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Abstract

Replay in the brain is not a simple recapitulation of recent experience, with awake replay often unrolling
in reverse temporal order upon receipt of reward, in a manner dependent on reward magnitude. These
findings have led to the proposal that replay is optimized for learning value-based predictions in accor-
dance with reinforcement learning theories. However, other characteristics of replay are in tension with
this proposal, leaving it unclear whether one set of principles governs all replay. We offer a parsimonious
memory-focused account, suggesting that the brain associates experiences with the contexts in which they
are encoded, at rates modulated by the salience of each experience. During periods of quiescence, re-
play emerges when contextual cues trigger a cascade of reactivations driven by the reinstatement of each
memory’s encoding context, which in turn facilitates memory consolidation. Our theory unifies numerous
disparate replay phenomena, including findings that existing models fail to account for.

Introduction

Sleep and rest facilitate learning and memory [1, 2, 3]. The replay of neural activity associated with awake
behaviors may serve as a mechanism of such offline learning. Over the past several decades, the field of
neuroscience has accumulated extensive evidence of replay across animals and humans [4, 5, 6], and there
is increasing evidence of its utility to behavior [7, 8, 9]. Replay was initially characterized as the reinstate-
ment of multi-cell spiking patterns of awake experiences. However, subsequent studies revealed that replay
does not faithfully obey the statistics and temporal structure of waking experience: Replay over-represents
salient experiences [10, 11, 12], unrolls in the reverse order of behavioral sequence upon the receipt of re-
ward [13, 14, 15, 16], and contains never-experienced novel trajectories [17]. These deviations of replay from
behavioral sequences call into question the characterization of replay as a simple, direct recapitulation of
previous experience. Despite a vast array of observations, it remains unclear how to characterize the nature
and purpose of replay.

One influential perspective rooted in the framework of reinforcement learning (RL) characterizes replay as
serving value-based offline learning [13, 14, 18, 19, 20]. According to this view, during active interaction
with the environment, the animal stores the state transitions and action outcomes it observes as memories.
In offline periods, the brain replays these memories to update existing value expectations about outcomes of
different actions, in order to improve action policy. RL-based theories posit that replay prioritizes memories
of high utility to future behavior, which is consistent with observations that replay over-represents [10, 11]
and tends to initiate at rewarded items [21, 15]. The priority of a memory for replay was postulated as its
associated reward prediction error [20]. A recent RL model [19] reformulated priority as the expected value
of backup (EVB) — the expected change in future reward if a memory is replayed. EVB is the product
of a need term that prioritizes states that the animal expects to visit soon, and a gain term prioritizing
states preceding reward prediction errors. By sequentially replaying experiences in order from the highest
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to the lowest EVB, the model explains a number of replay phenomena, several of which [13, 22, 21, 12, 11]
eluded existing accounts of replay. However, the EVB model does not delineate a plausible mechanism of
how replay is generated due to its unrealistic assumption that the behavioral consequence of a replaying a
memory is known before it is performed. Furthermore, a host of empirical phenomena, such as the decoupling
of replay from animals’ behavioral preference [23, 24, 17], are not naturally accounted for by this perspective.

Here we offer an alternative theoretical account in which replay reflects memory reactivations guided by asso-
ciations between contexts and experiences, rather than a memory’s utility for learning value predictions. We
hypothesize that, during active wakefulness, the animal sequentially associates experiences with the contexts
of their occurrence, in a manner modulated by the salience of each experience. During quiescence (both
awake rest and sleep), replay arises when spontaneous reactivation of a memory sets off a chain of memory
reactivation driven by the reinstatement of memories’ associated contexts. In our account, replay does not
unroll according to the utility of the memories for learning value predictions. Instead, it arises from a simple
memory mechanism operating recursively on established associations between contexts and experiences.

We show that an instantiation of this account — a computational model that extends established context-
based memory encoding and retrieval mechanisms [25, 26] unifies numerous replay phenomena including
findings that existing models fail to account for. First, in our model, the content and structure of replay
sequences vary according to task and behavioral contexts in a manner consistent with previous rodent
studies [27, 21, 14, 28]. Second, the model captures prominent effects of valence on properties of replay
[13, 10, 11] despite not maintaining nor updating value representations. Third, in line with previous studies
[29, 17, 30, 15, 31], replay is not restricted to direct recent experience: The model reactivates non-local
and never-experienced novel trajectories. Moreover, our model captures a range of experience-dependent
replay phenomena [32, 23, 22, 21, 17, 33, 30, 34], including findings that existing models do not explain.
Finally, replay affords additional opportunities for offline learning that benefits memory consolidation in the
model, in ways that align with prior observations and theories [35, 36, 37, 18, 16, 38, 39]. As a whole, we
outline a general, mechanistic framework to characterize how memories are initially encoded and subsequently
reactivated in the service of memory consolidation.

Results

A context model of memory replay

The proposed model of replay builds on retrieved-context theories, as exemplified in the context-maintenance
and retrieval model (CMR: [25, 26]). Our implementation, termed CMR-replay (Figure 1b), distinguishes
between memory processes operating during interaction with the environment (i.e., active wakefulness) and
quiescence. During active wakefulness, our model follows the basic principles of retrieved context theory,
storing bidirectional associations between contexts and experiences Mfc and M cf , which respectively de-
note experience-to-context and context-to-experience associations. These associations, in turn, support cue-
dependent retrieval, wherein an experience can evoke its past associated contexts via Mfc and the present
state of context can retrieve its associated experiences via M cf .

Across both wakefulness and quiescence, each experience ft drives the evolution (or drift) of context according
to:

ct = ρct−1 + βcft (1)

where the evolved context ct is a weighted combination of the previous context ct−1 and the experience’s
retrieved context cft , which ft retrieves via Mfc. Therefore, ct is a recency-weighted sum of the contexts
associated with experiences up to time t. After updating context, CMR-replay strengthens memory asso-
ciations between the current experience and the updated context using a standard Hebbian learning rule
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Figure 1: CMR-replay. a. Consider a task in which the model encodes a sequence consisting of four items,
each denoted by a shade of blue. b. CMR-replay consists of four components: experience (f), context (c),
experience-to-context associations (Mfc), and context-to-experience associations (Mcf ). At each timestep
during awake encoding, f represents the current experience and c is a recency-weighted average of contextual
features associated with prior experiences. CMR-replay associates f and c at each timestep, updating
Mfc and Mcf according to a Hebbian learning rule (Equations 2-3). Mfc and Mcf respectively support
the retrieval of an experience’s associated context and a context’s associated experiences. During replay,
f represents each reactivated experience and c represents a context that drifts according to reactivated
experiences. Here, too, the model updates Mfc and Mcf according to reactivated f and c. The figure
illustrates the representations of f , c, Mfc, and Mcf as the model encodes the third input during learning.
Lengths of color bars in f and c represent relative magnitudes of different features. Shades of grey illustrate
the weights in Mfc and Mcf . Orange features represent task-irrelevant items, which do not appear as
inputs during wake learning but compete with encoded items for reactivation during replay. c. Consider the
activation of items at the onset of sleep and awake rest across sessions of learning. At replay onset, an initial
probability distribution across experiences a0 varies according to the behavioral state (i.e., awake rest or
sleep). Compared to sleep, during awake rest, a0 is strongly biased toward features associated with external
inputs during awake rest. For awake rest, the figure shows an example of a0 when the model receives input
features related to the fourth item. Through repeated exposure to the same task sequence across sessions of
learning, activities of the four task-related items (i.e., blue items) become inhibited in a0 relative to task-
irrelevant items (i.e., orange items). d. Each replay period begins by sampling an experience ft=0 according
to a0, where t denotes the current timestep. If ft=0 is a task-related item, its associated context cft=0

