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Abstract 

The hippocampus is a complex structure critically involved in numerous behavior-regulating 

systems. A multidimensional account of the hippocampus functional integration with 

neocortex, however, remains to be established and evaluated in terms of functional 

specialization and cognitive decline in aging. Here, we identify two long-axis modes of cortical 

functional connectivity (FC) during rest: a principal gradient of gradual anterior-posterior 

variation reflecting a task-positive/task-negative cortical motif, and a second-order gradient, 

representing unimodal-transmodal macroscale cortical organization. The second-order gradient 

predicted episodic memory and reflected underlying distribution of postsynaptic dopamine D1 

receptors, suggesting shared principles of functional and neuromolecular organization. Older 

age was associated with less distinct transitions in FC along gradients, and a youth-like gradient 

profile, i.e. maintained distinctiveness, was linked to superior memory – highlighting age-

related gradient dedifferentiation as a potential marker of cognitive decline. Our results support 

the notion that hippocampal function stands to inform general principles of brain organization, 

and emphasize a critical role of a second-order long-axis connectivity mode in mnemonic 

function across the lifespan. 

 

 

Key words: Anteroposterior axis, Connectopic mapping, Dopamine, Episodic memory, 
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The hippocampus plays a critical role in human behavior beyond its well-established 

involvement in memory and spatial navigation (Burgess et al., 2002; Laurita & Spreng, 2017; 

Moscovitch et al., 2016; Nadel & Peterson, 2013; Squire, 2004). Contemporary views hold that 

its broad involvement in cognition emerges through the combination of its intrinsic circuitry 

and its widespread cortical connections – placing it at the interface of multiple behavioral 

systems (Eichenbaum, 2000; Moscovitch et al., 2016; Ranganath & Ritchey, 2012). 

Characterizing organizational principles of its integration with the larger cortical landscape is 

therefore key to our understanding of its contribution to cognition and to the many diseases 

associated with its dysfunction (Barnes et al., 2009; Braak & Braak, 1991; Campbell & 

MacQueen, 2004; P. J. Harrison, 2004; Lieberman et al., 2018; Xie et al., 2020). 

Animal models (Amaral & Witter, 1989; Witter & Amaral, 2021), together with 

histological and functional descriptions in humans (Amunts et al., 2005; Kahn et al., 2008; 

Libby et al., 2012; Maass et al., 2015; Plachti et al., 2019), emphasize the hippocampus 

transverse and longitudinal (anteroposterior) axes in determining its functional organization. In 

humans, anteroposterior transitions in large-scale functional connectivity are informed by 

variation in microstructure (Adnan et al., 2016), gray matter covariance (Ge et al., 2019; Plachti 

et al., 2019), and gene expression (Vogel et al., 2020), and are widely considered shaping the 

hippocampus role in behavior (Grady, 2019; Persson et al., 2018; Poppenk et al., 2013), and its 

vulnerability to neurological disease (Lladó et al., 2018; Small et al., 2011). In cognitively 

healthy older adults, functional isolation of hippocampal regions from prefrontal areas and 

large-scale cortical networks has been described in association with their dysfunction during 

memory encoding and retrieval (Nyberg et al., 2019; Salami et al., 2014, 2016). Recent studies 

suggest that this disconnection could be driven by the spatial patterns in which Alzheimer’s 

pathology accumulates (Berron et al., 2021; de Flores et al., 2022; T. M. Harrison et al., 2019). 

Investigating cortico-hippocampal interactions as determined by the hippocampus long-axis 
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might as such serve as an important tool in identifying early markers of cognitive decline in 

older age and preclinical dementia. 

In parallel, driven by advances in neuroimaging data analysis, macroscale 

organization of neocortical function is increasingly understood in terms of overlapping 

topographic gradients reflecting distinct neurofunctional hierarchies (Huntenburg et al., 2018; 

Margulies et al., 2016; Shafiei et al., 2020). Recently, local representations of such neocortical 

modes have been demonstrated across transverse and longitudinal axes of the medial temporal 

lobe (MTL) (Paquola et al., 2020). Positioned at the top of the MTL hierarchy, throughout 

which the topography of cortical connectivity is largely preserved (Kahn et al., 2008; Libby et 

al., 2012; Maass et al., 2015; Witter & Amaral, 2021), the hippocampus, specifically, may also 

exhibit such local representations of behaviorally relevant cortical modes (Przeździk et al., 

2019; vos de Wael et al., 2018). However, a comprehensive account of the hippocampus’ 

position within this emerging framework of multidimensional macroscale brain organization 

remains to be established, and importantly, evaluated in terms of hippocampal functional 

specialization across the adult lifespan. 

Gradient mapping studies in young adults describe a principal hippocampal 

gradient of cortical connectivity linking somatomotor and default-mode areas at one end, with 

occipital and frontoparietal areas at the other, on the basis of its longitudinal axis (Przeździk et 

al., 2019; Tian et al., 2020; vos de Wael et al., 2018). This hippocampal gradient may be 

interpreted as largely reflecting a macroscale dimension spanning task-negative and task-

positive poles (Chase et al., 2015). Importantly, this principal long-axis gradient might function 

as a better predictor of memory compared to connectivity of discrete hippocampal parcels 

(Przeździk et al., 2019). While these observations extend current accounts, dominated by 

methods accentuating discrete borders along the hippocampus (Chase et al., 2015; Plachti et al., 

2019; Poppenk & Moscovitch, 2011; Robinson et al., 2015; Zhong et al., 2019), they remain 
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restricted to young adults, and importantly, to overlapping samples of young participants (i.e. 

the Human Connectome Project: Van Essen et al., 2013). 

Here, we investigate the multidimensional organization of hippocampal-cortical 

connectivity across the adult human lifespan using state-of-the-art gradient mapping methods, 

and map individual differences in gradient properties onto behavioral and molecular 

phenotypes. Dopamine (DA) is considered one of the most important modulators of 

hippocampus-dependent neurocognitive function (Edelmann & Lessmann, 2018; El-Ghundi et 

al., 2007). Animal models suggest heterogeneous innervation patterns by distinct DA sources 

(Gasbarri et al., 1994; Ishikawa et al., 1982; Kempadoo et al., 2016; Verney et al., 1985), as 

well as spatial variation in hippocampal postsynaptic DA receptors (Dubovyk & Manahan-

Vaughan, 2019), across both transverse and longitudinal hippocampal axes, likely allowing for 

separation between DA modulation of distinct hippocampus-dependent behaviors (Edelmann 

& Lessmann, 2018). Relatedly, the human hippocampus has been suggested as part of distinct 

DA circuits on the basis of anteroposterior variation in its functional connectivity with midbrain 

and striatal regions (Kahn & Shohamy, 2013; Nordin et al., 2021; Nyberg et al., 2016). We 

therefore tested the hypotheses that the topography of hippocampal cortical connectivity might 

reflect the underlying distribution of postsynaptic DA D1 receptors (D1DRs). 

We observed the hypothesized principal anteroposterior gradient, and in addition, 

a second-order mode of connectivity expressed along the hippocampal long-axis, separating 

communities of sensorimotor areas at one end from transmodal regions at the other. To 

elucidate the complimentary roles of these gradients for hippocampal functional specialization, 

we first characterized gradients by linking their cortical patterns to a) the macroscale layout of 

large-scale networks; b) meta-analytic functional activation in Neurosynth (Yarkoni et al., 

2011); c) and tested individual differences in topographic properties of these gradients as 

predictors of episodic memory performance. Age-sensitivity of gradients was assessed across 
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the sample, and latent class analysis (LCA) (Vermunt & Magdison, 2002) identified older 

individuals exhibiting a youth-like gradient profile and superior memory function as distinct 

from age-matched older counterparts, suggesting a functional role of maintained hippocampal 

connectivity topography in older age. 

