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Abstract

Photosynthetic microbes associated with non-photosynthetic, heterotrophic, bacteria play a key

role in the global primary production. Understanding these phototroph-heterotroph associations

is therefore important, but remains challenging because they reside in chemically complex aquatic

and terrestrial environments. We do not understand how the myriad of environmental parameters

from nutrient availability to pH impact interactions between phototrophs and their heterotrophic

partners. Here, we leverage a massively parallel droplet microfluidic platform that enables us

to interrogate algae-bacteria interactions in >100,000 communities across ∼525 environmental

conditions with varying pH, carbon availability and phosphorous availability. By developing a

statistical framework to dissect interactions in this complex dataset, we reveal that dependance

of algae-bacteria interactions on nutrient availability is strongly modulated by pH and buffering

capacity. Furthermore, we show that the chemical identity of the available organic carbon source

controls how pH, buffering capacity, and nutrient availability modulate algae-bacteria interactions.

By leveraging a high-throughput platform, our study reveals the previously underappreciated role

of pH in modulating phototroph-heterotroph interactions.

INTRODUCTION

Microbial communities occupy nearly every niche on Earth, from animal hosts, to soils,

and oceans. These complex consortia often contain many interactions between members

whereby one species impacts the abundances of another. Interactions in these communi-

ties can determine the outcome of invasions [1], metabolic processes such as carbon and

nitrogen remineralization [2], or the phenotype of the host [3]. Crucially, however, inter-

actions between members of a microbial consortium depend on the environmental context.

For example, changes in pH, nutrient availability, temperature, or toxic metabolic byprod-

ucts, can strongly modulate interactions between members of a collective [4–7]. As a result,

an important question in ecology is understanding how environmental parameters impact

interactions.

Understanding how environmental parameters influence ecological interactions in consor-

tia faces two related challenges. First, the physicochemical environment in natural microbial

communities is high-dimensional in the sense that there are many possible parameters that
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change in time and space and can impact the outcome of an interaction [8]. This high-

dimensionality means that experimentally interrogating how interactions depend on the

environment is a daunting task. For example, if we wanted to measure how four differ-

ent environmental variables (say, pH, carbon, nitrogen, phosphorous availability) impacted

an interaction this would require 10.000 experiments if we included just 10 levels for each

environmental variable. To determine interactions between just two taxa would require

measuring their growth alone and in pair-culture in each one of these conditions – meaning

30.000 measurements would be required, a huge undertaking.

The second problem is conceptual. Is it necessary to understand how interactions depend

on each and every environmental parameter or are there simple, global, patterns across

environmental conditions that can be discerned? In essence, are interactions idiosyncratic

from one environmental condition to the next, meaning that to elucidate the impact of the

environment on an interaction we must study many distinct environmental conditions? Or,

are there patterns that exist across conditions that make it easier to understand the impact of

environmental variables on interactions? For example, one possibility is that environmental

variables impact interactions in hierarchical fashion where some high-level parameters are

very important in determining the outcome of an interaction and others are successively less

critical.

Here we address these two questions using a massively parallelized droplet microfluidic

platform [9] to interrogate interactions between a photosynthetic alga (phototroph) and a

heterotrophic bacterium. Phototroph-heterotroph interactions form the basis of biomass

production in ecosystems on a global scale, from marine to freshwater ecosystems to soils

and industrial photobioreactors [10, 11]. In this capacity, phototroph-heterotroph inter-

actions form a critical link in the global cycle of carbon by converting inorganic carbon

to biomass. Moreover, interactions between phototrophs and heterotrophs are mediated

by a myriad of environmental factors from carbon, nitrogen, and phosphorous availability

to temperature, light, and small molecule exchanges [12–19]. In addition, the outcome of

phototroph-heterotroph interactions are important for understanding eutrophication and

dead zones [20]. Finally, these communities hold key biotechnological importance in the

context of biofuel production, or the production of industrially important precursors [11].

We interrogate phototroph-heterotroph interactions across hundreds of environmental

conditions using a microfluidic platform that leverages nanoliter droplets, with contents
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barcoded using fluorescent dyes, to measure abundance dynamics in >20.000 cultures in

a single experiment. Using this approach, we measure the interaction between the model

alga Chlamydomonas reinhardtii and the bacterium Escherichia coli in ∼525 environmental

conditions in >10 replicates each for both monoculture and pair-culture.

Within the droplets, we measure algae-bacteria abundance dynamics via microscopy

across a range of carbon sources and concentrations, phosphorus concentrations, pH, and

buffering capacities. The resulting dataset proves amenable to statistical analysis where a

regression reveals the key environmental drivers of algae-bacteria interactions. While pre-

vious studies suggest that nutrient availability is the key driver of interactions between

phototrophs and heterotrophs, we find that pH and buffering capacity qualitatively alter

how the availability of nutrients impacts interaction between algae and bacteria. Thus,

we show that across a huge range of environmental conditions, pH and the ability of the

environment to resist changes in pH (buffering capacity), act as important regulators of

the interaction between phototrophs and heterotrophs. Finally, the role of the environmen-

tal factors - pH, buffering capacity, and nutrient availability in regulating interactions is

modified by the chemical identity of an exogenously available organic carbon. These re-

sults suggest that chemical composition of organic carbon and pH interact to qualitatively

determine the outcome of algae-bacteria interactions.

RESULTS

The model system and environmental conditions

The microbial community under study comprises the alga, Chlamydomonas reinhardtii,

commonly found in soils and freshwater [21], as the phototroph, and the soil-dwelling bac-

terium [22], Escherichia coli, as the heterotroph. We note that these microbes are not

known to coexist in the wild and so we expect no strong co-evolutionary history between

these organisms. Despite this, these two microbes have been widely used in studies as a

model phototroph and heterotroph due to their thorough biological characterization, ease of

cultivation, and accessibility to molecular techniques and quantitative measurements. Pre-

vious studies of closed microbial communities including these two microbes, in addition to

a ciliate, have revealed strongly deterministic dynamics on timescales of months and rich
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spatiotemporal and phenotypic processes [23, 24]. Another study demonstrated the pres-

ence of higher-order interactions between this alga and bacteria mediated by a ciliate. [1].

Thus, the interactions between these two model organisms constitute a tractable test bed

for understanding phototroph-heterotroph interactions.