is
reinstated as c0 to enter a recursive process. During this process, at each timestep t ≥ 1, ct−1 evokes a
probability distribution at that excludes previously reactivated experiences. Given at, the model samples an
experience ft and reinstates ft’s associated context cft , which is combined with ct−1 to form a new context
ct to guide the ensuing reactivation. Dashed line indicates that ct becomes ct−1 for the next time step. At
any t, the replay period ends with a probability of 0.1 or if a task-irrelevant item is reactivated.

according to:
4Mfc = γfcctf

T
t (2)

4M cf = γcfftc
T
t (3)

where γfc and γcf denote the encoding rates for Mfc and M cf . Through this process, CMR-replay associates
experiences that appear in similar encoding contexts with similar contexts via Mfc and M cf . Due to context
drift, the similarity between encoding contexts is the highest between successive experiences.

In CMR-replay, during active wakefulness, context drift is driven by external inputs — a sequence of events
that unfolds as the agent interacts with the environment or receives a stream of sensory inputs. Building
on prior work [40, 41], CMR-replay embraces the assumption that the salience of each event influences its
rate of encoding (i.e., γfc and γcf ): CMR-replay updates memory associations at higher rates for novel and
rewarding experiences than for others.

By contrast, internally-generated sequential activity drives context drift during quiescence. Here, we extend
the CMR framework to distinguish between memory-dynamics during periods of engagement and those of

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533833doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533833
http://creativecommons.org/licenses/by/4.0/


CMR-Replay

quiescence. For simplicity, we assume that each stretch of quiescence has a fixed number of replay periods
for experiences to be reactivated. At the onset of each replay period, an initial probability distribution a0
(Fig. 1c) represents the likelihood of reactivation across experiences, in which the probability of the i-th
unit is:

[a0]i =
[a0

spontaneous + λa0
retrieved]i∑n

j=1[a0spontaneous + λa0retrieved]j
(4)

where a0
spontaneous represents spontaneous internal activity that we simulated as random noise, a0

retrieved

is activity that task-related external context cues cexternal (e.g., the task context of the animal’s current
location, or task-related cues presented during sleep) evoke according to Eq. 5, and n is the total number
of experiences. In our simulations, task-related external context cues are available during local awake rest,
or during the re-presentation of learning-related cues in quiescence (Targeted Memory Reactivation, TMR;
[42]). In awake rest, the presence of task-related cues biases a0 to favor their associated experiences (Fig.
1c). As a result, awake replay exhibits an initiation bias — a tendency to initiate at the item associated
with cexternal. To account for effects of experience on replay, we incorporated a mechanism that increasingly
inhibits task-related items in a0 through repetition in the same task (Fig. 1c). This mechanism computes
the level of inhibition for items in a0 according to the magnitude of their retrieved contexts in the preceding
wake learning session (see Methods for implementation details).

At the onset (i.e., t = 0) of each replay period, CMR-replay samples an item ft=0 from a0 and reinstates ft=0’s
associated context cft=0 as c0 to enter a series of recursive computations (Fig. 1d). In this recursive process,
at each timestep t ≥ 1, ct−1 (i.e., the context at the previous timestep) evokes a probability distribution at
that excludes items reactivated prior to t. Let Ut denote the set of items that have not been reactivated
prior to t. The probability of each item in Ut is:

[aretrievedt ]i =
exp([M cfc]i/Tt)∑

∀fj∈Ut
exp([M cfc]j/Tt)

(5)

where c = cexternal at t = 0 when cexternal is available, c = ct−1 for t ≥ 1, and Tt is a temperature parameter
that scales the relative difference of activities in at

retrieved. Based on Eq. 5, all Ut items have non-zero
activity in at. From at, the model samples an experience ft, whose associated context cft enters ct−1 to form
a new context ct according to Eq. 1. This process is recursive since ct guides reactivation at timestep t+ 1
(Fig. 1d). At each timestep, the replay period ends with a probability of 0.1 or if a task-unrelated experience
becomes reactivated. Following prior work [19], we consider replayed sequences (one per replay period) with
consecutive segments of length five or greater that preserve the contiguity of wake inputs as replay events. In
CMR-replay, replay facilitates a process of gradual offline learning in the absence of external inputs: During
replay, the model updates Mfc and M cf to strengthen the association between reactivated ft and ct at a
slower rate compared to wake learning.

Because M cf maps each context to experiences encoded in similar contexts, when ct−1 evokes at via M cf ,
the activity of each experience in at will reflect the similarity between ct−1 and the experience’s associated
context. Since a key component of ct−1 is ft−1’s associated context, this similarity favors awake experiences
immediately preceding or following ft−1. Hence, CMR-replay tends to successively reactivate experiences
encoded back-to-back during behavior (Fig. 6d left), giving rise to coherent sequences despite the stochastic-
ity of replay (i.e., replay events comprise a small subset of all replay sequences; Fig. 5a left). In the following
sections, we will refer to this property as CMR-replay’s contiguity bias.

We simulate wake learning in a number of tasks [13, 27, 23, 21, 17, 15, 18, 11] by exposing the model to
sequences of experiences that correspond to trajectories of spatial locations or lists of visual stimuli that obey
task or environmental constraints. In between sessions of wake learning, we simulate awake rest and/or sleep
as periods of autonomous reactivation. In the following sections, we describe sets of empirical phenomena
that the model captures, including context-dependent variations of replay, effects of valence on replay, replay
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Figure 2: Context-dependent variations in memory replay. a. As observed in rodents (left), replay
in CMR-replay (right) is predominantly forward at the start of a run and backward at the end of a run on a
linear track. b. Consistent with rodent data (left), in CMR-replay (right), the proportion of forward replay
is higher during sleep than during awake rest. c. Note that the overall proportion of forward replay is higher
in the model than these data, but consistent with that found in Diba and Buzsaki (2007). The presence
of external cues during sleep biases replay toward their associated memories both in animals (left) and in
CMR-replay (right). *p<0.05; **p<0.01; ***p<0.001.

that goes beyond direct experience, experience-dependent variations of replay, and ways in which replay
facilitates memory.

