i,i
T ••i,i+1 + T •◦i,i

φ◦i τ
◦
i +

φ•i
T ••i,i+1 + T •◦i,i

, 0 ≤ i ≤ n− 1,

φ◦i τ
◦
i =

T ◦•i,i
T ◦•i,i + T ◦◦i,i−1

φ•i τ
•
i +

T ◦◦i,i−1
T ◦•i,i + T ◦◦i,i−1

φ◦i−1τ
◦
i−1 +

φ◦i
T ◦•i,i + T ◦◦i,i−1

, 1 ≤ i ≤ n.
(13)
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Introducing

π••i,i+1 = 1− π•◦i,i = 1−
T •◦i,i

T ••i,i+1 + T •◦i,i
, 0 ≤ i ≤ n− 1 (14)

and

π◦•i,i = 1− π◦◦i,i−1 = 1−
T ◦◦i,i−1

T ◦•i,i + T ◦◦i,i−1
, 1 ≤ i ≤ n, (15)

we finally have,

φ•i τ
•
i = π••i,i+1φ

•
i+1τ

•
i+1 + π•◦i,iφ

◦
i τ
◦
i +

φ•i
T ••i,i+1 + T •◦i,i

, 0 ≤ i ≤ n− 1,

φ◦i τ
◦
i = π◦•i,iφ

•
i τ
•
i + π◦◦i,i−1φ

◦
i−1τ

◦
i−1 +

φ◦i
T ◦•i,i + T ◦◦i,i−1

, 1 ≤ i ≤ n.
(16)

Here,

(i) π••i,i+1 is the conditional transition probability from the state (•, i) to the state (•, i + 1), with the
condition that the number of mutants changes.

(ii) π◦•i,i is the conditional transition probability from the state (◦, i), to the state (•, i), given that the
number of mutants changes.

(iii) π◦•i,i is the conditional transition probability from the state (◦, i) to the state (•, i), with the condition
that the number of mutants changes.

(iv) π◦◦i,i−1 is the conditional transition probability from the state (◦, i), to the state (◦, i− 1), given that
the number of mutants changes.

Solving the recursions 16 using boundary conditions φ◦0 = 0 and τ•n = 0 we get

τ•0 = τ•1 + 1 =
n∑

l=2

A(l, n)C(l) + 1, (17)

where,

A(l,m) = 1 +
m−1∑

j=l

π•◦j,j

j∏

k=l

π◦◦k,k−1
π••k,k+1

(18)

and

C(l) =
π•◦l−1,l−1
π••l−1,l

l−1∑

j=1


 φ◦j
T ◦◦j,j−1 + T ◦•j,j

l−1∏

k=j+1

π◦◦k,k−1


+

φ•l−1
T ••l−1,l

. (19)

The expressions for φ◦i and φ•i are derived in Ref. [49],

φ•i =
A(1, i)

A(1, n)
,

φ◦i =

i∑

j=1

π◦•j,jφ
•
j

i∏

k=j+1

π◦◦k,k−1.

(20)

Now,

τ◦1 = τ•1 +
1

T ◦◦1,0 + T ◦•1,1

=

n∑

l=2

A(l, n)C(l) +
1

T ◦◦1,0 + T ◦•1,1

(21)
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The self-looped (weighted) star graph is defined by the weighted adjacency matrix

w =




1− δ δ
n

δ
n · · · δ

n
λ 1− λ 0 · · · 0
...

...
. . .

. . .
...

