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 50 
Abstract 51 
Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA 52 
applications in biology encode high levels of abstraction in top-down ecological population models. In contrast, 53 
our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate 54 
molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of 55 
Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside 56 
insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits 57 
complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control 58 
CI, CI factors (cifs), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, 59 
binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model 60 
helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear 61 
localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, 62 
whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our 63 
model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS 64 
signals can stochastically vary, imparting effects that might impact CI induction mechanics.  Our model highlights 65 
how preconditions, genetic diversity, and sequence length can bias evolution of cifs towards one mechanism or 66 
another. 67 
 68 
Introduction 69 
TA systems typically involve two linked genes encoding a toxin and antidote.1 They skew Mendelian inheritance 70 
in their favor by addicting organisms to the presence of an antidote and killing offspring that don’t inherit the TA 71 
module, via the toxin. Thus, they ensure inheritance in the next generation by post segregational killing. 72 
Ancestrally, TA systems might have arisen as selfish systems linked to the replication of prokaryotic plasmids.2 73 
How TA systems evolve is a chicken-egg paradox: a lone toxin is detrimental to host fitness and an antidote 74 
without a linked cognate toxin could be beneficial, neutral, or detrimental, dependent on context. Prior models 75 
predict that TA systems evolve at lower levels of selection on plasmids; in contexts of genomic conflict or in 76 
situations where antidotes have beneficial functions in addition to toxin rescue.2  77 
 78 
Wolbachia are bacteria that live inside insects.3-5  Wolbachia have the capability to sterilize mosquitos in a 79 
phenotype called CI.6-10 CI is a unique biological instantiation of a TA system. The CI phenotype is useful 8,11,12. 80 
CI is currently applied as a biocontrol mechanism preventing the transmission of mosquito borne diseases across 81 
the world and on multiple continents in various applications. Mosquitos infected with Wolbachia exhibit reduced 82 
ability to transmit flaviviruses like Dengue and Zika 13,14. Ongoing attempts use the selective pressure of cifs to 83 
spread beneficial (probiotic) Wolbachia infections into wild mosquito populations to limit disease 15. At the 84 
molecular level, the beneficial spread of Wolbachia is linked to the function of cif TA genes. 85 
 86 
Much of the evolutionary dynamics of CI has been well described at the population level. CI is common because 87 
it increases equilibrium frequencies and infection persistence, thereby increasing the chances of Wolbachia 88 
being transferred to new species hosts.16 Yet in the insect, selection does not act to preserve or increase CI 89 
rates.17 Importantly, evolutionary dynamics and selective pressures operating at the lowest molecular level and 90 
at the moment CI emerged in evolutionary history have never been described.  91 
 92 
The genes that control this conditional sterility are two linked genes dubbed cifs that form complex TA systems.18-93 
20 Uniquely, this TA system is both bacterial and eukaryotic because it is encoded within intracellular bacterial 94 
endosymbionts yet expresses extended phenotypes impacting the eukaryotic insect host. Cifs are uniquely 95 
positioned in that their evolutionary origin necessitates a functional jump from bacteria to eukaryotes. The cif TA 96 
system encodes a sperm delivered embryo killer toxin and a cognate rescuing antidote. If the insect host loses 97 
Wolbachia, remaining toxin sterilizes males, and these populations don’t reproduce. Therefore, female insects 98 
keep Wolbachia because the antidotes are useful in the presence of toxins encountered in male sperm. 99 
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Importantly, purifying selection does preserve the cif antidotes;21-23 and on lower levels in the context of genomic 100 
conflict, selection can act to assemble the biochemical domains of toxin antidote systems.2 Though once 101 
assembled, selection on the insect level does not act to preserve the bacterial toxins which tend to pseudogenize 102 
and/or are replaced by subsequent invading cif systems.24,25 103 
 104 
While molecular details on CI function are emerging, one problem is that rules governing induction of sterility via 105 
the Wolbachia TA system are debated. In general, the system behaves as a classical TA module, meaning one 106 
gene named cifB is inducer and its cognate partner cifA acts as antidote.20 However, there remains unresolved 107 
nuance in the mechanism. Currently all data support the hypothesis that the first operon gene, cifA, is 108 
antidote.19,26 However, induction of CI and the exact source of the toxicity appears more, or less, complex in 109 
various models. The two main models each have empirical evidence to support them. These models are the TA 110 
model20,27,28 and the 2x1 model.29,30 The TA model is more parsimonious and significant evidence supports it in 111 
fruit flies, mosquitos, yeast models, and structural studies19,31-36. In contrast, the 2x1 model posits that a single 112 
gene acts as rescue factor, but induction of sterility requires both cifA and cifB genes.29,37 113 
 114 
Our hypothesis is that both models coexist in nature as alternate variations of the broader TA theme. These 115 
variations might arise as CI evolves from a simple prokaryotic TA module into a eukaryotic CI system (see Fig 116 
1A and B). To explain, induction of sperm sterility in a eukaryote via a prokaryotic TA module necessitates the 117 
evolution of additional functions beyond toxin and antidote. In support of this hypothesis, prior models predicted 118 
that beneficial functions in addition to antidote functionality are prerequisites for TA module emergence.2 In our 119 
case, Wolbachia must first secrete the toxin out one of its Sec-independent secretion systems; for the remainder 120 
of this study, we implicate the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) for CI protein 121 
secretion. T4SS substrates require a signal sequence, usually found at the C-terminus. Once secreted, the toxin 122 
must localize into the nucleus via a nuclear localization signal (NLS). There is a likely possibility that binding of 123 
cifA to cifB occurs prior to secretion and thus one protein might drag the other through a given secretion system.  124 
Under this hypothesis, it is possible that T4SS and NLS sequences could evolve in either antidote or toxin genes 125 
in different insect hosts. If the cifA antidote acquires an NLS and T4SS signal but cifB has neither, this leads to 126 
additional complexity in the system necessitating cooperative induction of sterility by cifA and cifB (hence a 2x1). 127 
While most empirical work evidences a strict TA in four known orthologs (cidwPip, cidwHa, cinwNo, and cinOtt), there 128 
is indication of 2x1 in two systems (cidwMel and cinwPip). Our research did not focus on determining if one model 129 
was correct at the complete expense of the other, but rather seeks to understand evolutionary pressures and 130 
selective mechanisms that might bias evolution of one model over another. Understanding the precise molecular 131 
mechanisms underlying the cif TA system and its evolution contributes information to “fine-tune” Wolbachia 132 
based biocontrol. Once we have perfect knowledge for how the cif TA sterility is induced, we can design the 133 
most efficient and parsimonious transgene insertions to reconstruct sterility in transgenic mosquitos as a 134 
biotechnological tool (i.e., with 2 genes or 1). 135 
 136 
It was our goal to gain insights on the molecular evolution of CI by modelling CI’s emergence with an 137 