In this study, interactions between the algae, C. reinhardtii, and the bacteria, E. coli

were assayed in the modified 1/2x Taub media (a freshwater mimic media) that varied in

five environmental factors - initial pH, buffering capacity, phosphorus concentration, carbon

concentration, and carbon source identity. Although resource competition and exchange

are identified as key players in driving phototroph-heterotroph interactions [10, 11, 13–

16, 19, 25], several studies have reported a strong correlation between microbial commu-

nities compositions and environmental factors such as pH and concentration of nutrients -

carbon, nitrogen and phosphorus [26, 27]. Additionally, it is well known that the identity

of the carbon source affects E. coli metabolism via impacting the growth rate and the na-

ture of the metabolic products, which could potentially lead to different interactions with

C. reinhardtii [28–30]. Therefore, we reasoned that a multitude of abiotic factors such

as pH, buffering capacity, light level, including nutrient concentration may contribute to

phototroph-heterotroph interactions (Fig. 1). Hence, we choose the above 5 factors. The

values of each of the environmental factors were chosen to be in the biological range: 6.1-7.5

for initial pH, ∼0-3.5 mM for buffering capacity, 0.01 mM - 4 mM for phosphorus concentra-

tion, 2 mM - 10 mM for the carbon concentration (Section 3.2, SI). And the different carbon

sources considered for the study were glycerol, glucose, galactose, pyruvate, and acetate.

For each of these carbon sources, the algae-bacteria interactions were assayed in a total of

∼105 environmental conditions varying in initial pH, buffering capacity, and phosphorus

and carbon concentration, using the high throughput platform discussed in the following

section.

High-dimensional characterization of phototroph-heterotroph interactions

In this study, we used droplet-based microfluidic chip (“kChip” with k=2) to rapidly assay

the phototroph-heterotroph interactions in hundreds of environmental conditions in parallel.

The kChip platform has previously been utilized for drug discovery, pathogen detection, and

the study of bacterial interactions [9, 31–33]. Briefly, the experiment proceeds by first gen-
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erating a library of environmental conditions that vary in the initial pH, buffering capacity,

concentration of phosphorus, and concentration of carbon of a chemically defined minimal

medium (Fig. 2A; Section 3.2, SI). Initial pH refers to the starting pH of the environment,

which we varied by using buffers and titration. To vary the buffering capacity of the environ-

ment, we added different concentrations of organic buffers (Tris or MOPS). We fluorescently

barcoded each environmental condition using three fluorescent dyes in low concentrations

and added algae and bacteria independently. Using these precultures, a commercial droplet

generator was used to create thousands of nanoliter water-in-oil droplets containing algae

or bacteria in each of the predefined nutrient conditions. These droplets were then pooled

and loaded into a kChip microfluidic chip platform which contains ∼25,000 microwells, each

of which randomly groups two droplets containing microbes in predefined media conditions,

resulting in the formation of all possible combinations of communities (monocultures and

co-cultures) and environmental conditions (Fig. 2A; Section 5, SI). The chip is then im-

aged to identify the fluorescent dye barcodes and thereby infer the environmental conditions

present in each microwell (Section 6.2, SI). Subsequently, the droplets in each microwell

were merged via exposure to an alternating electric field, leading to the formation of the

phototroph-heterotroph communities in hundreds of environmental conditions. Thereafter,

the kChip was incubated at 30 °C under light (68.5 µmol m2s−1) to allow for growth. The

chip was then imaged at regular intervals (approximately 0 h, 12 h, 21 h, 45 h, 68 h) to track

the growth of the microbes using chlorophyll fluorescence for C. reinhardtii and genetically

encoded GFP fluorescence for E. coli (Fig. 2B; Section 6.3, SI). Algal and bacterial abun-

dances over time were determined by analyzing the microscopy images, generating microbial

growth curves, and estimating growth (difference between the initial abundances and the

final abundances at the end of the experiment) for both the phototroph and heterotroph in

the ∼1395 microbial communities constructed in the kChip experiments for all the carbon

sources (Fig 2C; Section 5, SI). We note that the abundances of the microbes do not saturate

with time in several of the environmental conditions during the duration of our experiments.

Previous studies utilizing this platform studied bacteria. So, we modified existing proto-

cols to make the measurement compatible with algae. Specifically, we added the functionality

for imaging chlorophyll fluorescence to track the growth of C. reinhardtii and devised a com-

putational pipeline to remove the bleed-through between chlorophyll fluorescence and one

of the barcoding dyes (Section 6.1, SI). This expanded the number of fluorophores that can
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be probed on the kChip from four to five.

Algae inhibit bacterial growth and bacteria weakly affect the algal growth

To begin, we compared the growth of both algae and bacteria in cocultures to their growth

in monocultures. The bacterial growth in cocultures were lower than their respective growth

in monocultures in all the environmental conditions, suggesting inhibition of E. coli by C.

reinhardtii (Fig. 3A; Fig. S8 top panels, SI). Additionally, the E. coli cells show greater

aggregation in monocultures than in cocultures (Fig. S6, SI). These results are consistent

with a previous study that showed that introducing bacteria into algal cultures results in

the inhibition of bacterial growth and the dispersal of bacterial aggregates [1].

C. reinhardtii, on the other hand, has similar growth in cocultures and monocultures in

most cases, indicating a weak effect of E. coli on the growth of C. reinhardtii (Fig. 3B; Fig. S8

bottom panels, SI). There do exist a few environments where C. reinhardtii is suppressed

or enhanced in co-culture relative to monoculture, indicating an impact of the presence of

the bacteria.

Algae-bacteria interactions show complex dependence on the environmental factors

Next, we sought to understand the dependence of algae-bacteria interactions on environ-

mental factors. To visualize this, we plotted the growth in cocultures against the growth in

monocultures, color-coding the data for each of the four environmental variables considered

- Initial pH, buffering capacity, concentration of carbon and phosphorus (Fig. 3; Fig. S8 top

panels, SI). These plots show no distinct grouping of the data based on any of the four envi-

ronmental factors and indicate a complex dependence of algae-bacteria interactions on the

environmental factors. For example, in the case of E. coli, while the low carbon concentra-

tion (the light green points in Fig. 3A bottom right panel) sets the growth in monocultures

to low values, the variation in other environmental factors (pH, buffering capacity) causes

the coculture growth to span from low to high values. There also exist cases where a single

factor determines the effect of the environment on monoculture and coculture growth. For

example, low buffering capacity, not initial pH or nutrients’ concentration, appears to give

rise to death of C. reinhardtii (light green points have growth less than zero) (Fig. 3B top
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right panel).

When we compute correlations between the environmental factors and growth, we see

significant statistical relationships between each parameter and the bacterial or algal growth

(Fig. S7, SI) across carbon sources. These correlations reinforce the idea that there is a

complex interplay between nutrients’ concentration, pH, buffering capacity and identity of

the carbon source in determining algae-bacteria interactions.

The interesting aspect of the above result is that initial pH and buffering capacity are

shown to affect algae-bacteria interactions. This result agrees with surveys of communi-

ties in the wild which show that pH is an important environmental factor in determining

community structure [26, 27]. In contrast, most previous experimental interrogations of

interactions between phototrophs and heterotrophs focus on the role of nutrient concentra-

tion and competition [12, 14–16, 34]. We expect that pH and buffering capacity are likely

affecting interactions by influencing physiology including nutrient uptake rates.