λ 0 · · · 1− λ 0
λ 0 · · · 0 1− λ




(22)

with 0 < λ ≤ 1 and 0 < δ ≤ 1. Here, wij is the weight of the link directed from node i to node j with the
center being node number 0. With this, the transition probabilities for a weighted self-looped star graph
for the transitions from state (•, i) are

T ••i,i+1 =
r

r + ir + n− i ·
δ

n
(n− i), and T •◦i,i =

n− i
r + ir + n− i · λ. (23)

The related conditional transition probabilities are

π••i,i+1 =
rδ

nλ+ rδ
and π•◦i,i =

nλ

nλ+ rδ
. (24)

Similarly, the transition probabilities for the transitions from state (◦, i) are

T ◦•i,i =
ir

1 + ir + n− i · λ and T ◦◦i,i−1 =
1

1 + ir + n− i ·
δ

n
i. (25)

The corresponding conditional transition probabilities are

π◦•i,i =
nλr

nλr + δ
and π◦◦i,i−1 =

δ

nλr + δ
. (26)

We can use these probabilities along with Eq. 21 to obtain the temperature initialised fixation probability
and the average fixation time for the self-looped star graph, τT . In the following, we define the temperature
for the center and leaf nodes. The central node temperature is

T0 =
N∑

i=0

wi0 = 1− δ + nλ (27)

and the leaf node temperature is

Tj 6=0 =

N∑

i=0

wij =
δ

n
+ 1− λ. (28)

The temperature initialised fixation probability for the self-looped star graph is

φT (δ, λ) =
1− δ + nλ

n+ 1
φ•0 +

n
(
δ
n + 1− λ

)

n+ 1
φ◦1. (29)

The temperature initialised average fixation time for the self-looped star graph is

τT (δ, λ) =
1− δ + nλ

n+ 1
τ•0 +

n
(
δ
n + 1− λ

)

n+ 1
τ◦1 . (30)

Substituting λ = 1
n and δ = 1

n2 in the above equation, we get the temperature initialised average fixation
time for the self-looped weighted star graph. Setting λ = δ = 1 yields the temperature initialised average
fixation time for the standard star graph.
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To compute the average extinction time, we use symmetry arguments in Eqs. 17, 18, 19, 20, and, 21.
With this, we replace

T ••i,i+1 by T ◦◦n−i,n−i−1,

T •◦i,i by T ◦•n−i,n−i,

T ◦◦i,i−1 by T ••n−i,n−i+1,

T ◦•i,i by T •◦n−i,n−i,

φ•i by φ̃◦n−i, and,

φ◦i by φ̃•n−i.

(31)

Doing so, we obtain

φ̃◦n−i =
Ã(1, i)

Ã(1, n)
, (32)

where

Ã(l,m) = 1 +

m−1∑

j=l

π◦•n−j,n−j

j∏

k=l

π••n−k,n−k+1

π◦◦n−k,n−k−1
. (33)

φ̃◦i is the extinction probability of mutants starting with the state (◦, i) node, and is equal to 1 − φ◦i .
Similarly, the average extinction time starting with the state (◦, n− i) obeys

τ̃◦n−i =

n∑

l=2

Ã(l, n)C̃(l)− 1

φ̃◦n−i

i∑

l=2

Ã(l, i)C̃(l), (34)

where

C̃(l) =
φ̃◦n−l+1

T ◦◦n−l+1,n−l
+
π◦•n−l+1,n−l+1

π◦◦n−l+1,n−l

l−1∑

j=1


 φ̃•n−j
T ••n−j,n−j+1 + T •◦n−j,n−j

l−1∏

k=j+1

π••n−k,n−k+1


 , (35)

with φ̃•i being the extinction probability of mutants starting in state (•, i). It is given by

φ̃•n−i =

i∑

j=1

π•◦n−j,n−jφ̃
◦
n−j

i∏

k=j+1

π••n−k,n−k+1. (36)

The average extinction time starting in state (•, n− i) is

τ̃•n−i =
1

φ̃•n−i

i∑

j=1

π•◦n−j,n−j

(
φ̃◦n−j τ̃

◦
n−j +

φ̃•n−j
T •◦n−j,n−j

)
i∏

k=j+1

π••n−k,n−k+1. (37)

Finally, using Eqs. 37, 34, the temperature initialised average extinction time of a mutant on the looping
star graph is

τ̃T (δ, λ) =
1− δ + nλ

n+ 1
τ̃•0 +

n
(
δ
n + 1− λ

)

n+ 1
τ̃◦1 . (38)