The context-dependency of memory replay

During quiescence, sequential neural firing during sharp-wave ripples (SWRs) recapitulates the temporal
pattern of previous waking experience [4]. We distinguish between forward and backward replay, defined as
neural activity that either preserves the order of a prior experience (forward replay) or reverses it (backward
replay). In animals and humans, the content and directionality of replay systematically vary according to task
contexts and behavioral states [27, 21, 15, 28]. For example, animals tend to shift from forward to backward
replay between the beginning to the end of a run [21], exhibit more forward replay during sleep [28], and show
biased replay of memories associated with external cues during sleep [27]. Some of these observations have
led investigators to posit distinct processes underlying forward and backward replay [13, 21, 4, 14, 43, 19, 34],
with forward replay supporting planning at choice points [21, 4, 19, 34] and backward replay encoding value
expectations from reward outcomes [13, 4, 14]. In line with these observations, the EVB model [19] posits
that the agent’s estimate of goal-dependent state transitions (i.e., need) drives forward replay whereas reward
prediction errors (i.e., gain) drive backward replay. Here we evaluate whether CMR-replay can account for
these differential patterns by assuming that replay operates on associations between contexts and experiences.

When animals traverse a linear track to collect a reward, forward replay predominates during pre-run rest
[21]. However, during post-run rest when the animal consumes its reward, backward replay predominates
(see Fig. 2a left; [21]). We simulate this task by presenting CMR-replay with a sequence of items (Fig. 7a),
each representing a distinct location. These item representations can be considered to correspond to place
cells in rodents, whose activity is typically used to track replay. During post-run rest, we cue reactivation
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with the final item’s encoding context as cexternal. For pre-run rest, the first item’s encoding context serves
as cexternal. cexternal evokes a0

retrieved according to Eq. 5, which enters a0 according to Eq. 4. Through
a0
retrieved, cexternal biases a0 so that awake replay initiates disproportionately at the item associated with

cexternal (Fig. 1c), which is consistent with a bias of awake replay to initiate at the resting location [44].
The conjunction of this initiation bias and the model’s contiguity bias entails that replay unrolls successively
forward from the first item in pre-run rest and backward from the final item in post-run rest. Hence, forward
and backward replay respectively predominates during pre-run and post-run rest (Fig. 2a right) as in the
data [21]. In contrast to the EVB model [19], CMR-replay captures the graded nature of this phenomenon
(Fig. 2a right): Both types of replay appear in both conditions [21].

As with prior retrieved context models [25, 26], CMR-replay encodes stronger forward than backward asso-
ciations. This asymmetry exists because each item ft’s retrieved context cft contribute only to the ensuing
items’ (e.g., ct+1) encoding contexts. The reinstatement of cft thus cues the reactivation of items that fol-
lowed ft more than those that preceded ft, leading to forward asymmetric replay (Fig. 6d left). Absent
external cues, sleep replay is less likely to initiate at the final item than rest replay (Fig. 1c), allowing for
more forward transitions. This leads to more forward replay during sleep than awake rest (Fig. 2b right),
matching empirical observations [4, 45, 28] (Fig. 2b left). In contrast, the EVB model predicts a predomi-
nance of reverse sleep replay before behavior stabilizes [19]. Here, and throughout the paper, all differences
of interest in the model are highly reliable across the variability present in the replay process.

We next asked whether CMR-replay can simulate Targeted Memory Reactivation (TMR) during sleep. Ben-
dor and Wilson employed the TMR paradigm in rodents, associating distinct auditory cues (L and R) with
left and right traversal of a linear track [27]. Playing each auditory cue during sleep elicited replay of place
cell activity in the cued direction. We simulate these findings by encoding two sequences that share a start
item. To simulate TMR, we present a distinct cue item after each sequence’s start item during learning (Fig.
7e), and re-present each cue item (through its associated context) as cexternal in sleep. Matching Bendor
and Wilson [27], CMR-replay preferentially replayed each cue’s associated sequence (Fig. 2c right).

Effects of valence

At first glance, our proposal may seem at odds with evidence of valence’s influence on replay [13, 14, 33,
15, 18, 16, 10, 11] because CMR-replay neither maintains nor updates value representations during replay.
For example, studies suggest that replay over-represents experiences with rewarded or aversive outcomes
[33, 10, 46, 12, 11] and awake reverse replay occurs primarily during reward receipt [13, 21, 14]. Moreover,
reverse replay’s sensitivity to reward [13, 16] argues for a functional distinction between forward and back-
ward replay, with backward replay specialized for learning value-based predictions [13, 14, 18].

We suggest that salience governs encoding rates, which aligns with evidence that salient stimuli bind more
strongly to their context [47, 48, 49, 50]. Building on models that adopt this assumption [40, 41], CMR-replay
updates Mfc and M cf at higher rates for salient experiences, including those with high valence (reward or
punishment) or novelty, than for others. In CMR-replay, increasing encoding rates strengthens replay in two
distinct ways: Enhancing the M cf encoding rate facilitates the reactivation of an item given its associated
context as cue, while enhancing the Mfc encoding rate facilitates the faithful retrieval of an item’s encod-
ing context. Here, we explore whether these mechanisms allow CMR-replay to account for valence-related
phenomena.

After visually exploring a T-maze with one arm with reward, animals preferentially activated sequences rep-
resenting the rewarded arm during sleep [11] (Fig. 3a left). We simulate this task by presenting CMR-replay
with two sequences, one with a rewarded final item and the other with a neutral final item (Fig. 7d). Due to
the influence of encoding rates, replay over-represents the rewarded item compared to the matched neutral
item (Fig. 3a right) as in empirical observations [33, 10, 11]. CMR-replay exhibits this property without the
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Figure 3: Reward leads to over-representation in sleep and modulates the rate of backward
replay. a. Sleep over-represents experiences associated with reward (i.e., cued) in animals (left) and in
CMR-replay (right). b. Varying the magnitude of reward outcome leads to differences in the frequency of
backward but not forward replay in animals (left) and CMR-replay (right). Error bars show 95% confidence
intervals.

assumption that reward-associated items receive more exposure during encoding [51].

Varying the magnitude of reward at the end of a linear track significantly alters the number of backward
but not forward replay events [13] (Fig. 3b left). Following Mattar and Daw [19], to disambiguate each
location and the direction of a run, we simulated the task with two distinct input sequences, each with a
final rewarded item. We manipulated the encoding rate of one reward item so that it’s higher (i.e., high
reward), lower (i.e., low reward), or identical to that of the reward item in the other sequence (i.e., normal
reward). Since the encoding of the reward item primarily influences backward replay in post-run rest, we
observed differences in the rate of backward but not forward replay between different reward conditions (Fig.
3b right), matching empirical observations [13, 16].