Next we sought a framework to quantify interaction between algae and bacteria in our

experiment. We considered consumer-resource models to quantify competition for carbon,

nitrogen, and phosphorus. However, the interactions in our community cannot be described

by a model that considers only these nutrients. For example, the overall inhibition of E. coli

does not depend in a simple way on the concentration of nutrients. Similarly, variations in pH

are not naturally modeled in a consumer-resource framework. Hence, a simple consumer-

resource model approach is not suitable for dissecting the interactions in our data. We,

therefore, took a statistical approach using simple linear regressions to model interactions

as a function of the environmental factors.

Quantifying algae-bacteria interactions statistically

Our goal is to quantify how the presence of algae or bacteria impacts the growth of the

other species across all the environmental conditions tested. To do this, we developed a

simple framework for estimating interactions in the algae-bacteria communities via regres-

sion analyses. Specifically, we used a linear regression formalism to predict algal or bacterial

growth (Fig. 2C) using environmental factors (pH, buffering capacity, phosphorus concen-

tration and carbon concentration) as independent variables. We performed independent

regressions to predict algal and bacterial growth across all conditions.
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Our regression approach can be explained mathematically using a simple example. Imag-

ine communities of algae and bacteria where the growth are affected by a single environ-

mental factor X and by the presence of the other species via an interaction. In this case,

the model for predicting the growth of E. coli in monoculture and coculture would take the

following form:

Y Ec = (βEc
1,M + βEc

X,MX) + (IβEc
1,I + IβEc

X,IX) (1)

where Y Ec is the growth of E. coli and the βEc
∗,∗ are regression coefficients. I is a variable

that indicates the presence of C. reinhardtii (I = 0 in monoculture, I = 1 in coculture). The

coefficient βEc
X,M represents the change in growth in monoculture per unit change in X and

βEc
X,M + βEc

X,I represents the change in growth in coculture per unit change in X (Fig. 4A).

Hence, βEc
X,I , estimates the average change in growth per unit X in coculture relative to

monoculture. In other words, βEc
X,I represents the effect of C. reinhardtii on E. coli as X

increases, in coculture. A positive coefficient would represent enhancement of E. coli growth

by C. reinhardtii as X increases (Fig. 4B left panels). Similarly, a negative coefficient would

represent suppression of E. coli growth by C. reinhardtii as X increases (Fig. 4B right

panels). An identical regression is used to estimate the impact of E. coli on C. reinhardtii

growth.

We extended the above model to include the effect of multiple environmental factors

in determining growth of both species (Section 8, SI). For our dataset comprising of four

environmental factors - initial pH (pH), buffering capacity (BC), phosphorus concen-

tration ([P ]), and carbon concentration ([C]), the model includes the following terms:

[P ], [C], pH[P ], pH[C], BC[P ], BC[C], [P ][C]. For each term, we estimated a coefficient for

monoculture and interaction as described above. For simplicity, we refer to coefficients

of features without the indicator variable I as monoculture coefficients and coefficients of

features with the indicator variable as interaction coefficients.

We did not include linear terms in pH or BC in our model because biologically pH

alone does not generate biomass, but instead modulates the ability of cells to grow on the

available nutrients. Thus, we included only interaction effects between nutrients and pH or

BC. Therefore, the coefficient βEc
pH[P ] represents the susceptibility of growth to phosphorus

concentration modulated by pH. The feature [P ][C] was included to capture interactions

between nutrients. Additionally, our model being simple, cannot capture nonlinearities

in the growth as a function of a nutrient concentration. Despite these limitations, this
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statistical approach allows us to achieve a unified and interpretable picture of interactions

between these microbes across a wide range of environmental conditions.

Finally, to account for the fact that algae globally inhibit bacterial growth in our exper-

iment, we standardize the growth of both E. coli and C. reinhardtii prior to performing

the regression above (Section 8.2, SI). Thus, our regressions describe variation in bacterial

growth after removing the effect of this global inhibition. To facilitate interpretation, we

also standardized all the independent variables in the regression. As a result, the regression

coefficients describe the relative change in growth per unit change in each environmental fac-

tor and do not quantify the broad inhibition of bacteria by the alga. This standardization

also allows us to compare coefficient values for regressions performed on different carbon

sources despite variation in the growth on those nutrients. To perform the regression, we fit

the growth measured in each well using a weighted least-square approach (Section 8.3, SI).

In general, we find that this model provides good predictions of growth across environ-

mental conditions in our experiment, the fits being better for some carbon sources (glucose,

glycerol, acetate) than others (galactose) (Fig. S9, SI). We note that a more complex model,

such as a decision tree regression, gives superb fits to the data at the expense of interpretabil-

ity (Fig. S12, SI).

pH and buffering capacity modulate nutrient dependence of algae-bacteria interac-

tions

Using the linear regression approach outlined above, we modeled the dependence of al-

gal and bacterial growth on the environmental factors for each of the five carbon sources

in monoculture and coculture. We first looked at the regression coefficients describing the

growth of E. coli in one particular carbon source (glycerol, Fig. 5A). Of all the monocul-

ture coefficients (brown bars in top panel Fig. 5A) obtained from fitting E. coli growth in

glycerol, the coefficient of BC[C] is the largest, suggesting a strong interaction of buffering

capacity with carbon concentration in determining the monoculture growth. Thus when

BC is high, there is significantly more growth per unit [C] than when BC is low. These

results are consistent with the greater acidification of the environment at lower buffering

capacity observed in the microtiter plate experiments (Section 10, SI); this greater acidi-

fication likely negatively impacts E. coli. Therefore, the E. coli growth is expected to be
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higher at a higher buffering capacity for the same carbon concentration, which is reflected in

the high value of the BC[C] coefficient. In addition to BC[C], there also exist statistically

significant interactions between pH and carbon concentration, and buffering capacity and

phosphorus concentration, with the magnitude of the coefficients of pH[C] and BC[P ] being

comparable or greater than the coefficients of [P ] and [C] alone. Mechanistically interpreting

each of these coefficients is beyond the scope of the present work, but could be pursued via

additional experiments in the droplet platform or lower throughput batch cultures.

Next, among the interaction coefficients containing the factors pH and BC (magenta bars

in Fig. 5A top panel), the coefficients of pH[C], BC[P ] and BC[C] are non-zero and compare

in magnitude with their respective monoculture coefficients. This reveals that the effects

of pH[C], BC[P ], and BC[C], on bacterial growth in coculture are significantly different

compared to their effects in monoculture. We conclude from this that the interaction between

C. reinhardtii on E. coli is strongly mediated by the factors - pH and buffering capacity.

This is a central finding of our study.