evolutionary algorithm. Using EAs to model natural evolution has been a productive application.38-41 Modelling 138 

gene drives in mosquitos with EAs and machine learning provided insights that predicted efficacy of actual 139 

biocontrol tools.42,43 However, biological evolution can be modelled by EAs at different ecological levels. 140 

Various abstractions and assumptions are made by any given model. EAs are typically top-down ecological 141 

models modelling populations of organisms. Top down EAs model gene flow of beneficial or deleterious traits. 142 

Within populations, each organism can be assigned a fitness value. Organisms and their genes can then mate, 143 

recombine, mutate, and die. These EA implementations tend towards Wright-Fisher models and often obey set 144 

rules. These models are useful for questions on evolutionary theory and adeptly model gene drives and 145 
selective sweeps, etc. However, the actual coded implementations are often abstract and difficult to translate 146 

into the evolution of amino acid sequence. 147 

 148 

Popular bottom-up EA frameworks that modeled evolution upwards towards complexity are also abstract 149 

because they implemented computer assembly functions like “push” and “pop” as analogies of protein and 150 

metabolic pathways.38,44 These studies have demonstrated that in bottom-up simulations, simple functions can 151 

give rise to more complex functions (like add and multiply) through evolution; however, these are abstract 152 
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analogies, not actual DNA code. There is a gap in implementations of bottom-up biological models. Bottom-up 153 

implementations could implement DNA code as the starting point and model how code changes. A bottom-up 154 

implementation should instantiate the lowest levels of selection on actual genes45 and test the lowest level of 155 

function which is protein translations of that code. The in-silico genes could be mutated and recombined as 156 

actual DNA molecules and fitness can determined by bioinformatic algorithms comparing string sequence 157 

similarity to proteins of known function. Our coded framework presented herein is novel in this respect.   158 

 159 

EAs are perfect for studying protein string evolution because the search space of protein strings is vast 160 

(considering 20 possible amino acids and strings in lengths of thousands = 201000 unique strings). Research 161 

implementing codon based EAs is in early stages.46-49 For example, a few studies tested machine learning 162 
guided mutations and used EAs to design novel antimicrobial peptides (AMPs).46,48,49 These researchers 163 

guided evolution from known AMP strings rather than evolving novel de-novo protein strings. These studies 164 

provide some support for the concept of using sequence similarity as a proxy for fitness. Here we use 165 

sequence similarity to cif consensus sequences as fitness proxy to process simulations orders of magnitude 166 

faster than possible with bioassay. To gain a better understanding of cif evolution, we encoded cif TA genes 167 

directly as chromosomes within an EA and observed the evolution of their strings (see Fig 1C and D).  168 
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 194 
 195 
 196 

 

