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A fast algorithm for 3D volume reconstruction
from light field microscopy datasets
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Light field microscopy can capture 3D volume datasets in a
snapshot, making it a valuable tool for high-speed 3D imaging
of dynamic biological events. However, subsequent computa-
tional reconstruction of the raw data into a human-interpretable
3D+time image is very time-consuming, limiting the technique’s
utility as a routine imaging tool. Here we derive improved equa-
tions for 3D volume reconstruction from light field microscopy
datasets, leading to dramatic speedups. We characterise our
open-source Python implementation of these algorithms, and
demonstrate real-world reconstruction speedups of more than
an order of magnitude compared to established approaches.
The scale of this performance improvement opens up new pos-
sibilities for studying large timelapse datasets in light field mi-
croscopy.
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Light field microscopy provides snapshot 3D imaging of dy-
namic scenes via a lenslet array placed in the image plane of
the microscope, which casts a multi-apertured intensity pat-
tern onto a camera sensor. The mix of spatial and angular in-
formation about the target sample emission in this single raw
2D snapshot image allows 3D image reconstruction across
an extended depth-of-field (Fig. 1a), but only after intensive
computational processing (1). Solving this inverse problem is
extremely computationally demanding, traditionally requir-
ing the computation of thousands of Fourier transforms per
iteration. This requirement for high levels of computational
resource is particularly problematic given the attractiveness
of light field imaging for 3D time series (2–5), where a large
number of different timepoints must all be reconstructed.
Here we will demonstrate how to mathematically simplify
the light field reconstruction process, speeding up real-world
computation times by more than an order of magnitude, while
delivering identical output volume results.
The image reconstruction process is an inverse problem
that can be cast as a deconvolution. The spatially-variant
point spread function (PSF) of the light field microscope is
typically computed theoretically from wave-optics calcula-
tions (1, 2), and Richardson-Lucy deconvolution is then used
to estimate the 3D volume that gives rise to the measured 2D
intensity pattern observed on the camera sensor. The standard
Richardson-Lucy algorithm is described by the following it-
erative formula:

O
(i+1)
est = O

(i)
est ×HT

(
I

H(O(i)
est )

)
, (1)

although the widely-used light field implementation in (2)
uses an alternative variation (see footnote (6) for further dis-

cussion) where the error term is computed in object space:

O
(i+1)
est = O

(i)
est × HT I

HT H(O(i)
est )

. (2)

In either form, × denotes elementwise multiplication and the
fraction implies elementwise division; O

(i)
est is the estimation

of the 3D object to be reconstructed, at iteration i; I is the 2D
light field image recorded on the camera; H is the “forward
projection" operator mapping from the object O to the resul-
tant camera image I; and HT is the matrix transpose of the
operator H . The optical interpretation of HT leads to it being
termed the backward-projection operator. A typical starting
condition would be O

(0)
est = HT I , and Oest converges to an

estimate of the true object O over Niter ∼ 10 iterations.
The basic building blocks of the deconvolution problem are
therefore the forward- and backward-projection operators, H
and HT , which model the image formation process. In light
field microscopy these projection operators are expressed as
the sum of many separate convolution operations. Given
a three-dimensional object O consisting of voxels indexed
Oxyz , each pixel value Imn of a forward-projected image I
can be computed as

Imn =
∑
xyz

Oxyz ×Hmnxyz, (3)

where Hmnxyz are the matrix elements of the PSF applica-
ble to voxel x,y,z. To render the reconstruction problem
tractable, raw images are resampled such that footprint of
each lenslet in the lenslet array spans an exact odd integer
number of camera pixels, A. Thus any subpixel a,b at the
same relative position within any lenslet footprint will have
the same the point spread function (Fig. 1b). This simplifies
the problem, enabling Equation 3 to be rewritten as:

I =
∑
abz

Mab{Oz}⊗Habz (4)

where Mab is a masking operator which zeroes all pixels ex-
cept those in the image pixel group satisfying x mod A = a
and y mod A = b, and ⊗ is the convolution operator. Habz

represents the complete PSF for a voxel at coordinate a,b,z.
Thus the forward-projected image from an object consisting
of Z individual z-planes can be computed using a total of
A2Z convolution operations.
According to the convolution theorem, each convolution con-
sists of two Fourier transforms and one inverse, each com-
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Fig. 1. (a) Optical schematic of light field microscopy. (b) Pixel indexing relative to lenslet footprints. (c) Conventional projection operation for deconvolution (⊗ represents
convolution). (d) New fast projection strategy (⊛ represents a new custom operation - see main text).

puted using the Fast Fourier Transform (FFT) algorithm:

Mab{Oz}⊗Habz = F−1 (F(Mab{Oz})×F(Habz)) . (5)