CMR-replay’s ability to account for the effects of reward supports our proposal that valence modulates the
initial encoding of memories to shape subsequent replay. After valence exerts its influence during encoding,
prioritized replay of rewarded memories can occur even if reward-related activity is absent. Consistent with
our proposal that replay itself does not require value-based computations, sleep’s preferential consolidation
of reward memories does not seem to require dopaminergic activity [52], and the coordination between re-
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of neural firing in the right two panels. Across all panels, the colored items indicate the temporal order of
the sequences (light blue, early; purple, late). The red item denotes the resting position. b. Proportion of
replay events that contain remote sequences in animals (left) and in CMR-replay (right). Error bars show
+/− 1 SEM in the data and model. c. In Liu et al. (2019), participants encoded scrambled versions of
two true sequences X1X2X3X4 and Y1Y2Y3Y4: X1X2Y1Y2, X2X3Y2Y3, and X3X4Y3Y4 (Fig. 7g) After
learning, human spontaneous neural activity showed stronger evidence of sequential reactivation of the true
sequences (left). CMR-replay encoded scrambled sequences as in the experiment. Consistent with empirical
observation, subsequent replay in CMR-replay over-represents the true sequences (right).

ward responsive neurons and replay-related events is absent in sleep [53]. Our model treats reward as simply
a salient experience, generating the prediction that non-reward-related salient experiences that modulate
encoding rate should exhibit similar characteristics.

Replay goes beyond direct recent experience

We next asked whether CMR-replay can account for findings in which animals replay sequences learned
outside of their present context. Several studies have established this so-called “remote replay” phenomenon
[17, 30]. Here we describe one such experiment and show how CMR-replay provides a parsimonious ac-
count of its findings. In Gupta et al. [17], animals explored both arms of a T-maze during pre-training.
During each subsequent recording session, animals traversed only the left or right arm (L- or R- only con-
ditions) or alternated between them (alternation condition). During reward receipt on the just-explored
arm, awake rest exhibited remote replay of its opposite, non-local arm (Fig. 4a left: remote replay)[17].
This observation challenges models that prioritize items near the resting location [19] and recently active
neurons [54, 55, 14, 56] throughout replay. To determine whether CMR-replay can reproduce these results,
we present the model with sequences that overlap for the first few items (representing the central arm of the
T-maze; Fig. 7c). During each of two simulated “pre-training” sessions, the model encodes both sequences.
We then run the model through two conditions in an ensuing “experimental” session, where CMR-replay
encodes either only one (L or R -only conditions) or both sequences (alternation condition). After encod-
ing the sequences, we simulate reward receipt by presenting CMR-replay with the encoding context of a
rewarded item as an external-context cue (i.e., cexternal). As in Gupta et al. [17], CMR-replay is able to
generate remote replay of the non-local sequence (Fig. 4a, right; Fig. 4b, right). When CMR-reactivates a
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non-local item by chance, replay context dramatically shifts by incorporating the non-local item’s associated
context, thereby triggering a cascade of non-local item reactivation to generate remote replay. Due to its
inhibition mechanism, CMR-replay is able to capture the higher prevalence of remote replay in L and R
-only conditions (Fig. 4b, right), which we will unpack in a subsequent section. The occurrence of remote
replay does not require the inhibition mechanism in CMR-replay, as the model generates remote replay in
the alternation condition where inhibition is matched across local and non-local items.

We next examined whether replay in CMR-replay can link temporally-separated experiences to form novel
sequences that go beyond direct experience [29, 51, 17, 57, 15]. Gupta et al. [17] showed occurrence of novel
replay sequences that link segments of the two arms of a T-maze during rest, even though animals never
directly experienced such trajectories [17] (Fig. 4a left: shortcut replay). In our simulation of the study
[17], CMR-replay also generates novel rest replay that links segments of the two sequences (Fig. 4a, right):
The reactivation of the juncture of the two sequences (the top middle item of Fig. 7c) reinstates context
common to the two sequences, allowing replay to stitch together segments of the two sequences. In line with
Gupta et al. [17], shortcut replay appeared at very low rates in CMR-replay (the alternation condition: mean
proportion of replay events that contain shortcut sequence = 0.0046; L or R conditions: mean proportion =
0.0062). Furthermore, Liu et al. [15] showed that replay in humans reorganizes temporally-separated wake
inputs. In their first experiment, participants encoded sequences that scramble pairwise transitions of two
true sequences X1X2X3X4 and Y1Y2Y3Y4: X1X2Y1Y2, X2X3Y2Y3, and X3X4Y3Y4. To highlight transitions
from the true sequences, the time lag between those transitions (e.g., X2X3) was shorter than others (e.g.,
X3Y2) during presentation. Analyses revealed preferential replay of the true as opposed to the scrambled
sequences [15] (Fig. 4c, left). We simulated the experiment by presenting CMR-replay with sequences of the
same structure (Fig. 7g) and incorporated a distractor item to induce greater context drift for transitions
that violate true sequences (see Methods). After learning, CMR-replay performed replay in the absence of
external context cues. Consistent with Liu et al. [15], CMR-replay preferentially replayed true sequences
(Fig. 4c, right).

The influence of experience

Task exposure influences replay, with replay appearing less frequently in familiar as compared with unfamiliar
environments [22, 58, 56]. Task repetition similarly reduces replay [21, 34]. After gaining experience along
multiple trajectories, animals and humans can exhibit enhanced replay of non-recently explored trajectories
[23, 24, 17, 31]. Overall, these findings demonstrate a negative relationship between the degree and recency
of experience and the frequency of replay. This pattern challenges models in which experience enhances the
reactivation of local items [54, 55, 51, 14, 19, 56].

In the EVB model [19], learning reduces replay frequency. Learning reduces reward prediction errors (i.e.,
gain), which drive backward replay, and stabilizes the model’s estimation of goal-dependent state transitions
(i.e., need), which drive forward replay. Since the combination of gain and need determines the scheduling
of replay, learning reduces the overall frequency of replay. Due to the differential influence of gain and need
on backward and forward replay, these asymmetrical changes in the two quantities entail a reduction in the
proportion of replay events that are backward [19]. The prediction that learning reduces the proportion
of backward replay events exemplifies RL theories’ assumption that value prediction errors, which learning
minimizes, govern backward replay. However, recent findings indicate that the proportion of backward replay
does not decrease through learning [33, 34].