Figure 1: Background infographic. A. Schemas of Wolbachia TA modules in a more ancestral prokaryotic form. To evolve into 
CI systems, ancestral TA modules must add more complex features including an NLS (+ black circle) and a T4SS (+ cyan 
circle). B. CI system schemas might evolve into two descriptive models which include the 2x1 and strict TA model. The location 
where NLS or T4SS features evolve could impact the mechanistic induction of CI. A CI schema where both NLS and T4SS 
features co-occur in cifA alone is predicted to require both cifA and cifB for induction. In contrast, if these features co-occur in 
cifB, then cifB would be sufficient for induction of CI and behave as a strict TA module. C. In-Silico simulation of this evolution 
requires an initial instantiation of a population of TA strings. Our experiments tested three distinct methods of instantiation that 
include (i) instantiating random strings, (ii) instantiating semi-random strings comporting to conserved cif consensus sequence, 
and (iii) instantiating a single individual and deriving an entire population by mutagenesis of that founder. D. After instantiation 
of the population, it evolves under the selective pressure of a fitness function and follows discrete generations. Our algorithm 
selects parents by K-tournament and distributes these individuals into a mating pool. Offspring are generated by recombination 
of parents wherein two strings swap discrete sub-strings to create a new child. After recombination, child strings are mutated. 
Fitness of the TA is then evaluated, and survivors are selected based upon truncation survivor selection. In truncation, the 
population is sorted and the lowest fitness individuals that fall below a threshold are culled such that population numbers remain 
at the carrying capacity. The algorithm terminates after 1000x generations. 
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Figure 2: EA parameters were optimized for evolution and computational speed. A. Population parameters were pre-tested to configure 197 
population (μ) and offspring (λ) sizes for subsequent larger experiments. Parameters (Y-axis) and best individual fitness (X-axis) were 198 
logged after 100 generations of simulated evolution. We chose 5K/100 [see hashtag (#)] for population/offspring (μ/λ) because it yielded 199 
high fitness, diverse outcomes, and fast computation time. B. EA parameters were tuned by recording best fitness after populations [μ/ 200 
λ: 1000/100] were evolved for 100 generations. A baseline configuration (asterisks, *) was held constant while individual parameters were 201 
varied. Choosing the highest yielding fitness configuration for each parameter is shown at bottom as the “optimized EA”, though this was 202 
not necessarily the best because parameters exhibited interdependence. The optimized EA and baseline with 4-point crossover 203 
recombination evolved significantly better than baseline p<0.0001 by One-way ANOVA with Tukey post-hoc analysis. We used the 204 
baseline configuration with 4-point crossover recombination for subsequent experiments. Results show means and standard deviation 205 
from five trial runs after 100 generations.  206 