From Fig. 6, we see that the average fixation time of a mutant is higher than the average extinction
time of the mutant regardless of its relative fitness. Moreover, the fixation time peaks near neutrality.
Therefore, according to the Eq. 4, the µth for the stars graphs is the inverse of the average fixation times
at neutrality. In the next section, we derive the scaling of τT1 at neutrality with respect to the population
size N for the star graphs.
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Figure 6: Average extinction and fixation time for the self-looped star graph and the standard star
graph. Here, we plot the average extinction and fixation time of a mutant for the self-looped (weighted) star
graph (panel A) and the star graph (panel B) as a function of mutant’s relative fitness. Solid lines corresponds
to the analytic results, Eqs. 30, 38. The circles represent Moran Bd simulations. Firstly, we observe that for both
the graphs, the average fixation time of a mutant is higher than its extinction time, regardless of the mutant’s
relative fitness. Secondly, the average fixation time peaks near neutrality for both of the graphs. Therefore,
according to Eq. 4, µth for the star graphs scales as the inverse average fixation time at neutrality. Because the
fixation of a mutant takes longer on the self-looped star graph, the weak mutation rate approximation is more
restrictive for the self-looped star graph than the star graph. (Parameters: N = 10, wild-type fitness, f = 1,
and the number of independent realisations conditioned on mutant’s fixation or extinction are 2000.)

7.2.2 Scaling of the average fixation time with population size for the star graphs at
neutrality

While the approach used above to compute the fixation and the extinction time on star graph has many
merits like extension to the frequency dependent selection case, it is not straightforward to use this approach
to derive the exact formula even at neutrality. Therefore, to computethe scaling relation for the fixation
time on star graphs, we use a method inspired from Ref. [50]. To start, we recast the recursion Eqs. 13
into the form

φ•i τ
•
i = π→ φ

•
i+1τ

•
i+1 + π↓ φ

◦
i τ
◦
i + φ•i t

•
i , 0 ≤ i ≤ n− 1, (39)

φ◦i τ
◦
i = π↑ φ

•
i τ
•
i + π← φ

◦
i−1τ

◦
i−1 + φ◦i t

◦
i , 1 ≤ i ≤ n, (40)

Here, we have replaced,

π••i,i+1 by π→ ,

π•◦i,i by π↓ ,

π◦•i,i by π↑ ,

π◦◦i,i−1 by π←,

(41)

because the conditional transition probabilities are independent of the number of mutants, see Eqs. 24.
The horizontal arrows in the subscript of π represent change in the number of mutants in the leaf nodes,
right arrow for the increase, and left arrow for the decrease in the number of mutants. The vertical arrows
in the subscript of π represent change in individual type at the central node, upward arrow for the change
from the wild-type to mutant type, and downward arrow for the change from the mutant type to the

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533776doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533776
http://creativecommons.org/licenses/by/4.0/


wild-type. We also use the shorthand notations

t•i =
1

T ••i,i+1 + T •◦i,i
,

t◦i = T ◦•i,i + T ◦◦i,i−1.

(42)

Here, t•i is the average time spent in the state (•, i) (the sojourn time of state (•, i)) and t◦i is the sojourn
time of state (◦, i). Shifting the index i to i− 1 in recursion Eq. 39, and solving for φ•i τ

•
i gives,

φ•i τ
•
i =

1

π→
φ•i−1τ

•
i−1 −

π↓
π→

φ◦i−1τ
◦
i−1 −

1

π→
φ•i−1t

•
i−1. (43)

Now we substitute this relation for φ•i τ
•
i in the recursion Eq. 40, and obtain,

φ◦i τ
◦
i =

π↑
π→

φ•i−1τ
•
i−1 +

(
π← −

π↑π↓
π→

)
φ◦i−1τ

◦
i−1 + φ◦i t

◦
i −

π↑
π→

φ•i−1t
•
i−1. (44)