 

Results 

Multiple dimensions of hippocampal cortical integration across the adult lifespan 

Connectopic mapping (Haak et al., 2018) was applied to resting-state fMRI data from 180 

participants (90 men/90 women; 20-79 years; mean age = 49.8±17.4) from the DyNAMiC study 

(Nordin et al., 2022). As a replication data set, we used an independent sample of 224 adults 

(122 men/102 women; 29-85 years mean age = 65.0±13.0) from the Betula project (Nilsson et 

al., 2004; Nyberg et al., 2020). Connectopic mapping was used to extract the dominant modes 

of functional connectivity within the hippocampus based on non-linear manifold learning 

(Laplacian eigenmaps) applied to a similarity matrix derived from functional connectivity 

fingerprints computed between each hippocampal voxel and each voxel within neocortex. This 

identified a set of orthogonal connectopic maps (i.e. eigenvectors) describing overlapping 

connectivity topographies (i.e. gradients) within the hippocampus. Gradients were computed at 

subject level, and at group level across the sample, separately for the left and right hippocampus. 

We analyzed the first three gradients, together explaining 63% and 71% of the variance in left- 

and right-hemispheres, respectively. Furthermore, this number corresponded to a clear elbow 

in the scree plot (Supplementary Figure 1). 

The principal gradient (G1), explaining 44% and 53% of the variance in left and 

right hemispheres, was organized along the hippocampus longitudinal axis, conveying gradual 

anterior-to-posterior variation in cortical connectivity (Figure 1A: c.f. Przeździk et al., 2019; 

Tian et al., 2020; vos de Wael et al., 2018). This pattern of connectivity change is illustrated by 
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dividing subject-level G1 connectopic maps into 23 long-axis bins of ~2mm and plotting the 

average gradient values as a function of their distance from the most anterior hippocampal voxel 

(Przeździk et al., 2019) (Figure 1B). The second-order gradient (G2), explaining 11% of the 

variance in both hemispheres, expressed a secondary long-axis gradient determined as 

organized from the middle hippocampus towards anterior and posterior ends (Figure 1A-B). 

Finally, the third-order gradient (G3: explaining 8 and 7% of the variance), reflected variation 

along the hippocampus transverse axis, such that inferior-lateral parts of the hippocampus were 

separated from medial-superior parts (Figure 1A-B). Inspecting G3 across sample-specific 

segmentations of cornu ammonis (CA1-3), dentate gyrus (DG/CA4), and subiculum subfields 

suggested that while CA1-3 reflected the full extent of the gradient, and DG/CA4 variation 

around its center, the subiculum reflected only the most inferior section of the gradient 

(Supplementary Figure 2). The three gradients were highly reproducible in the independent 

replication data set (Supplementary Figure 3). Correspondence between samples was 

determined by spatial correlations between gradient pairs (left hemisphere: G1: r = 0.990, p < 

0.001; G2: r = 0.946, p < 0.001; G3: r = 0.918, p < 0.001; right hemisphere: G1: r = 0.996, p < 

0.001; G2: r = 0.969, p < 0.001; G3: r = 0.897, p < 0.001). 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.534115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/


8 
 

 

Figure 1. Topographic gradients of cortical connectivity within the hippocampus. A) The three first 

hippocampal connectopic maps (G1-G3), together explaining 67% of the variance across left and right 

hemispheres. Similar colors convey similar patterns of cortical connectivity. Values range between 0 

(blue) and 1 (yellow). B) Plots convey change in connectivity along the anteroposterior hippocampal 

axis for the three gradients. For each gradient, mean values from 23 bins (each ~2mm) were plotted 

against their distance (in mm) from the most anterior hippocampal voxel. Values were estimated based 

on subject-level gradients and averaged across participants. G1 conveys gradual change in connectivity 

patterns along an anteroposterior gradient. G2 conveys gradual change in connectivity patterns along a 

second-order long-axis gradient, spreading from the middle hippocampus towards anterior and posterior 

ends. G3 conveys close to no change in connectivity along the hippocampus longitudinal axis, with 

connectivity change instead organized in a primarily medial-lateral gradient. 
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Hippocampal gradients reflect distinct dimensions of macroscale cortical organization 

The projection of G1 onto cortex conveyed a pattern linking somatomotor and temporolimbic 

regions at the anterior end of the gradient with occipital and frontoparietal regions at the 

posterior end (Figure 2A). To further describe the cortical organization of G1, we examined the 

distribution of large-scale networks in gradient space by computing median gradient values for 

seven cortical networks (Yeo et al., 2011). This placed default-mode (left G1: 0.67; right G1: 

0.61), limbic (left G1: 0.65; right G1: 0.63) and somatomotor (left G1: 0.67; right G1: 0.60) 

networks at anterior-to-middle parts of the gradient, whereas visual (left G1: 0.41; right G1: 

0.52), frontoparietal (left G1: 0.29; right G1: 0.41) and ventral attention networks (left G1: 0.21; 

right G1: 0.12) toward the posterior end of the gradient (Figure 2B). 

In contrast, G2 exhibited a unimodal-transmodal pattern across cortex. This 

pattern linked the middle hippocampus to medial frontal and posterior parietal regions, while 

anterior and posterior hippocampal ends to somatomotor and occipital regions (Figure 2A). 

Consistently, functional networks mapped onto G2 placing frontoparietal (left G2: 0.74; right 

G2: 0.82) and default-mode (left G2: 0.65; right G2: 0.74) networks at one end, while visual 

(left G2: 0.29; right G2: 0.12) and somatomotor networks (left G2: 0.17; right G2: 0.17) at the 

other end (Figure 2B). To further evaluate G2 as a local representation of the well-established 

unimodal-transmodal gradient of macroscale cortical organization (Margulies et al., 2016), we 

correlated cortical G2 values with values from a unimodal-transmodal cortical gradient 

previously reported in the DyNAMiC dataset (Pedersen et al., 2023). We observed positive 

correlations for G2 (left G2: Spearman’s r = 0.29, pspin = 0.062; right G2: Spearman’s r = 0.43, 

pspin = 0.002; Figure 2), greater than the non-significant correlations observed for G1 (left G1: 

Spearman’s r = -0.03, pspin = 0.578, Z = 4.59, p < 0.001; right G1: Spearman’s r = 0.01, pspin = 

0.497, Z = 6.47, p < .001), and G3 (left G3: Spearman’s r = -0.31, pspin = 0.966, Z = 8.76, p < 

.001; right G3: Spearman’s r = -0.40, pspin = 0.983, Z = 12.49, p < 0.001; Figure 2C). Taken 
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together, we demonstrate different lines of converging evidence suggesting that G2 serves as a 

local map of the macroscale unimodal-transmodal axis of cortical organization. 

The cortical projection of G3 primarily separated ventral attention areas from 

medial parietal and medial frontal areas. Aligning well with large-scale cortical connectivity 

profiles previously reported for hippocampal subfields (de Flores et al., 2017; Ezama et al., 

2021; vos de Wael et al., 2018), we observed that areas of the default-mode network (left G3: 

0.26; right G3: 0.17) most strongly mapped onto the most inferior end of G3, consistent with 

the reported connectivity profile of the subiculum, whereas ventral attention (left G3: 0.83; right 

G3: 0.75) and somatomotor (left G3: 0.54; right G1: 0.54) networks had a stronger medial 

position along G3, aligning with cortical connectivity reported for CA1-3 (Figure 2B). 
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Figure 2. The cortical distribution of hippocampal gradients. A) Cortical projections for G1, G2, and 

G3. Values range between 0 (blue) and 1 (yellow). B) Distribution of cortical networks in gradient space. 