In CMR-replay, experience shapes replay in two opposing ways. First, repetition strengthens Mfc and M cf ,
allowing replay to better preserve the structure of waking inputs. Second, by enhancing Mfc, repetition
increases the activity of items’ retrieved contexts during learning. Since CMR-replay inhibits items’ activity
in a0 as a function their activity during learning, repetition increases the inhibition of task items’ activity,
reducing their probability of reactivation. Such an inhibitory mechanism may be adaptive in allowing replay
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Figure 5: Variations in replay as a function of experience. a. In CMR-replay, through repeated
exposure to the same task, the frequency of replay events decreases (left), the average length of replay events
increases (middle), and the proportion of replay events that are backward remains stable (after a slight initial
uptick; right). Error bars denote +/− 1 SEM in the model. b. With repeated experience in the same task,
animals exhibit lower rates of replay (left) and longer replay sequences (middle), while the proportion of
replay events that are backward stays relatively stable (right). Error bars denote +/− 1 SEM in the data.
c. In a T-maze task, where animals display a preference for traversing a particular arm of the maze, replay
more frequently reflects the opposite arm [23] (left). CMR-replay preferentially replays the right arm after
exposure to the left arm and vice versa (right).

to benefit not just the most recently- and/or strongly- encoded items. Our proposal that inhibition plays
a role in replay aligns with models that regulate place cell reactivation via inhibition [59], and empirical
observations of increases in hippocampal inhibitory interneuron activity with experience [32].

The next set of simulations illustrates CMR-replay’s account of experience-dependent changes in replay
[23, 21, 17, 33, 34]. We first examined how replay changes through repeated encoding of the same inputs
following our linear track simulation illustrated in Fig. 7a. Here, CMR-replay encodes the same sequence
across learning sessions, with awake rest after each session. Initially, experience increases the prevalence of
replay (Fig. 5a: left). As repetition enhances the inhibition of task-related items in a0, replay frequency
subsequently decreases in CMR-replay (Fig. 5a: left). Through experience, the average length of replay in-
creases (Fig. 5a: middle), suggesting that repetition strengthens sequence memory in the model. In contrast
to the EVB model [19], the proportion of replay events that are backward does not decrease (Fig. 5a right)
in CMR-replay. This result highlights that, unlike the EVB model, CMR-replay does not employ distinct
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variables to drive forward versus backward replay.

In an experiment where animals learned the same task across eight behavioral sessions, Shin et al. [34]
observed similar patterns of results. As shown in Figure 5b, animals exhibited lower rates of replay but
longer replay sequences in later sessions (left, middle). As in our CMR-replay simulations, the proportion of
forward relative to backward replay events remained relatively stable across sessions (right). Furthermore,
consistent with reduced reactivation of task-related units in CMR-replay, the study observed decreased reac-
tivation of task-related place cells through experience. In contrast, item reactivation increases monotonically
through repetition in alternative models [51]. Several other studies using varied experimental procedures
have reported similar effects of repeated experience on replay, including a reduction in the prevalence of
replay [22, 21], an increase in replay length [32], and no reduction in the proportion of replay events that
are backward [33].

In CMR-replay, items’ retrieved context activity in a learning session modulates their inhibition during ensu-
ing quiescence. As a result, items that get more exposure in a session may receive more inhibition than others
at the onset of replay, facilitating the reactivation of their competitors. In our simulation of [17] (Fig. 7c), in
the L and R -only conditions, since the sequence presented during learning receives more inhibition, remote
replay is more prevalent than in the alternation condition, where both sequences appear during learning (Fig.
4b). In the L or R -only conditions, when CMR-replay performs post-learning replay in the absence of exter-
nal context cues, replay over-represents the alternative sequence (Fig. 5c), which aligns with the observation
that replay exhibits a bias away from the arm of a T-maze that animals preferred during behavior [23]. This
property is also consonant with recent findings that replay preferentially activates non-recent trajectories [24].

The function of replay

Many have proposed adaptive functions for replay, including for memory consolidation [36, 1, 60], retrieval
[36, 9, 61], credit assignment [13, 14, 20], and planning [62, 63, 64]. Growing causal evidence suggests that
replay benefits memory: TMR enhances memory [42], and disrupting SWRs impairs memory [7, 8, 9]. Replay
facilitates offline learning in our model by updating Mfc and M cf according to the internally-reactivated
items and contexts during replay. In the following set of simulations, we characterize ways in which replay
facilitates memory in the model.

One of the most robust benefits of sleep is on motor sequence memory [37]. To simulate the impacts of sleep
replay on sequence memory, we presented CMR-replay with a five-item sequence and examined whether sleep
enhanced memory of the sequence. Before and after sleep, we assessed the proportion of replay sequences
that matched the input sequence. The assessment occurred in ”test” periods, where learning rates were set
to zero and cexternal was absent. In post-sleep test, CMR-replay generated a higher proportion of sequences
matching the correct sequence than in pre-sleep test (Fig. 6a), indicating that sleep enhances sequence
memory in the model.

Replay preferentially enhances rewarded memories [16], and sleep preferentially consolidates salient expe-
riences [38, 39]. In our simulation of a T-maze with reward in one of the two arms [11], we also included
pre- and post- sleep test periods to assess how sleep in CMR-replay shapes rewarded versus non-rewarded
memory. Through sleep, CMR-replay exhibited a greater increase in its reactivation of the rewarded item
compared to a matched neutral item (Fig. 6b), suggesting that sleep preferentially enhances memory asso-
ciations for rewarded items in CMR-replay.

A recent study [18] presented evidence that replay facilitates nonlocal value learning. Human participants
encoded six sequences, each of which links one of three start items to one of two end items. When they
received reward at the end of a sequence, awake replay reflected the just-visited (local) sequence as well
as nonlocal sequences that shared the same end item (i.e., sequences that do not begin with the current
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Figure 6: Learning from replay. a. Sleep increased the likelihood of reactivating the learned sequence
in the correct temporal order in CMR-replay, as seen in an increase in the proportion of replay for learned
sequences post-sleep. b. Sleep leads to greater reactivation of rewarded than non-rewarded experiences,
indicating that sleep preferentially strengthens rewarded memories in CMR-replay. c. CMR-replay encoded
six sequences, each of which transitioned from one of three start items to one of two end items. After
receiving a reward outcome for the end item of a sequence, we simulated a period of rest. After but not
before rest, CMR-replay exhibited a preference for non-local sequences that led to the rewarded item. This
preference emerged through rest despite the fact that the model never observed reward in conjunction with
those non-local sequences, suggesting that rest replay facilitates non-local learning in the model. d. We
trained a “teacher” CMR-replay model on a sequence of items. After encoding the sequence, the teacher
generated replay sequences during sleep. We then trained a separate blank-slate “student” CMR-replay
model exclusively on the teacher’s sleep replay sequences. To assess knowledge of the original sequence, we
collected sleep replay sequences from both models, and assessed the probability that each model reactivates
the item at position i + lag of the sequence immediately following the reactivation of the i-th item of
the sequence, conditioned on the availability of the i-th item for reactivation. Both models demonstrated a
tendency to reactivate the item that immediately follows or precedes the just-reactivated item on the original
sequence. This result suggests that the student acquired knowledge of the temporal structure of original
sequence by encoding only the teacher’s replay sequences.

sequence’s start item but terminate with the same end item). Participants then exhibited a behavioral pref-
erence for sequences that terminated in the rewarded item, despite no direct recent experience with reward
in that sequence. The authors suggested that replay propagated value to associated items, allowing partic-
ipants to select nonlocal sequences associated with reward without direct observation. In our simulation of
this paradigm, CMR-replay encoded six sequences of the same structure (Fig. 7b), with increased encoding
rates to simulate reward receipt, as in the simulations above. During rest after reward receipt, we presented
the encoding context of the rewarded item as cexternal. Before and after rest, we assessed the activity that
each non-local start state’s associated context evokes considering only its two ensuing items according to
Eq. 5. After but not before rest, CMR-replay preferentially activated the item that leads to the rewarded
end item (Fig. 6c). In CMR-replay, this preference emerged without value updates during replay, suggesting
that replay can facilitate nonlocal learning by re-organizing memory associations.