The fact that pH and buffering capacity of the environment can strongly influence in-

teractions is illustrated by looking at a specific example from the data (Fig. 5B). Choosing

a subset of data corresponding to a specific phosphorus concentration ([P ] ∼1.51 mM), we

compared the change in growth with carbon concentration in monocultures and cocultures

at the different pH and buffering capacities values. The change in E. coli growth in monocul-

ture with carbon concentration at the different buffering capacities shows different behavior

(Fig. 5B, left panel). Particularly, the increase in the growth with carbon concentration is

observed to be higher in the condition with high buffering capacity (and low pH) compared

to the increase in the condition with low buffering capacity (and high pH) as expected, with

the trends in the model and the data being in good agreement. Next, we compare these re-

sults to E. coli growth in coculture. The trends in E. coli growth with carbon concentration

in coculture are distinct from monoculture and depend on the pH and buffering capacity

values (Fig. 5B right panel). The growth appreciably declines with carbon concentration

in the condition with low pH (and high buffering capacity) whereas there is an increase in

growth with carbon concentration at high pH (and low buffering capacity), with the model

reasonably capturing the trend in the data. These results agree with the positive coefficient

of pH[C] and ∼0 coefficient of BC[C] obtained when the model is evaluated for E. coli

growth in coculture (sum of brown and magenta pH[C] and BC[C] bars in Fig. 5A top
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panel; Fig. S11A, SI).

Finally, the trends in the change in growth with carbon concentration are also different

between monocultures and cocultures in their respective conditions - growth can either

increase or decrease with an increase in carbon concentration in cocultures whereas it only

increases with carbon concentration in monocultures. In terms of interactions between E.

coli and C. reinhardtii, this can be stated as follows: while only enhancement of E.coli growth

is observed as carbon concentration increases in monoculture, the effect on E. coli by C.

reinhardtii in coculture as carbon concentration increases becomes inhibitory at low pH and

high buffering capacity, but facilitatory at high pH and low buffering capacity (evidenced

by the positive interaction coefficient of pH[C] and the negative interaction coefficient of

BC[C] obtained from regressing E. coli growth, purple bars in Fig. 5A top panel). This

example illustrates that C. reinhardtii modulates the capacity of E. coli growth on carbon

in a manner that depends on pH and buffering capacity of the environment.

Algal abundance dynamics also depend strongly on pH and buffering capacity. The re-

gression coefficients for predicting algal growth on glycerol in monoculture and co-culture are

shown in Fig. 5A bottom panel. In this regression, we observe a similar interplay between pH

and buffering capacity and nutrients’ concentration i.e the monoculture coefficients of pH[P ],

pH[C], BC[P ], and BC[C] (green bars in the bottom panel (Fig. 5B)), are all non-zero and

statistically significant, showing the presence of modulation effect of pH and buffering ca-

pacity on nutrient concentration in determining C. reinhardtii growth in monoculture. Here

again, the largest monoculture coefficient is for the BC[P ] term indicating an increase in the

growth of C. reinhardtii with phosphorus concentration and buffering capacity. While the

growth of C. reinhardtii is known to increase with phosphorus concentration [35], we specu-

late that the increased phosphorus uptake leads to increased N utilization (the N source here

is ammonium). Ammonium utilization by algae causes acidification of the environment [36],

which is known to negatively affect the growth of C. reinhardtii [37]. Therefore, We reason

that the environments with high buffering capacity potentially prevent this acidification and

hence favor increased growth of C. reinhardtii, as reflected in the high coefficient of BC[P ].

The modulation of algal growth by bacteria also depends on pH and buffering capacity in

a fashion similar to what we observe with bacteria. For example, the interaction coefficients

of BC[P ] and BC[C] (cyan bars in the bottom panel of Fig. 5B), being significant means

that the impacts of E. coli on C. reinhardtii growth is mediated by an interplay between
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buffering capacity and nutrient concentration. In other carbon sources, the impacts of E. coli

on C. reinhardtii growth mediated by an interplay between both pH and buffering capacity

and nutrient concentration are observed (Fig. S10, SI).

Overall, the result that the interactions between algae and bacteria are mediated by

pH and buffering capacity, through their differential impacts on nutrient dependence on

monoculture and coculture growth holds across carbon sources (Fig. S10, SI)

Effect of environmental factors on algae-bacteria interactions depends on the iden-

tity of carbon source

Finally, we investigated if the dependence of algae-bacteria interactions on the environ-

mental factors - pH, buffering capacity, phosphorus concentration, and carbon concentration,

is further modulated by the identity of the carbon source available in the communities. Be-

tween several carbon source pairs, we found some apparent differences in the effect of the

environmental factors on algae-bacteria growth. For example, differences in several of the

monoculture and interaction coefficients (which quantify the effect of environmental factors

on growth and interactions) between glucose and galactose are clearly observed (Fig. 6A).

While the feature BC[C] has the highest effect in predicting E. coli growth in the case of

glucose, BC[P ] is the feature with the highest importance in the case of galactose. And

the effect of BC[C] in predicting the E. coli growth is the opposite between glucose and

galactose. Additionally, for E. coli, the coefficients of [P ] and [C] show different patterns

in glucose and galactose, with generally negative coefficients in glucose and coefficients of

opposing sign for monoculture and interaction coefficients in galactose. Qualitatively similar

patterns are observed in coefficients describing algal growth (Fig. S10, Fig. S13, SI). These

observations suggest that the identity of the carbon source modulates how environmental

factors impact algae-bacteria interactions.

To interrogate these patterns further, we classified carbon sources based on their modula-

tion of the effect of the environmental factors on algae-bacteria growth. To do this, we com-

puted correlations between the regression coefficients (which quantify the effect of environ-

mental factors on growth and interactions) obtained for predicting algae-bacteria growth, be-

tween all pairs of carbon sources. We performed hierarchical clustering of the carbon sources

based on the monoculture and interaction coefficients of [P ],[C],pH[P ],pH[C],BC[P ],BC[C]
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and [P ][C], obtained from the regressions for the carbon sources (Section 9, SI). The corre-

lation matrix computed for the hierarchical clustering showed that glycerol is most similar

to glucose, galactose is most similar to pyruvate, and acetate has no strong correlation with

any of the carbon sources (Fig. 6B left panel). Therefore, hierarchical clustering identified

three clusters of carbon sources in our dataset, with glucose and glycerol forming one cluster,

and galactose and pyruvate forming another cluster, and acetate forming a cluster of its own

(Fig. 6B right panel).