Bars represent 2nd and 3rd quartiles around median cortical gradient values within each of the seven 

networks in the Yeo 2011 parcellation (Yeo et al., 2011). C) Correlations between the cortical patterns 

of hippocampal gradients and a unimodal-transmodal cortical gradient previously reported in the 

DyNAMiC dataset by Pedersen et al., 2023. 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.534115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/


12 
 

Distinct patterns of behavioral transitions along G1 and G2 

To further characterize the cortical integration conveyed by G1 and G2, and the relevance of 

these two modes of functional organization for hippocampal functional specialization, we 

mapped transitions in behavioral domains onto G1 and G2 using meta-analytical decoding in 

Neurosynth (Yarkoni et al., 2011). Correlations were assessed between meta-analytical maps 

of behavioral terms and twenty-percentile bins of each gradient’s cortical projection (Figure 3). 

First, a selection of terms commonly linked to anteroposterior hippocampal functional 

specialization (Grady, 2019; Plachti et al., 2019) were assessed across G1 and ranked based on 

their location along the gradient (Figure 3A). This revealed an overarching verbal/social-to-

spatial/cognitive axis. Terms that expressed the strongest anterior loadings on G1 included 

words, social, recognition, and dementia, whereas terms of navigation, episodic memory, 

encoding and recollection showed preferential posterior loadings. In contrast, behavioral 

transitions along G2 were expected to correspond to a perceptual/motor-associative axis, given 

its unimodal-transmodal organization (Figure 2A-C). Terms were selected and ordered based 

on a previous report demonstrating behavioral transitions along a unimodal-transmodal cortical 

axis (Margulies et al., 2016). This, indeed, separated sensorimotor and visual terms at one end 

from social, self-referential, and default terms at the other (Figure 3B), lending further support 

to the interpretation of G2 as a local representation of the unimodal-transmodal gradient of 

macroscale cortical organization. 
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Figure 3. Behavioral profiling of G1 and G2. For each gradient, columns represents twenty-percentile 

bins of that gradient’s cortical projection. Color shadings represent the strength of correlations between 

gradient bins and meta-analytical maps in Neurosynth. A) Terms commonly linked to anteroposterior 

hippocampal functional specialization were assessed across G1 and ranked based on their location along 

the gradient. This revealed an overarching verbal/social-to-spatial/cognitive axis, most evident across 

G1 in the left hemisphere. B) For G2, terms were selected and ordered based on a previous report 

demonstrating behavioral transitions along a unimodal-transmodal cortical axis (Margulies et al., 2016). 

C) The correspondence between G2 and behavioral terms commonly linked to anteroposterior 

hippocampal functional specialization. D) The correspondence between G1 and behavioral terms 

expressing a unimodal-transmodal axis. 
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Dedifferentiated gradient topography in older age 

We next explored age-related differences in gradient topography. To this end, trend surface 

modelling (TSM) was applied to each subject-level connectopic map (Haak et al., 2018; 

Przeździk et al., 2019). This spatial statistics approach parameterizes gradients at subject level, 

yielding a set of spatial model parameters which describes the topographic characteristics of 

each gradient in x, y, z directions (Supplementary Figure 5). There was a significant effect of 

age on topographic characteristics of all three gradients, as assessed in a series of multivariate 

GLMs including age as the predictor and TSM parameters as dependent variables (controlling 

for sex and mean frame-wise displacement; FD). The principal gradient displayed the greatest 

effect of age (left: F(9,150) = 5.853, p < 0.001, partial ƞ2 = 0.260; right: F(9,150) = 6.971, p < 0.001, 

partial ƞ2 = 0.298), followed by G2 (left: F(12,147) = 2.583, p = 0.004, partial ƞ2 = 0.174; right: 

F(12,145) = 2.635, p = 0.003, partial ƞ2 = 0.179), and G3 (left: F(12,147) = 1.973, p = 0.030, partial 

ƞ2 = 0.139; right: F(12,145) = 2.082, p = 0.021, partial ƞ2 = 0.147). To visualize effects, subject-

level gradient values were plotted along the anteroposterior axis, averaged within groups of 

young (20-39 years), middle-aged (40-59 years) and older (60-79 years) adults (Figure 4). 

Connectivity across the principal hippocampal gradient (G1) and secondary middle-to-

anterior/posterior axis (G2) displayed less distinct differentiation at older age, depicted by the 

flatter curves in the older group. (Figure 4). 

Figure 4. Less specificity in connectivity change across gradients in older age. Average values of 

subject-level G1 and G2 bins (~2mm) plotted as a function of their distance (in mm) from the most 

anterior hippocampal voxel. Separate lines are displayed for young (20-39 years; blue), middle-aged 
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(40-59 years, green), and older (60-79 years; yellow) age groups. The flatter curves in the older group 

indicate less distinct change in connectivity patterns across gradients in older age. 

 

Topography of hippocampal gradients predicts episodic memory performance 

Next, we investigated the relationship between individual differences in gradient topography 

and episodic memory. Using hierarchical multiple regression models, in which age, sex, and 

mean FD were controlled for in a first step (M1), we entered TSM parameters of the three 

gradients as predictors of episodic memory in a step-wise manner. Models were assessed 

separately for left and right hemispheres. Memory performance was, across the sample, 

significantly predicted by individual differences in G2 topography in the left hippocampus 

(Figure 5A), over and above covariates and topography of G1 (Adj. R2 = 0.308, ΔR2 = 0.096, 

F= 1.842, p = 0.047). Assessed within age groups, memory performance was in young adults 

predicted by left-hemisphere G1 topography (Adj. R2 = 0.182, ΔR2 = 0.357, F= 2.672, p = 

0.015; Figure 5B). While these results converge with previous findings of left-hemisphere G1 

topography predicting episodic memory performance in young adults (Przeździk et al., 2019), 

they highlight a critical contribution of G2 topography in explaining individual differences in 

episodic memory across the adult lifespan. 

Figure 5. Hippocampal gradient topography as a predictor of episodic memory performance. A) 

Individual differences in topographic characteristics of G2 in the left hemisphere significantly predicted 

episodic memory performance across the sample, over and above the first- and second-step models (M1: 

age, sex, in-scanner motion; G1 parameters). B) Topographic characteristics of G1 in the left hemisphere 
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significantly predicted episodic memory performance in young adults, over and above M1 (age, sex, 

and in-scanner motion). 

 

Topography of G2 reflects distribution of hippocampal dopamine D1 receptors 

We have recently shown shared organizational principles between gradients of neocortical 

function and the DA D1 receptor (D1DR) (Pedersen et al., 2023). More specifically, we found 

that D1DR follow an associative-sensory axis of functional organization. On this view, it is 

perceivable that the local representation of the unimodal-transmodal cortical motif conveyed 

by our second-order functional gradient might be evident also in the distribution of hippocampal 

D1DRs. Individual maps of D1DR binding potential, estimated through [11C]SCH23390 PET, 

were submitted to TSM yielding a set of spatial model parameters describing the topographic 

characteristics of hippocampal D1DR distribution for each participant. D1DR parameters were 

subsequently used as predictors of gradient parameters in a multivariate GLM (controlled for 

age, sex, and mean FD). D1DR topography significantly predicted topography of G2 (right 

hemisphere: F = 1.207, p = 0.041; partial η2 = 0.118), but not for G1 (Figure 6). This association 

was evident across different D1DR TSM model orders (Supplementary Figure 5), suggesting 

shared principles of functional and neuromolecular organization within the hippocampus. 