There has been much interest in the memory literature in the possibility that hippocampal replay serves
to train neocortical systems to represent recent memories [65, 35, 54, 36, 60, 66, 67]. We explored whether
replay in CMR-replay can serve to transfer one model’s knowledge to another. After a ”teacher” CMR-replay
encodes a sequence, we collected its sleep replay sequences to train a blank-slate ”student” CMR-replay at
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replay’s learning rates. Through this process, the student inherited the contiguity bias of the teacher (Fig.
6d), suggesting it acquired knowledge of the structure of the teacher’s training sequence. This simulation
provides a proof of concept that replay in CMR-replay can serve to facilitate memory transfer across systems,
in addition to promoting local learning.

Discussion

What is the nature and function of neural replay? We suggest a simple memory-focused framework that
explains a wide array of replay phenomena. First, the brain associates experiences with their encoding
contexts in accordance with the salience of each experience. Then, in quiescence, the brain replays by
spontaneously reactivating a memory and retrieving its associated context to guide subsequent reactivation.
Learning continues to occur from these endogenously reactivated sequences. A model embodying these ideas
– CMR-replay – accounts for many empirical characteristics of replay and its impacts, including evidence
previously interpreted as diagnostic of reinforcement learning accounts.

First, CMR-replay demonstrates properties of replay that other models exhibit (or could easily accommo-
date) [51, 43, 57, 19, 68], including replay’s recapitulation of the temporal pattern of past experience during
rest and sleep [21, 28], bias toward external cues’ associated memories [27], and ability to stitch together
temporally-separated experiences to form novel sequences [17, 15]. Second, CMR-replay captures findings
that have been interpreted as evidence that replay serves value-based reinforcement learning, including over-
representation of memories associated with reward [11], reverse replay upon reward receipt [21, 14], and the
unique sensitivity of reverse replay to reward magnitude [13]. Third, CMR-replay accounts for observations
that are not naturally accounted for with prior models, including a stable proportion of backward replay
through learning [34], reduced item reactivation and sequential replay through experience [34, 22], increased
prevalence of forward replay in sleep [28], enhanced replay outside of the current context [17], and a tendency
for replay to cover non-behaviorally-preferred experiences [23]. Finally, replay facilitates memory in CMR-
replay in ways that align with empirical findings [37, 18, 16, 39, 38], including that it improves sequence
memory, preferentially strengthens rewarded memories, facilitates nonlocal learning, and can serve to train
a separate memory system in the absence of external inputs.

Many memory consolidation theories are aligned with CMR-replay in suggesting that replay actively strength-
ens and re-organizes memories [69, 35, 54, 70, 1, 60, 66]. Contextual binding theory [71], however, takes
a different approach, suggesting that residual encoding-related activity may elicit merely epiphenomenal
replay as context drifts during quiescence. Our theory echoes this perspective in characterizing replay as
an outcome of context-guided processes. However, we diverge in suggesting that the emergent replay does
significantly benefit memory by strengthening learned associations. Moreover, our model captures observa-
tions of enhanced replay of infrequent and remote experiences, which are in tension with the perspective
that replay is primarily guided by recent activity.

An ongoing debate concerns to what extent awake replay reflects a process of planning that simulates future
scenarios to support immediate decision-making [64, 62, 63], versus to what extent replay serves to store,
update, and maintain memory without directly guiding behavior [72, 8, 73]. Evidence supporting the plan-
ning hypothesis comes from studies that demonstrate enhanced replay of upcoming behavioral trajectories
[64, 74]. However, in tasks that track representations of multiple, temporally- and spatially- separated experi-
ences, animals exhibit replay that appears to be decoupled from their behavioral preference [23, 24, 17]. Our
model aligns more with the memory perspective, as it is able to capture existing findings without positing
that replay serves to optimize behavioral outcome. However, replay of this kind could at times be read out
and used by downstream decision-making systems. Recent work argues that the dynamics of the retrieval
processes in this class of models could support adaptive choice in sequential decision tasks [75]. Overall,
our framework argues that replay characteristics are primarily driven by memory principles, and that replay
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serves to strengthen and reorganize memories, which benefits subsequent — but not necessarily immediate
— behavior [24, 73].

Our model has mainly considered replay occurring during sharp wave ripples. During active behavior in
rodents, ordered place cell sequences also activate during the theta oscillation (theta sequences) [76]. Sim-
ilar to ripple-based replay, theta sequences manifest in both forward- and reverse-order [77], initiate at the
animal’s location, extend further into upcoming locations through experience [78, 79, 80, 81], cluster around
behaviorally-relevant items [82], and have been proposed to correspond to cued memory retrieval [83]. These
parallels lead us to speculate that the context-driven mechanisms we have laid out for findings of replay
mainly during sharp wave ripples may also be relevant in understanding theta sequences.

An important area for future work is to investigate the mapping between the components of CMR-replay
and neural circuitry. Our model employs a series of bidirectional operations between context and item rep-
resentations to generate replay. These operations might be implemented within the recurrent connections
of CA3 in the case of temporally-compressed sharp wave ripple replay. It is possible that these interactions
could also play out across the “big loop” of the hippocampus [57] or within cortical circuits [84, 85, 86, 87],
which could correspond to slower forms of replay [18, 88]. In quiescence, we posit that the hippocampus can
serve as a “teacher” that endogenously samples memory sequences to help establish these associations in
neocortical areas, with local context-item loops within the teacher and student areas. In alignment with the
observation that disrupting entorhinal cortex input to the hippocampus affects only awake replay whereas
manipulating hippocampal subfield CA3 activity affects both awake and sleep replay [89], in CMR-replay,
the principal distinction between awake rest and sleep is whether external inputs bias replay. There are
likely other variables, such as task engagement [90], that modulate the influence of external inputs on replay.