Any strategy aiming for more than merely incremental per-
formance speedup of the overall calculation must speed up
all three of the FFT operations in this equation. Speeding up
any one of these on its own would be insufficient: even if the
run time for one of them on its own could be reduced to zero,
the overall run time would still only be improved by a factor
of ∼ 30%. In what follows we will demonstrate how to im-
prove the run time of each of these three operations in turn, to
achieve an order of magnitude speedup in computation time.
Our strategy is illustrated schematically in Fig. 1c-d.
The discrete Fourier transform of the masked object
Mab{Oz} involves a high degree of redundancy, since most
elements of this masked object array are zero. We ob-
serve that this problem can be simplified by generalising the
Danielson-Lanczos lemma (7, 8) to an A-way result. In one
dimension, the kth element Fk of the discrete Fourier trans-
form of a function f can be expressed in terms of A smaller
Fourier transforms:

Fk = F̃
(0)
k +(W )kF̃

(1)
k +(W )2kF̃

(2)
k +...+(W )(A−1)kF̃

(A−1)
k
(6)

where W = exp(−2πi/X) and F̃
(a)
k is the (reduced-size)

discrete Fourier transform of f̃ , where f̃ is a vector consist-
ing of only the nonzero elements of Ma{f}. Note that, in
the notation of Equation 6, k indexes the reduced-size dis-
crete Fourier transform F

(a)
k beyond its normal domain of

k ∈ [0,X/A), exploiting the periodic boundary conditions
implicit in the Fourier transform.
In our case the M operator ensures that only one of the A
distinct terms on the right-hand size of Equation 6 is nonzero.
Therefore, eliminating all the zero terms, generalising to two

dimensions, and summing over all image pixel groups a,b:

Fmnz =
∑
ab

(W )abmnF̃
(a,b)
mnz . (7)

Consequently, instead of requiring A2 FFTs that each oper-
ate over the full image size XY , we have reduced these to
operating on arrays of size XY/A2 (compressed arrays rep-
resenting image pixel groups each containing only those pix-
els retained by the Mab{Oz} operator). We have therefore
reduced the computational requirements of these FFTs by a
factor of A2. After computation of the FFTs, the weighting
multiplications in Equation 7 must still be applied, albeit in
an operation of reduced computational complexity O(XY ),
but overall the computational demands of computing Fnm

are dramatically reduced.
We now move on to consider the Fourier transform of the
point spread function Habz . H and its Fourier transforms
are invariant properties of the imaging system. If sufficient
memory storage is available, the Fourier transforms can be
precomputed once and the computation of F(Habz) elimi-
nated completely from Equation 4. However, given typical
values of A ≥ 15, Z ∼ 50 and megapixel images, tens or
hundreds of GB of memory would be required to cache all
the precomputed values. That may be feasible on some high-
end CPU-based platforms, but exceeds the capacity of most
GPU platforms. Nevertheless, even when precalculation is
not possible, our algorithm amortises the computation of each
Fourier transform across batches of multiple timepoints in a
time series dataset, reconstructing each batch concurrently.
We also exploit symmetry relationships in the PSFs, to per-
mit rapid computation of e.g. F(H(A−a)bz) once F(Habz)
has been computed on-the-fly.
Finally, by explicitly substituting Equation 5 into Equation 4
and exploiting the distributive property of the Fourier trans-
form, we can dramatically reduce the number of inverse
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Fourier transforms required:

Imn =
∑

z

F−1
∑
ab

F(Mab{Oz})×F(Habz). (8)

We note that in a practical implementation using a non-
circulant Fourier transform it is not feasible to further pro-
mote the inverse FFT outside the summation over z, because
the size of the intermediate arrays will vary according to the
lateral extent of Habz , and hence vary with z.
The backward-projection operator required for Richardson-
Lucy deconvolution is traditionally denoted HT in recogni-
tion that it is the transpose of the matrix operator H . How-
ever, in practice H and HT are both implemented as convo-
lutions (as per Equations 3-4). Hence we follow an almost
identical approach for the backward projection, starting from
the following equation in place of Equation 4:

Omnz =
∑
ab

Mab{I}⊗HT
abz. (9)

We note that during the one-time computation of H and
HT during initial optical modelling of the microscope PSF,
computing HT does not require additional convolution op-
erations as used in (2), and can instead be populated near-
instantaneously by pixelwise reshuffling of elements of H .
To achieve our anticipated order-of-magnitude speedup by
using Equation 7 to compute F(Mab{Oz}) in Equation 5,
it was necessary to write carefully-optimized custom com-
puter code, since the specific multiplication and tiling pro-
cess underpinning a practical implementation of Equation 7
is a performance bottleneck, and it is a highly bespoke oper-
ation that is not available in standard numerical libraries. We
have made available a high-performance open-source refer-
ence implementation of our complete light field reconstruc-
tion algorithm (9). It is written primarily in the Python pro-
gramming language, with performance-critical code written
in C++, cython (10) and CUDA, drawing on the FFTW li-
brary (11) to compute Fourier transforms in our C++ code.
To ensure maximum performance our code incorporates el-
ements of dynamic load-balancing between CPU cores, and
machine-adaptive runtime optimisations. We also provide a
demonstration of how it can be integrated as-is into existing
Matlab workflows (12).
Table 1 presents performance benchmarks for our light field
reconstruction code. For batch reconstruction of a light field
timelapse series, our new approach delivers a performance
gain of 8−35× compared to the widely-used MATLAB im-
plementation (2) based on Equations 2, 4 and 9, and for maxi-
mum speed computation can be offloaded to a consumer GPU
unit.
As explained above, our implementation performs optimally
when batch-reconstructing multiple timepoints in a time se-
ries dataset simultaneously. Nevertheless, even with a non-
optimal batch size of 1 we note that our implementation al-
ready outperforms existing implementations (Table 1). Fig. 2
explores the relationship between overall run time and batch
size for our code, revealing a clear linear-plus-baseline scal-
ing law. Regardless of batch size, a fixed amount of compu-
tational work must be performed to compute F(H). This