 207 
 208 
 209 
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Materials and Methods 210 
 211 
EA Design. An overlapping generations (μ+λ) EA was coded in Python 31 where population size (μ) was 5000 212 
individuals and offspring (λ) was 100. Other variations were tested (see Fig 2A). Within the EA, code classes 213 
included an EA class (running the EA simulation functions, main methods, and data logging capacities), a TA 214 
class (housing the chromosome instantiations), and a main driver. The driver receives input from an editable 215 
JSON configuration file. All configuration files and outputs were saved and stored for reproducibility. The random 216 
seed is configurable for reproducibility.  217 
 218 
EA Class. EA algorithms are stochastic in nature. Evolutionary trajectories can proceed down different routes 219 
or converge. Thus, our main EA experiments consisted of 30 runs each (Figs 3 and 4). Main methods within the 220 
EA class included class resets (to reset logs and class variables after each run); population instantiations 221 
[including i), ii) and iii) see Fig 1C]; sorting functions that sorted TA populations based on fitness; parent selection 222 
methods (which finally used K-tournament of K = 5 after preliminary testing; see Fig 2B). K-tournament selection 223 
runs multiple fitness tournaments among a few individuals chosen randomly from the population. Winners of a 224 
tournament with the best fitness are sent to the mating pool array to be selected for recombination. In 225 
experiments recombination used 4-point crossover recombination, but we tested other modes (Fig 2B). Mutation 226 
methods utilized an algorithm that randomly locates DNA base pairs and flips to a random choice of A, T, G, or 227 
C. Mutation also encoded insertion and deletion functions with randomly sized indels. The mutation method 228 
evaluates fitness by calling the fitness evaluation method from the TA class (see below). After fitness evaluation, 229 
survivors were selected via truncation survivor selection. Other survivor selection regimes were tested (Fig 2B). 230 
Truncation sorts the population and culls the lowest fitness individuals in a number equivalent to the number of 231 
offspring added per generation. Thus, carrying capacity remains constant at μ = 5000. Data logging functions 232 
were encoded, for example, calculateAverageFitness(), which tallies an average TA fitness. A termination 233 
condition method was coded but not used in final experiments. Logs were recorded in output files and saved. 234 
We tracked 15 quantifiable observations: 1) highestTAFitness_HTF, 2) avgBindingFitness_ABF, 3) 235 
avgDUBFitness_ADF, 4) avgNucFitness_ANF, 5) avgTAfitness_ATF, 6) avgToxinLength_ATL, 7) 236 
avgToxinAALength_ATAL, 8) avgAntidoteLength_AAL, 9) avgAntidoteAALength_AAAL, 10) 237 
avgTAMutationRate_ATMR, 11) avgNLSSITELocation_NLSL, 12) avgTypeIVSITELocation_TYPL, 13) 238 
avgNLSFitness_ANLSF, 14) avgT4SSFitness_AT4F, 15) diversityIndex_DI. To briefly explain algorithmic 239 
terminology in Fig 2., FPS is fitness proportional parent selection which assigns mating probability as 240 
proportional to fitness; Elitism ranks parents on fitness and sends the most fit individuals into the mating pool, K-241 
tournament is described above, recombination swaps DNA from two mated individuals at 1, 2, 3, 4, 6, or mixed 242 
points respectively; mating choice sorted sorts the mating pool and individuals mate with a partner closest to 243 
their fitness score, mating choice random allows individuals within the mating pool to randomly pick any other 244 
mate in the population; mating choice mating pool allows random choice of mates from within the mating pool 245 
only; mating choice mixed rolls a dice and chooses any method stochastically, mutation rate number indicates 246 
the number of dice rolls each individual child undergoes for chances to iteratively mutate the chromosome (the 247 
dice is an equal probability of 4 options to do nothing, bit flip, insert, or delete), truncation is described above, re-248 
instantiation is a method to maintain diversity and it instantiates new TA modules from scratch and allows them 249 
to immigrate into the population at a set OKach generation.  250 
 251 
TA Class. TA class individuals were instantiated with chromosomes encoding the string toxin and string antidote 252 
in DNA code. TAs additionally hold class variables including a nuclease score (measuring how well the toxin 253 
schema matches a known cin toxin consensus sequence) and a deubiquitylating (DUB) score (measuring how 254 
well the toxin schema matches a known cid toxin consensus sequence).50 They also hold a NLS score which is 255 
determined by presence or absence of a “KRAR” string 51 and a T4SS score determined by presence or absence 256 
of a “R-X(7)-R-X-R-X-R” string.52 All functional domains including nuclease domain, deubiquitylating domain, 257 
NLS, and T4SS signals are detected through a pairwise alignment algorithm and can be given partial scores if 258 
parts of the sequence are present. Pairwise alignment is built into the EA by importation of the Biopython2 259 
module’s pairwise2 method. “Biopython is a set of freely available tools for biological computation written in 260 