We wondered why these different carbon sources would have such divergent impacts on

interactions. We suspected that bacterial utilization of distinct carbon sources could have

differing impacts on pH. To test this idea, we grew E. coli in plates in each of the 5 carbon

sources and measured the final pH. We found that glucose and glycerol both showed large

drops in pH while the other three carbon sources did not (Section 10, SI). Thus, we speculate

that heterotrophic utilization of organic carbon might play a key role in modulating pH and

thus the interactions between algae and bacteria.

Finally, we wanted to check whether this result was dependent on the details of the

regression formalism we defined for quantifying growth across environments. To do this, we

quantified similarities in growth across environments in a model-independent fashion. We

classified carbon sources based on the similarity in algae-bacteria growth. The classification

of the carbon sources was done by computing the correlation between carbon sources in

algae-bacteria growth across all the environmental conditions and culture conditions (Fig.

6C; Section 9, SI). Here again, we found the carbon sources within the same clusters -

glycerol and glucose, and galactose and pyruvate, to have the greatest correlation in the

algae-bacteria growth with each other than with any other carbon sources. We concluded

that this apparent clustering of carbon sources does not depend on details of our model

specification.

DISCUSSION

By using a high-throughput droplet microfluidic platform, we were able to perform a mas-

sively parallel screening of algae-bacteria interactions in several hundreds of environmental

conditions varying in pH, buffering capacity, phosphorus availability, carbon availability, and

carbon source identity. To our knowledge, this is the largest screen exploring the combina-
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torial effect of environmental factors on phototroph-heterotroph interactions in a systematic

way via a bottom-up approach. Studies in the past have tested for the effect of nutrient

availability on phototroph-heterotroph relationships, but have been mostly limited to only

a handful of nutrient types/availabilities or have involved uncontrolled experimental condi-

tions such as uncharacterized phototrophic and heterotrophic species, often in the presence

of organisms from other trophic levels [12, 16, 38, 39]. Our observation of the complex de-

pendence of algae-bacteria interactions on environmental factors underscores the importance

of undertaking such high-dimensional studies. This is especially important in light of the

chemical complexity of environments wild microbial communities are exposed to [8].

Our study is also novel with respect to exploring the effect of the chemical properties of the

environment - pH and buffering capacity, on algae-bacteria interactions. The central finding

of the study is that pH and buffering capacity significantly alter algae-bacteria interactions

by manipulating the impact of nutrient availabilities on growth. For most carbon sources, the

role of pH and buffering capacity in determining algae-bacteria interactions were comparable

to, or significantly higher than, the effect of nutrient availabilities alone, underscoring the

importance of the effects of pH and buffering capacity on algae-bacteria interactions. This

result suggests that chemical factors in the environments play an important role in mediating

phototroph-heterotroph interactions which are largely considered as being driven by resource

exchange and competition [12–14, 16, 19, 25, 34].

Recently, microbial ecologists have encouraged the use of statistical modeling approaches

to derive general governing principles in ecology [40, 41]. In this regard, we highlight the

mechanistic insights provided by the statistical framework implemented here to predict algae-

bacteria growth. Our statistical approach for predicting algae-bacteria growth in different

environments permitted us to dissect the contribution of the different environmental factors

on the inter-species interactions. Even though our modeling approach is largely agnostic to

the detailed mechanisms of the effect of environmental factors on algae-bacteria interactions,

we find that the regression results do align qualitatively with some known processes. For

example, E. coli can acidify its environment when growing on glycolytic substrates at suffi-

ciently high growth rates through the process of overflow metabolism [42]. In this case, the

bacterium could be acidifying the medium in conditions where buffering capacity is weak

and carbon levels are relatively high. However, overflow occurs at relatively high growth

rates of approximately 0.71/h-0.81/h, and microtiter measurements indicate that our strain

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


in these conditions grows slower than this (Section 10, Table S5, SI). Further, our measure-

ments cannot accurately capture bacterial growth rates in droplets due to limited temporal

sampling, but we cannot rule out the possibility that overflow causes growth to modify pH

in the droplets. Similarly, it is known that C. reinhardtii will acidify the environment due to

ammonia uptake and this may also play a role in the importance of pH and buffering capac-

ity in determining growth in these experiments. It remains an important avenue for future

work to uncover the mechanisms underlying the interactions discovered here. Our hope is

that large-scale screens like those enabled by this platform can contribute new insights into

the mechanisms by which environmental factors contribute to algae-bacteria interactions.

Our exploration of the impact of carbon source identity on algae-bacteria interactions

showed that the effect of the environmental factors - pH, buffering capacity, and nutrient

availability, on the interspecies interactions depends on the carbon source identity. This

result suggests that the chemical identity of the available reduced organic carbon plays a

key role in determining how algae-bacteria interactions play out. Therefore, considering the

role of individual nutrients such as phosphorous [43] in these interactions might be too sim-

ple a picture. Additionally, our analyses revealed three groups of carbon sources, showing

that the impact of the environmental factors - pH, buffering capacity, and nutrient availabil-

ity, on algae-bacteria interactions was approximately conserved between the carbon sources

within the same group. Such an apparent similarity between the different carbon sources

within the groups hints that there may be some relatively simple structure in how the car-

bon source identity and the other environmental factors conspire to determine the outcome

of an interaction. Whether this is the case or not awaits a broader survey of additional

carbon sources, mixtures of carbon sources, and a deeper mechanistic understanding of the

physiology underlying these processes.

While kChip offers a massive throughput advantage to perform a screen of this magni-

tude, the interactions inferred in the confined environments of droplets on the kChip could

potentially differ from the interactions in the well-mixed, open, environments in the lab or

the wild. For example, the rate of gas exchange, particularly O2, and CO2 will determine

respiration, photosynthesis, and pH and thereby modulate interactions in the droplets. In

fact, a recent microfluidic-based study has shown that droplet size substantially modifies

the degree of syntrophic interaction between bacterial species [44]. Consistent with these

findings, we observe differences in bacterial growth between microtiter plates and droplets
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(Fig. S14, SI). Hence, it remains an important avenue for future work to understand how

confinement impacts the algae-bacteria interactions observed here, as this process could well

be important in the wild.

As our study of phototroph-heterotroph interactions was undertaken in a community of

algae and bacteria that are not known to associate in the wild, it remains to be seen how

our results relate to communities of phototroph and heterotroph with wild associations and

shared evolutionary history. For example, the mechanism by which C. reinhardtii inhibits

E. coli growth is not precisely known, and it is unclear whether other bacterial taxa would

also be subjected to similar strong inhibitory effects. Studies between several strains of

the phototroph, Prochlorococcus, and of oligotrophic and copiotrophic bacteria, have re-

vealed strain-dependant interactions [45, 46]. Thus, it would be interesting to repeat these

experiments with a broader sampling of bacterial taxa including those that are known to

associate with the alga in the wild [47]. By expanding this study to wild associations, we

would hope to more broadly capture the relevance of these findings for consortia in complex

environments.
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Figure 1. Dependence of algae-bacteria interactions on environmental factors is com-

plex. Cartoon illustration of our hypothesis that diverse interactions between algae and bacteria

are mediated by a multitude of chemical factors in the environments such as concentration of nu-

trients, pH, buffering capacity, light level, and temperature.