Recursion Eqs. 43, and 44, can be written in a matrix representation as,



φ•i τ

•
i

φ◦i τ
◦
i




︸ ︷︷ ︸
Vi

=




1
π→

− π↓
π→

π↑
π→

π← − π↑π↓
π→




︸ ︷︷ ︸
A



φ•i−1τ

•
i−1

φ◦i−1τ
◦
i−1




︸ ︷︷ ︸
Vi−1

+



− 1
π→

φ•i−1t
•
i−1

φ◦i t
◦
i −

π↑
π→

φ•i−1t
•
i−1




︸ ︷︷ ︸
Ui−1

. (45)

The matrix equation can be further simplified,

Vi =AVi−1 +Ui−1

=AiV0 +
i−1∑

j=0

Ai−j−1Uj .
(46)

Remember that we want to compute the scaling for τT , and for that we need to solve the above matrix
equation for τ•0 , and τ◦1 . The first thing that we need to calculate for Eq. 46 is Ai. Using Eqs. 24 and 24,
we substitute for the conditional probabilities in the definition of matrix A,

A =



nλ
δ + 1 −nλ

δ

nλ
δ 1− nλ

δ


 =

nλ

δ

[
1 −1
1 −1

]
+

[
1 0
0 1

]
(47)

In this way we find,

Ai = i
nλ

δ

[
1 −1
1 −1

]
+

[
1 0
0 1

]
(48)

To evaluate τ•0 , we take the first row of the matrix Eq. 46, and set i = n,

φ•nτ
•
n =

(
n2λ

δ
+ 1

)
φ•0τ

•
0 +

n−1∑

j=0

[
An−j−1Uj

]
0
, (49)

where

[
...

]

0

is the 0th element of the column vector

[
...

]
. Using the boundary condition, τ•n = 0 in Eq. 49

we find

τ•0 = −

n−1∑
j=0

[
An−j−1Uj

]
0

(
n2λ
δ + 1

)
φ•0

. (50)
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From Refs. [49, 51] we know that at neutrality

φ•i =
δ + inλ

δ + n2λ
, and φ◦i =

inλ

δ + n2λ
. (51)

These relations for the fixation probability also follow by substituting for the transition probabilities in
Eqs. 20. Using φ•0 in Eq. 50, we find

τ•0 = −
n−1∑

j=0

[
An−j−1Uj

]
0
. (52)

In order to simplify the r.h.s of the above equation, we need expressions for the waiting times in the state
i, namely, t•i , and t◦i . We compute these expressions using Eqs. 42, and 23, 25,

t•i =
n(n+ 1)

(n− i)(δ + nλ)
and t◦i =

n(n+ 1)

i(δ + nλ)
. (53)

With all these expressions, we can now simplify the r.h.s of the Eq. 52,

n−1∑

j=0

[
An−j−1Uj

]
0
=

n−1∑

j=0

[(
(n− j − 1)

nλ

δ
+ 1

)(
−
(
nλ+ δ

δ

)
φ•j t
•
j

)
(54)

− (n− j − 1)
nλ

δ

(
φ◦j+1t

◦
j+1 −

nλ

δ
φ•j t
•
j

)]
, (55)

=
n(n+ 1)

(δ + nλ)(δ + n2λ)

n−1∑

j=0

[
δ + n2λ

j − n − (n− 1)
n2λ2

δ

]
, (56)

=− n(n+ 1)

(δ + nλ)(δ + n2λ)

[
(δ + n2λ)Hn + (n− 1)

n3λ2

δ

]
, (57)

where Hn =
n∑
k=1

1
k is the harmonic number. This gives us an expression for the conditional average fixation

time at neutrality on the self-looped weighted star graph starting with the state (•, 0),

τ•0 =
n4(n2 − 1)

δ(δ + nλ)(δ + n2λ)
+
n(n+ 1)

δ + nλ
Hn. (58)

Next, we show that τ◦1 is related to τ•0 . To see this, let us take the second row of the matrix Eq. 46,
and set i = 1,

φ◦1τ
◦
1 =

π↑
π→

φ•0τ
•
0 +

(
π← −

π↑π↓
π→

)
φ◦0τ

◦
0︸︷︷︸

=0

+φ◦1t
◦
1 −

π↑
π→

φ•0t
•
0 (59)