 
1 https://www.python.org/ 
2 https://biopython.org/ 
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Python by an international team of developers.” The pairwise2 method is called with a -1 gap penalty, a -0.1 gap 261 
extension penalty, and a false condition so that end gaps are not penalized. A binding score (measuring how 262 
well the pair bind each other) is determined by our own algorithm. This algorithm is based on a sliding window 263 
that slides two strings together in comparison to find and tally a score of the best matching residue configurations. 264 
Precisely 11 charged residues are known to underlie cifA and cifB binding 35. Therefore, if a sliding window 265 
detects an alignment of K with D, a score would be increased by 1 and the process continues. Repelling charges 266 
are penalized by -1. A total matched binding sequence shouldn’t exceed 11 binding residues in accordance with 267 
crystal structure data.35 Class methods within the TA class include standard “getters” and “setters” (i.e., 268 
setSchemata() which instantiates the toxin strings), a translation method that translates the DNA code into 269 
proteins, a coded number parser to facilitate binding evaluations with integers rather than strings (to speed up 270 
computation), sub component fitness evaluation methods, and a “to string” reporting method. 271 
 272 
Main Class. The main driver simply imports and stores the JSON configuration files. It instantiates the EA class. 273 
Finally, it initiates the simulation. 274 
 275 
Calculating Fitness. The fitness function for an individual TA pair is defined as the sum of its binding score, 276 
nuclease score, deubiquitylating score, NLS score, and T4SS signal score. Each sub-component fitness can 277 
maximally be 1 and therefore the max fitness of a perfect TA is 5. To elaborate precisely on how sequence 278 
similarity is used as a proxy for fitness, we describe the situation for DUB fitness. The DUB domain is a catalytic 279 
sequence of amino acids that conforms to a schema. The DUB schema in cifs is precisely, "HWVTLVI---------280 
YY-DSL--------I---L-----D---------QQ-DG---CG----EN", where dashes (-) are interchangeable spaces (don’t cares) 281 
and letters are requirements of specific amino acids in specific positions. A perfect alignment score of 1 for a cif 282 
DUB would match this schema. Anything not conforming to the schema is penalized by the alignment algorithm 283 
for gaps and mismatches. The schema for the nuclease domain is as follows, "DL-LL-R----------PIIIELK-----------284 
----------DLVL----------PIGLELK". These two consensus schemas were originally derived directly from compilation 285 
of diverse CI and CI-like toxins.50 Schemas for NLS and T4SS signals are also pulled from literature and listed 286 
on the preceding TA Class description. Thus, by using sequence similarity to conserved schemas and the binding 287 
algorithm (described above) we can sum elements for a perfect TA fitness score of 5. Parsimony pressure is 288 
applied if a TA genome exceeds a threshold of 4,500 DNA base pairs (this is an estimate of average cif TA size) 289 
and pressure increases corresponding to the length of the additional extraneous code. Parsimony pressure thus 290 
acts to minimize the coding length of TA pairs and accurately reflects selective pressures inducing reduction of 291 
Wolbachia genomes. In toto, a final fitness score involves the sum of the five functional component scores with 292 
a penalty function subtracting a coefficient parsimony penalty based on sequence length. All code is publicly 293 
available for inspection and reuse on github. 294 
 295 
Experimental setup. The EA evolves populations of TAs and evaluates their fitness. Simulations were 296 
initialized via three distinct methods described in Fig 1C. How the simulation is initiated impacts the levels of 297 
inherent diversity in the starter population. Methods i-iii decrease in starting diversity from most to least 298 
respectively. After 1000 generations the simulation is terminated, and data collected. Data collected is given 299 
above and was graphed in Graphpad’s Prism software. Experiments were conducted with 30 runs each. 300 
 301 
Statistical Analysis. For experiments generating multiple comparisons like optimizing the EA (Fig 2 and 3) we 302 
employed one-way ANOVA with Tukey post-hoc analysis using Graphpad Prism software. We compared values 303 
present at the final generation at termination of the simulation. P-values were considered significant if less than 304 
the standard 0.05. In Fig 4. terminal data were compared using unpaired two-tailed t-test with Welch’s correction. 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
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Results and Discussion 314 
 315 
Validating and Tuning the EA’s Fitness Function. One prerequisite of implementing an EA is an ability to 316 
evaluate fitness of individuals. A protein’s function and thus its fitness is encoded in primary structure (amino 317 
acid strings). Protein function can be predicted by comparing strings to others with known function. Therefore, 318 
we use sequence similarity to cif domains as a proxy of fitness and thereby apply selective pressure. In our EA 319 
an individual in-silico cif is constituted of the two DNA genes and their translated protein strings. Many individual 320 
TA pairs are instantiated within populations. The EA mutates and recombines them exactly as DNA can mutate 321 
and recombine. Fitness of individual TA pairs is modelled as a sum of 1) how well a toxin can kill a cell (based 322 
on sequence similarity to known killer toxin domains from cins and cids) and 2) how well the antidote binds its 323 
partner toxin (modelled as matching charged residues within cognate TA pairs). Additionally, we add 3) NLS and 324 
4) T4SS signal domains as additional summed components of fitness. We then quantified where NLS and T4SS 325 
signals evolved during simulations (in cifA or cifB) and tracked biased emergence of 2x1 versus TA. 326 
 327 
After initial design (Fig 1), coding, and parameter optimization (Fig 2), we determined that the EA evolved 328 
efficiently and observed that population sizes of 5000 individuals with offspring sizes of 100 individuals were 329 