Figure 2. (Caption next page)
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Figure 2. (Previous page) A high-throughput droplet platform for measuring algae-

bacteria growth in hundreds of environments. (A) Setting up the microfluidic chip. En-

vironments (media conditions) varying in the factors - Initial pH, buffering capacity, phosphorus

concentration, and carbon concentration, are prepared and barcoded using three fluorescent dyes

(Section 3.2, SI). After adding the bacteria (brown) and algae (green) independently to each bar-

coded media, nanoliter droplets of each of the microbes in the barcoded environments are generated.

The generated droplets are pooled together and loaded on the microfluidic chip which randomly

groups two droplets in each of its microwells. The chip is then imaged for fluorescent barcodes

using a widefield fluorescence microscope, to infer the values of the environmental factors in the

microwells via image processing (Section 6.2, SI). Following exposure of the chip to an alternat-

ing electric field, droplets in the microwells merge to form replicates of bacterial monocultures,

algal monocultures, and algae-bacteria cocultures in all combinations of the environments that

were present in the initial droplets. The chip is then incubated at 30 °C under light (68.5 µmol

m2s−1). (B) Microscopy images of a single microwell showing the growth of algae and bacteria

over time. The GFP fluorescence image representing the bacteria (in brown) and the chlorophyll

fluorescence image representing the algae (in green) are overlayed in these images. The first image

shows the bacteria and the algae in the separate compartments of the well, prior to the merging of

the droplets. The later images show the increase in the abundance of the algae and bacteria at 12

h, 21 h, and 45 h. (C) Example growth curves of algae and bacteria in monoculture and coculture

in an environmental condition. The images of the chip are analysed to infer the abundances of the

microbes in the microwells over time (Section 6.3, SI). The growth Y of algae and bacteria are then

obtained by estimating the increase in their respective abundances at 68 h from their abundances

at 0 h (black arrow labeled ”GROWTH (Y)” right panel).
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Figure 3. (Caption next page)
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Figure 3. (Previous page) Complex dependence of algae-bacteria interactions on the

environmental factors. (A) Panels show bacterial growth in monoculture (x-axis) and co-culture

(y-axis). Each point indicates median growth (Fig. 2C) of E. coli in co-culture and monoculture

computed across replicates of each environmental condition. Error bars indicate the standard error

of the mean growth. The dashed line indicates equal growth in monoculture and co-culture. Note

the fact that all points lie below this line indicating the pervasive inhibition of bacteria by algae.

The data on each panel are the same, but the colormaps represent each of the four environmental

factors - Initial pH (top left), buffering capacity (top right), phosphorus concentration (bottom

left), and carbon concentration (bottom right). The colormap for phosphorus is logarithmic. The

carbon source is glycerol. See Fig. S8 for the other carbon sources’ data. (B) Identical plots as

in (A) but for algal growth in monoculture and co-culture. The fact that most data lie near the

dashed line indicate overall weaker impacts on algal growth by bacteria.
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Figure 4. (Caption next page)

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


Figure 4. (Previous page)Quantifying algae-bacteria interactions using regression analy-

ses. (A) Formulation of the regression model for predicting growth from environmental conditions,

here using E. coli as an example. Y Ec is the growth of E. coli in monocultures and cocultures and

X is an environmental factor that determines the growth. The indicator variable I is set to 0 for

growth in monoculture and 1 for growth in co-culture. The coefficient βEc
X,M represents the change

in growth in monoculture with X and is referred to as a monoculture coefficient. The coefficient

βEc
X,M +βEc

X,I represents the changes in growth in coculture with X (shown schematically in the plot

on the right). Hence, the coefficient βEc
X,I represents the change in the effect of X on growth in

coculture relative to monoculture. The coefficient βEc
X,I is referred to as an interaction coefficient.

(B) Illustration of enhancement and suppression of E. coli growth by C. reinhardtii as X increases.

The growth of E. coli in monoculture (in brown) and coculture (in red) vs the environmental factor

X plotted in the case of enhancement (top left panel) and suppression (top right panel) of E. coli

growth by C. reinhardtii as X increases. The panels on the bottom row show the corresponding

regression coefficients. The monoculture coefficient βEc
X,M (in brown) and interaction coefficient

βEc
X,I (in magenta) in the case of enhancement (bottom left panel) and suppression (bottom right

panel) of E. coli growth by C. reinhardtii as X increases.
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Figure 5. (Caption next page)
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Figure 5. (Previous page) pH and buffering capacity modulate nutrient dependence of

algae-bacteria interactions. (A) The coefficients for regressions predicting algal and bacterial

growth in coculture and monoculture in glycerol. The results for the other carbon sources are

shown in Fig. S10. The top panel reports the monoculture coefficients βEc
X,M (brown bars) and the

interaction coefficients βEc
X,I (magenta bars) of the corresponding features on the x-axis obtained

for the regression model predicting the growth of E. coli in monocultures and cocultures. The

interaction coefficients (magenta bars) indicate the effects of C. reinhardtii on E. coli growth with

an increase in the corresponding features in coculture. The bottom panel reports the monoculture

coefficients βCr
X,M (green bars) and the interaction coefficients βCr

X,I (cyan bars) of the corresponding

features on the x-axis obtained from the regression model predicting the growth of C. reinhardtii

in monocultures and cocultures. The interaction coefficients (cyan bars) indicate the effects of E.

coli on C. reinhardtii growth with an increase in the corresponding features in coculture. The

error bars represent the 95% confidence intervals. ** indicates a p-value <0.001 and * a p-value

<0.05. (B) Example data illustrating modulation of the effect of carbon concentration on the

growth of E. coli by pH and buffering capacity. The median bacterial growth in monoculture and

coculture are plotted as a function of carbon concentration at [P]∼1.51 mM in the left and right

panels respectively. The experimental data are represented by circles and connected with dashed

lines. The error bars represent the standard error about the mean bacterial growth. The solid

lines represent the model prediction. Darker or thicker lines represent the results at low pH (6.98)

and high buffering capacity (2.56 mM) and lighter or thinner lines represent the results at high pH

(7.34) and low buffering capacity (0.76 mM).
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Figure 6. (Caption next page)
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Figure 6. (Previous page) Effect of environmental factors on algae-bacteria interactions

depends on the identity of carbon source (A) Comparison of the regression coefficients

between glucose and galactose. The monoculture coefficients βEc
X,M (brown bars) and the interaction

coefficients βEc
X,I (magenta bars) of the corresponding features on the x-axis obtained from the

regression model predicting the growth of E. coli in monocultures and cocultures for glucose (on

the left) and galactose (on the right). ** indicates a p-value <0.001 and * a p-value <0.05. (B)

Hierarchical clustering of carbon sources by the monoculture and interaction coefficients obtained

from the regression models predicting the growth of E. coli and C. reinhardtii. The correlation

matrix computed for the hierarchical clustering on the left and the resulting dendrogram on the

right (See Section 9, SI). (C) Hierarchical clustering of carbon sources by the median growth of algae

and bacteria in monocultures and cocultures in all the environmental conditions. The correlation

matrix computed for the hierarchical clustering on the left and the resulting dendrogram on the

right (See Section 9, SI).