 

Figure 6. Topography of dopamine D1 

receptor (D1DR) distribution as a predictor 

of gradient topography. A) Multivariate 

effects of hippocampal D1DR TSM 

parameters as predictors of G2 TSM 

parameters. B) Group-level G2 and 

hippocampal D1DR distribution in the right 

hemisphere. Note that the color scale of G2, 

which is arbitrary, has been flipped. 
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Youth-like gradient topography supports memory in older age 

To investigate a functional role of the principal and most age-sensitive gradient in old age, we 

tested whether mnemonic functioning in older adults would be promoted by youth-like gradient 

topography. To identify distinct gradient profiles in older age, we applied data driven latent 

class analysis (LCA) to TSM parameters (residualized to account for age, sex, and mean FD) 

of left-hemisphere G1, which predicted episodic memory performance in younger adults. LCA 

yielded a two-class solution separating a smaller group (n=19) from a larger group (n=30) of 

older adults (60-79 years). By definition, these two groups differed in terms of left-hemisphere 

G1 characteristics (F(9,37) = 13.778, p < 0.001, partial η2 = 0.770), and a difference was also 

evident between groups in the right hemisphere (F(9,37) = 3.790, p = 0.002, partial η2 = 0.480). 

Individuals in the smaller subgroup were determined as exhibiting an aged 

gradient profile, whereas older adults in the larger subgroup as exhibiting a youth-like gradient 

profile, given distinct patterns of differences in gradient parameters as compared to younger 

adults. Importantly, the classification based on G1 parameters extended across all three 

gradients in both hemispheres (Figure 7A), such that the smaller sub group displayed marked 

differences from younger adults across all gradients (left G1: F(9,63) = 15.549, p < 0.001, partial 

η2 = 0.690; right G1: F(9,63) = 5.322, p < 0.001, partial η2 = 0.432; left G2: F(12,60) = 3.991, p < 

0.001, partial η2 = 0.444; right G2: F(12,60) = 2.192, p = 0.023, partial η2 = 0.305; left G3: F(12,60) 

= 2.832, p = 0.004, partial η2 = 0.362; right G3: F(12,60) = 1.844, p = 0.061, partial η2 = 0.269), 

while the youth-like sub group differed from young adults to a lesser extent in terms of G1 (left 

G1: F(9,74) = 4.416, p < 0.001, partial η2 = 0.349; right G1: F(9,74) = 3.086, p = 0.003, partial η2 

= 0.273), and displayed second- and third-order gradients comparable to those in younger age 

(left G2: F(12,71) = 1.616, p = 0.107, partial η2 = 0.215; right G2: F(12,71) = 1.442, p = 0.168, 

partial η2 = 0.196; left G3: F(12,71) = 1.122, p = 0.357, partial η2 = 0.159; right G3: F(12,71) = 

1.596, p = 0.112, partial η2 = 0.212). Examining change in connectivity along G1 and G2 
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demonstrated that the reduced topographic specificity observed across these two gradients in 

older age was driven by older adults with an aged gradient profile (Figure 7B). Both older sub 

groups, nevertheless, displayed altered gradient organization across cortex (Figure 7C-D). The 

distribution of cortical networks in G1 space indicated a shift towards a unimodal-transmodal 

organization in youth-like older adults, not evident in the aged older group (Figure 7D). 

The two groups did not differ in terms of age (aged: 70.8±6.0; youth-like: 

68.4±4.7; t = 1.548, p = 0.128), sex (aged: 9 men/10 women; youth-like: 16 men/14 women; X2 

= 0.166, p = 0.684), nor hippocampal gray matter (left hemisphere: aged: 4271.2±480.9; youth-

like: 4246.8±269.1; t = 0.223, p = 0.824; right hemisphere: aged: 3866.2±446.3; youth-like: 

3979.9±398.1; t = 0.929, p = 0.357). In line with our hypothesis, we observed superior memory 

in older adults exhibiting a youth-like gradient profile (Figure 7E): at trend-level for the 

composite episodic measure (aged: 43.2±3.7; youth-like: 46.5±6.6; t = 1.958, p = 0.056), driven 

by a significant group difference on its word recall sub test (aged: 40.9±4.5; youth-like: 

43.4±6.8; t = 2.600, p = 0.012). Word recall performance was furthermore predicted by left-

hemisphere G1 parameters (over and above age, sex, and mean FD) in the youth-like older 

adults (Adj. R2 = 0.464, ΔR2 = 0.543, F = 3.043, p = 0.028), while no such association was 

observed in the aged sub group (Adj. R2 = 0.063, ΔR2 = 0.533, F = 1.004, p = 0.518). 

Classification of older adults based on right-hemisphere G1 TSM parameters is 

presented in the Supplementary Information. While this also yielded a two-class solution, the 

resulting groups primarily differed in terms of right-hemisphere G1 parameters (Supplementary 

Figure 6), with group differences less pronounced for subsequent gradients. This indicates that 

topography of G1 in the left-hemisphere, predictive of episodic memory in young adults, does 

a better job at informing comprehensive youth-like and aged gradient profiles in older age. 

Taken together, our results suggest that maintaining youth-like organization of hippocampal 

function is concomitant with more efficient mnemonic function in older age. 
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Figure 7. Gradient profiles in older age. A) Two groups of older adults were identified based on left-

hemisphere G1 parameters. The first group (n=19) displayed gradient characteristics significantly 

different from those in young adults, whereas the second group (n=30) displayed gradient characteristics 

more similar to those in young adults. Bars represent comparisons of gradient TSM parameters between 
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older sub groups and younger adults. B) Average gradient values across participants within sub groups, 

plotted against the distance (in mm) from the most anterior hippocampal voxel. The flatter curves in 

older adults with an aged gradient profile suggest less distinct change in connectivity across 

hippocampal gradients. C) Group-level G1 and G2 for young, youth-like, and aged groups. D) 

Distribution of cortical networks in gradient space. E) Older sub groups were comparable in terms of 

age, sex, and hippocampal gray matter (GM) volume, while older adults with a youth-like gradient 

profile exhibited greater episodic memory function. 

 

Discussion 

Here, we provide, for the first time, a multidimensional characterization of functional 

hippocampal cortical integration across the adult human lifespan, and map topography of 

connectivity gradients onto behavioral phenotypes. Specifically, our results emphasize two 

functional modes organized along the hippocampus longitudinal axis in understanding its 

position within large-scale dimensions of cortical organization. A dominant, anteroposterior, 

connectivity mode represented a gradual shift in connectivity from default, sensorimotor and 

temporolimbic regions toward occipital and frontoparietal areas, whereas a secondary mode 

separated the middle hippocampus from anterior and posterior ends, on the basis of a shift in 

connectivity from cortical association areas to primary sensory and somatomotor regions. 

Importantly, we show that a youth-like gradient profile in older age, i.e. maintained 

distinctiveness of connectivity along gradients, is linked to superior mnemonic function, 

emphasizing age-related loss of specificity in gradient topography as a hippocampal marker of 

age-related memory decline. Collectively, our results underscore the important contribution of 

disentangling multiple dimensions of hippocampal functional organization in advancing our 

understanding of cortico-hippocampal systems for memory and behavior. 