System CPU/ Batch This work (2) Speedup
GPU size

A 8xCPU 32 78.4 1075.9 14×
A GPU 24 5.6 194.5 35×
B 16xCPU 32 30.34 -
C 4xCPU 32 140.0 1095.6 7.8×
A 8xCPU 1 628.8 1075.9 (1.7×)
A GPU 1 19.0 194.5 (10×)

Table 1. Measured run times (in seconds per frame) for reconstructing a light field
timelapse series, showing speedups of 8 − 35× compared to the existing state-of-
the-art (Ref. (2)). The test parameters, representative of a typical light field imaging
scenario, are specified in (9). Run times are also shown for a batch size of 1, as
discussed in the main text, although that scenario does not allow our algorithms to
perform at their fastest.
System A: 8 core Intel Xeon, 3GHz, 32GB RAM.
System A GPU: PNY Quadro RTX A4000, 1.56GHz, 16GB RAM, 224.03GB/s.
System B: 16 core Intel Xeon, 3.2GHz, 256GB RAM.
System C: 4 core Intel Core i5, 2.5GHz, 16GB RAM.
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Fig. 2. Performance scaling with batch size, showing trend of constant baseline
work (computing F(H)) plus linear scaling of additional work per batch item. Dat-
apoints are measured run times (System A as specified in Table 1) and trendlines
are a fit to a linear scaling model.

baseline work can only be eliminated completely if suffi-
cient RAM is available to cache pre-calculated values for all
F(H), which can extend to hundreds of GB. The total addi-
tional work (computing the other elements of Equation 4 via
Equations 7 and 8) scales linearly with the batch size. Hence
there is a clear advantage to our amortising the constant work
across simultaneous deconvolutions of multiple timepoints.
In our GPU implementation we measure that the linear-
scaling work is more substantial compared to the baseline
work of computing F(H), probably due to the challenges of
developing optimized CUDA kernels to implement the highly
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Fig. 3. Performance scaling with number of parallel CPU threads, showing run-time
improvement with increasing number of parallel threads (System B as specified in
Table 1). Multithreading efficiency is defined as 1.0 for a case where the measured
time for an n-thread scenario is n times as fast as the 1-thread time.

specific custom operations embodied in Equation 7. This
means that there are diminishing additional benefits to in-
creasing the batch size beyond 8 on a GPU, which happily
in turn means the RAM requirements are lower on a GPU,
where RAM is typically scarcer.
Fig. 3 confirms that our implementation scales well when the
work is parallelised across multiple CPU cores: the bench-
mark run time with 16 parallel threads was over 12 times
faster than the single-threaded run time. The small decrease
in efficiency (i.e. speedup being slightly less than n times
when using n threads) can be explained by the increased pres-
sure that multithreaded code imposes on the system’s mem-
ory bandwidth. The slight anomaly in efficiency for 2 threads
is likely related to the dual-CPU architecture of the testbed
system.
While many researchers continue to prefer the mathemat-
ically precise reconstruction afforded by the classical ap-
proach of Equation 2, others are researching the use of
machine-learning to estimate the object from the raw cam-
era image (5, 13–15). The aim of such research is to compute
an object estimate that is as faithful as possible to the true
object, while using less computational time than required to
explicitly compute Equation 2. Some approaches commence
with a limited number of Richardson-Lucy iterations (13) or
use direct optical modelling during the training phase (5);
computational performance in both these scenarios will ben-
efit directly from our new results. Pure machine-learning
based approaches also stand to benefit from our results:
machine-learning architectures in imaging are commonly
based around convolutional neural networks, and it is increas-
ingly recognised that networks perform better and can be
trained faster when the network structure encapsulates phys-
ical insights into the image formation process (14, 15). Thus
the mathematical insights behind our results hold promise for
improving performance and effectiveness of future machine-
learning architectures for light field microscopy reconstruc-
tion.
In summary, we have presented mathematical results en-
abling a dramatic reduction in computational work for 3D
image reconstruction in light field microscopy. The results

and approach we have presented here are potentially applica-
ble to any multi-aperture computational imaging system with
a space-variant PSF endowed with translational symmetry
properties. We have made available an open-source imple-
mentation of our algorithms (9), with performance measured
to be more than an order of magnitude faster than previously-
available codes. We anticipate that our algorithms and open-
source implementation will lead to an expansion in the up-
take of light field microscopy as a tool for 3D+time imaging
of rapid biological processes, now that the excessive com-
putational demands of the reconstruction process have been
brought under control.
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Data availability
The computer code and test datasets underlying the results
presented in this paper are available at Refs. (9, 12).
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