Upon substituting for various quantities, we find,

τ◦1 = τ•0 +
n2 − 1

δ + nλ
. (60)

Using the temperature initialised definition of the average fixation time for the star graph, see Eq. 30, and
Eqs. 58, 60, we can evaluate the expressions for the temperature initialised fixation time τT for the self-
looped star graph and the star graph without self-loops. For the self-looped star graph, setting, λ = 1/n
and δ = 1/n2, we have

τTλ=1/n,
δ=1/n2

=
(n− 1)

((
n
(
n4 + n− 2

)
+ 2
)
n3 − n+ 1

)
+
(
n6 + n3

)
Hn

((n− 1)n+ 1) (n2 + 1)
(61)

N�1≈ n5 −O(n3). (62)
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For the star graph (without self-loops), setting, λ = δ = 1, we have

τTλ=1,
δ=1

=
(n− 1)

(
n5 + n4 + n2 + 1

)

(n+ 1) (n2 + 1)
+ nHn, (63)

N�1≈ n3 −O(n2). (64)

7.2.3 Gillespie Algorithm

In the Moran process, the fixation/ extinction dynamics goes through many inactive steps where the
configuration of the population does not change. This happens when one type is replaced by an offspring
of its own type. This causes the individual-based simulation to be time-consuming, especially for high
population sizes [52]. To tackle this problem, we use the Gillespie algorithm [53,54] for the Moran fixation
dynamics. We apply the Gillespie algorithm to calculate the fixation time in the star with and without
self-loops for high population sizes. Simulation steps are as follows:

1. Calculate the transition probability for each possible transition which changes the configuration of
the population. The possible transitions and their corresponding transition probabilities for the star
graphs are discussed in the Sec. 7.2.1.

2. Calculate the total transition probability, which is the sum of all the transition probabilities. For
example if the current state is (•, i), then the total transition probability is T ••i,i+1 + T •◦i,i .

3. Generate two random numbers, one to determine the time of the next event and another to determine
which event occurs. The first random number determining the time to the next event is drawn from
an exponential distribution with the mean equal to the total propensity. The second random number
is drawn from a uniform distribution.

4. Update the system state according to the event chosen in the previous step.
5. Repeat steps 1-4 until the system reaches fixation.

7.2.4 Complete and cycle graph

Compared to the star graph family, the fixation time for the complete graph (i.e. the well-mixed population)
can be computed easily. From the Refs. [55–57], we know that the time to fixation for a single mutant in
a population of size N is given by

τ1 =
N−1∑

k=1

k∑

l=1

φl
Tl+

k∏

m=l+1

γm, (65)

where γm = Tm−
Tm+

, and φi is the fixation probability for mutant type to fix when started with i individuals
and Ti± is the probability to transition from the state with i mutants to the state with with i± 1 mutants.
The fixation probability φi is given by

φi =

1 +
i−1∑
k=1

k∏
l=1

γl

1 +
N−1∑
k=1

k∏
l=1

γl

. (66)

The average fixation time on the complete when started with i individuals is,

τi = −τ1
φ1
φi

N−1∑

k=i

k∏

m=1

γm +
N−1∑

k=i

k∑

l=1

φl
φi

1

Tl+

k∏

m=l+1

γm. (67)

Using symmetry arguments, similar to the ones used for the case of star graph in the previous subsection,
the formula for the extinction time of i mutants has been computed in Ref. [57],

τ̃i = −τ̃N−1
φ̃N−1

φ̃i

N−1∑

k=N−i

k∏

m=1

1

γN−m
+

N−1∑

k=N−i

k∑

l=1

φ̃N−l

φ̃i

1

T(N−l)−

k∏

m=l+1

1

γN−m
, (68)
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where the extinction probability of i mutants is φ̃i = 1− φi and

τ̃N−1 =
N−1∑

k=1

k∑

l=1

φ̃N−l
T(N−l)−

k∏

m=l+1

1

γN−m
. (69)