Functional connectivity estimated using resting-state fMRI in humans has 

successfully provided functional analogues of the hippocampus canonical internal circuitry and 

its structural connections with cortical areas (Dalton et al., 2019; Ezama et al., 2021; Libby et 

al., 2012; Maass et al., 2015), at a coarse scale confirming the anteroposterior gradient in 
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connectivity originally suggested in the animal literature (Aggleton, 2012; Amaral & Witter, 

1989; Strange et al., 2014; Witter et al., 1989). Indeed, our observation of a principal 

anteroposterior gradient converges with a large body of evidence demonstrating, across a 

variety of methodological approaches, differences in functional cortical connectivity along the 

hippocampus longitudinal axis (Blessing et al., 2016; Chase et al., 2015; Nordin et al., 2021; 

Plachti et al., 2019; Poppenk & Moscovitch, 2011; Przeździk et al., 2019; Robinson et al., 2015; 

Tian et al., 2020; vos de Wael et al., 2018; Zhong et al., 2019). Despite the consistency by 

which this organizational dimension emerges (Genon et al., 2021), inconsistencies remain in 

terms of the specific cortical motif it reflects and, in turn, its role in behavior. We propose that 

inconsistencies in part stem from overlooking multiple overlapping and complementary modes 

of hippocampal function, not easily distinguishable through traditional parcellation-based 

approaches, which assume homogeneous function within distinct portions of the hippocampus. 

Using connectopic mapping (Haak et al., 2018; Haak & Beckmann, 2020), we 

link two distinct dimensions of cortical integration to the hippocampus longitudinal axis. The 

first, we argue, can be interpreted as a local representation of a task-negative/task-positive 

cortical motif, whereas the second mode as a local map of the principal gradient of unimodal-

transmodal cortical organization, previously demonstrated across a wide range of functional, 

structural and molecular modalities (Hansen et al., 2021; Huntenburg et al., 2018; Margulies et 

al., 2016; Paquola et al., 2019; Shafiei et al., 2020; Valk et al., 2020). The observation that 

macroscale relationships between distinct cortical systems are mapped out by the hippocampus 

may reflect its primordial position in the laminar differentiation characterizing the development 

of the cerebral cortex (Goulas et al., 2019; Pandya et al., 2015). This supports the notion that 

the functional organization of the hippocampus stands, from a phylogenetic perspective, to 

inform general principles of brain organization (Genon et al., 2021; Paquola et al., 2020). 
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There is currently a lack of consensus regarding the specific topography of 

hippocampal integration with areas of the default-mode network, also constituting core areas of 

the brain’s system for memory-guided behavior (Ranganath & Ritchey, 2012; Ritchey & 

Cooper, 2020; Schacter et al., 2007; Spreng et al., 2008). While several studies attribute main 

default-mode interactions to the posterior hippocampus (Adnan et al., 2016; Ezama et al., 2021; 

Libby et al., 2012; Poppenk & Moscovitch, 2011; Qin et al., 2016; Ranganath & Ritchey, 2012), 

consistent with its anatomical connectivity with midline posterior parietal areas, such as the 

retrosplenial cortex (Aggleton, 2012; Insausti & Muñoz, 2001), other sources emphasize the 

anterior hippocampus in driving the region’s connectivity with default-mode areas (Blessing et 

al., 2016; Chase et al., 2015; Vogel et al., 2020; Zhong et al., 2019), on the basis of its 

anatomical connectivity with ventromedial prefrontal areas (Aggleton, 2012). Our results may 

accommodate both of these accounts. 

First, by placing default-mode and frontoparietal areas at opposing ends of a 

principal anteroposterior gradient, we extend previous gradient-based findings in young adults 

(Przeździk et al., 2019; Tian et al., 2020; vos de Wael et al., 2018), and contribute to their 

validation of studies reporting predominant anterior hippocampal connectivity with default-

mode areas in parallel to connectivity of the posterior hippocampus to occipital and 

frontoparietal areas – yielding an anteroposterior differentiation in hippocampal integration 

with task-negative and task-positive networks (Chase et al., 2015). Second, the second-order 

gradient highlighted connectivity of the middle hippocampus as separate from that of anterior 

and posterior regions, distinctively linking it to core regions of the default mode network, 

namely medial frontal and medial parietal areas. Examining previous findings, this may in fact 

align with observations of predominant posterior hippocampal connectivity with the default-

mode network – as a large number of these studies observe shifts towards medial  frontal and 

parietal connectivity already between anterior and middle hippocampal locations (Ezama et al., 
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2021; Kahn et al., 2008; Qin et al., 2016), or use posterior hippocampal parcels encompassing 

the middle hippocampus after a two-part division at the uncal apex (Adnan et al., 2016; Poppenk 

& Moscovitch, 2011). 

While the principal anteroposterior gradient is well-established in the literature 

(Genon et al., 2021; Poppenk et al., 2013), demonstrated not only in function (Przeździk et al., 

2019; Tian et al., 2020; vos de Wael et al., 2018), but also in structural covariance (Plachti et 

al., 2019), gene expression (Vogel et al., 2020), and in graded anteroposterior transitions of 

anatomical connections (Beaujoin et al., 2018; Dalton et al., 2022), the secondary long-axis 

gradient remains more elusive. Here, we present multiple lines of evidence supporting an 

interpretation of the second-order gradient as a local representation of the principal gradient of 

macroscale cortical organization (Huntenburg et al., 2018; Margulies et al., 2016): the 

unimodal-transmodal distribution of a) large-scale cortical networks in gradient space (Figure 

2); b) meta-analytic terms in Neurosynth (Figure 3B); and the spatial correspondence with a 

functional unimodal-transmodal cortical gradient (Figure 2). Furthermore, topography of this 

gradient overlapped with topography of hippocampal D1DR distribution, mirroring the 

organizational overlap between function and D1DR established across the unimodal-

transmodal cortical axis (Pedersen et al., 2023). Additionally, we could reliably reproduce this 

gradient in an independent sample covering the adult lifespan (Supplementary Figure 3), as well 

as in a sub set of younger participants (Figure 6C). 

Applying data-driven multivariate analysis to parcellation-based estimates of 

hippocampal connectivity, we have previously observed a similar second-order pattern 

distinguishing connectivity of the middle hippocampus from that shared by anterior and 

posterior regions, in an age-homogeneous sample of older adults (Nordin et al., 2021). 

Consistent non-linear transitions along the anteroposterior axis also emerge in other properties 

of hippocampal function. For instance, inter-voxel similarity – a proxy for processing 
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granularity (Brunec et al., 2018) – has been reported displaying U-shaped anteroposterior 

variation, separating middle from anterior and posterior hippocampal areas (Thorp et al., 2022). 

The overlapping linear and U-shaped long-axis modes observed in the present study might 

reflect the superimposition of gradients and hubs of anatomical connections indicated in both 

the human and animal hippocampus (Dalton et al., 2022; Strange et al., 2014). 

Consistent with previous gradient-based observations in young adults (Przeździk 

et al., 2019), we observed an association between topography of the principal gradient and 

episodic memory in young participants. Behavioral characterizations of the principal, 

anteroposterior, mode of hippocampal connectivity describe a dimension spanning between 

self-centric, affective and social vs. world-centric and cognitive poles (Plachti et al., 2019; 

Vogel et al., 2020). Using meta-analytical decoding in Neurosynth, we observed behavioral 

transitions largely in line with these observations, and with the interpretation of this gradient as 

reflecting a task-negative/positive functional axis. While our results are of descriptive character, 

task-positive terms such as navigation, episodic memory, encoding and recollection, as well as 

attention and cognitive control mapped on to the posterior end of the gradient, whereas verbal 

and social terms showed preferential mapping onto the anterior section of the gradient (Figure 

3). It is likely that stronger expression of emotional terms would have been observed towards 

anterior regions of the gradient if subcortical regions such as the amygdala had been included 

in its computation (Plachti et al., 2019; Vogel et al., 2020). 