optimal because they yielded high fitness, diverse outcomes, and fast computation time (Fig 2A). These 330 
assumptions have flaws (for example nature isn’t an algorithm that optimizes parameters to speed up 331 
evolution; discussed below), but these settings served as a starting point.  Next, we tested different algorithmic 332 
methodologies for parent selection, recombination, mutation, survivor selection, and a “re-instantiation” method 333 
immigrating  10%, 1%, or 0% de-novo individuals (described in methods). Results show means and standard 334 
deviation from five trial runs after 100 generations. Our goal was to determine optimal algorithms for 335 
maximizing cif fitness within simulation time periods. After observing EA behavior, we determined to use a 336 
“baseline” configuration of K-tournament selection where K=5 for parent selection. Selected parents are 337 
transitioned to mating pool where mating only occurs between individuals within that selective sub-population. 338 
Mating of TA parents is implemented with 4-point crossover recombination with a self-adaptive mutation rate to 339 
generate offspring TAs. The self-adaptive mutation rate is encoded within an individual’s chromosome and can 340 
change if higher or lower mutation rates contribute to better fitness. Offspring TAs are loaded back into the 341 
main population (µ+λ) and compete for survival via truncation, which culls the lowest fitness individuals. 342 
Subsequent experiments used these conditions unless otherwise specified.   343 
 344 
Tracking Evolution of cif Domains Shows that NLS and T4SS Signals are Quick to Evolve. We 345 
performed three large experiments based upon three methods of instantiating populations. Our intention was to 346 
determine if starting preconditions biased preferential evolution of NLS or T4SS signals in cifA versus cifB. Any 347 
bias might indicate conditions under which 2x1 or strict TA mechanisms would be the result of that given 348 
evolutionary process. In these first tests, the EA successfully evolved and evaluated the fitness of TA modules. 349 
In all experiments fitness of individuals gradually increased towards 5 (Fig 3A, F, K). This control indicates that 350 
our code performed as designed. The initial lag observed in Fig 3K is a direct result of the instantiation method 351 
used, wherein the population was instantiated by mutation from an initial founder with poor fitness. All three 352 
simulations show a start at low average TA fitness which improves as more successful TAs evolve and 353 
overtake the population.  354 
 355 
We tracked each sub-component of fitness including nuclease, DUB, NLS, and T4SS signal evolution (B, G, 356 
L). These data also indicate our code works correctly as fitness of each sub-component increases with each 357 
generation towards a max score of 1. Importantly these data also indicate the inherent complexity of each sub-358 
component and clearly show that NLS and T4SS signals are relatively quick to evolve in simulations (Fig 3; 359 
green and orange lines respectively). Binding is of intermediate complexity and arises slower (Fig 3; yellow 360 
lines). Nuclease and DUB catalytic domains are slow to evolve and do not completely reach perfect consensus 361 
sequences within the timeline of the evolutionary experiment (Fig 3; black and purple lines respectively). 362 
These data are in concordance with the given complexity of the domains. For example, the NLS is only 4 363 
residues (“KRAR”) whereas max binding fitness requires 11 matching residues in both toxin and antidote, and 364 
consensus sequences of catalytic domains must match 23 conserved residues within their schemas.  365 
 366 
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The five components’ relative evolvability (or inherent speed of their evolution) indicates that CI systems might 367 
frequently lose, replace, adapt, and move NLS and T4SS signals, whereas binding and catalytic domains are 368 
more likely to remain conserved in-place due to difficulty of evolving them in the first place. If they are 369 
destroyed, they cannot quickly be replaced, whereas NLS and T4SS signals might be “fungible”. We note that 370 
a full spectrum of T4SS signals has yet to be identified and these diverse domains perhaps encode room for 371 
self-adaptive ambiguity.52-56 372 
 373 
These data indicate that both strict TA and 2x1 systems could co-exist and might even inter-convert between 374 
mechanisms on evolutionary time scales with drift, mutation, and recombination. These in-silico observations 375 
are congruent with empirical literature demonstrating both systems are apparently extant.19,26,29,32,36,37 376 
Cautiously, we note that these observations are premised on assumptions that there must be some conditions 377 
selecting for the evolution of CI; these ecological conditions are not yet completely defined17,24,25 yet must exist 378 
under some context that gives rise to CI and cifs; perhaps amongst discrete spatial limitations and genomic 379 
competitions.2 Importantly, our model simply justifies how multiple CI mechanisms might evolve to coexist on 380 
the amino acid level. 381 
 382 
Parameters of Simulations Bias Evolution of TA versus 2x1. When we measured where NLS and T4SS 383 
signals evolved (in cifA or cifB) under three different starting conditions (random, consensus, and founder; see 384 
Fig 1C and D) we detected biases in the evolutionary trajectory of one model over another (Fig 3D, I, N, E, J, 385 
O). After random instantiation (method i.) both NLS and T4SS signals’ scores were slightly less than 0.5 386 
indicating a slight preference for evolution of those sequences in cifA genes. After semi-random instantiation 387 
(method ii.) there was strong bias to evolve the T4SS within cifA genes indicating a bias towards 2x1. Only in 388 
the third method did both NLS and T4SS signals preferentially evolve in the cifB gene, thereby indicating bias 389 
towards TA mechanisms. Each method showed statistically different termination conditions for T4SS locations 390 
with all p-values < 0.05. Method i significantly differed from method iii with respect to termination condition of 391 
NLS signal. Importantly, these results indicate that our model can detect significant evolutionary bias towards 392 
one mechanism over another. 393 
 394 