For the complete graph, the transition probabilities are,

Ti− =
N − i

ir +N − i ·
i

N − 1
and Ti+ =

ir

ir +N − i ·
N − i
N − 1

. (70)

These transition probabilities are plugged into Eqs. 65 and 68 to obtain τ1 and τ̃1, respectively. From Fig. 7
A, we find that the fixation time of a mutant is higher than its extinction time regardless of its relative
fitness. Moreover, the fixation time of a mutant peaks near neutrality, therefore according to Eq. 4, it is
the fixation time at neutrality that decides the mutation rate threshold µth for the complete graph. We
now compute how the fixation time scales with N for the complete graph. At neutrality, r = 1,

Ti− =
N − i
N

· i

N − 1
, and Ti+ =

i

N
· N − i
N − 1

. (71)

Therefore, γi = 1, for all i. The fixation probability simplifies as to

φi =

1 +
i−1∑
k=1

k∏
l=1

1

1 +
N−1∑
k=1

k∏
l=1

1

=
i

N
, (72)

which is expected as every neutral mutant is equally likely to fix as any other individual of the population.
Using the Eq. 65, the average fixation time for a neutral mutant on the complete graph is,

τ1 =
N−1∑

k=1

k∑

l=1

N − 1

N − l = (N − 1)2, (73)

which scales as N2 for N � 1.
We now move to the cycle graph. To compute τ1 and τ̃1 for the cycle graph, the following transition

probabilities are used in the Eqs. 65 and Eq. 68,

Ti− =
2

ir +N − i ·
1

2
and Ti+ =

2r

ir +N − i ·
1

2
. (74)

Similar to the case of complete graph, from the Fig. 7 B, we find that the fixation time of a mutant is
higher than the extinction time regardless of its relative fitness. Also, the fixation time of a mutant peaks
near neutrality, the fixation time at neutrality decides the mutation rate threshold µth for the cycle graph.

Since γm for the cycle graph is identical to the complete graph [10], we find the same fixation prob-
abilities for any fitness value and initial state. In particular, at neutrality, we have φi =

i
N for the cycle

graph. For the cycle graph, the average fixation time for a neutral mutant is,

τ1 =

N−1∑

k=1

k∑

l=1

l =
N(N2 − 1)

6
, (75)

which scales as N3/6 for large N .

7.2.5 Directed line with self-loops

Here we compute the average fixation and extinction time for the self-looped directed line. Let us first
study the case of fixation time. A mutant can fix on the self-looped directed line if and only if it appears
at the root node. Assuming this to be the case, we have

T •i− = 0 and T •i+ =
r

ir +N − i ·
1

2
, (76)
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Figure 7: Average extinction and fixation time for the isothermal graphs. The average fixation (via
solid lines) and average extinction (via dashed lines) times for the two isothermal graphs, namely, the complete
graph and the cycle graph. To plot the analytical results, we have used Eqs. 65 and 68. Open circles represent
microscopic Moran Bd simulations. Although, the probability for a mutant to fix on any of these structures is
the same due to isothermal theorem, the times it takes to reach fixation are different. Fixation on the cycle
graph is slower than on the complete graph. As a result, the cycle graph is more restrictive to the weak mutation
approximation. The parameters are same as in Fig. 6.

where T •i− is the probability to transition from the state with i mutants to the state with i + 1 mutants
given that the initial mutant appears at the root node. Similarly, T •i+ is the probability to transition from
the state with i+ 1 mutants to the state with i mutants given that the initial mutant appears at the root
node. If the first mutant appears at the root node, the number of mutants at any time in the population
can only increase. Taking this into account, we have the average fixation time for a mutant on the directed
self-looped line,

τ1 =
N−1∑

k=1

1

T •k+
, (77)

where 1/T •i+ is average waiting time in the state with i mutants, assuming that the initial mutant appeared
on the root node. This expression for the τ1 can also be derived from the Eq. 65. On substituting the
transition probabilities T •i+ in the r.h.s of the Eq. 77, we find

τ1 =

N−1∑

k=1

2

r
(kr +N − k) = N(N − 1)

(
1 +

1

r

)
, (78)

which scales as N2(1+1/r) for large N . Unlike other graphs, the fixation time for the self-looped directed
line does not peak near neutrality, see Fig. 8. Time to fixation of a mutant increases as its relative fitness
decreases. Moreover, for the directed line we have τT1 = τ1. In fact for any mutant initialisation scheme,
the fixation time is given by the formula 78. This independency of the fixation time from the initialisation
scheme holds for all the single rooted graphs.