A main contribution in explaining individual differences in episodic memory 

across the adult lifespan was however observed for spatial characteristics of the second-order, 

unimodal-transmodal, gradient. It is noteworthy that meta-analytical decoding of the second-

order gradient primarily described the unimodal connectivity patterns of anterior and posterior 

hippocampal regions, as opposed to the transmodal connectivity pattern of the middle 

hippocampus, as linked to terms of episodic memory, encoding, and navigation (Figure 3C). Its 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.534115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/


25 
 

role in memory might be considered in light of the hippocampus integration with the ventral 

visual system, by which it contributes to complex perceptual processes supporting memory (Lee 

et al., 2012; Turk-Browne, 2019). There is evidence of direct connections of the hippocampus 

to early visual areas in humans (Huang et al., 2021; Rolls et al., 2022), and recent tractography-

based work mapping the density and spatial distribution of streamline endpoints in the 

hippocampus demonstrates occipital cortex as one of the areas most highly connected to the 

hippocampus (Dalton et al., 2022). Importantly, streamline endpoints attributed to early visual 

areas were primarily localized to the posterior hippocampus and to a smaller region in the 

anterior hippocampus. 

Although we restrict our discussion of the third-order gradient due to its relatively 

low proportion of explained variance, we note that its organization across the hippocampal 

transverse axis mirrors previous patterns observed in both structure and function (Plachti et al., 

2019; Thorp et al., 2022), at a coarse scale separating CA areas from the subiculum. 

Consistently, cortical patterns belonging to opposite ends of this gradient matched cortical 

connectivity profiles previously reported for hippocampal subfields (de Flores et al., 2017; 

Ezama et al., 2021; vos de Wael et al., 2018). While our results reinforce the notion that 

functional assessments favor detection of the hippocampus anteroposterior organization, in 

contrast to that determined by its cytoarchitecture (Genon et al., 2021), they suggest that higher-

order connectivity modes may indeed carry coarse-scale information about subfield-determined 

functional organization. 

Transitions in connectivity along the hippocampal long-axis, estimated on the 

basis of subject-level gradient values, revealed that the gradual anteroposterior and middle-to-

anterior/posterior connectivity modes conveyed by the principal and second-order gradients 

were evident across the adult lifespan (Figure 4). Topographic characteristics of these gradients, 

nevertheless, showed significant age-related variation, such that older age was associated with 
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less distinct change in connectivity along these long-axis modes (Figure 4). This effect was 

exacerbated in a sub group of older adults identified as exhibiting an overall aged gradient 

profile, separated from older adults exhibiting youth-like gradient topography through 

classification based on gradient parameters (Figure 7A). This observation provides an 

additional example of increased homogeneity in hippocampal function in older individuals, 

previously observed in various measures of local functional connectivity (T. M. Harrison et al., 

2019; Stark et al., 2021). Current theories view increased functional homogeneity of the 

hippocampus as a consequence of its functional isolation from cortical areas, arising from tau-

driven degeneration of the perforant pathway (T. M. Harrison et al., 2019; Hyman et al., 1984; 

Salami et al., 2022). Constituting the main source of input to the hippocampus, age-related 

deterioration of this pathway has previously been demonstrated as leading to impaired 

mnemonic functioning (Adams et al., 2022; Yassa et al., 2010). Our results indeed emphasize 

a behaviorally relevant role of maintained gradient distinctiveness, that is, maintained 

heterogeneity along connectivity modes, demonstrating that older individuals with an aged 

gradient profile showed less efficient episodic memory compared older individuals with youth-

like gradient topography. 

Lower distinctiveness of the principal gradient was reflected in an altered gradient 

organization across cortex, not only in older individuals displaying an exacerbated effect of age, 

but also in those exhibiting an overall youth-like gradient profile. Indeed, task-negative/task-

positive dynamics are known to significantly alter in aging. Less segregation between these 

brain areas during both task and rest are typically observed in older adults (Grady et al., 2016; 

Hughes et al., 2020; Pedersen et al., 2021; Spreng et al., 2016), constituting a common example 

of age-related neural dedifferentiation (Goh, 2011; Koen & Rugg, 2019). Similar 

dedifferentiation is also evident in numerous psychiatric diseases involving aspects of 

hippocampal dysfunction (Whitfield-Gabrieli & Ford, 2012; Zhang et al., 2021), like major 
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depression (Mulders et al., 2015; Wang et al., 2022), schizophrenia (Whitfield-Gabrieli et al., 

2009), and Alzheimer’s disease (Weiler et al., 2017). There was, however, a main difference in 

deviation from this dimension observed between older sub groups. The distribution of cortical 

networks in gradient space indicated a shift towards a unimodal-transmodal organization in 

youth-like older adults, not evident in the aged older group (Figure 7D). A meaningful role of 

this shift is indicated by the observation that individual differences in topography of the 

principal gradient predicted episodic memory in youth-like older adults only. Taken together, 

while both older sub groups displayed a departure from the task-negative/task-positive cortical 

motif, emerging as dominant across the sample and in younger adults, only in one of these 

groups did this reflect a behaviorally relevant shift in cortical integration. 

A limitation associated with this study is that our cross-sectional data cannot 

inform aspects of age-related longitudinal change in hippocampal connectivity modes. While 

our results demonstrate individual differences in the degree of age-related effects on the 

distinctiveness of gradients, longitudinal data is required to determine if these differences occur 

as a result of differential change of over time, and to which extent they involve a true shift in 

hippocampal cortical integration – as predicted by our observations in older adults displaying a 

youth-like gradient profile. Whereas longitudinal data is required inform the underlying 

mechanisms of individual differences in hippocampal gradient topography in older age (Cabeza 

et al., 2018), our results provide a foundation for further evaluation of them as a potential marker 

of cognitive decline. It is important to also consider potential limitations arising from the fact 

that computation of gradients was restricted to hippocampal connectivity with cortical areas. It 

is likely that the behavioral characterizations of gradients would alter in response to including 

connectivity with, for instance striatal areas, previously observed to mediate episodic memory 

(Nordin et al., 2021; Nyberg et al., 2016). Furthermore, whereas connectopic mapping (Haak 

et al., 2018; Haak & Beckmann, 2020) allows for subject-level parameterization of gradient 
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topography through spatial statistical modelling, there is currently limited means for statistical 

inference across the cortical projections of gradients. As such, there is a descriptive quality to 

some aspects of this study, although thorough measures have been taken to evaluate 

characteristics of cortical motifs from multiple perspectives. Importantly, gradients showed 

high correspondence with available previous observations and were reproduced in an 

independent data set, as well as in a sub group of younger participants. 

A lot stands to be gained from applying connectopic mapping to hippocampal 

cortical integration in additional contexts, characterizing its potential modulation by tasks such 

as memory encoding/retrieval, spatial navigation, and naturalistic viewing. Particular gain 

would likely come from gradient mapping in clinical samples. For instance, current studies 

highlight distinct anteroposterior hippocampal networks as differentially targeted by early tau 

and β-amyloid (Aβ) pathology (Berron et al., 2020; Maass et al., 2019), and the spread of tau 

as spatially determined by neural activation and connectivity (Adams et al., 2019; Wu et al., 

2016). As most studies still adopt a priori, parcellation-based, definitions of hippocampal 

regions and networks in combination with univariate approaches to connectivity, gradient 

mapping may provide valuable multidimensional and topographically more fine-grained insight 

to these characterizations. 

This study demonstrates two overlapping modes of functional connectivity 

organized along the hippocampus longitudinal axis, each constituting a local representation of 

a large-scale neocortical motif. Individual differences in the topography of these modes were 

linked to episodic memory, and suggested shared principles of functional and neuromolecular 

organization within the hippocampus. Collectively, our results provide a multidimensional 

framework for understanding hippocampal cortical integration and its contribution to memory 

across the adult human lifespan.  
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Methods 

This study included data from the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) 

study, for which the design and procedures have been described in detail elsewhere (Nordin et 

al., 2022). Here, we include the materials and methods relevant to the current study. DyNAMiC 

was approved by the Regional Ethical board and the local Radiation Safety Committee of 

Umeå, Sweden. All participants provided written informed consent prior to testing. 