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


[1] H. Mickalide and S. Kuehn, engHigher-Order Interaction between Species Inhibits Bacterial

Invasion of a Phototroph-Predator Microbial Community, Cell Systems 9, 521 (2019).

[2] A. W. Thompson, R. A. Foster, A. Krupke, B. J. Carter, N. Musat, D. Vaulot, M. M. M.

Kuypers, and J. P. Zehr, engUnicellular cyanobacterium symbiotic with a single-celled eukary-

otic alga, Science (New York, N.Y.) 337, 1546 (2012).

[3] L. V. Blanton, M. R. Charbonneau, T. Salih, M. J. Barratt, S. Venkatesh, O. Ilkaveya, S. Sub-

ramanian, M. J. Manary, I. Trehan, J. M. Jorgensen, Y.-M. Fan, B. Henrissat, S. A. Leyn,

D. A. Rodionov, A. L. Osterman, K. M. Maleta, C. B. Newgard, P. Ashorn, K. G. Dewey, and

J. I. Gordon, engGut bacteria that prevent growth impairments transmitted by microbiota

from malnourished children, Science (New York, N.Y.) 351, 10.1126/science.aad3311 aad3311

(2016).

[4] C. Ratzke and J. Gore, enModifying and reacting to the environmental pH can drive bacterial

interactions, PLOS Biology 16, e2004248 (2018), publisher: Public Library of Science.

[5] T. A. Hoek, K. Axelrod, T. Biancalani, E. A. Yurtsev, J. Liu, and J. Gore, enResource

Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding

Mutualism, PLOS Biology 14, e1002540 (2016), publisher: Public Library of Science.

[6] E. Burman and J. Bengtsson-Palme, Microbial Community Interactions Are Sensitive to Small

Changes in Temperature, Frontiers in Microbiology 12 (2021).

[7] J. C. Whitney, S. B. Peterson, J. Kim, M. Pazos, A. J. Verster, M. C. Radey, H. D. Kulasekara,

M. Q. Ching, N. P. Bullen, D. Bryant, Y. A. Goo, M. G. Surette, E. Borenstein, W. Vollmer,

and J. D. Mougous, A broadly distributed toxin family mediates contact-dependent antago-

nism between gram-positive bacteria, eLife 6, e26938 (2017), publisher: eLife Sciences Publi-

cations, Ltd.

[8] A. M. Kellerman, T. Dittmar, D. N. Kothawala, and L. J. Tranvik, enChemodiversity of

dissolved organic matter in lakes driven by climate and hydrology, Nature Communications

5, 3804 (2014), number: 1 Publisher: Nature Publishing Group.

[9] A. Kulesa, J. Kehe, J. E. Hurtado, P. Tawde, and P. C. Blainey, Combinatorial drug discovery

in nanoliter droplets, Proceedings of the National Academy of Sciences 115, 6685 (2018),

publisher: Proceedings of the National Academy of Sciences.

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


[10] J. R. Seymour, S. A. Amin, J.-B. Raina, and R. Stocker, enZooming in on the phycosphere:

the ecological interface for phytoplankton–bacteria relationships, Nature Microbiology 2, 1

(2017), number: 7 Publisher: Nature Publishing Group.

[11] R. Ramanan, B.-H. Kim, D.-H. Cho, H.-M. Oh, and H.-S. Kim, enAlgae–bacteria interactions:

Evolution, ecology and emerging applications, Biotechnology Advances 34, 14 (2016).

[12] G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: an apparent para-

dox? Analysis of a model system with both competition and commensalism, Marine Ecology

Progress Series 25, 23 (1985), publisher: Inter-Research Science Center.

[13] Z. Zhang, S. Nair, L. Tang, H. Zhao, Z. Hu, M. Chen, Y. Zhang, S.-J. Kao, N. Jiao, and

Y. Zhang, Long-Term Survival of Synechococcus and Heterotrophic Bacteria without External

Nutrient Supply after Changes in Their Relationship from Antagonism to Mutualism, mBio

12, e01614 (2021), publisher: American Society for Microbiology.

[14] B. J. Roberts and R. W. Howarth, enNutrient and light availability regulate

the relative contribution of autotrophs and heterotrophs to respiration in fresh-

water pelagic ecosystems, Limnology and Oceanography 51, 288 (2006), eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.4319/lo.2006.51.1.0288.

[15] S. T. Rier and R. J. Stevenson, enEffects of light, dissolved organic carbon, and inorganic

nutrients [2pt] on the relationship between algae and heterotrophic bacteria in stream peri-

phyton, Hydrobiologia 489, 179 (2002).

[16] G.-Y. Rhee, enCompetition Between an Alga and an Aquatic Bacterium

for Phosphate1, Limnology and Oceanography 17, 505 (1972), eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.4319/lo.1972.17.4.0505.

[17] C. Pope, H. Halvorson, R. Findlay, S. Francoeur, and K. Kuehn, Light and Temperature

Mediate Algal Simulation of Heterotrophic Activity On Decomposing Leaf Litter, Freshwater

Biology 65, 1210 (2020).

[18] T. J. Mayers, A. R. Bramucci, K. M. Yakimovich, and R. J. Case, EnglishA Bacterial Pathogen

Displaying Temperature-Enhanced Virulence of the Microalga Emiliania huxleyi, Frontiers in

Microbiology 7, 10.3389/fmicb.2016.00892 (2016), publisher: Frontiers.

[19] Y.-K. Lee, C.-Y. Ahn, H.-S. Kim, and H.-M. Oh, engCyanobactericidal effect of Rhodococcus

sp. isolated from eutrophic lake on Microcystis sp, Biotechnology Letters 32, 1673 (2010).

[20] R. Sommaruga and R. D. Robarts, The significance of autotrophic and heterotrophic pi-

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


coplankton in hypertrophic ecosystems, FEMS Microbiology Ecology 24, 187 (1997).