Now, we proceed to compute the extinction time of a mutant on the self-looped directed line. However,
computing the average extinction time is not as straightforward as the fixation time. Extinction takes place
when an initial mutant appears on any of the non-root node. Contrary to the case of fixation where the
number of mutants can only increase, here the number of mutants can increase as well as decrease. What
makes things slightly complicated is that the number of mutants stops to increase once the terminal node
is occupied with a mutant individual. In that scenario, the transition probabilities are given as,

T ◦i− =
1

ir +N − i ·
1

2
and T ◦i+ = 0, (79)
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where T ◦i± is the transition probability from the state with i mutants to the state with i±1 mutants, given
that the initial mutant appears at a non-root node and the terminal node (node N −1) of the directed line
is occupied by a mutant type. We approximate the average extinction time by considering the trajectory
where the number of mutants keep on increasing until the terminal node get occupied by the mutant type,
and then followed by the decrease in mutants leading to extinction. An example case is shown in the Fig. 9
(category third). This approximation works well in the limit of f ′/f � 1. With this approximation, we
have the extinction time of a mutant when appeared on a non-root node α,

τ̃α = N − 1− α+
N−1∑

k=N−α

1

T ◦(N−k)−
. (80)

Here, 1/T ◦(N−i)− is the average waiting time in the state with N − i mutants, given that the initial mutant

appeared on a non-root node (node 0) and the terminal node is occupied by the mutant type. The above
equation can also be derived from the Eq. 68. The temperature initialised average extinction time of a
mutant on the self-looped directed line is,

τ̃T1 =
N−1∑

α=1

Tα
N−1∑
β=1

Tβ
τ̃α, (81)

where Tα is the temperature of node α. Tα/
N−1∑
β=1

Tβ is the probability that the initial mutant appears at the

node α, given that the mutant ultimately goes extinct, i.e., given that it appears at a non-root node. From
the Fig. 8, we see that the average extinction time of a mutant increases with relative fitness. However,
for a given fitness domain, we find that the contribution to the mutation threshold µth comes from the
average fixation time computed for the lowest possible mutant’s relative fitness.
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Figure 8: Average extinction and fixation time for the self-looped directed line. The average extinction
time (dashed line) and the average fixation time(solid line) are shown for the self-looped directed line. Circles
represent the total average time of the trajectories that lead to the fixation of mutants, whereas diamonds repre-
sent the average time spanned by the trajectories where mutants get extinct. We see a good agreement between
analytical results and the corresponding simulations. The approximated formula for the average extinction time,
Eq. 81, works well in the regime of high relative fitness, as the dashed line starts coinciding with the simulations.
Note that the average extinction time for a mutant can exceed the average fixation time. This is different from
what we have observed in Figs. 6 and 7. Also, for a given fitness domain, the average extinction and fixation
time peaks away from the neutrality. Therefore, to decide the validity of the weak mutation rate approximation,
fitness regions different from neutrality must be considered.
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Figure 9: Paths to extinction. Here, the possible mutant extinction routes are shown for the self-looped
directed line when the initial mutant appears on a non-root node. For purpose of illustrations, we have chosen
N = 4. Broadly speaking, there are three categories of extinction trajectories. (i) The case where the initial
mutant goes extinct without spreading in the population. This would be a one time step extinction process,
shown by arrow leading from the boxed initial state to the wild-type state, highlighted in grey. (ii) The second
category corresponds to the case, where the initial mutant spreads, but the mutant goes extinct before the
terminal node is ever occupied by a mutant. This would contain all the paths that go from the boxed state
via two mutants to the grey highlighted state without going through the states highlighted in red. (iii) The
third category refers to the case, where the initial mutant spreads and reach the state highlighted in red. After
the terminal node is occupied by the mutant type, the number of mutants then starts to decrease from the
left (shown via the trajectory marked with blue arrows). This third category is especially relevant when the
mutant’s relative fitness is very high. We make use of this argument to approximate the extinction time for the
self-looped directed line by computing the time covered by the blue arrowed trajectory.