 

Participants 

The DyNAMiC sample included 180 participants (20-79 years; mean age = 49.8±17.4; 90 

men/90 women equally distributed within each decade). Individuals were randomly selected 

from the population register of Umeå, Sweden, and recruited via postal mail. Exclusion criteria 

implemented during the recruitment procedure included brain pathology, impaired cognitive 

functioning (Mini Mental State Examination < 26), medical conditions and treatment that could 

affect brain functioning and cognition (e.g. dementia, diabetes, and psychiatric diagnosis), and 

brain imaging contraindications (e.g. metal implants). All participants were native Swedish 

speakers. A total of 16 participants were excluded from connectopic mapping due to excessive 

in-scanner motion, leaving resting-state fMRI data for 164 participants (20-78 years; mean age 

= 48.7±17.3). As a replication data set, we used an independent sample of 224 cognitively 

healthy and native Swedish-speaking adults (122 men/102 women; 29-85 years mean age = 

65.0±13.0) from the population-based Betula project, for which the design and recruitment 

procedures have been reported in detail elsewhere (Nilsson et al., 2004; Nyberg et al., 2020). 

 

Episodic memory 

Episodic memory was measured using three tasks testing word recall, number-word recall and 

object-location recall, respectively (Nevalainen et al., 2015; Nordin et al., 2022). In the word 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.534115doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534115
http://creativecommons.org/licenses/by/4.0/


30 
 

recall task, participants were presented with 16 Swedish concrete nouns that appeared 

successively on a computer screen. Each word was presented for 6 s during encoding with an 

inter-stimulus interval (ISI) of 1 s. Following encoding, participants reported as many words as 

they could recall by typing them using the keyboard. Two trials were completed, yielding a 

maximum score of 32. In the number-word task, participants encoded pairs of 2-digit numbers 

and concrete plural nouns (e.g., 46 dogs). During encoding, eight number-word pairs were 

presented, each displayed for 6 s, with an ISI of 1 s. Following encoding, nouns were presented 

again, in a re-arranged order, and participants had to report the 2-digit number associated with 

each presented noun (e.g. How many dogs?). This task included two trials with a total maximum 

score of 16. The third task was an object-location memory task. Here, participants were 

presented with a 6 × 6 square grid in which 12 objects were, one by one, shown at distinct 

locations. Each object-position pairing was displayed for 8 s, with an ISI of 1 s. Following 

encoding, all objects were simultaneously shown next to the grid for the participant to move 

them (in any order) to their correct position in the grid. If unable to recall the correct position 

of an object, participants had to guess and place the object in the grid to the best of their ability. 

Two trials of this task were completed, making the total maximum score 24. 

A composite score of performances across the three tasks was calculated and used 

as the measure of episodic memory. For each of the three tasks, scores were summarized across 

the total number of trials. The three resulting sum scores were z-standardized and averaged to 

form one composite score of episodic memory performance (T score: mean = 50; SD = 10). 

Missing values were replaced by the average of the available observed scores. 

 

Image acquisition 

Brain imaging was conducted at Umeå University Hospital, Sweden. Structural and functional 

MRI data were acquired with a 3T Discovery MR 750 scanner (General Electric, WI, USA), 
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using a 32-channel head coil. Positron emission tomography (PET) data were acquired with a 

Discovery PET/CT 690 scanner (General Electric, WI, USA). 

 

Structural MR Imaging 

Anatomical T1-weighted images were acquired with a 3D fast-spoiled gradient-echo sequence, 

collected as 176 slices with a thickness of 1 mm. Repetition time (TR) was 8.2 ms, echo-time 

(TE) = 3.2 ms, flip angle = 12º, and field of view (FOV) = 250 × 250 mm. 

 

Functional MR Imaging 

Functional MR data were collected during resting-state, with participants instructed to keep 

their eyes open and focus on a fixation cross during scanning. Images were acquired using a 

T2*-weighted single-shot echo-planar imaging (EPI) sequence, with a total of 350 volumes 

collected over 12 minutes. The functional time series was sampled with 37 transaxial slices, 

slice thickness = 3.4 mm, and 0.5 mm spacing, TR = 2000 ms, TE = 30 ms, flip angle = 80º, 

and FOV = 250 x 250 mm. Ten dummy scans were collected at the start of the sequence. 

 

PET Imaging 

PET was conducted in 3D mode with a Discovery PET/CT 690 (General Electric, WI, US) to 

assess whole-brain D1 receptor availability using the radioligand [11C]SCH23390. Scanning 

was done during a resting condition, with participants instructed to lay still and remain awake 

with their eyes open. To minimize head movement, a thermoplastic mask (Posicast®; CIVCO 

medical solutions; IA, US) was individually fitted for each participant, and attached to the bed 

surface during scanning. Following a low-dose CT scan (10 mA, 120 kV, and 0.8 s rotation 

time) for attenuation correction, an intravenous bolus injection with target radioactivity of 350 

MBq [11C]SCH23390 was administered. The PET scan was a 60 min dynamic scan, with 6 x 
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10 s, 6 x 20 s, 6 x 40 s, 9 x 60 s, 22 x 120 s frames. The average radioactivity dose administered 

to participants was 337±27 MBq (range 205-391 MBq). Due to participant drop-out and 

technical issues, complete PET data was available for 177 DyNAMiC participants. 

 

Image preprocessing 

Hippocampal segmentation and volumetric assessment 

Individual anatomical T1-weighted images were submitted to automated segmentation in 

FreeSurfer version 6 (Fischl et al., 2002, 2004). A mean image of participants’ normalized T1-

weighted images was also segmented in FreeSurfer, and yielded hippocampal and cortical 

segmentations used as masks for connectopic mapping. Regional gray matter (GM) volume was 

estimated from subject-specific hippocampal segmentations, and were corrected for total 

intracranial volume (ICV; the sum of volumes for grey matter, white matter, and cerebrospinal 

fluid). Adjusted volumes were equal to the raw volume - b(ICV - mean ICV), where b is the 

regression slope of volume on ICV (Buckner et al., 2004; Jack et al., 1989). Automated 

segmentation of the hippocampus into subiculum, CA1-3, and DG/CA4 subfields was 

conducted in FreeSurfer using the group-average T1-weighted image, for sample-specific 

masks to overlay onto G3. 

 

Functional MRI data 

Resting-state fMRI data were preprocessed using Statistical Parametric Mapping (SPM12: 

Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) implemented in 

an in-house software, DataZ. Functional images were slice-timing corrected, co-registered to 

to the anatomical T1-images, and motion corrected, and underwent distortion correction using 

subject-specific B0-field maps. The functional data were subsequently co-registered to the 

anatomical T1-images again, temporally demeaned and linear and quadratic effects were 
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removed. Next, a 36-parameter nuisance regression model was applied (Ciric et al., 2017), 

including mean cerebrospinal, white-matter, and whole-brain signal in addition to six motion 

parameters, including parameters’ squares, derivatives, and squared derivatives. To further 

control for in-scanner motion, the model also included a set of spike regressors, defined as 

binary vectors of motion-contaminated volumes exceeding a volume-to-volume root-mean-

squared (RMS) displacement of 0.25 mm (Satterthwaite et al., 2013). A temporal high-pass 

filter (with a threshold of 0.009 Hz) was applied simultaneously as nuisance regression in 

order to not re-introduce nuisance signals (Hallquist et al., 2013). Finally, images were 

normalized to MNI space by Diffeomorphic Anatomical Registration using Exponentiated Lie 

algebra (DARTEL: Ashburner, 2007) and smoothed with a 6-mm FWHM Gaussian kernel. 