We next sought to understand the conditions that drove biased evolution of one mechanism over another. To 395 
monitor genetic diversity within the populations we tracked a diversity index, which was determined by 396 
randomly sampling 10 toxins from the population each generation and calculating the average similarity of 397 
those ten toxins’ amino acid strings. In populations where individual TAs fix and overtake the population, 398 
diversity decreases to zero (Fig 3C, H, and M). After 1000 generations, most populations are overtaken by one 399 
or a few TAs of high fitness. In method iii, which resulted in biased evolution of strict TA systems, the diversity 400 
index was lowest (see Fig 3M). We tested whether diversity directly drove bias by altering the relative levels of 401 
genetic diversity within the population. We controlled this by simply changing population size (µ). Smaller 402 
populations carried less diversity (Fig 4A). The relative diversity did alter the course and path of evolution, but 403 
not the outcome, which converged (Fig 4B and C). We next tested whether length of the toxin protein impacted 404 
the outcome. When we doubled the size of the average size of the toxins, we significantly raised the bias of the 405 
model towards the TA model (Fig 4). We discuss the theoretical impacts of these observations below. 406 
Importantly, these observations demonstrate that we have successfully encoded an EA that evolves and tracks 407 
cif amino acid evolution.  408 
 409 
Overall, our model sheds some light about conditions that might bias the evolution of one model over another 410 
and hence explain why four studied orthologs appear to operate as strict TAs, but two orthologs seemingly 411 
behave in a 2x1 fashion. Only the third instantiation method exhibited tandem bias of NLS and T4SS evolution 412 
in cifB genes, indicating strong preference for a strict TA functionality. Notably, this model had the least 413 
diversity within its population and likely reflects more accurately the actual evolution in Wolbachia systems 414 
where an insect is colonized by a founder strain and diversity is only rarely encountered in sporadic co-415 
infections that only occur rarely in evolutionary history, but are likely the source for CI gene evolution if phages 416 
exchange genes during coinfection. Therefore, our analysis can explain the observed bias in favor of strict TA 417 
functionality by about 60% of studied cif orthologs; notably in our simulation method iii) the bias was also about 418 
60%. To be cautious, however, we note that only ~6 ortholog TA pairs have been studied in detail and it 419 
remains to be seen whether the observed frequency of TA or 2x1 functionalities is some relic of sample bias. 420 
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Future studies will utilize this framework to determine more conditions that give rise to 2x1 versus TA systems. 421 
 422 
To elaborate on the question of which instantiation method is more biologically realistic, we suggest the 423 
following thoughts. One assumption is that a prokaryotic TA model preceded the evolution of CI. There is 424 
evidence for this in the fact that cif operons have been observed within plasmids of Rickettsia (a sister lineage 425 
of Wolbachia), lending plausibility to the hypothesis that CI emerged from an ancestral prokaryotic TA plasmid 426 
selection system.50 If this hypothesis is correct, method i) random instantiation, is not biologically relevant as it 427 
begins selection on all four components simultaneously from completely random sequences. In contrast, 428 
method ii) assumes a prokaryotic TA system already exists and reasonably comports with some known toxin 429 
consensus sequences then selects for the addition of NLS and T4SS signals in the jump from prokaryotic TA 430 
to eukaryotic CI. This method is biologically relevant only for the first emergence of CI’s evolution in deep 431 
evolutionary history. In that situation and according to the data observed here, this model shows preference for 432 
the evolution of 2x1 systems, but not to the complete exclusion of TA systems. After emergence of TAs, our 433 
model’s data predicts they flux periodically from 2x1 to strict TA. 434 
 435 
Increasing Length of Toxin Biases Evolution Towards TA mechanisms. Instantiation method iii), where a 436 
population is generated by a founder, more accurately reflect the day-to-day evolution of Wolbachia organisms 437 
in their hosts. In each insect, the Wolbachia encountered will be entirely derived from the ancestor of that 438 
infection and therefore recombination with sequences of radically different cifs is unlikely, though not 439 
impossible due to mobility of WO phage viruses and infrequent co-infections. Method iii) most accurately 440 
reflects these conditions and in this model, there was strong bias towards the evolution of strict TA functionality 441 
(Fig 3). This suggests that over time, most (~3/4) CI systems should end up in a state of strict TA functionality 442 
with some variation induced by ongoing flux of NLS and T4SS signals. One of the key factors seemingly 443 
controlling this evolution is simply the length of the corresponding antidote and toxin (Fig 4). Because the NLS 444 
and T4SS signals are of low complexity and evolve quickly, stochastically they should simply arise more often 445 
in what is the longer gene of the pair. Of all syntenic cif operons, the length of the toxin is always longer than 446 
the length of the antidote. This also indicates a simple bias toward strict TA if NLS and T4SS signals simply 447 
drift into the larger ORF. Biology is complex, yet factors having the biggest role in these mechanistic biases 448 
might be as simple as gene length. However, sequence length doesn’t explain everything about the model. In 449 
data from method ii), where the strongest bias towards 2x1 was observed, the toxins and antidotes on average 450 
are the same size. Therefore, size does not account for all the forces driving bias in either direction. 451 
 452 
Conclusions, Future Directions, and Limitations. The hypotheses and take-homes from our model are thus: 453 
1) CI might evolve from less complex prokaryotic TA systems (Fig 1). 2) TA systems can convert to CI systems 454 
by the addition of at minimum NLS and T4SS signals (Fig 1) though these domains may not be completely 455 