[21] L. Sack, C. Zeyl, G. Bell, T. Sharbel, X. Reboud, T. Bernhardt, and H. Koelewyn, English-

NOTE. ISOLATION OF FOUR NEW STRAINS OF CHLAMYDOMONAS REINHARDTII

(CHLOROPHYTA) FROM SOIL SAMPLES, Journal of Phycology 30, 770 (1994).

[22] S. Ishii, W. Ksoll, R. Hicks, and M. Sadowsky, EnglishPresence and growth of naturalized

Escherichia coli in temperate soils from lake superior watersheds, Applied and Environmental

Microbiology 72, 612 (2006).

[23] Z. Frentz, S. Kuehn, and S. Leibler, Strongly Deterministic Population Dynamics in Closed

Microbial Communities, Physical Review X 5, 041014 (2015), publisher: American Physical

Society.

[24] Contingency and Statistical Laws in Replicate Microbial Closed Ecosystems: Cell.

[25] G. Jm, S. R, M. R, C. Js, C. Eo, P.-A. C, and M. Ma, enBacterial community structure

associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom, Applied

and environmental microbiology 66, 10.1128/AEM.66.10.4237-4246.2000 (2000), publisher:

Appl Environ Microbiol.

[26] W. H. Hartman, C. J. Richardson, R. Vilgalys, and G. L. Bruland, Environmental and an-

thropogenic controls over bacterial communities in wetland soils, Proceedings of the National

Academy of Sciences 105, 17842 (2008), publisher: Proceedings of the National Academy of

Sciences.

[27] N. Fierer, J. L. Morse, S. T. Berthrong, E. S. Bernhardt, and R. B. Jackson, engEnvironmental

controls on the landscape-scale biogeography of stream bacterial communities, Ecology 88,

2162 (2007).

[28] growth rate of E. coli on different carbon su - Bacteria Escherichia coli - BNID 101699.

[29] G. Aidelberg, B. D. Towbin, D. Rothschild, E. Dekel, A. Bren, and U. Alon, Hierarchy of

non-glucose sugars in Escherichia coli, BMC Systems Biology 8, 133 (2014).

[30] J. Kim, Y. E. Cheong, I. Jung, and K. H. Kim, enMetabolomic and Transcriptomic Analyses of

Escherichia coli for Efficient Fermentation of L-Fucose, Marine Drugs 17, 82 (2019), number:

2 Publisher: Multidisciplinary Digital Publishing Institute.

[31] J. Kehe, A. Kulesa, A. Ortiz, C. M. Ackerman, S. G. Thakku, D. Sellers, S. Kuehn, J. Gore,

J. Friedman, and P. C. Blainey, Massively parallel screening of synthetic microbial communi-

ties, Proceedings of the National Academy of Sciences 116, 12804 (2019), publisher: Proceed-

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


ings of the National Academy of Sciences.

[32] J. Kehe, A. Ortiz, A. Kulesa, J. Gore, P. C. Blainey, and J. Friedman, Positive interactions are

common among culturable bacteria, Science Advances 7, eabi7159 (2021), publisher: American

Association for the Advancement of Science.

[33] A. Baichman-Kass, T. Song, and J. Friedman, Competitive interactions between culturable

bacteria are highly non-additive, eLife 12, e83398 (2023), publisher: eLife Sciences Publica-

tions, Ltd.

[34] J. A. Christie-Oleza, D. Sousoni, M. Lloyd, J. Armengaud, and D. J. Scanlan, enNutrient recy-

cling facilitates long-term stability of marine microbial phototroph–heterotroph interactions,

Nature Microbiology 2, 1 (2017), number: 9 Publisher: Nature Publishing Group.

[35] N. d. Lello, J. Garha, D. Infanti, and J. Raj, Effect of phosphorus concentration on growth

rate of Chlamydomonas reinhardtii, The Expedition (2019).

[36] M. L. Scherholz and W. R. Curtis, Achieving pH control in microalgal cultures through

fed-batch addition of stoichiometrically-balanced growth media, BMC Biotechnology 13, 39

(2013).

[37] G. Grewal, R. Kim, and S. Mason-Newton, How does pH impact the growth of Chlamy-

domonas reinhardtii, The Expedition (2018).

[38] R. E. Diner, S. M. Schwenck, J. P. McCrow, H. Zheng, and A. E. Allen, Genetic Manipu-

lation of Competition for Nitrate between Heterotrophic Bacteria and Diatoms, Frontiers in

Microbiology 7 (2016).

[39] A. Burson, M. Stomp, E. Greenwell, J. Grosse, and J. Huisman, enCompetition for nutrients

and light: testing advances in resource competition with a natural phytoplankton community,

Ecology 99, 1108 (2018), eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecy.2187.

[40] A. Sanchez, D. Bajic, J. Diaz-Colunga, A. Skwara, J. C. C. Vila, and S. Kuehn, engThe

community-function landscape of microbial consortia, Cell Systems 14, 122 (2023).

[41] C. Gopalakrishnappa, K. Gowda, K. H. Prabhakara, and S. Kuehn, An ensemble approach to

the structure-function problem in microbial communities, iScience 25, 103761 (2022).

[42] M. Basan, S. Hui, H. Okano, Z. Zhang, Y. Shen, J. R. Williamson, and T. Hwa, enOverflow

metabolism in Escherichia coli results from efficient proteome allocation, Nature 528, 99

(2015).

[43] S. R. Carpenter, Phosphorus control is critical to mitigating eutrophication, Proceedings of

31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/


the National Academy of Sciences 105, 11039 (2008), publisher: Proceedings of the National

Academy of Sciences.

[44] J. Y. Tan, T. E. Saleski, and X. N. Lin, The effect of droplet size on syntrophic dynamics in

droplet-enabled microbial co-cultivation, PLoS ONE 17, e0266282 (2022).

[45] D. Sher, J. W. Thompson, N. Kashtan, L. Croal, and S. W. Chisholm, enResponse of

Prochlorococcus ecotypes to co-culture with diverse marine bacteria, The ISME Journal 5,

1125 (2011), number: 7 Publisher: Nature Publishing Group.

[46] O. Weissberg, D. Aharonovich, and D. Sher, enPhototroph-heterotroph interactions during

growth and long-term starvation across Prochlorococcus and Alteromonas diversity, The ISME

Journal , 1 (2022), publisher: Nature Publishing Group.

[47] P. Durán, J. Flores-Uribe, K. Wippel, P. Zhang, R. Guan, B. Melkonian, M. Melkonian, and

R. Garrido-Oter, enShared features and reciprocal complementation of the Chlamydomonas

and Arabidopsis microbiota, Nature Communications 13, 406 (2022), number: 1 Publisher:

Nature Publishing Group.

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534036doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534036
http://creativecommons.org/licenses/by/4.0/