Four individuals were excluded from the template-generation step due to non-pathological 

anatomical irregularities. In total, 16 participants were excluded due to displaying excessive 

in-scanner motion, as defined by displaying i) more than 20 volumes with >0.25 relative RMS 

difference in motion, and ii) greater than 0.2 average RMS across the run. On average, the 

relative RMS difference in motion across the sample was 0.090 (± 0.063), and the mean 

frame-wise displacement (FD) was 0.164 (± 0.104). 

 

Dopamine D1 receptor availability 

Preprocessing of PET data was performed in SPM12 (Wellcome Trust Centre for 

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Binding potential relative to non-

displaceable binding in a reference region (BPND; Innis et al., 2007), was used as an estimate of 

receptor availability (i.e. D1DR) in the hippocampus, for each participant defined using the 

FreeSurfer segmentation of their anatomical images. Cerebellum was used as reference region. 

PET images were corrected for head movement by using frame-to-frame image co-registration, 

and co-registered with T1-weighted MRI images with re-slicing to T1 voxel size. The simplified 
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reference-tissue model (SRTM) was used to model regional time-activity course (TAC) data 

(Lammertsma & Hume, 1996). Regional TAC data were adjusted for partial volume effects 

(PVE) by using the symmetric geometric transfer matrix (SGTM) method implemented in 

FreeSurfer (Greve et al., 2016), and an estimated point-spread-function of 2.5 mm full-width-

at-half-maximum (FWHM). 

 

Mapping gradients of functional connectivity 

Connectopic mapping (Haak et al., 2018) was run through the ConGrads toolbox (Haak et al., 

2018; Haak & Beckmann, 2020) implemented in FSL (Jenkinson et al., 2012; Smith et al., 

2004). Mapping was conducted on both subject level and group level, for the left and right 

hippocampus separately, and involved two main steps. First, for every hippocampal voxel, 

connectivity fingerprints were computed as the Pearson correlation between the voxel-wise 

time-series and a singular-value decomposition (SVD) representation of all cortical voxels. In 

a second step, non-linear manifold learning (Laplacian eigenmaps) was applied to a matrix 

expressing the degree of similarity between the voxel-wise fingerprints. This yields 

eigenvectors, so called connectopic maps, representing modes of functional connectivity (i.e. 

functional gradients). Each connectopic map is then projected onto cortex, for which each 

vertex is color coded according to the voxel in the hippocampus it correlates the most with. 

Since connectopic mapping at group level involves applying Laplacian eigenmaps to a group-

average similarity matrix, group level mapping across the sample was conducted using the 

hippocampal and cortical masks derived from the FreeSurfer segmentation of a sample-mean 

structural image. Mapping was specified to compute 20 gradients, and a subsequent scree plot 

over explained variance indicated meaningful contributions of the three first connectopic maps, 

together explaining 67% of the variance across hemispheres (Supplementary Figure 1). 
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Alignment of connectopic maps across participants 

To ensure optimal alignment of identified connectopic maps across participants, we employed 

Procrustes alignment, based on voxel-wise correlations, to order subject-level connectopic 

maps according to their correspondence with a set of reference maps (i.e. gradients computed 

at group level across the full sample). Moreover, whereas the sign of connectopic maps is 

arbitrary, differences therein have an impact on the spatial model parameters describing the 

topographic characteristics of gradients, derived through TSM in a later step. As such, the sign 

of subject-level connectopic maps showing negative correlations with the corresponding group-

level reference map were inversed. 

 

Trend surface modelling 

Using spatial statistics, the topography of a connectopic map can be represented by a small 

number of spatial model parameters. This parameterization of gradients enables analyses of 

inter-individual differences, and is achieved through trend surface modelling (TSM), 

implemented in a third step of the ConGrads analysis pipeline (Haak et al., 2018). In this step, 

the spatial pattern of each subject-level connectopic map is approximated by estimating a spatial 

statistical model. Model estimation involves fitting a set of polynomial basis functions along 

canonical axes of the connectopic map. In MNI space, this entails estimation along x, y, and z 

axes of the hippocampus. Thus, fitting a polynomial of degree 1 yields three TSM parameters 

(x, y, z), with any increase in model order corresponding to an increase in number of parameters 

(e.g. 6 parameters for the second model order: x, y, z, x2, y2, z2; 9 parameters for the third model 

order, etc.). Trend surface models are fitted with an increasing polynomial degree using 

Bayesian linear regression, which provides likelihood estimates that can be used for subsequent 

model selection. Here, we conducted model selection based on three information sources: a) 

the Bayesian Information Criterion (BIC) across subjects for models estimated at orders 1-10; 
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b) the % explained variance in connectopic maps by each model; and c) visual inspection of 

group-level gradients reconstructed from TSM parameters at different model orders. The 

purpose of using multiple information sources, as opposed to simply BIC, was to find a trade-

off between high-quality reconstructions of gradients by TSM models, while keeping the 

number of model parameters sufficiently low for multivariate statistical analyses. A model 

order of 3 (=9 TSM parameters) was selected for G1, whereas a model order of 4 (=12 TSM 

parameters) was selected for G2 and G3 (Supplementary Figure 5). Each gradient’s set of 

TSM parameters were then used as either dependent or independent variables in multivariate 

GLMs investigating links between gradient topography and variables such as age, episodic 

memory performance, and D1DR distribution. 

 

Transitions in connectivity as a function of the hippocampal longitudinal axis 

To visualize the orthogonal patterns of change in connectivity conveyed by each gradient, and 

to aid in the interpretation of age effects, we divided each subject-level connectopic map into 

23 bins of ~2mm along the hippocampus anterior-posterior axis and estimated the average 

gradient value (ranging from 0-1) for each bin. Plotting the values of each bin against their 

distance in mm from the most anterior voxel in the hippocampus as such demonstrates the 

pattern of change in connectivity along the anterior-posterior axis (Przeździk et al., 2019). 

 

Correlations between hippocampal gradients and the principal unimodal-transmodal 

gradient of cortical function 

Spearman correlations were computed between each hippocampal gradient and a unimodal-

transmodal gradient of cortical function previously reported in the DyNAMiC sample (Pedersen 

et al., 2023). To ensure sufficient alignment of gradients’ cortical projections and the cortical 

gradient, all surfaces were resampled according to the 400-parcel Schaefer atlas (Schaefer et 
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al., 2018). Statistical significance of correlations was assessed by spin-test permutation 

(Alexander-Bloch et al., 2018), randomly rotating a spherical projection of the cortical maps 

1000 times, with two-tailed statistical significance determined at a 95% confidence level. 

 

Mapping behavioral transitions along gradients using Neurosynth 

Transitions in behavioral domains were mapped onto G1 and G2 using meta-analytical 

decoding in Neurosynth (Yarkoni et al., 2011). We assessed two sets of behavioral terms 

(Figure 3), the first was a selection of terms commonly linked to anteroposterior hippocampal 

functional specialization (Grady, 2019; Plachti et al., 2019), and the second a selection of terms 

based on a previous report demonstrating behavioral transitions along a unimodal-transmodal 

cortical axis (Margulies et al., 2016). For correspondence with meta-analytical maps, we created 

region of interest masks by projecting the cortical surface of each gradient to the 2-mm 

volumetric MNI152 standard space. These volumetric images were then divided into five 

twenty-percentile bins and binarized. The resulting images were used as input to the Neurosynth 

decoder, yielding an r statistic associated with each selected behavioral term per section of each 

gradient. 
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