There exists a range of computational models that simulate replay at different levels of biological detail
[91, 92, 19, 93, 94], account for different features of replay [51, 43, 57, 63, 19, 68], and posit distinct functions
for replay [95, 96, 63, 19, 60, 97, 66]. Our theory follows in a lineage of memory-focused replay models,
showing the power of this perspective in accounting for data that have been assumed to require optimization
of value-based predictions. As CMR-replay builds on existing theories of memory recall, our account is in line
with recent proposals that reactivation and recall may have similar underlying mechanisms and utility for
behavior [98]. Our theory unifies a wealth of phenomena, offering a parsimonious and mechanistic framework
characterizing how the brain initially encodes and subsequently replays memories to facilitate behavior.
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Methods

Representation and Initialization

CMR-replay comprises four components: experience (f), context (c), experience-to-context associations
(Mfc), and context-to-experience associations (M cf ). At each moment in time, f is the current experience
(i.e., an external input presented during awake learning or a reactivated experience during replay) and c is a
recency-weighted sum of features associated with recent experiences. For notation, we refer to the experience
associated with the i-th feature in f as fi. By contrast, we refer to the experience at the i-th timestep of
a process as ft=i or generically as ft. During both awake learning and replay, at each timestep, the model
updates Mfc and M cf , which respectively support the retrieval of an experience’s associated context and a
context’s associated experiences.

In our simulations, CMR-replay employs a one-hot representation of f (i.e., a localist item representation):
Each experience is represented by a one-hot vector of length n in which only the unit representing the ex-
perience is on (i.e., has an activity of 1) and all other units are off. As illustrated in Fig. 1, in addition
to task-related items shown as inputs during learning, we include task-irrelevant items that do not appear
during learning but compete with encoded items for reactivation during replay. We use ntask, nnon−task,
and n to respectively denote the number of task-related items, the number of task-irrelevant items, and the
total number of items (i.e., the sum of ntask and nnon−task). To allow for sufficient competition between
task-related and task-irrelevant items, we set nnon−task to be roughly one half of ntask (i.e., rounded up
when ntask is odd). We note that the particular ratio of nnon−task to ntask is not critical to the pattern of
results in our simulations.

In each simulation, Mfc and M cf are initialized as identity matrices of rank n, which are scaled respectively
by 1.0 and 0.7. These scaling factors were chosen to qualitatively match the empirically observed proportions
of forward and backward replay in different conditions (though the forward/backward asymmetry is always
observed in the model). Our initialization of these two matrices as identity matrices differs from the initial-
ization strategy in prior work [40, 25, 99, 26], where Mfc and M cf are initialized to reflect pre-experimental
similarity among items. Thus, prior to learning, Mfc maps distinct experiences onto orthogonal context fea-
tures, and M cf maps each context feature to one experience. Before the model encodes each input sequence,
c is reset as a zero vector of length n. Resetting contexts in between sequence presentations demarcates
boundaries between discrete events as in prior work [100].

Context Drift

In both active wakefulness and quiescence, each time an experience is presented or reactivates, c drifts by
incorporating contextual features associated with that experience. Concretely, at each timestep t, CMR-
replay reinstates the current experience ft’s associated context cft via experience-to-context matrix Mfc

t−1
according to:

cft =
Mfc
t−1ft

‖Mfc
t−1ft ‖

(6)

Given cft , ct−1 drifts and forms a new context ct according to Eq. 1, in which ρ and β determine the relative
contribution of ct−1 and cft to ct. To ensure that ct has a unit length, ρ is computed according to:

ρ =
√

1 + β2[(ct−1cft)
2 − 1]− β(ct−1cft) (7)

Operations that drive context drift in our simulations, including those specified by Eqs. 1, 6, and 7, are
identical to those in prior work [40, 26, 99]. In all simulations, β is 0.75 (similar to drifts rates for temporal
context features reported in Polyn et al. [26]), except when distractors cause context drift in the simulation
of Liu et al [15].
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Updating M fc and M cf

Each time the context drifts, CMR-replay updates Mfc and M cf to strengthen associations between the
current ct and ft. The model updates Mfc and M cf using a standard Hebbian learning rule according to
Eq. 2 and Eq. 3, in which γfc and γcf control the rates at which Mfc and M cf are updated.

During active wakefulness, the rate of updating Mfc and M cf is higher for novel and rewarding experiences
than for other experiences. For all simulations, the base learning rates γfc and γcf are 1.0. For rewarded
experiences, learning rates vary according to the magnitude of reward: Learning rates γfclow and γcflow are
1.0 for experiences associated with low reward, γfcnormal

and γcfnormal
are 1.5 for those with standard reward,

and γfchigh and γcfhigh are 2.0 for those with high reward. These values are consistent with prior work
[40, 41], in which these scaling factors are 1.0 for items that evoke no arousal [40] and greater than 1.0 for
those assumed to evoke emotional arousal [40, 41]. When the same input is repeated across sessions, its
learning rate is γ

i , where i is the index of the current session and γ is its initial learning rate.

Replay

After each session of awake learning, CMR-replay autonomously reactivates experiences in a number of re-
play periods. For simplicity, we assumed that the number of replay periods is fixed, rather than determined
by task-related variables.

In each replay period, at each timestep t, the model samples an experience from a distribution of activities
across experiences at according to Eq. 5, which follows previous work [25]. At t = 0, as shown in Eq. 4, a0
is a normalized combination of a0

spontaneous, which simulates spontaneous internal activity, and a0
retrieved,

which simulates activity evoked by external context cues in awake rest and sleep TMR. a0
spontaneous is a

vector of size n whose elements are independently and randomly drawn from the interval [0, 0.001]. In awake
rest and sleep, a task-related external context cue cexternal that represents the animal’s current state (i.e.,
the context at the end of a sequence presentation or the context elicited by an external cue presented during
sleep) evokes a0

retrieved. By contrast, at t ≥ 1, ct−1 — a recency-weighted average of contexts evoked by
experiences reactivated at previous timesteps, evokes at

retrieved which becomes at. Therefore, after time
t = 0, reactivated experiences’ associated contexts determine subsequent at.

At each timestep t, the model samples an experience ft ∈ Ut from at according to Eq. 5, where T0 is 0.1
and Tt is 0.14 for all t ≥ 1. If ft is a task-relevant experience, the model reinstates its associated context cft
according to Eq. 6. When t = 0, cft becomes c0. When t ≥ 1, cft drifts ct−1 to form ct according to Eq. 1.
As in awake learning, the model updates the association between ft and the drifted context ct in Mfc and
M cf according to Eq. 2 and Eq. 3, but at a slower learning rate γreplay of 0.001. At each timestep, replay
terminates with a probability of 0.1 or if ft is a task-irrelevant experience.