7.3 Non self-looped graphs and universality at equilibrium

Here, we study the evolutionary dynamics, considering both directed as well as undirected graphs, but
without self-loops.

In the absence of self-loops, the average steady-state fitness for all the graphs, whether directed or not,
is the same, see Fig. 10 A. We hypothesise that all the graphs where every node has a finite temperature
attain the same steady-steady fitness in the mutation-selection balance. All the nodes for these graphs
become indistinguishable in their fitness in the steady-state. The steady-state fitness attained by these
graphs in the mutation-selection balance is higher than the self-looped complete graph. For these graphs,
the fitnesses of nodes in the steady-state are not completely uncorrelated in time as opposed to nodes
of the self-looped complete graph where the fitness states of nodes are entirely uncorrelated in time. To
test our hypothesis, we analysed a few variants of the directed line and burst graph in Fig. 10 B and C,
where each node has a finite temperature. To achieve this, we add a link from node 1 to the root node
of the directed line yielding a molded directed line. Similarly, the modified burst is constructed by adding
a link from the leaf node to the center in a burst graph. In both the cases, we find that the steady-state
fitness attained by these two variant graphs in the mutation-selection balance is the same as that of the
complete graph and hence, the other non-self looped graphs considered in Fig. 10 A. All nodes of these
graphs become indistinguishable in their fitness in the steady-state. We further check the validity of our
hypothesis by varying the population size. In Fig. 10 D, we see that all the non self-looped graph attain
the same steady-state fitness for all population sizes.

Another interesting observation is that the steady-state fitness balance of the non self-looped graphs
decreases with increasing N . This is interesting, because with increasing N one typically expects that the
associated increase in the selection strength leads to an increase in the fitness. However, the opposite is
seen here. A possible explanation for this is that in the Moran Birth-death update scheme, high fitness
nodes are more likely to be selected for reproduction, but since there are no self-loops, highly fit individuals
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Figure 10: Universal steady-state fitness among non self-looped graphs. (A) In the steady-state, the
complete graph, the cycle graph, and the star graph, attain the same average fitness in the mutation-selection
balance. The steady-state average fitness obtained by these graphs is higher than that of the self-looped
complete graph, indicating that the dynamics on these graphs – unlike the self-looped complete graph – is not
entirely uncorrelated in the fitness space and time. One common thing in these three graphs is that every node
has at least one incoming link. (B) The molded directed line is constructed by adding a link directed from
node 1 to node 0, the root node, so that every node has finite incoming links. In the steady-state, not only
the molded directed line attains the same average fitness as the complete graph (non self-looped), but every
single node becomes indistinguishable. (C) The same observation is made for the modified burst graph. (D)
These observations remain valid for different population sizes. The difference between the steady-state average
fitness of the non self-looped and the self-looped complete graph decreases with increasing N , indicating that
the evolutionary dynamics becomes more random withn increasing N (Parameters: same as of Fig. 3.)
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can persist in the population for longer times than the low fitness nodes which eventually leads to an the
increase in population fitness. However, with the increase in the population size, the high fitness nodes tend
to get replaced relatively more often as they get less selected for birth. On increasing N , the steady-state
average fitness of the non self-looped graphs get closer to that of the average steady-state fitness of the
self-looped complete graph. In Sec. 5.1.1, we saw that at long times the fitness of nodes for the self-looped
complete graph becomes uncorrelated in time and hence the dynamics becomes completely random. With
the increase in N , the strength of randomness increases over selection of high fitness valued individuals.
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