sufficient. 3) Where NLS and T4SS signals evolve (in cifA or cifB) is predicted to be the determinant of 2x1 or 456 
strict TA mechanics (Fig 1). 4) In cases where CI evolves from a pre-existing TA framework, the evolution is 457 
biased towards 2x1 systems, but not at full exclusion of strict TA (Fig 3I and J). 5) In our model, sequence 458 
diversity impacts the path of evolution, but not the terminal result, whereas sequence length can predispose 459 
bias of signal evolution in a location. Finally, 6) Codon-based EAs can be applied in a bottom-up approach to 460 
address questions related to the evolution of protein strings. 461 
 462 
In future experiments we plan to utilize this framework to test additional sequences of NLS and T4SS signals. 463 
Importantly, the signals we used are not the only ones that exist in nature. There can be cryptic and/or bi-464 
partite combinatorial sequence motifs that contribute to secretion and localization.55 To add to the nuance, our 465 
algorithm doesn’t account for redundant sequences. For example, it doesn’t quantify if additional NLS or T4SS 466 
signals evolve elsewhere, beyond the first. It would be interesting to re-program the system to measure and 467 
tally if multiple NLS and T4SS signals are evolving and where they are. One prediction our model makes is that 468 
because NLS and T4SS signals are of low complexity, there may be multiple redundant signals within the 469 
same gene. In future experiments we will look for this. 470 
 471 
Our model makes many assumptions. One assumption we made, to begin analysis somewhere, is that the 472 
parameters causing the fastest evolution of cifs in simulations were apt to simulate the natural evolutionary 473 
dynamics of these TA modules. However, evolution within the natural organism might not be so ideal. 474 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.23.533954doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.533954
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Therefore, favoring the most efficient methodologies and parameters to evolve high fitness quickly might be 475 
incongruent with nature. Although we grounded the evolution of the EA in real biology in the code using actual 476 
cif sequences and known binding features. The benefit of our coded framework is that it can be modified to test 477 
and address future criticisms and hypotheses. For example, while we’ve only implemented the 2x1 and strict 478 
TA mechanisms, if ever a possibility of a third mechanism is observed or postulated, we can add that 479 
possibility to the code base. 480 
 481 
Finally, our model encodes and models evolution of the most primal or basal level of CI (the amino acids). It is 482 
not an ecological model assessing TA allele fixation in populations. It would be inappropriate to directly 483 
compare our model with prior ecological models;2,17 although our model could be imported into those models 484 
as an foundation. The natural evolution of selfish TA elements involves multiple levels of evolutionary 485 
dynamics. For example, cif systems exist within WO-phages that exist within Wolbachia bacteria that live within 486 
insect hosts that live within populations. Cifs impact evolution and population dynamics on all these levels. 487 
Future models might incorporate our codon-based EA as a subcomponent of a larger multi-competitive EA 488 
framework. Such a program might provide vast insights into the complex evolutionary dynamics inherent to 489 
Wolbachia biology and make predictions about actual CI gene function. 490 
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Figure 3: Output data from three large evolution experiments. Columns (i-iii) show results from three different instantiation methods 491 
described in Fig 1. Rows show average fitness of all TAs within a population versus generations (A, F, K). Average sub-feature fitness 492 
of all TAs within a population versus generations (B, G, L); Diversity index versus generations, where lower numbers indicate more 493 
similarity in string sequence and therefore loss of diversity (C, H, M); Average T4SS site location of the population versus generations 494 
(D, I, N); Average NLS site location of the population versus generations (E, J, O).  Scoring for T4SS and NLS sites is as follows: a 495 
score of 0 indicates that the site evolved in the antidote gene (cifA) and a 1 indicates that the site evolved in the toxin gene (cifB); 496 
therefore a score of 0.5 means that half the population had the site in cifA and the other half had the site in cifB. Mean values are 497 
plotted with black or colored lines. Standard deviation is marked in grey lines. Bias above 0.5 indicates preferential evolution of TA and 498 
below 0.5, 2x1. D, I, and N are all significantly different from each other at termination, (p<0.05) by one-way ANOVA with Tukey post-499 
hoc analysis. E and O were significantly different by the same. 500 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.23.533954doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.533954
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 501 
Figure 4: Parameters that control bias in the location of NLS and T4SS signals were tested. A. We were able to control starting diversity 502 
by changing population size (μ). Small populations of 1000 had significantly less diversity than populations of 20,000 by Mann-Whitney 503 
U test. In turn, these changes significantly altered the bias of the signal during the course of evolution, but not the final result (see dotted 504 
line vs solid line in B. and C.; T4SS location and NLS location respectively). The most significant terminal impact on bias of signal location 505 
was when we increased the average length of the toxins (see dashed line in B and C). B. and C. are T4SS and NLS sites is as above. 506 
Mean values are plotted with black or colored lines. In B. terminal conditions of doubling toxin length to µ=20k were significantly different 507 
for T4SS signal locations (p<0.05) by unpaired t-test with Welch’s correction. These experiments all were performed under the third [iii) 508 
founder] method of instantiation. 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
 519 
 520 
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