Inhibition

To model how repeated exposure influences replay, CMR-replay incorporates a mechanism that inhibits the
activity of experiences in a0 according the magnitude of context activity in the preceding active wakeful
period. This mechanism differs from the use of inhibition in prior work [99, 26], which scales the degree
of competition among items during recall. For each sequence item presented in a wake learning session, its
activity in a0 is multiplied by:

ω = exp(−C) (8)

where C is the L2 norm of the item’s retrieved context vector in the recent wake learning session. For
experiences not shown in the wake session, C is 0.0 and thus ω is 1.0.
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Figure 7: Task simulations. Each enclosed box corresponds to a unique stimulus. Each arrow represents a
valid transition between two items. Each dashed arrow represents a distractor that causes a drift in context
in between two items. Dark grey items represent salient items in each task. Task sequences initiate at
light grey items. For tasks with multiple valid sequences, the order in which sequences are presented is
randomized. a. Simulation of a linear Track. b. Simulation of the task in Liu et al. [18]. c. Simulation of
a two-choice T-maze. d. Simulation of a T-maze. e. Simulation of the task in Bendor and Wilson [27]. f.
Simulation of a linear track task with distinct directions of travel. g. Simulation of input sequences in Liu
et al. [15]. h. Simulation of a fix-item sequence.

Task Simulations

During awake learning, CMR-replay encodes sequences of experiences, representing spatial trajectories or
other stimulus sequences (Fig. 7). After wake learning, the model participates in a number of awake rest
or sleep replay periods. In each simulation, for each condition, we ran 100 instantiations of the model with
the same initialization. Variability in replay sequences across models arises from the stochastic nature of the
replay process. Due to the variability in replay sequences, different models develop distinct Mfc and M cf

as they learn from replay. Unlike prior work that identified the best-fitting parameters for each simulation
[26, 99, 40], CMR-replay employs the same set of model parameters across simulations with varying input
structures.

In the simulation that examines context-dependent forward and backward replay through experience (Figs.
2a and 5a), across a total of 8 sessions of awake learning, CMR-replay encodes an input sequence shown in
Fig. 7a, which simulates a linear track run with no ambiguity in the direction of inputs. In this simulation,
learning rates for the rewarded item are γfcnormal

and γcfnormal
. After each wake learning session, we simulate

500 awake rest replay periods at the end of a run followed by another 500 periods at the start of a run. For
rest at the end of a run, cexternal is the context associated with the final item in the sequence. For rest at
the end of a run, cexternal is the context associated with the start item.
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In the simulation that contrasts forward and backward replay between rest and sleep (Fig. 2b), the model
encodes the input sequence shown in Fig. 7a for a single session. After encoding, each model either par-
ticipates in 500 awake rest or sleep replay periods, with 100 models in each condition (i.e., awake rest or sleep).

In the simulation of TMR (Fig. 2c), each model encodes two sequences shown in Fig. 7e in a randomized
order in a session of wake learning. During input presentation, for each sequence, a separate cue item (i.e.,
cue L or cue R) is presented immediately after the start item. The models encode the goal item at rates
γfcnormal

and γcfnormal
. After wake learning, each model engages in 500 sleep replay periods. In each replay

period, the context associated with cue L or cue R is randomly presented as cexternal.

In the simulation that contrasts replay of rewarded versus non-rewarded experiences (Fig. 3a and 6b), each
model encodes two sequences shown in Fig. 7d in a randomized order in a session of wake learning. The
models encode the goal item at rates γfcnormal

and γcfnormal
. After wake learning, each model engages in

an extended phase with 5000 sleep replay periods. To quantify changes in memory through sleep, in each
model, we additionally simulated 5000 replay periods before and after extended sleep with no learning (i.e.,
Mfc and M cf are not updated) and no cexternal.

In the simulation of forward and backward replay with different levels of reward (Fig. 3b), the model encodes
two sequences (Fig. 7f) in a randomized order in a single session. The inclusion of two disjoint sequences
follows the approach in [19], which simulates different directions of travel to distinguish place cells with
directional preference for replay decoding in animal studies. The simulation consists of three conditions:
normal vs. normal reward, low vs. normal reward, and high vs. normal reward. In the normal vs. normal
condition, each model encodes goal locations in both sequences at rates γfcnormal

and γcfnormal
. In the low vs.

normal condition, each model encodes the goal location at rates γfclow and γcflow for one sequence and at
rates γfcnormal

and γcfnormal
for the other. Finally, in the high vs. normal condition, each model encodes the

goal location at rates γfchigh and γcfhigh for one sequence and at rates γfcnormal
and γcfnormal

for the other.
After encoding a sequence, we simulate 500 awake rest replay periods at the end of a run followed by another
500 at the start of a run.

In the simulation of remote replay, shortcut replay, and the over-representation of non-behaviorally-preferred
experiences in replay (Figs. 4a, 4b, and 5c), each model encodes two sequences (Fig. 7c) in a randomized
order in a total of three sessions. Learning rates for each goal location are γfcnormal

and γcfnormal
. In these

simulations, we treat the first two sessions as the period in which an animal is pre-trained extensively on the
task. After wake learning in the third session, for the results shown in Figs. 4a and b, each model engages
in 500 awake rest replay periods at each of the four goal locations in a randomized order. For the results
shown in Figs. 5c, to simulate replay away from the task environment, each model engages in 500 replay
periods with no external context cue.

In the simulation of Liu et al. [15] (Fig. 4c), each model encodes three sequences (Fig. 7g) shown in a
randomized order. These three sequences X1X2Y1Y2, X2X3Y2Y3, and X3X4Y3Y4 are scrambled versions of
pairwise transitions from true sequences X1X2X3X4 and Y1Y2Y3Y4. A distractor item, which is a distinct
item that does not participate in replay, induces context drift between successive items. The item induces
context drift at a β of 0.99 for transitions that do not exist in the true sequences and at a β of 0.3 for
transitions that exist in the true sequences.

In the simulation that examines sequence memory through sleep (Fig. 6a), each model encodes a five-item
sequence (Fig. 7h) in a session. After wake learning, each model participates in an extended period of sleep
with 5000 replay periods. As in (iv), in each model, we additionally simulated 5000 replay periods before
and after extended sleep with no learning (i.e., Mfc and M cf are not updated) and no cexternal.
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In the simulation that examines replay’s role in non-local learning (Fig. 6c), each model encodes six sequences
(Fig. 7b) in a randomized order in a session. Sequences in this simulation consist of three start states and
two end states. Each start state has a unique sequence that connects it to each of the two end states. The
model encodes the final item in the final sequence at rates γfchigh and γcfhigh and encodes all other items
at base learning rates γfc and γcf . After the encoding of all six sequences, each model participates in 5000
awake rest replay periods with the final item’s associated context as cexternal.

In the simulation of “teacher” and “student” CMR-replay (Fig. 6d), each “teacher” model encodes a se-
quence (Fig. 7a) in a session. Each teacher model encodes the goal location at learning rates γfcnormal

and
γcfnormal

. After wake learning, we simulate an extended period of sleep with 5000 replay periods in each
model. We then present each teacher model’s 5000 replayed sequences as inputs to train a different blank-
slate “student” model with learning rates γreplay.
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